
c© 2011 International Press
Adv. Theor. Math. Phys. 15 (2011) 1817–1907

Algebraic deformations of toric

varieties II: noncommutative

instantons

Lucio Cirio1,2, Giovanni Landi3 and Richard J. Szabo4
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Abstract

We continue our study of the noncommutative algebraic and differ-
ential geometry of a particular class of deformations of toric varieties,
focusing on aspects pertinent to the construction and enumeration of
noncommutative instantons on these varieties. We develop a noncommu-
tative version of twistor theory, which introduces a new example of a non-
commutative four-sphere. We develop a braided version of the ADHM
construction and show that it parameterizes a certain moduli space of
framed torsion free sheaves on a noncommutative projective plane. We
use these constructions to explicitly build instanton gauge bundles with
canonical connections on the noncommutative four-sphere that satisfy
appropriate anti-selfduality equations. We construct projective moduli
spaces for the torsion free sheaves and demonstrate that they are smooth.
We define equivariant partition functions of these moduli spaces, finding
that they coincide with the usual instanton partition functions for super-
symmetric gauge theories on C

2.
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1 Introduction

This paper is the second part of a series of articles devoted to the construc-
tion and study of new noncommutative deformations of toric varieties. In
the first part [13], the general theory was developed. In the present work,
we elaborate on and extend some of these developments, and in particular
derive a theory of instantons on the noncommutative projective planes CP

2
θ

constructed in [13] in several different contexts.

In the commutative situation, moduli spaces of framed sheaves on the
complex projective plane have been studied intensively due to their connec-
tion with moduli spaces of framed instantons on the four-sphere; they are the
basis for instanton counting. Generally, the Hitchin–Kobayashi correspon-
dence establishes an identification between the moduli space of anti-selfdual
irreducible connections on a Hermitean vector bundle E over a Kähler sur-
face X and the set of equivalence classes of stable holomorphic bundles over
X which are topologically equivalent to E. Instanton counting consists in
computing BPS invariants of supersymmetric gauge theories in terms of
“integrals” over equivariant cohomology classes of the moduli spaces. Equi-
variant cohomology groups of moduli spaces of framed sheaves on generic
toric surfaces are much less well-understood in general than those of CP

2.

One of the main results of this paper is a detailed description of the mod-
uli space of torsion free sheaves on the noncommutative projective planes
CP

2
θ with a trivialization on a noncommutative line “at infinity”. We will
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identify points in this moduli space with classes of instantons on CP
2
θ. We

shall establish a bijective correspondence between torsion free sheaves on
CP

2
θ and certain sets of braided ADHM data, which correspond to stable

representations of the ADHM quiver with a certain q-deformation of the
usual relation. We will study some details of the corresponding moduli
spaces, which have good properties analogous to those of the commutative
case making them tractable for uses in instanton counting problems, pro-
vided that one considers them as members of flat families in an appropriate
sense [36]. This is in the same spirit as our general non-commutative defor-
mations which occur as members of flat families of quantizations of toric
varieties, and it agrees with general expectations [7, 8, 28] that instanton
moduli spaces in the θ-deformed case produce “families” of instantons. Our
results contain, in particular, an explicit realization of the construction of
instantons on a q-deformed euclidean space R

4
q similar to the one sketched

in [25, Section 9], our q-deformation being somewhat different.

Along the way we encounter some new constructions. A new noncom-
mutative twistor theory is developed. In particular, we construct a new
non-commutative four-sphere S4

θ and describe some of its properties. Our
construction of non-commutative instantons is partly inspired by the glu-
ing construction of Frenkel and Jardim [18], although our non-commutative
spaces and instanton gauge fields are rather different. Our analysis thus
extends the existing examples of non-commutative instantons and spaces.
Although our instanton moduli spaces are generically (commutative) defor-
mations of those in the classical case, we will find that the equivariant count-
ing problems, which define instanton partition functions of supersymmetric
gauge theories, coincide with those of the classical limit in this case.

It is hoped that the constructions of non-commutative instantons pre-
sented here can be extended to more complicated toric varieties in four
dimensions, such as ALE spaces or Hirzebruch surfaces, and ultimately to
generalized instantons of six-dimensional non-commutative toric geometries
pertinent to a non-commutative version of Donaldson–Thomas theory. The
development of such generalizations would further extend the uses of instan-
ton counting in enumerative geometry, and could possibly lead to new classes
of enumerative invariants. They may also lead to new examples of BPS
states in supersymmetric gauge theories and string theory. See [13, 37] for
further motivation and background behind our constructions.

1.1 Outline of paper

In Section 2, we review and extend the quantization of toric varieties intro-
duced in [13]. Our treatment follows the formalism of cocycle twist
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quantization and non-commutative geometry in braided monoidal categories,
see e.g., [8].

In Section 3 we introduce non-commutative projective varieties follow-
ing [13], focusing on the non-commutative projective spaces CP

n
θ . We study

coherent sheaves on these varieties and their invariants, and develop a theory
of non-commutative monad complexes.

In Section 4, we develop a new non-commutative version of twistor theory
in four dimensions following [13]. We construct a new example of a non-
commutative sphere S4

θ and corresponding twistor transforms, correspon-
dences and fibrations. Although not developed here, it would be extremely
interesting to investigate further the geometry of this non-commutative
sphere, such as its cyclic cohomology and how it fits as the base of a non-
commutative Hopf fibration whose total space is a seven-sphere.

In Section 5 we establish a bijection between framed torsion free sheaves
on CP

2
θ and a certain deformation of the usual ADHM construction. Our

construction mimicks that of the commutative case and relies on many
results of [6, 25] which were obtained in an analogous but rather different
setting.

In Section 6 we explicitly construct instanton gauge bundles and canonical
connections on S4

θ using our non-commutative twistor correspondence and
ADHM constructions. We verify that these connections satisfy appropriate
anti-selfduality equations with respect to a natural metric, thus
justifying them as bonafide non-commutative instantons. We do not develop
a suitable (Yang–Mills) gauge theory for these instantons in this paper.

In Section 7 we use results of Nevins and Stafford [36] to construct cor-
responding moduli spaces of non-commutative instantons and demonstrate
that they are smooth. We work out the corresponding deformation theory
and explicitly compute the tangent spaces in terms of our braided ADHM
construction. We work through many explicit examples which illustrate in
what sense these moduli spaces are deformations of their classical coun-
terparts, including a (commutative) deformation of the Hilbert scheme of
points.

Finally, in Section 8 we use our moduli space constructions to compute
standard equivariant counting functions for our non-commutative instantons
with respect to a natural torus action on the instanton moduli space. We
find a combinatorial classification of the torus fixed points in moduli space
and show that it coincides with that of the classical limit. We comment
on how it may be possible to construct instanton partition functions which
capture more deeply the deformation of the moduli spaces.
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1.2 Conventions and notation

Unless otherwise indicated, all tensor products are taken over the base
field of complex numbers C. All varieties considered are reduced separated
schemes of finite type over C. All algebras are associative over C.

2 Braided symmetries of non-commutative toric varieties

2.1 Cocycle deformations of the algebraic torus

Let L be a lattice of rank n, and let T = L⊗Z C
× be the associated algebraic

torus of dimension n over C. The Pontrjagin dual group ̂T = HomC(T,C×)
is the group of characters {χp}p∈L∗ parameterized by elements of the dual
lattice L∗ = HomZ(L,Z). The dual pairing L∗ × L→ Z between lattices
is denoted (p, v) �→ p · v. Upon fixing a Z-basis e1, . . . , en for L, with cor-
responding dual basis e∗1, . . . , e∗n for L∗, one has T ∼= (C×)n and ̂T ∼= Z

n.
For p =

∑

i pi e
∗
i ∈ L∗ and t =

∑

i ei ⊗ ti ∈ T , the characters are
given by

χp(t) = tp := tp1
1 · · · tpn

n . (2.1)

The unital algebra H = A(T ) of coordinate functions on the torus T is
the Laurent polynomial algebra

H := C(t1, . . . , tn)

generated by elements ti, i = 1, . . . , n. It is equipped with the Hopf algebra
structure

Δ(tp) = tp ⊗ tp, ε(tp) = 1, S(tp) = t−p

for p ∈ L∗, with the coproduct and the counit respectively extended as alge-
bra morphisms Δ : H → H ⊗ H and ε : H → C, and the antipode as an
anti-algebra morphism S : H → H. The canonical right action of T on itself
by group multiplication dualizes to give a left H-coaction

ΔL : A(T ) −→ H ⊗ A(T ), ΔL(ui) = ti ⊗ ui,

ΔL

(

u−1
i

)

= t−1
i ⊗ u−1

i , (2.2)

where we write ui, u−1
i , i = 1, . . . , n for the generators of A(T ) viewed as a

left comodule algebra over itself, when distinguishing the coordinate algebra
A(T ) from the Hopf algebra H. This coaction is equivalent to a grading of
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the algebra A(T ) by the dual lattice L∗, for which the homogeneous elements
are the characters (2.1).

A two-cocycle Fθ : H ⊗ H → C on H is defined by choosing a complex
skew-symmetric n× n matrix θ = (θij), regarded as a homomorphism θ :
L∗ → L⊗Z C, setting

Fθ(tp, tq) = exp
(

i
2
p · θq

)

on characters tp, tq ∈ H, and extending by linearity. The map Fθ is a
convolution-invertible Hopf bicharacter and obeys

Fθ ◦ (S ⊗ id) = F−1
θ = Fθ ◦ (id ⊗ S), Fθ ◦ (S ⊗ S) = Fθ.

It follows that Fθ is completely determined by its values on generators

Fθ(ti, tj) = exp
(

i
2
θij

)

=: qij

for i, j = 1, . . . , n.

Given such a map, one constructs the cotwisted Hopf algebra Hθ which as
a coalgebra is the same as H but which generally has a modified product and
antipode. In the present case one easily finds that the product and antipode
are in fact undeformed by Fθ, so H = Hθ as a Hopf algebra. On the other
hand, H and Hθ differ as coquasitriangular Hopf algebras. While the Hopf
algebra H naturally carries the trivial coquasitriangular structure R = ε⊗ ε :
H ⊗ H → C, the cotwisted Hopf algebra Hθ has twisted coquasitriangular
structure given by the convolution-invertible Hopf bicharacter Rθ : Hθ ⊗
Hθ → C defined as Rθ = F−2

θ ; on generators one has explicitly

Rθ(ti, tj) = Fθ(tj , ti)F−1
θ (ti, tj) = F−2

θ (ti, tj) = q−2
ij .

On the other hand, the algebra structure of A(T ) gets deformed to a non-
commutative product; this is a particular instance of the quantization func-
tor we describe in Section 2.2.

2.2 Toric symmetries in braided monoidal categories

A left H-comodule structure on a vector space V will be denoted
as in (2.2) by ΔL : V → H ⊗ V , together with a Sweedler notation
ΔL(v) = v(−1) ⊗ v(0) for v ∈ V and with implicit summation. Let HM
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denote the additive category of left H-comodules. A map V
σ−−→W is a

morphism of this category if and only if it is H-coequivariant, i.e., it sits in
the commutative diagram

V
σ ��

ΔL

��

W

ΔL

��
H ⊗ V

id⊗σ
�� H ⊗W

or more explicitly v(−1) ⊗ σ(v(0)) = σ(v)(−1) ⊗ σ(v)(0) for all v ∈ V . The
category HM has a natural monoidal structure given by the tensor product
coaction

ΔV ⊗W (v ⊗ w) = v(−1)w(−1) ⊗ (v(0) ⊗ w(0)
)

for v ∈ V , w ∈W . With the trivial coquasitriangular structure R = ε⊗ ε
on the Hopf algebra H, the category HM of left H-comodules is (trivially)
braided by the collection Ψ = {ΨV,W : V ⊗W →W ⊗ V } of functorial flip
isomorphisms ΨV,W (v ⊗ w) = w ⊗ v for each pair of objects V,W of HM ,
and for all v ∈ V and w ∈W .

With the deformed coquasitriangular structure Rθ = F−2
θ on the cotwisted

Hopf algebra Hθ, the monoidal category HθM of left Hθ-comodules is
braided by the collection of functorial isomorphisms Ψθ = {Ψθ

V,W : V ⊗W →
W ⊗ V }, where

Ψθ
V,W (v ⊗ w) = F−2

θ

(

w(−1), v(−1)
)

w(0) ⊗ v(0) (2.3)

for each pair V,W of left Hθ-comodules with v ∈ V and w ∈W . Since
the functor Ψθ is an involution, i.e., Ψθ ◦ Ψθ is isomorphic to the identity
functor of the category HθM , the braiding is symmetric and makes HθM
into a tensor category. In particular, if A and B are left Hθ-comodule
algebras with product maps μA : A⊗A→ A and μB : B ⊗B → B, then
one can define the braided tensor product algebra A⊗θ B to be the vector
space A⊗B with the product map μA⊗θ B : (A⊗θ B) ⊗ (A⊗θ B) → A⊗θ B
given by

μA⊗θ B =
(

μA ⊗ μB

) ◦ (idA ⊗ Ψθ
B,A ⊗ idB

)

.

The resulting algebra is an object of the category HθM by the tensor product
coaction.
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The deformation in passing from H to Hθ takes the form of a functorial
isomorphism Fθ : HM → HθM of braided monoidal categories. The functor
Fθ acts as the identity on objects and morphisms of HM , but defines a new
monoidal structure on the category HθM by

λθ : Fθ(V ) ⊗ Fθ(W ) −→ Fθ(V ⊗W ),

λθ(v ⊗ w) = Fθ

(

v(−1), w(−1)
)

v(0) ⊗ w(0).

This makes Fθ into a monoidal functor which intertwines the braidings in
HM and HθM , given respectively by the flip functor Ψ and the functor Ψθ

defined in (2.3).

The quantization functor Fθ simultaneously deforms all H-coequivariant
constructions to corresponding versions which are coequivariant under Hθ.
For example, if A is an algebra in the category HM , then the functor Fθ

takes its product map μA : A⊗A→ A to a map Fθ(μA) : Fθ(A⊗A) →
Aθ := Fθ(A). Composing this morphism with λθ gives rise to a new product
map

μAθ
:= Fθ(μA) ◦ λθ : Aθ ⊗Aθ −→ Aθ

with

a �θ b := μAθ
(a⊗ b) = Fθ

(

a(−1), b(−1)
)

μA

(

a(0) ⊗ b(0)
)

, (2.4)

which automatically makes Aθ into an Hθ-comodule algebra. If A is a com-
mutative algebra, then the algebra Aθ is no longer commutative in general
but only braided commutative, i.e., μAθ

= μAθ
◦ Ψθ

Aθ,Aθ
.

Another standard construction in braided monoidal categories yields
deformations of exterior algebras. If V is a finite-dimensional object of
the category HθM of left Hθ-comodules, then the exterior algebra of V in
degree d is given by [13]

∧d
θ V := V ⊗d

/ 〈

v1 ⊗ v2 + Ψθ
V,V (v1 ⊗ v2)

〉

v1,v2∈V
. (2.5)

For θ = 0 we recover the usual exterior algebra
∧d V of the vector space V ,

while for θ 	= 0 we obtain a braided skew-commutative algebra
∧d

θ V . We
also write

∧•
θ V := T (V )

/ 〈

v1 ⊗ v2 + Ψθ
V,V (v1 ⊗ v2)

〉

v1,v2∈V
(2.6)
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where T (V ) =
⊕

n≥0 V
⊗n is the free tensor algebra of the complex vector

space V with V 0 := C.

2.3 Quantization of toric varieties

As already mentioned at the end of Section 2.1, for A = A(T ) regarded as
a left comodule algebra over itself, the functorial quantization constructed
in Section 2.2 twists the algebra multiplication into a new product given by
combining (2.2) and (2.4) to get

ui �θ uj = Fθ(ti, tj) ui uj = qij ui uj .

Let A(Tθ) be the Laurent polynomial algebra generated by ui with this
product. It has relations

ui �θ uj = q2ij uj �θ ui, u−1
i �θ uj = q−2

ij uj �θ u
−1
i

for each i, j = 1, . . . , n. This quantizes the torus T into the non-commutative
algebraic torus Tθ = (C×

θ )n dual to the algebra A(Tθ). In the sequel we drop
the star-product symbols �θ from the notation for simplicity.

A toric variety X of dimension n is a complex algebraic variety with
an algebraic action of the torus T = (C×)n and a T -equivariant injection
T ↪→ X with dense image in the Zariski topology, where T acts on itself by
group multiplication. In [13] we constructed a natural flat family of quanti-
zations X → Xθ, with dual algebras A(Xθ), over the coordinate algebra
A(
∧2 T ) = C(qij , 1 ≤ i < j ≤ n) of the algebraic torus

∧2 T := HomZ(
∧2

L∗,C×) of dimension 1
2 n (n− 1). The original commutative toric variety

X = Xθ=0 is the fibre over the identity element of A(
∧2 T ). Since the

Zariski tangent space to the family at the identity is naturally isomor-
phic to HomZ(

∧2 L∗,C), the family is universal for torus coinvariant non-
commutative deformations in the following sense. Let Alg be the category of
commutative unital noetherian C-algebras and Set the category of sets. Let
FX : Alg → Set be the covariant functor which sends an algebra A to the set
FX(A) = A(XA) of algebras dual to a flat family of T -coinvariant deforma-
tions X → XA parameterized by A. Then there is a unique algebra homo-
morphism α : A(

∧2 T ) → A such that FX(A) ∼= FX(α)(A(Xθ)). Whence
the pair

(

A(
∧2 T ),A(Xθ)

)

is a universal object representing
the functor FX , and the toric variety X thus has a fine moduli space

∧2 T
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of toric non-commutative deformations of dimension 1
2 n (n− 1) (see [24,

Section 2.2]).

Noncommutative affine toric varieties correspond to finitely-generated
Hθ-comodule subalgebras of the algebra A(Tθ) of the non-commutative
torus. Using the combinatorics of fans, one can glue these subalgebras
together via algebra automorphisms in the category HθM to form global
non-commutative toric varieties; see [13, Section 3] for explicit construc-
tions. The cones of the fan define the subcategory Open(Xθ) of toric open
sets of the non-commutative variety Xθ. In particular, the association of
cones with Hθ-comodule subalgebras of A(Tθ) defines the structure sheaf
OXθ

of non-commutative C-algebras on Open(Xθ). The corresponding cat-
egory of coherent sheaves of right OXθ

-modules on Open(Xθ) is denoted
coh(Xθ). While coh(Xθ) � coh(X) in general, the coequivariant homologi-
cal algebra of the non-commutative toric variety Xθ always coincides with
that of the commutative fibre X (see [24, Section 7]).

The data defining a non-commutative deformation of a toric variety also
defines a circle bundle over the (maximally) compact dual torus T ∗

R
= (L∗ ⊗Z

R)/L∗ ∼= U(1)n, as both are given by pairings on the character lattice L∗.
A basic operation in the theory of constructible sheaves yields “twisted”
sheaves on T ∗

R
associated to this circle bundle, i.e., sheaves on the total space

of the bundle whose monodromy around each fibre is given by a parame-
ter λ ∈ C

×. A version of the coherent-constructible correspondence [16]
then takes a coherent sheaf on the non-commutative toric variety Xθ to
a complex of twisted constructible sheaves on the dual torus T ∗

R
. These

twisted complexes are equivalent to data in an analogue of the Fukaya
category of lagrangian submanifolds of the cotangent bundle T∗ of T ∗

R
[32];

in this sense the correspondence is a version of Kontsevich’s homological
mirror symmetry equivalence. In particular, this mirror correspondence
relates the enumerative geometry of ideal sheaves (or instantons) on Xθ

to that of Lagrangians in the mirror manifold T∗. In topological string the-
ory, it provides an equivalence between the category of non-commutative
B-branes on Xθ and a certain category of twisted lagrangian A-branes on
the mirror T∗.

In this paper we work exclusively with non-commutative projective
varieties, as defined in Section 3.1 below. The ensuing simplification is
that we can work for the most part directly at the level of the homoge-
neous coordinate algebras, without resorting to the local picture provided
by the combinatorial fan data of the toric variety. An alternative version of
the homological mirror symmetry correspondence for CP

2
θ, and more gen-

erally for toric non-commutative weighted projective planes, is described
in [5]; in this case the deformation parameter θ := θ12 ∈ C parameterizes
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a non-exact deformation of the complexified Kähler class of the mirror
Landau–Ginzburg model.

3 Coherent sheaves on non-commutative projective varieties

3.1 Projective spaces CP
n
θ

The homogeneous coordinate algebra A(CP
n
θ ) of the non-commutative toric

variety CP
n
θ is the graded polynomial algebra in n+ 1 generators wi, i =

1, . . . , n+ 1 of degree one with the quadratic relations

wn+1wi = wiwn+1, i = 1, . . . , n,

wiwj = q2ij wj wi, i, j = 1, . . . , n. (3.1)

This algebra is naturally an Hθ-comodule algebra with left coaction

ΔL : A(CP
n
θ ) −→ Hθ ⊗ A(CP

n
θ )

given on generators by

ΔL(wi) = ti ⊗ wi, i = 1, . . . , n,

ΔL(wn+1) = 1 ⊗ wn+1, (3.2)

and extended as an algebra morphism. As before, we denote the coaction
on an arbitrary element f ∈ A(CP

n
θ ) by ΔL(f) = f (−1) ⊗ f (0). The algebra

A = A(CP
n
θ ) is quadratic and graded by the usual polynomial degree as

A(CP
n
θ ) =

∞
⊕

k=0

Ak,

with A0 = C and Ak =
⊕

i1+···+in+1=k Cwi1
1 · · ·win+1

n+1 for k > 0.

Each monomial wi generates a left denominator set in A(CP
n
θ ), and the

degree zero subalgebra of the left Ore localization of A(CP
n
θ ) with respect to

wi is naturally isomorphic to the non-commutative coordinate algebra of the
ith maximal cone in the fan of CP

n
θ , for each i = 1, . . . , n+ 1 [13, Thm. 5.4].

If I ⊂ A(CP
n
θ ) is a graded two-sided ideal generated by a set of homoge-

neous polynomials f1, . . . , fm, then the quotient algebra A(CP
n
θ )/I is iden-

tified as the graded homogeneous coordinate algebra of a non-commutative
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projective variety Xθ(I). It has generators w1, . . . , wn+1 subject to the rela-
tions (3.1) and f1 = · · · = fm = 0. We work only with varieties Xθ(I) whose
coordinate algebras A(Xθ(I)) = A(CP

n
θ )/I are regular. Noncommutative

projective varieties inherit many of the properties of CP
n
θ that we describe

in the following.

The Koszul dual A! =
⊕

k≥0 A!
k of the quadratic algebra A = A(CP

n
θ ) was

worked out in [13, Prop. 6.1] and it is a deformation of the exterior algebra
of A∗, graded again by polynomial degree, where throughout (−)∗ denotes
the C-dual HomC(−,C). In the category HθM of left Hθ-comodules, it is
given by

A!
k =

∧k
θ A∗

1 =
(

A∗
1

)⊗k / 〈
a1 ⊗ a2 + Ψθ

A∗
1,A∗

1
(a1 ⊗ a2)

〉

a1,a2∈A∗
1
,

and hence the dual algebra A! is generated by degree one elements w̌i ∈ A!
1,

i = 1, . . . , n+ 1, with the relations

w̌2
i = 0, i = 1, . . . , n+ 1,

w̌i w̌n+1 + w̌n+1 w̌i = 0, i = 1, . . . , n,

w̌i w̌j + q2ij w̌j w̌i = 0, i, j = 1, . . . , n. (3.3)

The coaction ΔL : A! → Hθ ⊗ A! is dual to the coaction (3.2) and is
given by

ΔL(w̌i) = t−1
i ⊗ w̌i, i = 1, . . . , n,

ΔL(w̌n+1) = 1 ⊗ w̌n+1. (3.4)

By using the associated Koszul resolution of the trivial right A-module
A0 = C [13, Section 6.1], together with the fact that A = A(CP

n
θ ) is an Ore

extension of a commutative polynomial algebra [5, Section 2.3], one shows
that the algebra A is a noetherian regular algebra of homological dimension
n+ 1 (see [5, Prop. 2.6] and [13, Cor. 6.5]).

3.2 Coherent sheaves

With A = A(CP
n
θ ), let gr(A) be the abelian category of finitely-generated

graded right A-modules M =
⊕

k≥0 Mk with morphisms given by module
homomorphisms of degree zero. Let tor(A) be the full subcategory of gr(A)
consisting of graded torsion A-modules M which have finite dimension over
C, i.e., Mk = 0 for k � 0. In [13] it was shown that one can identify the
category coh(CP

n
θ ) of coherent sheaves of right OCP

n
θ
-modules on Open(CP

n
θ )
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with the abelian quotient category gr(A)/tor(A). We denote by π : gr(A) →
coh(CP

n
θ ) the canonical projection functor. Under this correspondence, the

structure sheaf OCP
n
θ

of non-commutative C-algebras on Open(CP
n
θ ) is the

image π(A) of the homogeneous coordinate algebra itself, regarded as a free
right A-module of rank one. Throughout we abbreviate

Hom(E,F ) := Homcoh(CP
n
θ )(E,F )

for E,F ∈ coh(CP
n
θ ). By [5, Cor. 2.19], if n× n complex skew-symmetric

matrices θ and θ′ are related by θ′ ij = θij + ϑi − ϑj for some ϑ1, . . . , ϑn ∈ C,
then the abelian categories coh(CP

n
θ ) and coh(CP

n
θ′) are equivalent.

The abelian category gr(A) is equipped with a shift functor which is
the autoequivalence sending a graded module M =

⊕

k≥0 Mk to the shifted
module M(l) defined by M(l)k = Ml+k. The induced shift functor on the
quotient category coh(CP

n
θ ) sends a sheaf E = π(M) to E(k) := π(M(k)).

Since A is a noetherian regular algebra, the correspondence which sends a
sheaf E ∈ coh(CP

n
θ ) to the graded module

Γ(E) :=
∞
⊕

k=0

Hom
(

OCP
n
θ
(−k), E)

defines a functor Γ : coh(CP
n
θ ) → gr(A) such that π ◦ Γ is isomorphic to the

identity functor of the category coh(CP
n
θ ) [3, Sections 3–4].

Let grL(A) be the abelian category of finitely-generated graded left
A-modules. We will denote by πL : grL(A) → cohL(CP

n
θ ) := grL(A)/torL(A)

the corresponding quotient projection, and by ΓL : cohL(CP
n
θ ) → grL(A)

its right inverse such that πL ◦ ΓL is isomorphic to the identity functor of
cohL(CP

n
θ ). For any sheaf E ∈ coh(CP

n
θ ), the graded left A-module

Hom
(

E,OCP
n
θ

)

= πL

( ∞
⊕

k=0

Hom
(

E,OCP
n
θ
(k)
)

)

is called the dual sheaf of E and is denoted E∨ ∈ cohL(CP
n
θ ). The internal

Hom-functor Hom (−,OCP
n
θ
) : coh(CP

n
θ ) → cohL(CP

n
θ ) is left exact and has

corresponding right derived functors Extp(−,OCP
n
θ
) given by

Extp
(

E,OCP
n
θ

)

= πL

( ∞
⊕

k=0

Extp
(

E,OCP
n
θ
(k)
)

)

for p ≥ 0, where Extp(E,F ) is the p-th derived functor of the Hom-functor
Hom(E,F ) for E,F ∈ coh(CP

n
θ ). Since A is a noetherian regular algebra,
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there are isomorphisms [13]

Extp(E,F ) ∼= Extp
L(F∨, E∨) := Extp

cohL(CP
n
θ )(F

∨, E∨)

for any p ≥ 0 and for any pair of torsion free sheaves E,F ∈ coh(CP
n
θ ). The

sheaves E = OCP
n
θ
(k), k ∈ Z are locally free, i.e., Extp(E,OCP

n
θ
) = 0 for all

p > 0, with Hom (OCP
n
θ
(k),OCP

n
θ
(l)) = OCP

n
θ
(l − k) as sheaves of bimodules.

Under the conditions spelled out in [13, Prop. 6.4], a non-commutative
version of the Beilinson spectral sequence can be developed following [25]
by using a double Koszul bicomplex of the algebra A. For this, split the left
Koszul complex K•(A) ∼= A ⊗ (A!)∗ of A–A!-bimodules into finite-
dimensional subcomplexes K•

(p)(A) for the total degree p. Then for any
sheaf F ∈ coh(CP

n
θ ), there is a spectral sequence with first term

Ep,q
1 = Extq(Qp, F ) ⊗ OCP

n
θ
(−p) =⇒ Ei

∞ =

{

F, i = p+ q = 0,
0, otherwise,

(3.5)

where p = 0, 1, . . . , n, and Qp = πL

(

K
p
(0)(A)

)∨ is the sheaf on Open(CP
n
θ )

corresponding to the cohomology of the truncated left Koszul complex for
total degree zero given by

K
p
(0)(A) = ker

(

A(−p) ⊗ (A!
p

)∗ −→
p
⊕

k=1

A(k − p) ⊗ (A!
p−k

)∗
)

. (3.6)

For p = 1, it is shown in [13, Ex. 6.10] that the cohomology module K1(A)
of the left Koszul complex of A truncated at the first term can be naturally
identified with the coherent sheaf

Ω1
CP

n
θ

= ker
(

μA : (A!
1)

∗ ⊗ A → A
)

of Kähler differentials on Open(CP
n
θ ). Here μA denotes the product map on

the algebra A.

3.3 Invariants of torsion-free sheaves

A coherent sheaf E on Open(CP
n
θ ) is torsion free if it embeds into a locally

free sheaf (a bundle), or equivalently if the right A-module M = Γ(E) con-
tains no finite-dimensional submodules. They have natural isomorphism
invariants associated to them. The (Goldie) rank of E is the maximal num-
ber of non-zero direct summands of E, regarded as A-submodules. This
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agrees with the notion of rank given in [13, Def. 4.7] and is denoted rank(E).
There is also a well-defined Euler characteristic

χ(E) =
∑

p≥0

(−1)p dimC

(

Hp(CP
n
θ , E)

)

,

where Hp(CP
n
θ , E) := Extp(OCP

n
θ
, E) are finite-dimensional vector spaces

over C by the χ-condition of [13, Prop. 6.7], together with the Hilbert poly-
nomial

hE(s) = χ
(

E(s)
) ∈ Q[s].

The first Chern class c1 is defined by the requirement of additivity on
short exact sequences together with

c1
(

OCP
n
θ
(k)
)

= k. (3.7)

This uniquely determines c1(E) upon using the ampleness property of [13,
Prop. 6.7] to construct a resolution of E by shifts of the structure sheaf
OCP

n
θ
, and then applying additivity. With this definition, one has [36]

c1
(

E(k)
)

= c1(E) + k rank(E). (3.8)

In particular, for any ideal sheaf I ∈ coh(CP
n
θ ), i.e., a torsion free sheaf of

rank one on Open(CP
n
θ ), there is a unique shift I(k) of I which has c1 = 0.

Proposition 3.9. If E ∈ coh(CP
n
θ ) is a torsion free sheaf, then Extn(E,

OCP
n
θ
) = 0.

Proof. This is a special case of [6, Prop. 2.0.6]. �

In our constructions of instanton moduli spaces, we shall need appropriate
notions of stability.

Definition 3.10. A torsion free sheaf E ∈ coh(CP
n
θ ) is said to be μ-stable

(resp. μ-semistable) if for every proper non-trivial subsheaf F ⊂ E, one has

c1(F )
rank(F )

<
c1(E)

rank(E)

(resp. ≤).
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3.4 Monads

We shall now describe a general construction of coherent sheaves, which will
be instrumental in our analysis of instanton moduli spaces later on.

Definition 3.11. A monad on a (regular) non-commutative projective vari-
ety Xθ = Xθ(I) is a complex

C • : 0 −→ C−1
σC •−−→ C0

τC •−−→ C1 −→ 0

of locally free sheaves on Open(Xθ) which is exact at the first and last
terms. The coherent sheaf C = H0(C •) = ker(τC•)/im(σC•) on Open(Xθ)
is called the cohomology of the monad C •. A morphism of monads is a
homomorphism of complexes.

In this paper we are primarily interested in linear monads on the non-
commutative projective spaces CP

n
θ , which are complexes of sheaves of free

right A-modules of the form

C • : 0 −→ V−1 ⊗ OCP
n
θ
(−1) σw−−→ V0 ⊗ OCP

n
θ

τw−→ V1 ⊗ OCP
n
θ
(1) −→ 0 (3.12)

for finite-dimensional complex vector spaces V−1, V0 and V1, where σw ∈
V ∗−1 ⊗ V0 ⊗ A1 (resp. τw ∈ V ∗

0 ⊗ V1 ⊗ A1) is an injective (resp. surjective)
A-module homomorphism such that τw ◦ σw = 0. Here A1 is the degree
one component of the graded coordinate algebra A = A(CP

n
θ ), i.e., the

vector space spanned by the generators w1, . . . , wn+1. Note that A1
∼=

H0(CP
n
θ ,OCP

n
θ
(1)) by [13, Prop. 6.8]. This definition is also well-posed on

any regular non-commutative projective variety Xθ(I).

Proposition 3.13. If E ∈ coh(CP
n
θ ) is the cohomology sheaf of a linear

monad complex (3.12), then it has invariants

rank(E) = dimC(V0) − dimC(V−1) − dimC(V1),

c1(E) = dimC(V−1) − dimC(V1),

χ(E) = dimC(V0) − (n+ 1) dimC(V1).

Proof. From (3.12) and [6, Prop. 2.0.4 (1)] it follows that the kernel sheaf
ker(τw) is locally free, and there are short exact sequences of sheaves of
A-modules

0 −→ ker(τw) −→ V0 ⊗ OCP
n
θ

τw−→ V1 ⊗ OCP
n
θ
(1) −→ 0 (3.14)
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and

0 −→ V−1 ⊗ OCP
n
θ
(−1) σw−−→ ker(τw) −→ E −→ 0. (3.15)

We apply rank, c1 and χ to these sequences using the fact that they are
all additive in exact sequences [36]. The formula for the rank then fol-
lows immediately, while the formula for the first Chern class follows from
(3.7). The expression for the Euler characteristic follows by [13, Prop. 6.8]
which gives χ(OCP

n
θ
) = dimC(A0) = 1, χ(OCP

n
θ
(1)) = dimC(A1) = n+ 1, and

χ(OCP
n
θ
(−1)) = 0. �

Corollary 3.16. A linear monad complex (3.12) on CP
n
θ exists only when

dimC(V0) ≥ dimC(V−1) + dimC(V1).

A fruitful feature of such sheaves E coming from linear monads is that the
cohomology groups of the shifts E(k) are qualitatively similar to those of the
structure sheaf, in the sense that there is at most one non-trivial cohomology
group, and only for degree shifts in the ranges k ≥ 0 and k ≤ −n− 1, as
in [13, Prop. 6.8].

Proposition 3.17. If E ∈ coh(CP
n
θ ) is the cohomology of a linear monad

complex (3.12), then it has the following sheaf cohomology groups:

(1) Hp
(

CP
n
θ , E(k)

)

= 0 for all pairs of integers (p, k) = (0, k < 0), (1, k <
−1), (2 ≤ p ≤ n− 2, k ∈ Z), (n− 1, k > −n) and (n, k ≥ −n);

(2) H1
(

CP
n
θ , E(−1)

)

= V1; and

(3) Ext1
(

E,OCP
n
θ

)

= coker(σ∗w), while Extp
(

E(k),OCP
n
θ

)

= 0 for all p ≥ 2
and for all k ∈ Z.

Proof. (1) The complex (3.12) of sheaves of free right A-modules can be
naturally extended by applying the degree k shift functor for any k ∈ Z,
whose cohomology coincides with the sheaf E(k). This modifies the short
exact sequences (3.14)–(3.15) to

0 −→ (

ker(τw)
)

(k) −→ V0 ⊗ OCP
n
θ
(k) τw−→ V1 ⊗ OCP

n
θ
(k + 1) −→ 0

and

0 −→ V−1 ⊗ OCP
n
θ
(k − 1) σw−−→ (

ker(τw)
)

(k) −→ E(k) −→ 0.
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They induce long exact sequences in cohomology which contain the exact
sequences

Hp
(

CP
n
θ ,
(

ker(τw)
)

(k)
)

−→ V0 ⊗Hp
(

CP
n
θ ,OCP

n
θ
(k)
) −→ V1 ⊗Hp

(

CP
n
θ ,OCP

n
θ
(k + 1)

)

−→ Hp+1
(

CP
n
θ ,
(

ker(τw)
)

(k)
)

(3.18)

and

V−1 ⊗Hp
(

CP
n
θ ,OCP

n
θ
(k − 1)

) −→ Hp
(

CP
n
θ ,
(

ker(τw)
)

(k)
)

−→ Hp
(

CP
n
θ , E(k)

) −→ V−1 ⊗Hp+1
(

CP
n
θ ,OCP

n
θ
(k − 1)

)

(3.19)

for each p ≥ 0, whose first arrows are both injections for p = 0 and Hp+1

(CP
n
θ ,−) = 0 for p = n by [13, Prop. 6.8]. We use these two sequences

and [13, Prop. 6.8] to find the values of (p, k) for which the isomorphisms
Hp(CP

n
θ , (ker(τw))(k)) ≈−−→ Hp(CP

n
θ , E(k)) and Hp(CP

n
θ , (ker(τw))(k)) = 0

simultaneously hold, and the assertions follow.

(2) Set k = −1 in (3.19) and use H0(CP
n
θ , E(−1)) = 0 by (1), together with

H1
(

CP
n
θ ,OCP

n
θ
(−2)

)

= H2
(

CP
n
θ ,OCP

n
θ
(−2)

)

= 0

by [13, Prop. 6.8], to find the isomorphism H1(CP
n
θ , (ker(τw))(−1)) ≈−−→

H1(CP
n
θ , E(−1)). Setting k = −1 in (3.18) and using H0(CP

n
θ ,OCP

n
θ
(−1)) =

H1(CP
n
θ ,OCP

n
θ
(−1)) = 0 by [13, Prop. 6.8], there is an isomorphism V1 ⊗

H0(CP
n
θ ,OCP

n
θ
) ≈−−→ H1(CP

n
θ , (ker(τw))(−1)). The result now follows by [13,

Prop. 6.8] which gives H0(CP
n
θ ,OCP

n
θ
) ∼= A0 = C.

(3) We use OCP
n
θ
(l)∨ ∼= OCP

n
θ
(−l) for any l ∈ Z (as sheaves of bimodules)

and note that, by applying the internal Hom-functor Hom (−,OCP
n
θ
) to the

complex (3.12) using [13, Prop. 6.9], the cohomologies of the dual complex

C ∨
• : 0 −→ OCP

n
θ
(−1) ⊗ V ∗

1
τ∗
w−→ OCP

n
θ
⊗ V ∗

0

σ∗
w−−→ OCP

n
θ
(1) ⊗ V ∗

−1 −→ 0 (3.20)

coincide with H0(C ∨• ) = Hom (E,OCP
n
θ
) =E∨ and H1(C ∨• ) = Ext1(E,OCP

n
θ
).

We now use the fact that the A-module ker(τw) is locally free, together with
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the dualizing sequence

0 −→ E∨(−k) −→ (

ker(τw)
)∨(−k) σ∗

w−−→ OCP
n
θ
(−k + 1) ⊗ V ∗

−1 −→
−→ Ext1

(

E(k),OCP
n
θ

) −→ 0,

and the result follows. �

It is also possible to algebraically characterize those linear monads whose
cohomology sheaf is locally free or torsion free.

Proposition 3.21. Let E ∈ coh(CP
n
θ ) be the cohomology of a linear monad

complex (3.12) and let S = ΓL(coker(σ∗w)) ∈ grL(A). Then:

(1) E is locally free if and only if S is a finite-dimensional graded left A-
module.

(2) E is torsion free if and only if S has homological dimension ≤ n− 2
as a graded left A-module.

Proof. (1) By point (3) of Proposition 3.17 and [13, Prop. 6.9], E is locally
free if and only if πL(S) = 0, i.e., dimC(S) <∞.

(2) There is a spectral sequence

Ep,q
2 = Extq

L

(

Ext−p(E,OCP
n
θ
),OCP

n
θ

)

=⇒ Ei
∞ =

{

E, i = p+ q = 0,
0, otherwise.

By point (3) of Proposition 3.17, Ep,q
2 = 0 for all p ≤ −2. By Serre dual-

ity [13, Prop. 6.7], one has

Extq
L

(

Ext1(E,OCP
n
θ
),OCP

n
θ
(k)
) ∼= Hn−q

L

(

CP
n
θ ,Ext1(E,OCP

n
θ
)(k + n+ 1)

)∗

for all k ∈ Z. The right-hand side vanishes for q = 0, 1 and for k � 0, by
point (3) of Proposition 3.17 and our hypothesis which implies that the
sheaves Ext1(E,OCP

n
θ
)(k) in cohL(CP

n
θ ) have cohomological dimension ≤

n− 2 for k sufficiently large. Thus E−1,q
2 = 0 for q = 0, 1, and so the only

Ep,−p∞ term, which might be non-zero is E0,0∞ . But the differentials coming
into E0,0

k are always zero, so we get a sequence of inclusions

E = E0,0
∞ ↪→ · · · ↪→ E0,0

3 ↪→ E0,0
2 .

The extremities imply injectivity of the canonical morphism E → E∨∨. By
iterating the proof of point (3) of Proposition 3.17 and using [13, Prop. 6.9],
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one shows that E∨ is locally free. By [6, Prop. 2.0.4 (2)], the sheaf E∨∨ is
also locally free. Hence E is torsion free.

For the converse statement, we use [6, Lem. 2.0.7] to choose an integer k
large enough such that

H0
L

(

CP
n
θ ,Extp(F,OCP

n
θ
)(k − n− 1)

) ∼= Hn−p
(

CP
n
θ , F (−k))∗ (3.22)

for any coherent sheaf F ∈ coh(CP
n
θ ) and for all p ≥ 0. By [13, Prop. 6.8] it

follows that the homological dimension of the graded left A-module ΓL(Extp

(F,OCP
n
θ
)) is ≤ n− p. If the cohomology sheaf E is torsion free, then there

is an embedding E ↪→ E into a locally free sheaf E. By applying the functor
Hom(−,OCP

n
θ
) to the exact sequence 0 → E → E → E/E → 0, one gets an

isomorphism Ext1(E,OCP
n
θ
) ∼= Ext2(E/E,OCP

n
θ
). An application of the iso-

morphism (3.22) to F = E/E using point (3) of Proposition 3.17 then shows
that the homological dimension of S is ≤ n− 2. �

3.5 Coequivariant sheaves

We would now like to regard the sheaves which are constructed as the coho-
mology of a linear monad as coequivariant sheaves E in the sense of [13, Sec-
tion 4.2], i.e., as elements of the category HθM of left Hθ-comodules whose
coactions are compatible with the coaction of Hθ on A. Generally, this
occurs when the complex C • in coh(Xθ) of Definition 3.11 is also a complex
in HθM , i.e., when the sheaves C−1,C0,C1 are objects of HθM and the maps
σC• , τC• are morphisms in HθM ; it is easy to check that the cohomology of
such a monad is a coequivariant sheaf. In contrast to the approach of [8,11],
here we regard the set of all A-module morphisms as a vector space, without
further structure; our construction of instanton moduli spaces later on using
the larger space of torsion free sheaves (rather than just the dense subset
of vector bundles) will naturally use universal objects in this setting, and
can be described by commutative parameter spaces and standard geometric
invariant theory quotients.

For a linear monad (3.12), the first requirement is automatically satisfied
due to the coaction (3.2) which lifts to all bundles OCP

n
θ
(k) for k ∈ Z. The

second requirement, on the other hand, restricts the allowed differentials.
For this, we decompose the A-module homomorphisms as

σw =
n+1
∑

i=1

σi ⊗ wi, τw =
n+1
∑

i=1

τ i ⊗ wi (3.23)

with σi ∈ HomC(V−1, V0) and τ i ∈ HomC(V0, V1) for i = 1, . . . , n+ 1.
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Lemma 3.24. The differentials σw and τw are morphisms in the category
HθM if and only if the vector spaces spanned by σi and τ i for i = 1, . . . , n+ 1
are objects of HθM with left Hθ-coactions given by

ΔL

(

σi
)

= t−1
i ⊗ σi, ΔL

(

τ i
)

= t−1
i ⊗ τ i, i = 1, . . . , n,

ΔL

(

σn+1
)

= 1 ⊗ σn+1, ΔL

(

τn+1
)

= 1 ⊗ τn+1.

Proof. The requisite Hθ-coequivariance conditions follow easily from (3.2).
�

4 Noncommutative twistor geometry

4.1 Grassmannians Grθ(d; n)

In [13, Section 5.3] we defined non-commutative Grassmann varieties Grθ

(d;V ) ∼= Grθ(d;n) associated to an Hθ-comodule V of dimension n > d.
The homogeneous coordinate algebra A(Grθ(d;n)) of the non-commutative
Grassmannian Grθ(d;n) is defined as a quotient of the algebra of a suit-
able projective space CP

N
Θ

∼= P(
∧d

θ V ), with N =
(

n
d

)− 1. The minors ΛJ

which span the braided exterior algebra as in (2.5) are labelled by ordered
d-multi-indices J = (j1 · · · jd), 1 ≤ jα ≤ n. The non-commutativity relations
between the minors are given by [13]

ΛJ ΛK =

⎛

⎝

d
∏

α,β=1

q2jαkβ

⎞

⎠ ΛK ΛJ . (4.1)

Regarding ΛJ as homogeneous coordinates in A(CP
N
Θ ), the N ×N non-

commutativity matrix Θ of the projective space containing the embed-
ding of Grθ(d;n) is completely determined (mod 2π) from the n× n non-
commutativity matrix θ of the Grassmannian as

ΘJK =
d
∑

α,β=1

θjαkβ . (4.2)

This is a necessary and sufficient condition for the existence of an embedding
of the non-commutative Grassmannian Grθ(d;n) ↪→ CP

N
Θ , with N =

(

n
d

)− 1.

Given the non-commutative relations (4.1) between generators of the pro-
jective space, the next step is to exhibit non-commutative Plücker relations.
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They generate a homogeneous ideal in the homogeneous coordinate algebra
A(CP

N
Θ ) of the projective space, and one defines the non-commutative quo-

tient algebra as the graded homogeneous coordinate algebra A(Grθ(d;n))
of the (embedding of the) non-commutative Grassmannian. The natural
non-commutative version of Young symmetry relations takes into account
the braided antisymmetry of the minors, and read [13]

d+1
∑

γ=1

(

d
∏

α=1

qiγ iγα

)

⎛

⎝

d−1
∏

β=1

qiγjβ

⎞

⎠ (−1)γ ΛI\iγ Λiγ∪J = 0 (4.3)

for all choices of (d+ 1)-multi-indices I and (d− 1)-multi-indices J , where
iγα ∈ I \ iγ .

With respect to the non-commutative algebraic torus Tθ = (C×
θ )n, the

coordinate algebra A(Grθ(d;n)) is naturally an object of the category HθM
by the left coaction

ΔL : A
(

Grθ(d;n)
) −→ Hθ ⊗ A

(

Grθ(d;n)
)

, ΔL(ΛJ) = tJ ⊗ ΛJ (4.4)

where tJ := tj1 · · · tjd
.

The tautological bundle Sθ on Open(Grθ(d;n)) is defined to be the sub-
sheaf of elements of the free module (f1(Λ), . . . , fn(Λ)) ∈ A(Grθ(d;n))⊕n

over the non-commutative Grassmannian, with each fk(Λ), k = 1, . . . , n, a
function on Grθ(d;n), i.e., an element in A(Grθ(d;n)), which satisfy the
equations

d+1
∑

α=1

⎛

⎝

d
∏

β=1

qjαjα
β

⎞

⎠ (−1)α ΛJ\jα fjα = 0 (4.5)

for every ordered (d+ 1)-multi-index J = (j1 · · · jd+1) with j1 < j2 < · · · <
jd+1, where the minors of order d obey the relations (4.1). We can use the
Plücker map to regard the non-commutative minors ΛJ\jα as homogeneous
coordinates in P(

∧d
θ V ). Then the quotient by the graded two-sided ideal

generated by the set of homogeneous relations (4.5) defines the projection
of the free module P(

∧d
θ V ) ⊗ V → Sθ. In this case we have to consider the

restriction of (4.5) to those elements ΛJ which also satisfy the Young symme-
try relations (4.3). This gives the sheaf Sθ the natural structure of a graded
A(Grθ(d;n))-bimodule. In [13, Section 6.4] it is shown that the coherent
sheaf of non-commutative Kähler differential forms on Open(Grθ(d;n)) is
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isomorphic to the braided tensor product

Ω1
Grθ(d;n)

∼= Sθ ⊗θ Qθ (4.6)

as a bimodule algebra over A(Grθ(d;n)), where Qθ is the orthogonal comple-
ment of the tautological bundle defined through the non-commutative Euler
sequence

0 −→ Q∨
θ −→ A

(

Grθ(d;n)
)⊗ V

η̂−−→ Sθ −→ 0. (4.7)

Remark 4.8. For d = 1 this construction gives an alternative description
of the homogeneous coordinate algebra of CP

n−1
θ

∼= Grθ(1;n)∗; in this case
N = n− 1 and Θ = θ. The explicit mapping between the two homoge-
neous coordinate algebras, with relations (3.1) induced by the local fan con-
struction of CP

n−1
θ and (4.1) induced by the non-commutative deformation

GLθ(n) of the general linear group, is described in [13, Section 5.2].

4.2 Klein quadric Grθ(2; 4)

We explicitly work out the algebraic relations in the case d = 2 and n = 4.
Consider the algebra projection A(CP

5
Θ) → A(Grθ(2; 4)). Give to the multi-

indices labelling the minors a lexicographic ordering, such that 1 = (1 2),
2 = (1 3), 3 = (1 4), 4 = (2 3), 5 = (2 4), and 6 = (3 4). Then the expression
(4.2) for the skew-symmetric non-commutativity matrix Θ in terms of entries
of θ is given by

Θ =

⎛

⎜

⎜

⎜

⎜

⎝

0 −θ12 + θ13 + θ23 −θ12 + θ14 + θ24 θ12 + θ13 + θ23

0 −θ13 + θ14 + θ34 θ12 + θ13 − θ23

0 θ12 + θ13 − θ24 − θ34

0

θ12 + θ14 + θ24 θ13 + θ14 + θ23 + θ24

θ12 + θ14 − θ23 + θ34 θ13 + θ14 + θ34

θ12 + θ14 − θ24 θ13 + θ14 − θ34

−θ23 + θ24 + θ34 θ23 + θ24 + θ34

0 θ23 + θ24 − θ34

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

It follows that in order to be interpreted as minors of a non-commutative
matrix, the generators of A(CP

5
Θ) cannot have generic non-commutativity
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relations. From the above matrix one sees that one must take for example

Θ46 − Θ56 = Θ26 − Θ36 = 2 θ34,

and hence it is easy to construct a matrix Θ parameterizing a projec-
tive space CP

5
Θ that cannot contain any embedding of any Grassmannian

Grθ(2; 4).

Let us consider the non-commutative Plücker relations (4.3). Various
choices for the multi-indices I and J yield structure equations, i.e., the non-
commutative relations among minors. For example, if we set I = (1 2 3)
and J = (1), then the equation (4.3) reduces to a two-term relation (as the
additional term contains Λ(11) = 0) given by

−q21 q23 q21 Λ(13) Λ(21) + q31 q32 Λ(12) Λ(31) = 0.

Using the alternating properties [13, equation (2.30)] Λ(21) = −Λ(12) and
Λ(31) = −Λ(13), this expression can be reordered as

Λ(12) Λ(13) = q−2
12 q

2
23 q

2
13 Λ(13) Λ(12),

which is exactly (4.1) for the two minors considered. One also arrives at (4.1)
for all other choices of multi-indices which lead to a two-term Plücker equa-
tion. Thus from these “trivial” Plücker equations we can derive completely
the non-commutativity relations (4.1).

Now let us consider the only three-term Plücker equation, which is a non-
commutative deformation of the well-known classical equation describing
the Klein quadric Gr(2; 4) ↪→ CP

5. It comes from (4.3) with I = (1 2 3) and
J = (4). After rearranging all indices labelling the minors in increasing order
using antisymmetry, and the minors themselves using (4.1), we obtain

q31 q32 q34 Λ(12) Λ(34) − q21 q23 q24 Λ(13) Λ(24) + q12 q13 q14 Λ(23) Λ(14) = 0.
(4.9)

4.3 Twistor correspondences

Noncommutative flag varieties associated to Hθ comodules V of dimension
n are defined in generality in [13, Section 5.4]. In this paper we will only
need the flag varieties of GL(4); these are the ones which naturally appear
in the double fibrations underlying the most important twistor correspon-
dences [23]. All non-commutative double twistor fibrations are included
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in the complete non-commutative flag variety for n = 4, according to the
diagram

A
(

Flθ(2, 3; 4)
)

��
A
(

Grθ(2; 4)
)

���������������
��

��

A
(

Flθ(1, 2, 3; 4)
)

A
(

Grθ(3; 4)
)

��

��

���������������

A
(

Flθ(1, 2; 4)
)

���������������
A
(

CP
3
θ

)

�� ��

��

A
(

Flθ(1, 3; 4)
)

���������������

where all morphisms are subalgebra inclusions.

In this paper we will focus on the non-commutative correspondence dia-
gram

A
(

Flθ(1, 2; 4)
)

A
(

CP
3
θ

)

p1

�������������
A
(

Grθ(2; 4)
)

p2

��������������

(4.10)

which is a non-commutative deformation of the usual Penrose twistor cor-
respondence, with A(CP

3
θ) the “non-commutative twistor algebra”. This

diagram, as well as all double fibrations above, is an example of a “non-
commutative correspondence” in the sense of [12, Section 5.2]. In the present
case, the morphism E �→ p2

∗ p1∗(E) gives a map from sheaves in coh(CP
3
θ)

to sheaves in coh(Grθ(2; 4)), and it defines a non-commutative deformation
of the usual Penrose–Ward twistor transform described in more detail in
Section 4.4 below.

We will describe the homogeneous coordinate algebra of the non-
commutative partial flag variety Flθ(1, 2; 4) using the algebra projection [13]

A
(

CP
3
θ

) ⊗θ A
(

Grθ(2; 4)
) −→ A

(

Flθ(1, 2; 4)
)

.

The braided tensor product algebra A(CP
3
θ) ⊗θ A(Grθ(2; 4)), as an object in

the category HθM , is generated by the homogeneous coordinate elements wi

with relations (4.1) for d = 1, i.e., wiwj = q2ij wj wi for i, j = 1, 2, 3, 4, and by
the non-commutative 2 × 2 minors Λ(j1j2), 1 ≤ j1 < j2 ≤ 4, obeying (4.1) for
d = 2 and the quadric relation (4.9). They also obey the structure equations



1844 LUCIO CIRIO, GIOVANNI LANDI AND RICHARD J. SZABO

(relations among minors of different order, see [13, equation (2.29)])

wi Λ(j1j2) = q−2
12 q

2
i j1 q

2
i j2 Λ(j1j2)wi (4.11)

for all i = 1, 2, 3, 4 and 1 ≤ j1 < j2 ≤ 4. The remaining non-commutative
Plücker equations come from the Young symmetry relations of [13, equa-
tion (5.18)] with d = 2 and d′ = 1. Working through all four increasing cyclic
permutations of order three in S4 for the multi-index I, by completely anal-
ogous calculations to those of Section 4.2 one finds the additional relations

q12 q13 Λ(23)w1 − q21 q23 Λ(13)w2 + q31 q32 Λ(12)w3 = 0,

q12 q14 Λ(24)w1 − q21 q24 Λ(14)w2 + q41 q42 Λ(12)w4 = 0,

q13 q14 Λ(34)w1 − q31 q34 Λ(14)w3 + q41 q43 Λ(13)w4 = 0,

q23 q24 Λ(34)w2 − q32 q34 Λ(24)w3 + q42 q43 Λ(23)w4 = 0. (4.12)

Other quantum deformations of these flag varieties in the context of twistor
theory can be found in [7, 10,18,20,25,31].

4.4 Twistor transform

As mentioned in Section 4.3, the twistor transform of coherent sheaves on
Open(CP

3
θ) is determined by the non-commutative correspondence diagram

(4.10). It is the Fourier–Mukai-type transform E �→ p2
∗ p1∗(E) defined on

coh(CP
3
θ) → coh(Grθ(2; 4)) as follows. Given a graded right A(CP

3
θ)-module

M in gr(A(CP
3
θ)), the push-forward

M ′ = p1∗(M) = M ⊗A(CP
3
θ) A

(

Flθ(1, 2; 4)
)

(4.13)

is a bigraded right module over A(Flθ(1, 2; 4)), where on the right-hand side
we regard the algebra A(Flθ(1, 2; 4)) as an A(CP

3
θ)-bimodule according to

the action described in Section 4.3. The diagonal subspace of this mod-
ule, in the sense of [25, Section 8], induces the push-forward functor p1∗ :
coh(CP

3
θ) → coh(Flθ(1, 2; 4)). Similarly, one defines the push-forward func-

tor p2∗ : coh(Grθ(2; 4)) → coh(Flθ(1, 2; 4)), which has a right adjoint functor
denoted p2

∗ : coh(Flθ(1, 2; 4)) → coh(Grθ(2; 4)).

For the non-commutative twistor transforms of elementary bundles on
Open(CP

3
θ) we have the following computation.
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Lemma 4.14. The non-commutative twistor transforms of the locally free
sheaves O

CP
3
θ
(k) for k ∈ Z are given by

p2
∗ p1∗

(

O
CP

3
θ
(k)
)

=

{

Symk
θ(Sθ), k ≥ 0,

0, k < 0,

where Sθ is the tautological bundle on Open(Grθ(2; 4)) defined in Section 4.1
and Symk

θ(Sθ) is the bundle associated to the graded right module

Γ(Sθ)⊗k
/ 〈

s1 ⊗ s2 − Ψθ
Γ(Sθ),Γ(Sθ)(s1 ⊗ s2)

〉

s1,s2∈Γ(Sθ)

over A
(

Grθ(2; 4)
)

.

Proof. The direct image formula (4.13) gives

p1∗(A(CP
3
θ)) = A(Flθ(1, 2; 4)) = p2∗(A(Grθ(2; 4))),

whence p2
∗ p1∗(OCP

3
θ
) = p2

∗ p2∗(OGrθ(2;4)) = OGrθ(2;4) and the result holds for
k = 0. By the non-commutative Plücker equations (4.12), the image of the
set of generators p−1

2 (p1(A(CP
3
θ)1)) consists of elements fk = wk satisfying

the equations (4.5) for d = 2 and n = 4, which defines the tautological bun-
dle over the non-commutative Grassmann variety Grθ(2; 4). It follows that
p2

∗ p1∗(OCP
3
θ
(1)) = p2

∗ p2∗(Sθ) = Sθ. The result for negative degree shifts
is then clear, and for positive degree shifts follows by applying the same
reasoning to A(CP

3
θ)

⊗k
1 . �

4.5 Sphere S4
θ

In order to introduce a ∗-algebra structure on the algebra A(Grθ(2; 4)) and
a compatible twistor construction of instanton bundles to be considered
later on, in the remainder of this section we consider a reduction from a six
complex parameter deformation to a one real parameter deformation. Thus,
in particular, we set

q12 = q−1
21 =: q, qij = 1 otherwise, (4.15)

and in addition we assume that q ∈ R, i.e., that the non-commutativity
parameter θ := θ12 is purely imaginary.
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The compatible ∗-involution is defined on the generators of A(Grθ(2; 4)) as

Λ(13)† = q Λ(24), Λ(14)† = −q−1 Λ(23),

Λ(12)† = Λ(12), Λ(34)† = Λ(34), (4.16)

and then extended to the whole of A(Grθ(2; 4)) as a conjugate linear anti-
homomorphism. When substituted in the Klein quadric equation (4.9) we
obtain

q Λ(12) Λ(34) − q−1 Λ(13) Λ(13)† − q Λ(14) Λ(14)† = 0. (4.17)

Our choice of deformation (4.15) and of the real structure (4.16) is distin-
guished by the fact that, in the classical case, the quadratic form in (4.17)
has signature (5, 1) which is the correct signature to interpret the relation
(4.17) as the equation of a four-sphere in a real slice of CP

5. Other choices
would lead to different signature and hence to other real embedded subva-
rieties, see e.g., [4, Chap. III.1].

We interpret the corresponding ∗-algebra as the coordinate algebra A(S4
θ )

of a non-commutative four-sphere S4
θ with a non-central “radius”. It is

rather different from the spheres considered e.g., in [14] or even in [9, 27].
To see this, let us redefine the generators by writing q

2 (Λ(12) − Λ(34)) =: X
and q

2 (Λ(12) + Λ(34)) =: R, where both elements R,X are Hermitean and
commute with each other but not with the remaining minors. Simple algebra
then transforms the relation (4.17) into

Λ(13) Λ(13)† + q2 Λ(14) Λ(14)† +X2 = R2. (4.18)

This is a deformation of the equation of a four-sphere in homogeneous coor-
dinates on a real slice of CP

5, with a non-central radius R. Due to this, one
is not allowed to fix it to some real number (typically R = 1 in the classical
case). Furthermore, in the present non-commutative setting the homoge-
neous element R does not generate a right or left denominator set, i.e.,
powers of the corresponding fraction element would not close to an algebra.
Thus it is not possible to consider Ore localization with respect to R, an
operation that classically would correspond to “rescaling” the homogeneous
coordinates to get a description of the sphere in affine coordinates of R

5.
Thus, for our non-commutative sphere there is no hope for any global affine
description. However, we will now see that one can still use localization to
go to local patches for the sphere.

Using the two Hermitean generators Λ(12) and Λ(34) we can define two
localizations to affine subvarieties of the Grassmannian Grθ(2; 4), whose
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“real slices” are interpreted as local patches of the sphere S4
θ . The two

generators Λ(12) and Λ(34) are rather different in nature, and hence so are
the corresponding localizations, as Λ(34) is central while Λ(12) is not. From
the commutation relations (4.1) with d = 2 and n = 4, together with the
q-values (4.15), one finds indeed that Λ(34) is a central element of the homo-
geneous coordinate algebra A(Grθ(2; 4)).

Proposition 4.19. The central non-commutative minor Λ(34) generates
a right denominator set in A(Grθ(2; 4)), and the degree zero subalgebra
A(Grθ(2; 4))[Λ(34) −1]0 of the right Ore localization of A(Grθ(2; 4)) with
respect to Λ(34) is isomorphic to the C-algebra generated by elements ξi, ξ̄i,
i = 1, 2 with the relations

ξ1 ξ̄1 = q2 ξ̄1 ξ1, ξ2 ξ̄2 = q−2 ξ̄2 ξ2,

ξ1 ξ2 = q2 ξ2 ξ1, ξ̄1 ξ̄2 = q−2 ξ̄2 ξ̄1,

ξ1 ξ̄2 = ξ̄2 ξ1, ξ2 ξ̄1 = ξ̄1 ξ2.

Proof. As already noted, the minor Λ(34) is a central element of A(Grθ(2; 4)),
whence its non-negative powers forms a right (and left) denominator set.
The degree zero subalgebra of A(Grθ(2; 4))[Λ(34) −1] is generated by the ele-
ments

ξ1 = −Λ(14) Λ(34) −1, ξ2 = −Λ(24) Λ(34) −1,

ξ̄1 = Λ(23) Λ(34) −1, ξ̄2 = Λ(13) Λ(34) −1,

together with

ρ = q Λ(12) Λ(34) −1.

Since A(Grθ(2; 4))[Λ(34) −1] is a commutative localization, a straightforward
calculation using (4.1) establishes the commutation relations among the gen-
erators ξi, ξ̄i, i = 1, 2, while the Plücker relation (4.9) becomes

ρ = ξ1 ξ̄1 − ξ̄2 ξ2,

showing that the generator ρ in the algebra A(Grθ(2; 4))[Λ(34) −1]0 is
redundant. �

The ∗-involution of (4.16) gives on the generators ξi, ξ̄i, i = 1, 2 the
relations

ξ†1 = q−1 ξ̄1, ξ†2 = −q−1 ξ̄2, (4.20)
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from which it also follows that ρ = q ξ1 ξ
†
1 + q3 ξ2 ξ

†
2. The corresponding

∗-algebra is dual to a non-commutative real variety denoted R
4
θ. This

non-commutative space differs from the q-deformed euclidean space R
4
q,�=0

considered in [25, Section 9]; it is somewhat analogous to the quantum
Minkowski space constructed in [18], although its origin is very different.
The present deformation originates through the general categorical pre-
scription of Section 2.2 via the natural action of the torus T = (C×)2 on
R

4 described by the left coaction

ΔL : A
(

R
4
) −→ H ⊗ A

(

R
4
)

with

ΔL(ξ1) = t1 ⊗ ξ1, ΔL(ξ2) = t2 ⊗ ξ2,

ΔL(ξ̄1) = t2 ⊗ ξ̄1, ΔL(ξ̄2) = t1 ⊗ ξ̄2, (4.21)

and extended as an algebra map. These relations can be directly obtained
from the torus action on Gr(2; 4) described in (4.4) for our choice of defor-
mation (4.15), which amount to acting non-trivially only on the indices 1
and 2.

Geometrically, the space R
4
θ is regarded as an open affine subvariety of

the non-commutative four-sphere S4
θ defined before. A second open affine

subvariety of S4
θ is obtained by the localization onto another affine subvariety

of the Grassmannian Grθ(2; 4) via the non-central Hermitean minor Λ(12).

Proposition 4.22. The non-central non-commutative minor Λ(12) gener-
ates a left denominator set in A(Grθ(2; 4)), and the degree zero subalgebra
0[Λ(12) −1]A(Grθ(2; 4)) of the left Ore localization of A(Grθ(2; 4)) with respect
to Λ(12) is isomorphic to the C-algebra generated by elements ζi, ζ̄i, i = 1, 2
with the relations

ζ1 ζ̄1 = q−2 ζ̄1 ζ1, ζ2 ζ̄2 = q2 ζ̄2 ζ2,

ζ1 ζ2 = q−2 ζ2 ζ1, ζ̄1 ζ̄2 = q2 ζ̄2 ζ̄1,

ζ1 ζ̄2 = ζ̄2 ζ1, ζ2 ζ̄1 = ζ̄1 ζ2.

Proof. From the commutation relations (4.1) with d = 2, n = 4, together
with the q-values (4.15), one has

(

Λ(12)
)

A
(

Grθ(2; 4)
)

= A
(

Grθ(2; 4)
) (

Λ(12)
)
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as sets. Whence the element Λ(12) is left (and right) permutable in A(Grθ

(2; 4)), so the set of non-negative powers of Λ(12) is a left (and right) denom-
inator set. The degree zero subalgebra of [Λ(12) −1]A(Grθ(2; 4)) is generated
by the elements

ζ1 = −Λ(12) −1 Λ(14), ζ2 = −Λ(12) −1 Λ(24),

ζ̄1 = Λ(12) −1 Λ(23), ζ̄2 = Λ(12) −1 Λ(13),

together with

ρ̃ = q Λ(12) −1 Λ(34).

A straightforward calculation using (4.1) together with the rules for non-
commutative Ore localization establishes the commutation relations among
the generators ζi, ζ̄i, i = 1, 2, while the Plücker relation (4.9) becomes

ρ̃ = q2 ζ1 ζ̄1 − q2 ζ̄2 ζ2 = ζ̄1 ζ1 − ζ2 ζ̄2

similarly to the previous case. �

The ∗-involution on the algebra generated by ζi, ζ̄i, i = 1, 2 induced from
the real structure (4.16) reads

ζ†1 = q ζ̄1, ζ†2 = −q−3 ζ̄2, (4.23)

from which it also follows that ρ̃ = q ζ1 ζ
†
1 + q3 ζ2 ζ

†
2. The corresponding

non-commutative real variety is denoted ˜R4
θ. The counterpart of the coaction

(4.21) is now given by the dual left coaction

ΔL : A
(

˜R
4
θ

) −→ Hθ ⊗ A
(

˜R
4
θ

)

with

ΔL(ζ1) = t−1
2 ⊗ ζ1, ΔL(ζ2) = t−1

1 ⊗ ζ2,

ΔL(ζ̄1) = t−1
1 ⊗ ζ̄1, ΔL(ζ̄2) = t−1

2 ⊗ ζ̄2, (4.24)

and again extended as an algebra map.

The intersection of the two open affine subvarieties R
4
θ and ˜R4

θ is described
by adjoining the element ρ̃ to A(R4

θ) and ρ to A(˜R4
θ), and computing the

gluing automorphism between the two resulting algebras. This also defines
the non-commutative real variety S4

θ in an analogous manner as our generic
non-commutative toric varieties.
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Proposition 4.25. The algebras A(R4
θ)[ρ̃ ] and [ρ]A(˜R4

θ) are isomorphic as
∗-algebras in the category HθM of left Hθ-comodules.

Proof. Define an algebra morphism

G : A(R4
θ)[ρ̃ ] −→ [ρ]A(˜R4

θ)

on generators by

(

ξj , ξ̄j
) �−→ (

ρ ζj , ρ ζ̄j
)

for j = 1, 2.

The inverse map G−1 is then given by

(

ζj , ζ̄j
) �−→ (

ρ̃ ξj , ρ̃ ξ̄j
)

for j = 1, 2,

and one can check that G is an algebra isomorphism. Moreover, one has
G(ξ†i ) = G(ξi)†, and hence G(a†) = G(a)† for all a ∈ A(R4

θ)[ρ̃ ]. Finally,
using the coactions (4.21) and (4.24) we compute

ΔL(ρ) = t1 t2 ⊗ ρ, ΔL(ρ̃ ) = (t1 t2)−1 ⊗ ρ̃,

from which one easily shows that the map G is coequivariant, i.e., ΔL ◦G =
(id ⊗G) ◦ ΔL, and hence is a ∗-isomorphism in the category HθM . �

Remark 4.26. The “geometric” interpretation of the map G in the proof
of Proposition 4.25 is as follows. In the overlap of the two patches there are
two sets of generators to describe “points”, and G describes how to pass from
the affine coordinates ξj to the affine coordinates ζj . It is indeed the identity
map in terms of the homogeneous coordinates ΛJ on the Grassmannian, i.e.,
we do not “move” points, we just describe how the coordinates of the two
patches are related.

4.6 Twistor fibration

As a particular case of the non-commutative projective spaces in Section 3.1,
one has the non-commutative twistor algebra Atw = A(CP

3
θ), the homoge-

neous coordinate algebra generated by wi, i = 1, 2, 3, 4 and the relations

wiwk = wk wi, i = 1, 2, 3, 4 , k = 3, 4,

w1w2 = q2 w2w1. (4.27)
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It is dual to the (complex) twistor space of the non-commutative sphere S4
θ .

When q ∈ R, there is a natural real structure on Atw such that

w†
1 = w2, w†

2 = w1, w†
3 = w4, w†

4 = w3. (4.28)

The restriction functor induced by Proposition 4.19 is denoted

j• : coh
(

Grθ(2; 4)
) −→ coh

(

R
4
θ

)

.

At the level of the non-commutative correspondence algebra A(Flθ(1, 2; 4)),
regarded as an A(Grθ(2; 4))-bimodule, the Plücker equations (4.12) in the
localized coordinate algebra A(Flθ(1, 2; 4))[Λ(34) −1]0 now read

w1 = −w3 ξ1 − w4 ξ̄2, w2 = −w3 ξ2 − w4 ξ̄1. (4.29)

Using the commutation relations (4.11) together with the multiplication rule
of non-commutative Ore localization [13, Section 1.3], one easily checks that
the generators w3, w4 commute not only among themselves but also with
ξi, ξ̄i, i = 1, 2, and it follows that

A
(

Flθ(1, 2; 4)
)[

Λ(34) −1
]

0
∼= A

(

R
4
θ

)⊗ A
(

CP
1
)

, (4.30)

with A(CP
1) = C[w3, w4] the homogeneous coordinate algebra of a commu-

tative projective line CP
1. This isomorphism implies that, in the image of

the functor j•, the tautological bundle Sθ obtained through the twistor trans-
form via Lemma 4.14 restricts to the free right A(R4

θ)-module of rank two,
spanned by w3 and w4.

The situation is somewhat different for the non-commutative localization
described by Proposition 4.22. The Plücker equations (4.12) in 0[Λ(12) −1]A
(Flθ(1, 2; 4)) are

w3 = −q ζ̄1w1 + q−1 ζ̄2w2, w4 = q ζ2w1 − q−1 ζ1w2. (4.31)

Now, however, the generators w1, w2 do not commute with ζi, ζ̄i, i = 1, 2 in
general; one finds

w1 ζ1 = q−2 ζ1w1, w1 ζ̄1 = ζ̄1w1,

w1 ζ2 = ζ2w1, w1 ζ̄2 = q−2 ζ̄2w1,

w2 ζ1 = ζ1w2, w2 ζ̄1 = q2 ζ̄1w2,

w2 ζ2 = q2 ζ2w2, w2 ζ̄2 = ζ̄2w2.
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As a consequence, the localized coordinate algebra has the structure of the
braided tensor product algebra

0

[

Λ(12) −1
]

A
(

Flθ(1, 2; 4)
) ∼= A

(

CP
1
θ

)⊗θ A
(

˜R
4
θ

)

,

where the non-commutative projective line CP
1
θ has homogeneous coordi-

nates w1, w2 subject to the relations (4.27). We will show in Proposition 5.2
below that coherent sheaves on CP

1
θ can be functorially identified with

sheaves on a commutative line CP
1, and hence, in the image of the restric-

tion functor j̃ • : coh(Grθ(2; 4)) → coh(˜R4
θ) induced by Proposition 4.22, the

tautological bundle Sθ restricts to the free right A(˜R4
θ)-module of rank two.

The free modules A(R4
θ) ⊗ C

2 and C
2 ⊗ A(˜R4

θ) carry natural ∗-involutions
induced by (4.20), (4.23) and (4.28), and by Propositions 4.19, 4.22 and 4.25
there is naturally an isomorphism

G2 : A(R4
θ)[ρ̃ ] ⊗ C

2 −→ C
2 ⊗ [ρ]A(˜R4

θ)

in the category HθM , which is compatible with the ∗-structures and satisfies
G2(v � a) = G(a) � G2(v) for all a ∈ A(R4

θ)[ρ̃ ] and v ∈ A(R4
θ)[ρ̃ ] ⊗ C

2. This
describes the twistor bundle over the non-commutative sphere S4

θ .

5 Instanton counting on CP
2
θ

5.1 Framed modules

The non-commutative projective plane CP
2
θ was described in [13, Section 3.3]

using combinatorial data encoded in the fan of CP
2, and in Section 3.1 above

via the homogeneous coordinate algebra A = A(CP
2
θ) whose generators have

relations

w1w2 = q2 w2w1, w1w3 = w3w1, w2w3 = w3w2, (5.1)

where q = exp( i
2 θ) with θ ∈ C. Let A	 := A/(A · w3). We identify A	 =

A(CP
1
θ) as the homogeneous coordinate algebra dual to a non-commutative

projective line CP
1
θ. The algebra projection p : A → A	 is dual to a closed

embedding CP
1
θ ↪→ CP

2
θ of non-commutative projective varieties.

For any pair θ, θ′ ∈ C \ π Z, the abelian categories of coherent sheaves
coh(CP

2
θ) and coh(CP

2
θ′) are equivalent, while coh(CP

2
θ) � coh(CP

2) for any
θ /∈ π Z. On the other hand, the category coh(CP

1
θ) is independent of θ ∈ C;
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the geometric structure of the algebra A	 thus agrees with general expecta-
tions that generic deformed curves in algebraic geometry are commutative
(see e.g., [24, Cor. 5.3] and [2]).

Proposition 5.2. For any θ ∈ C there is a natural equivalence of abelian
categories

coh
(

CP
1
θ

) ∼= coh
(

CP
1
)

.

Proof. By [13, Thm. 5.4], the degree zero subalgebra of the left Ore
localization of the non-commutative algebra A(CP

1
θ) on maximal cones is

given by
(

A
/ (

A · w3

))

[w−1
i ]0 ∼= C[yi+1],

where yi+1 = w−1
i wi+1 for i = 1, 2 (mod 2). This algebra is the same as

the corresponding localization of the commutative homogeneous coordinate
algebra A(CP

1) = C[w1, w2], and by [13, Prop. 4.6] the result follows. �

This proposition will enable us to exploit the known cohomology of sheaves
on the commutative projective line CP

1, since the functors Extp, Extp and
Hp all commute with the functorial equivalence. For example, a sheaf E
on Open(CP

1
θ) is locally free if and only if it is locally free as a sheaf on

CP
1 under the equivalence of Proposition 5.2, and hence by the Birkhoff–

Grothendieck theorem it is isomorphic to a finite direct sum of rank one bun-
dles E ∼= O

CP
1
θ
(k1) ⊕ · · · ⊕ O

CP
1
θ
(ks) for some integers k1, . . . , ks. The inclu-

sion of algebras i : A	 ↪→ A induces a restriction functor i• : coh(CP
2
θ) →

coh(CP
1
θ) defined on right A-modules M by

i•
(

π(M)
)

= π
(

M / (M � w3)
)

.

By [13, Prop. 4.6] and [6, Prop. 3.3.9 (1)], the functor i• is exact and its
right adjoint is the faithful, exact push-forward functor i• = p• : coh(CP

1
θ) →

coh(CP
2
θ) induced by the algebra projection p : A → A	, and defined on A	-

modules N by

p•
(

π(N)
)

= π(N)

with w3 acting as 0 on the right-hand side.

Let us fix (isomorphism classes of) complex vector spaces V and W of
dimensions k and r, respectively. The purpose of this section is to describe
the following (set-theoretic) moduli space.
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Definition 5.3. (1) A (W,V )-framed sheaf is a coherent torsion free sheaf
E on Open(CP

2
θ) such that there exists an isomorphism H1(CP

2
θ,

E(−1)) ∼= V , together with an isomorphism i•(E) ∼= W ⊗ O
CP

1
θ

called
a framing of E (of type W ) at infinity.

(2) A morphism of (W,V )-framed sheaves E and E′ is a homomorphism
of A-modules ξ : E → E′ which preserves the framing isomorphisms,
i.e., there is a commutative diagram

E

i• 		����������
ξ �� E′

i•
��

W ⊗ O
CP

1
θ
.

Definition 5.4. The (instanton) moduli space Mθ(W,V ) is the set of iso-
morphism classes [E] of (W,V )-framed sheaves E. When bases have been
fixed for the vector spaces V ∼= C

k and W ∼= C
r, we will denote this moduli

space by Mθ(r, k).

Proposition 5.5. For any (W,V )-framed sheaf E on Open(CP
2
θ) and for

any k ∈ Z, there is a canonical exact sequence

0 −→ E(k − 1) ·w3−−→ E(k) −→ p•
(

W ⊗ O
CP

1
θ
(k)
) −→ 0. (5.6)

Proof. Using Proposition 5.2, this is essentially a straightforward adaptation
of the proofs of [25, Lem. 6.1] and [6, Prop. 3.3.9]. �

The framed sheaf cohomology of CP
2
θ can be described as follows.

Proposition 5.7. For any (W,V )-framed sheaf E on Open(CP
2
θ), one has:

(1) H0
(

CP
2
θ, E(−1)

)

= 0 = H0
(

CP
2
θ, E(−2)

)

;

(2) H2
(

CP
2
θ, E(−1)

)

= 0 = H2
(

CP
2
θ, E(−2)

)

; and

(3) H1
(

CP
2
θ, E(−1)

)

= V = H1
(

CP
2
θ, E(−2)

)

.

Proof. Use Proposition 5.2 and Proposition 5.5, and repeat the proofs of [6,
Lem. 4.2.12] and [25, Lem. 6.2]. �



ALGEBRAIC DEFORMATIONS OF TORIC VARIETIES II 1855

Corollary 5.8. A framed sheaf E with isomorphism class [E] ∈ Mθ(r, k)
has invariants

rank(E) = r, c1(E) = 0, χ(E) = r − k.

Proof. By [36, Lem. 6.1], the Hilbert polynomial of E can be expressed as

hE(s) =
1
2

rank(E) s (s+ 1) + (c1(E) + rank(E)) s+ χ(E). (5.9)

Using (5.9), Proposition 5.5 and [6, Prop. 3.3.9], one has hi•(E)(s) = hE(s) −
hE(s− 1) and hence

rank(E) = rank(i•(E)) = rank(W ⊗ O
CP

1
θ
) = r.

Using Proposition 5.7, and setting s = −1 and s = −2 in (5.9), we arrive at
the respective equations

−k = −r − c1(E) + χ(E), −k = −r − 2c1(E) + χ(E),

which together yield c1(E) = 0 and χ(E) = r − k. �

In Section 7 we will indeed demonstrate that the set Mθ(r, k) is a (coarse)
moduli space by constructing universal modules (co)representing the moduli
functor of framed torsion free objects of coh(CP

2
θ). The construction will rely

crucially on the following basic property.

Lemma 5.10. Every (W,V )-framed sheaf on Open(CP
2
θ) is μ-semistable.

Proof. Let [E] ∈ Mθ(W,V ) and suppose that 0 	= F � E is a proper subsheaf
of E. Without loss of generality we may assume that E/F is torsion free.
The restriction functor i• : coh(CP

2
θ) → coh(CP

1
θ) is exact, so i•(F ) ⊂ i•(E).

Then by additivity of the first Chern class and Corollary 5.8 it follows that

c1(F ) = c1
(

i•(F )
) ≤ c1

(

i•(E)
)

= c1(E) = 0,

and thus F cannot de-semistabilize E. �

5.2 Noncommutative ADHM construction

We will now reduce the study of moduli of (W,V )-framed sheaves on Open
(CP

2
θ) to a problem of linear algebra, which defines a non-commutative
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deformation of the standard ADHM data. For this, we consider triples

(B, I, J) ∈ X(W,V ) := HomC

(

V, V ⊗ (A!
	)1
)⊕ HomC

(

W,V ⊗ (A!
	)2
)

⊕ HomC(V,W ); (5.11)

here A!
	 = A!/(A! · w̌3) is the Koszul dual of the homogeneous coordinate

algebra of the non-commutative projective line CP
1
θ (see (3.3)), with gener-

ators w̌1, w̌2 satisfying relations

w̌2
1 = 0 = w̌2

2, w̌1 w̌2 = −q2 w̌2 w̌1, (5.12)

while for its components one has isomorphisms (A!
	)1 ∼= (A	)∗1 and (A!

	)2 ∼=
∧2

θ (A	)∗1 as vector spaces in the category HθM of left Hθ-comodules. Given
B as above, define a vector space morphism B ∧θ B : V → V ⊗ (A!

	)2 as the
composition of maps

B ∧θ B =
(

idV ⊗ μA!
�

) ◦ (B ⊗ idA!
�

) ◦B, (5.13)

where μA!
�
: A!

	 ⊗ A!
	 → A!

	 is the multiplication map of the algebra A!
	.

Since (A!
	)1 ∼= Cw̌1 ⊕ Cw̌2, we can write the map B : V → V ⊗ (A!

	)1 in
the form

B = B1 ⊗ w̌1 +B2 ⊗ w̌2 (5.14)

with B1, B2 ∈ EndC(V ). Using (5.12) we can then evaluate the morphism
(5.13) as

B ∧θ B = [B1, B2]θ ⊗ w̌1 w̌2

where [B1, B2]−θ ∈ ∧•
θ EndC(V ) is the braided commutator

[B1, B2]−θ := μEndC(V )

(

B1 ⊗B2 − Ψθ
EndC(V ),EndC(V )(B1 ⊗B2)

)

= B1B2 − q2B2B1. (5.15)

The braiding here arises when we consider Hθ-coequivariant sheaves, as in
Section 3.5, using the natural coactions of the cotwisted Hopf algebra Hθ

induced by the torus T = (C×)2 on the moduli spaces. Then by point (1)
of Definition 5.3 the finite-dimensional vector spaces V and W are Hθ-
comodules, i.e., objects of the category HθM , and hence so is the vector
space EndC(V ) ∼= V ∗ ⊗ V ∼= V ⊗ V . The explicit coaction on the triples
(5.11) can be computed from the coaction (3.4), Lemma 3.24, and the
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monadic parameterization (5.29)–(5.30) of framed sheaves below. In this
way one finds that the triples are Hθ-coinvariants, i.e.

ΔL(B, I, J) = (1 ⊗B, 1 ⊗ I, 1 ⊗ J), (5.16)

which using (5.14) implies

ΔL(Bi) = ti ⊗Bi for i = 1, 2.

As mentioned in Section 3.5, here we only regard the parameter subspace
of EndC(V ) as a vector space object of HθM , hence we do not deform the
product on the endomorphism algebra in (5.15); the deformation in (5.15)
follows from (2.3).

Definition 5.17. The variety MADHM
θ (W,V ) of non-commutative complex

ADHM data is the locally closed subvariety of triples (5.11) subject to the
following two conditions:

(1) The non-commutative complex ADHM equation:

B ∧θ B + I ◦ J = 0 (5.18)

in HomC(V, V ⊗ (A!
	)2); and

(2) The stability condition: There are no proper non-zero subspaces V ′
of V such that B(V ′) ⊂ V ′ ⊗ (A!

	)1 and I(W ) ⊂ V ′ ⊗ (A!
	)2.

The general linear group GL(V ) of automorphisms of the vector space V
acts naturally on the variety MADHM

θ (W,V ) as

g � (B, I, J) =
(

g̃ ◦B ◦ g−1, g̃ ◦ I, J ◦ g−1
)

, (5.19)

where g ∈ GL(V ) and g̃ := g ⊗ idA!
�
.

Lemma 5.20. The natural action of GL(V ) on MADHM
θ (W,V ) is free and

proper.

Proof. Suppose that the triple (B, I, J) ∈ MADHM
θ (W,V ) is fixed by g ∈

GL(V ). Then g̃ ◦B ◦ g−1 = B and g̃ ◦ I = I, which respectively imply that
V ′ = ker(g − idV ) is B-coinvariant and that I(W ) ⊂ V ′ ⊗ (A!

	)2. By the sta-
bility condition of Definition 5.17, it follows that g = idV . Thus GL(V ) acts
freely on MADHM

θ (W,V ).
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Suppose now that the GL(V )-orbit of some triple (B, I, J) ∈ MADHM
θ

(W,V ) is not closed. Then there is a non-trivial one-parameter
subgroup λ : C

× → GL(V ) such that the limit (B0, I0, J0) = limt→0 λ(t) �
(B, I, J) exists but does not belong to the orbit GL(V ) � (B, I, J). Let
V =

⊕

m∈Z
Vm be the weight decomposition of the vector space V with

respect to the subgroup λ(C×). The existence of the limit (B0, I0, J0) implies
that B(Vm) ⊂ (⊕k≥m Vk

)⊗ (A!
	)1 and I(W ) ⊂ (⊕k≥0 Vk

)⊗ (A!
	)2. Set

V ′ =
⊕

k≥0 Vk. Then B(V ′) ⊂ V ′ ⊗ (A!
	)1 and I(W ) ⊂ V ′ ⊗ (A!

	)2. Since
(B0, I0, J0) does not belong to the orbit GL(V ) � (B, I, J), we must have
that det(λ(t)) = tN for some N < 0. This implies that V ′ is a proper sub-
space of V , which contradicts the stability condition of Definition 5.17. Thus
GL(V ) acts properly on MADHM

θ (W,V ). �

It follows from Lemma 5.20 that the quasi-projective variety of closed
GL(V )-orbits on the space MADHM

θ (W,V ) is given by the geometric invariant
theory quotient

̂MADHM
θ (W,V ) := MADHM

θ (W,V )
/

GL(V ). (5.21)

Our first characterization of the moduli space of Definition 5.4 is then as
follows.

Theorem 5.22. There is a natural (set-theoretic) bijection between the mod-
uli space ̂MADHM

θ (W,V ) of braided linear algebraic ADHM data and the
moduli space Mθ(W,V ) of framed sheaves on Open(CP

2
θ).

This theorem is proved in Section 5.3 below. In Section 7, we will ana-
lyze to what extent this bijection establishes an isomorphism of algebraic
varieties; in particular, we will show that the parameterization (5.21) is a
fine moduli space for (W,V )-framed sheaves on Open(CP

2
θ) and that this

isomorphism induces the bijection of Theorem 5.22. It shows that framed
torsion free sheaves on Open(CP

2
θ) are in a bijective correspondence with

stable framed representations of the ADHM quiver

v •
b1





b2

��
j �� • w
i





in the category of complex vector spaces, with a deformation of the usual
relation specified by the C-linear combination of paths

b1 b2 − q−2 b2 b1 + i j. (5.23)
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In the Hθ-coequivariant case, the bijection gives a T -equivariant isomor-
phism of algebraic spaces and this category can be replaced with the braided
monoidal category HθM of left Hθ-comodules.

5.3 Beilinson monads for framed sheaves

We will now prove Theorem 5.22. For this, we will mimic the classical
approach. Thus we will exploit the Beilinson spectral sequence of Section 3.2
to obtain a monadic description of (W,V )-framed sheaves on Open(CP

2
θ), i.e.,

in terms of the cohomology of linear monads on CP
2
θ as defined in Section 3.4.

We will need the following vanishing lemma, analogous to Proposition 5.7.

Lemma 5.24. For any (W,V )-framed sheaf E on Open(CP
2
θ), one has

HomL

(

E∨(1),Ω1
CP

2
θ
(1)
)

= 0 = Ext2L
(

E∨(1),Ω1
CP

2
θ
(1)
)

.

Proof. By (3.6) and [13, Ex. 6.10], the sheaf of Kähler differentials Ω1
CP

2
θ

is
a bundle of bimodules which can be included in the non-commutative Euler
sequence

0 −→ Ω1
CP

2
θ

−→ O
CP

2
θ
(−1) ⊗ A1 −→ O

CP
2
θ

−→ 0.

Applying the functor HomL(E∨(1),−) to the degree one shift autoequiva-
lence of this sequence in the category cohL(CP

2
θ) of sheaves of left A-modules,

one induces a long exact sequence of ExtL-modules which begins with the
exact sequence

0 −→ HomL

(

E∨(1),Ω1
CP

2
θ
(1)
) −→ H0

(

CP
2
θ, E(−1)

)⊗ A1;

here we have used Extp
L(E∨(k),O

CP
2
θ
(l)) ∼= Hp(CP

2
θ, E(l − k)) for p ≥ 0 and

k, l ∈ Z. Whence by point (1) of Proposition 5.7, one has HomL

(

E∨(1),
Ω1

CP
2
θ
(1)
)

= 0. By the construction of the Koszul complex given in [13,

Section 6.1] and Section 3.2 above, the sheaf Ω1
CP

2
θ
(1) can also be included

in the exact sequence

0 −→ O
CP

2
θ
(−2) −→ O

CP
2
θ
(−1) ⊗ (A!

2

)∗ −→ Ω1
CP

2
θ
(1) −→ 0,

with (A!
2)

∗ the subspace of A1 ⊗ A1 spanned by the quadratic relations (5.1).
By point (2) of [13, Prop. 6.8], one has H3(CP

2
θ, F ) = 0 for all F ∈ coh(CP

2
θ),
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and so by applying HomL(E∨(1),−) one induces a long exact sequence which
terminates at the exact sequence

H2
(

CP
2
θ, E(−2)

)⊗ (A!
2

)∗ −→ Ext2L
(

E∨(1),Ω1
CP

2
θ
(1)
) −→ 0.

By point (2) of Proposition 5.7, one thus finds Ext2L
(

E∨(1),
Ω1

CP
2
θ
(1)
)

= 0. �

Theorem 5.25. Up to isomorphism, any (W,V )-framed sheaf on Open
(CP

2
θ) is the middle cohomology of a monad complex

C •(W,V ) : 0 −→ V ⊗ O
CP

2
θ
(−1) σw−−→

V ⊗ (A!
	

)

1
⊗ O

CP
2
θ⊕

W ⊗ O
CP

2
θ

τw−→ V ⊗ O
CP

2
θ
(1) −→ 0.

Conversely, any linear monad C •(W,V ) on CP
2
θ of this form, such that S =

πL(coker(σ∗w)) is a graded left artinian A-module, defines an isomorphism
class in Mθ(W,V ).

Proof. We use the Beilinson spectral sequence of Section 3.2. In the present
case, the only non-vanishing sheaves Qp appearing in (3.5) are given by

Q0 = π(A)∨ = O
CP

2
θ
,

Q1 = π
(

ker(A(−1) ⊗ A1 → A)
)∨ = Ω1

CP
2
θ
(1)∨,

Q2 = π
(

A(−1)
)∨ = O

CP
2
θ
(1).

The spectral sequence converges to F ∈ coh(CP
2
θ) concentrated in degree

zero. We apply this sequence to the sheaf F = E(−1) where [E] ∈ Mθ(W,V ).
One has the sheaf cohomology groups

Extq
(

O
CP

2
θ
(1), E(−1)

)

= Hq
(

CP
2
θ, E(−2)

)

,

Extq
(

O
CP

2
θ
, E(−1)

)

= Hq
(

CP
2
θ, E(−1)

)

,

which both vanish for q 	= 1 by points (1) and (2) of Proposition 5.7. Like-
wise, one has

Extq
(

Ω1
CP

2
θ
(1)∨, E(−1)

)

= Extq
L

(

E∨(1),Ω1
CP

2
θ
(1)
)

,

which is also trivial for q 	= 1 by Lemma 5.24. It follows that Ep,q
1 = 0

unless p = 0, 1, 2 and q = 1, and hence the spectral sequence (3.5) is simply
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the three-term complex

0 −→ H1
(

CP
2
θ, E(−2)

)⊗ O
CP

2
θ
(−2)

−→ Ext1L
(

E∨(1),Ω1
CP

2
θ
(1)
)⊗ O

CP
2
θ
(−1)

−→ H1
(

CP
2
θ, E(−1)

)⊗ O
CP

2
θ

−→ 0. (5.26)

Apply the degree one shift autoequivalence to write this complex in the
generic monadic form of (3.12), i.e., with finite-dimensional vector spaces
given by V−1 = H1(CP

2
θ, E(−2)), V0 = Ext1L(E∨(1),Ω

CP
2
θ
(1)), and V1 = H1

(CP
2
θ, E(−1)). By Proposition 3.13 with n = 2 and Corollary 5.8, one has

dimC(V± 1) = k and dimC(V0) = 2k + r, and by point (3) of Proposition 5.7
there are vector space isomorphisms V± 1

≈−−→ V .

It remains to identify the C-vector space V0 with (V ⊗ (A!
	)1) ⊕W . For

this, we apply the exact restriction functor i• to the short exact sequences
(3.14)–(3.15). Since the cohomological dimension of the category coh(CP

1
θ)

is one [13, Prop. 6.8 (1)], the corresponding induced long exact cohomol-
ogy sequences (3.18)–(3.19) are non-trivial only for p = 0, 1. Since by [13,
Prop. 6.8 (1)] one has

H0
(

CP
1
θ,OCP

1
θ
(−1)

)

= H1
(

CP
1
θ,OCP

1
θ
(−1)

)

= 0,

H0
(

CP
1
θ,OCP

1
θ

)

= (A	)0 = C,

and i•(E) ∼= W ⊗ O
CP

1
θ
, the sequence (3.19) gives isomorphisms

H0
(

CP
1
θ, i

•(ker(τw))
) ≈−−→ H0

(

CP
1
θ, i

•(E)
) ∼= W,

H1
(

CP
1
θ, i

•(ker(τw))
) ≈−−→ H1

(

CP
1
θ, i

•(E)
)

= 0.

Using [13, Prop. 6.8 (1)] we identify the finite-dimensional complex vector
space

H0
(

CP
1
θ,OCP

1
θ
(1)
)

= (A	)1

with its Koszul dual (A!
	)1 ∼= (A	)∗1. Then the exact sequence (3.18) trun-

cates to the short exact sequence

0 −→ W −→ V0 −→ V ⊗ (A!
	

)

1
−→ 0. (5.27)

Since i•(E) is locally free and its dual coincides with H0(i•(C •(W,V )∨)),
we can apply the same argument to the dual monad (3.20) to get the exact
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sequence

0 −→ H0
(

CP
1
θ, i

•(ker(σ∗w))
) −→ V ∗

0
σ∗−→ (A	)1 ⊗ V ∗ −→ 0 ,

which implies that the map σ : V ⊗ (A!
	)1 → V0 is injective. Thus the seq-

uence (5.27) splits, and we get the identification V0
∼= (V ⊗ (A!

	)1) ⊕W as
desired. By Proposition 3.17, the vector space isomorphisms V± 1

≈−−→ V

and V0
≈−−→ (V ⊗ (A!

	)1) ⊕W can be uniquely extended to an isomorphism
between the monad (5.26) and one of the form C •(W,V ) which is compatible
with the framing isomorphisms (see [6, Lem. 4.2.15] and [25, Thm. 6.7]).

Conversely, if C is the middle cohomology sheaf of the monad C •(W,V ),
then one has H1(CP

2
θ,C(−1)) ∼= V by point (2) of Proposition 3.17. More-

over, by Proposition 5.2 the restriction complex i•(C •(W,V )) is a complex of
sheaves on Open(CP

1
θ) which is canonically quasi-isomorphic to W ⊗ O

CP
1
θ
.

The artinian condition on the module S implies that coker(σ∗w) is an Artin
sheaf in the sense of [6, Def. 2.0.8]. By point (2) of Proposition 3.21 with
n = 2, it follows that C is a torsion free sheaf on Open(CP

2
θ).

It remains to prove that the construction above is independent of the
choices of representatives for the respective isomorphism classes. By [6,
Lem. 4.2.15], every isomorphism ξ : E → E′ of (W,V )-framed sheaves on
Open(CP

2
θ) extends uniquely to an isomorphism between the corresponding

monads C •(W,V ) → C ′•(W,V ). The fact that the isomorphism ξ preserves
the framing isomorphisms then forces the isomorphism between monads to
be given by a commutative diagram

C •(W, V ) : 0 �� V ⊗ O
CP2

θ
(−1)

g⊗id

��

σw �� V0 ⊗ O
CP2

θ

τw ��

(g̃⊕idW )⊗id

��

V ⊗ O
CP2

θ
(1) ��

g⊗id

��

0

C ′
•(W, V ) : 0 �� V ⊗ O

CP2
θ
(−1)

σ′
w

�� V0 ⊗ O
CP2

θ
τ′

w

�� V ⊗ O
CP2

θ
(1) �� 0

(5.28)

for some g ∈ GL(V ). Conversely, any isomorphism of monads of the form
(5.28) induces an isomorphism between the corresponding cohomology
sheaves E = H0(C •(W,V )) and E′ = H0(C ′•(W,V )) which preserves the
framing isomorphisms; the automorphism (g̃ ⊕ idW ) ⊗ id maps E onto E′,
regarded as submodules of V0 ⊗ O

CP
2
θ
. �

The proof of Theorem 5.22 is now completed by demonstrating that the
ADHM moduli space (5.21) has the same monadic description as that in
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Theorem 5.25. Given a triple of ADHM data (B, I, J) ∈ MADHM
θ (W,V ), we

define a canonical sheaf morphism

σ(B,I,J) =
(

B ⊗ w3 + idV ⊗ (q w̌1 ⊗ w1 + q−1 w̌2 ⊗ w2

)

J ⊗ w3

)

: V ⊗ O
CP

2
θ
(−1) −→ (

(V ⊗ (A!
	)1) ⊕W

)⊗ O
CP

2
θ
, (5.29)

where the homogeneous coordinates w̌i and wj act by multiplication in A!
	

and A, respectively. Similarly, define

τ(B,I,J) =
(

idV ⊗ μA!
�

) ◦ (B ⊗ idA!
�

)⊗ w3

+ idV ⊗ (q−1 w̌1 ⊗ w1 + q w̌2 ⊗ w2

)

I ⊗ w3

:
(

(V ⊗ (A!
	)1) ⊕W

)⊗ O
CP

2
θ

−→ (

V ⊗ (A!
	)2
)⊗ O

CP
2
θ
(1). (5.30)

Henceforth, we will use the natural vector space isomorphism (A!
	)2 ∼= C.

Then the maps (5.29)–(5.30) determine a chain of morphisms of coherent
sheaves on Open(CP

2
θ) given by

C •(B, I, J) : V ⊗ O
CP

2
θ
(−1)

σ(B,I,J)−−−−−→
V ⊗ (A!

	

)

1
⊗ O

CP
2
θ⊕

W ⊗ O
CP

2
θ

τ(B,I,J)−−−−−→ V ⊗ O
CP

2
θ
(1). (5.31)

We will show that the sequence (5.31) is a monad of the type considered in
Theorem 5.25, and that every (W,V )-framed torsion free sheaf arises from
this construction.

Theorem 5.32. For any triple (B, I, J) ∈ MADHM
θ (W,V ), the chain C •

(B, I, J) of morphisms is a monad complex which defines an isomorphism
class in Mθ(W,V ). Conversely, any linear monad complex C •(W,V ) of the
form given in Theorem 5.25 defines an isomorphism class in the moduli space
̂MADHM

θ (W,V ).

Proof. Apply the exact restriction functor i• to (5.31) with

i•(σ(B,I,J)) =
(

idV ⊗ (q w̌1 ⊗ w1 + q−1 w̌2 ⊗ w2

)

0

)

,

i•(τ(B,I,J)) =
(

idV ⊗ (q−1 w̌1 ⊗ w1 + q w̌2 ⊗ w2

)

0
)

.

It follows that the morphism i•(σ(B,I,J)) is injective, i•(τ(B,I,J)) is surjective,
while using (5.1) and (5.12) one easily finds i•(τ(B,I,J)) ◦ i•(σ(B,I,J)) = 0. It
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follows that i•(C •(B, I, J)) is a monad on CP
1
θ whose cohomology is nat-

urally isomorphic to W ⊗ O
CP

1
θ
. More generally, an elementary calculation

using (5.1) and (5.12)–(5.14) shows

τ(B,I,J) ◦ σ(B,I,J) = (B ∧θ B + I ◦ J) ⊗ w2
3,

from which it follows that (5.31) is a complex if and only if the triple (B, I, J)
satisfies the non-commutative ADHM equations (5.18).

Arguing as in Proposition 5.5 using i•(ker(σ(B,I,J))) = 0 from above, mul-
tiplication by w3 yields isomorphisms of sheaves ker(σ(B,I,J))(k − 1) ∼= ker
(σ(B,I,J))(k) for all k ∈ Z. By [25, Cor. 5.3], one has the trivial sheaf coho-
mology Hp(CP

2
θ, ker(σ(B,I,J))(k)) = 0 for k � 0 and for all p ≥ 1. It follows

that ker(σ(B,I,J)) is an Artin sheaf, which is locally free by [6, Prop. 2.0.4].
Hence ker(σ(B,I,J)) = 0 by [6, Prop. 2.0.9 (4)], and the map σ(B,I,J) is injec-
tive. The same argument shows that coker(σ∗(B,I,J)) is an Artin sheaf, and
hence that the graded left A-module S = πL(coker(σ∗(B,I,J))) has homologi-
cal dimension zero. Analogously, coker(τ(B,I,J)) is an Artin sheaf such that
there are isomorphisms of sheaves coker(τ(B,I,J))(k − 1) ∼= coker(τ(B,I,J))(k)
for all k ∈ Z, and we can mimic the proof of [6, Lem. 4.1.9]. For this, we
note that by point (1) of [13, Prop. 6.8] we can write

τ(B,I,J) =
(

idV ⊗ μA

) ◦ (H0(τ(B,I,J)) ⊗ id
)

,

where H0(τ(B,I,J)) : V0 → V ⊗ A1 is the induced map on cohomology. Sim-
ilarly, the canonical projection

φ : V ⊗ O
CP

2
θ
(1) −→ coker(τ(B,I,J))

induces a map H0(φ)(−1) : V → H0(CP
2
θ, coker(τ(B,I,J))). Let V ′ = ker

(

H0(φ)(−1)
)

. Then (5.30) and the composition H0(φ ◦ τ(B,I,J)) = 0 imply
B(V ′) ⊂ V ′ ⊗ (A!

	)1 and I(W ) ⊂ V ′ ⊗ (A!
	)2. By the stability condition (2)

of Definition 5.17, one has V ′ = V . Since φ is surjective, it follows that
coker(τ(B,I,J)) = 0 and hence τ(B,I,J) is surjective. Putting everything
together, the chain (5.31) is a monad whose cohomology sheaf is torsion
free by point (2) of Proposition 3.21.

Conversely, given a monad C •(W,V ), we mimic the proof of [25, Thm. 6.7].
For this, we use (3.23) for n = 2 to decompose the maps σw and τw
into constant linear maps σi : V → V ⊗ (A!

	)1 ⊕W and τ i : V ⊗ (A!
	)1

⊕W → V ⊗ (A!
	)2 for i = 1, 2, 3. Then the monadic condition τw ◦ σw = 0
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is equivalent to the system of vanishing morphism compositions

τ i σi = 0, i = 1, 2, 3,

τ2 σ1 + q2 τ1 σ2 = 0,

τ i σ3 + τ3 σi = 0, i = 1, 2. (5.33)

Since i•(σw) = σ1 ⊗ w1 + σ2 ⊗ w2 and i•(τw) = τ1 ⊗ w1 + τ2 ⊗ w2 with
cohomology W ⊗ O

CP
1
θ

∼= ker(i•(τw))/im(i•(σw)), from the proof of Theo-
rem 5.25 it follows that, as in [25, Thm. 6.7], the composition τ1 σ2 = −τ2 σ1

is an isomorphism V
≈−−→ V ⊗ (A!

	)2. With a suitable choice of basis for the
vector space V we can set τ1 σ2 = q−2 idV ⊗ w̌1 w̌2. We can then choose a
basis for W such that the first set of equations for i = 1, 2 and the second
equation in (5.33) are solved by

σ1 =
(

q idV ⊗ w̌1

0

)

, σ2 =
(

q−1 idV ⊗ w̌2

0

)

,

τ1 =
(

q−1 idV ⊗ w̌1 0
)

, τ2 =
(

q idV ⊗ w̌2 0
)

.

Then the third set of equations in (5.33) are solved by

σ3 =
(

B1 ⊗ w̌1 +B2 ⊗ w̌2

J

)

, τ3 =
(

B1 ⊗ w̌1 +B2 ⊗ w̌2 I
)

with arbitrary maps B1, B2 ∈ EndC(V ), J ∈ HomC(V,W ), and I ∈ HomC

(W,V ⊗ (A!
	)2). Finally, the first equation in (5.33) with i = 3 is equivalent

to
(

B1B2 − q−2 B2B1

)⊗ w̌1 w̌2 + I ◦ J = 0,

which is just the ADHM equation (5.18). The morphisms (3.23) then take
the forms given in (5.29)–(5.30).

It remains to check the stability condition (2) of Definition 5.17. Suppose
that there exists a non-trivial proper subspace V ′ ⊂ V such that

Bi(V ′) ⊆ V ′, im(I) ⊆ V ′ ⊗ (A!
	

)

2

for i = 1, 2. LetB′
i = Bi

∣

∣

V ′ , i = 1, 2, and let I ′ : W → V ′ be the factorization
of I through V ′ ⊂ V . Then there are natural inclusions

im(I ′) ↪→ V ′, im(B′
i) ↪→ V ′

for i = 1, 2. Set V ′
⊥ := V/V ′, and consider the induced dual linear map

on cohomology H0(τ∗w)(1) : V ∗ → A∗
1 ⊗ V ∗

0 . Since (V ′
⊥)∗ ⊂ ker(I ′ ∗), if V ′

⊥ 	=
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0 then by (5.30) the induced map H0(τ∗w)(1) is not injective and hence
τw cannot be surjective as a morphism of sheaves. This contradicts the
assumption that C •(W,V ) is a monad. Therefore, a destabilizing proper
subspace V ′ ⊂ V as above cannot exist. Finally, any isomorphism of mon-
ads preserving the choices of bases for V and W made above is of the
form (5.28), and coincides with the natural action of the group GL(V )
on MADHM

θ (W,V ). �

Remark 5.34. By point (3) of Proposition 3.17 and Theorem 5.25 it follows
that a (W,V )-framed sheaf is locally free if and only if the dual map σ∗w is
surjective. From the proof of Theorem 5.32 this is true if and only if the
corresponding dual set of ADHM data (B∗, J∗, I∗) satisfies the stability
condition in MADHM

θ (V ∗,W ∗). The set of all such triples coincides with
the inverse image under the affine map σ∗w of the open subset of surjective
vector space morphisms contained in A∗

1 ⊗ HomC(V ∗, V ∗
0 ), and hence is itself

an open subset of MADHM
θ (W,V ) in the Zariski topology. It follows that the

moduli space of (W,V )-framed vector bundles form a dense open subset in
Mθ(W,V ), and hence the space Mθ(W,V ) can be regarded as its (partial)
compactification.

5.4 Self-conjugate monads on the twistor variety

We will now provide another characterization of the moduli space Mθ(W,V )
in terms of “real” linear algebraic data. In the sequel we shall assume
that q12 = q ∈ R, i.e., that the non-commutativity parameter θ is purely
imaginary. There is a natural ∗-structure on the algebra A!

	 given by the
C-conjugate linear anti-algebra anti-involution J : A!

	 → (A!
	)

op defined on
generators by

J (w̌1, w̌2) = (w̌2,−w̌1). (5.35)

We will extend J as a morphism in the category HθM of left Hθ-comodules;
in particular, it is coequivariant

(id ⊗ J ) ◦ ΔL = ΔL ◦ J .

As in Section 4.5, this real structure restricts the toric action, in this case
to a coaction of the diagonal subgroup C

× ⊂ T with t1 = t2.

Let us fix Hrmitean inner products on the complex vector spaces V
and W . Then the space of complex ADHM data (5.11) also acquires a
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natural anti-involution

J : MADHM
θ (W,V ) −→ MADHM

θ (W,V ), J (B, I, J) =
(

B†,−J†, I†
)

,

where we implicitly always use the vector space isomorphisms (A!
	)2 ∼= C

and (A!
	)

op ∼= A!
	, and we set

B† := J (B) = −B†
2 ⊗ w̌1 +B†

1 ⊗ w̌2 (5.36)

with respect to the decomposition (5.14). With these definitions one has

J (B ∧θ B) = B† ∧θ B
†.

Given any pair of linear maps B,B′ ∈ HomC(V, V ⊗ (A!
	)1), we generalize

the definition (5.13) to the morphism

B ∧θ B
′ =
(

idV ⊗ μA!
�

) ◦ (B ⊗ idA!
�

) ◦B′

in HomC(V, V ⊗ (A!
	)2). In general, this cannot be represented as in (5.15),

but an explicit expression in terms of braided commutators is obtained for
the sum

B ∧θ B
′ +B′ ∧θ B =

(

[B1, B
′
2 ]θ − q−2 [B2, B

′
1 ]−θ

)⊗ w̌1 w̌2.

We will demonstrate how to relate certain framed torsion free sheaves on
CP

2
θ to the following quotient of the space of complex ADHM data.

Definition 5.37. The variety Mtw
θ (W,V ) of non-commutative real ADHM

data is the subspace of MADHM
θ (W,V ) consisting of triples (5.11) which

satisfy, in addition to conditions (1) and (2) of Definition 5.17, the non-
commutative real ADHM equation

B ∧θ B
† +B† ∧θ B + I ◦ I† − J† ◦ J = 0 (5.38)

in EndC(V ⊗ (A!
	)2).

The natural GL(V )-action on MADHM
θ (W,V ) reduces on Mtw

θ (W,V ) to
an action of the group U(V ) of unitary automorphisms of the vector space
V . The corresponding space of stable orbits is denoted ̂Mtw

θ (W,V ). We will
now provide a monadic description of this moduli space.
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Consider the natural embedding of the non-commutative projective plane
CP

2
θ into the non-commutative twistor space CP

3
θ with homogeneous coordi-

nate algebra Atw = A(CP
3
θ) described in Section 4.6. The homogeneous

coordinate algebra of the original space CP
2
θ is then recovered through

A ∼= Atw/〈w4〉. Let ι : A ↪→ Atw be the natural algebra inclusion. We will
again denote by i : A	 ↪→ Atw the algebra inclusion of the non-commutative
projective line CP

1
θ with A	

∼= Atw/〈w3, w4〉. Define a non-degenerate con-
jugate linear anti-involution J : Atw → (Atw)op acting on generators as

J (w1, w2, w3, w4) = (w2,−w1, w4,−w3). (5.39)

Consider a linear monad on CP
3
θ of the form

C tw
• (W,V ) : 0 −→ V ⊗ O

CP
3
θ
(−1) σw−−→ V0 ⊗ O

CP
3
θ

τw−→ V ⊗ O
CP

3
θ
(1) −→ 0

with V0 = V ⊗ (A!
	)1 ⊕W . Its restriction i•(C tw• (W,V )) is again a monad

on CP
1
θ which is quasi-isomorphic to W ⊗ O

CP
1
θ
. The anti-homomorphism

J induces a functor between the categories of sheaves J • : coh(CP
3
θ) →

cohL(CP
3
θ). Composing this functor with the dualizing functor Hom (−,

O
CP

3
θ
) gives a functor coh(CP

3
θ) → coh(CP

3
θ), which we denote by E �→ E† :=

J •(E)∨. This functor can be extended to the derived category of coh(CP
3
θ)

and applied to a monad C tw• (W,V ) to give a monad C tw• (W,V )† := J •(C tw•
(W,V )∨), with

C tw
• (W,V )† : 0 −→ V ∗ ⊗ O

CP
3
θ
(−1) σ†

w−−→ V0
∗ ⊗ O

CP
3
θ

τ†
w−→ V ∗ ⊗ O

CP
3
θ
(1) −→ 0.

Here the bars denote complex conjugation while σ†w := J •(σw)∗ ∈ V0
∗ ⊗

V ⊗ (Atw
1 )op and τ †w := J •(τw)∗ ∈ V ∗ ⊗ V0 ⊗ (Atw

1 )op. We will say that a
monad of the form C tw• (W,V ) is self-conjugate if there is an isomorphism
C tw• (W,V )† ∼= C tw• (W,V ) of complexes.

Theorem 5.40. There is a natural (set-theoretic) bijective correspondence
between isomorphism classes of self-conjugate linear monad complexes C tw•
(W,V ) on CP

3
θ and isomorphism classes in the moduli space ̂Mtw

θ (W,V ) of
braided real ADHM data.

Proof. We argue exactly as we did in Section 5.3. Decompose the differen-
tials as in (3.23), with constant linear maps σi : V → V0 and τ i : V0 → V for



ALGEBRAIC DEFORMATIONS OF TORIC VARIETIES II 1869

i = 1, 2, 3, 4. By suitable choices of bases for the vector spaces V and W , we
can put these maps into the forms

σ1 =
(

q idV ⊗ w̌1

0

)

, σ2 =
(

q−1 idV ⊗ w̌2

0

)

,

σ3 =
(

B1 ⊗ w̌1 +B2 ⊗ w̌2

J

)

, σ4 =
(

B′
1 ⊗ w̌1 +B′

2 ⊗ w̌2

J ′

)

and

τ1 =
(

q−1 idV ⊗ w̌1 0
)

, τ2 =
(

q idV ⊗ w̌2 0
)

,

τ3 =
(

B1 ⊗ w̌1 +B2 ⊗ w̌2 I
)

, τ4 =
(

B′
1 ⊗ w̌1 +B′

2 ⊗ w̌2 I ′
)

,

with B1, B2, B
′
1, B

′
2 ∈ EndC(V ), J, J ′ ∈ HomC(V,W ), and I, I ′ ∈ HomC

(W,V ⊗ (A!
	)2).

Self-conjugacy C tw• (W,V )† ∼= C tw• (W,V ) is equivalent to the conditions
σ†w = −τw and τ †w = σw, or equivalently that

∑

i σ
i ⊗ wi =

∑

i τ
i † ⊗ J (wi)

where τ i † := (τ i)∗ are the adjoint linear maps with respect to the induced
Hermitean metrics. Using (5.39), equating coefficients of the generators of
Atw yields the relations

σ1 = −τ2†, σ2 = τ1†, σ3 = −τ4†, σ4 = τ3†,

which using (5.36) implies (B′
1, B

′
2, I

′, J ′) = (−B†
2, B

†
1,−J†, I†), i.e.,

(B′, I ′, J ′ ) = J (B, I, J).

By using (5.14) the differentials may thus be expressed as

σw =

(

B ⊗ w3 +B† ⊗ w4 + idV ⊗ (q w̌1 ⊗ w1 + q−1 w̌2 ⊗ w2

)

J ⊗ w3 + I† ⊗ w4

)

(5.41)

and

τw =
(

(idV ⊗ μA!
�
) ◦ (B ⊗ idA!

�
) ⊗ w3 + (idV ⊗ μA!

�
) ◦ (B† ⊗ idA!

�
) ⊗ w4

+ idV ⊗ (q−1 w̌1 ⊗ w1 + q w̌2 ⊗ w2)

I ⊗ w3 − J† ⊗ w4

)

. (5.42)
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By (5.12) and (4.27), we compute the composition of the maps (5.41)–(5.42)
to get

τw ◦ σw = (B ∧θ B + I ◦ J) ⊗ w2
3 +

(

B† ∧θ B
† − J† ◦ I† )⊗ w2

4

+
(

B ∧θ B
† +B† ∧θ B + I ◦ I† − J† ◦ J)⊗ w3w4.

The monadic condition τw ◦ σw = 0 is thus equivalent, respectively, to the
complex ADHM equation (5.18), its image under the anti-involution J ,
and the real ADHM equation (5.38). Stability follows similarly to the proof
of Theorem 5.32, and is again equivalent to surjectivity of the map (5.42).
Naturality also follows as before. �

By repeating the arguments of Section 5.3, the cohomology of a self-
conjugate monad complex of the form C tw• (W,V ), under the correspondence
of Theorem 5.40, is a torsion free (W,V )-framed sheaf E on Open(CP

3
θ) obey-

ing the reality condition E† ∼= E, and with vanishing cohomology H1(CP
3
θ,

E(−2)) = 0 by point (1) of Proposition 3.17. Conversely, by adapting the
proof of Theorem 5.25 using the Beilinson spectral sequence of Section 3.2,
applied to CP

3
θ, any such sheaf E is the cohomology of a self-conjugate linear

monad C tw• (W,V ) on CP
3
θ, with V = V−1

∼= Ext1L
(

E∨(1),Ω1
CP

3
θ
(2)
)

and the
remaining monadic vector spaces analogous to those in the proof of Theo-
rem 5.25. The restriction ι•(C tw• (W,V )) of a self-conjugate monad on CP

3
θ

is a monad on CP
2
θ which by Theorem 5.32 defines an isomorphism class

in Mθ(W,V ). This gives a map of moduli spaces ̂Mtw
θ (W,V ) → Mθ(W,V ).

At the level of non-commutative ADHM data, this map is just the natu-
ral inclusion of varieties Mtw

θ (W,V ) ↪→ MADHM
θ (W,V ). The virtue of this

restriction is that this smaller class of torsion free sheaves on Open(CP
2
θ)

corresponds directly to a class of anti-selfdual connections on a canonically
associated “instanton bundle”, as we demonstrate in Section 6. We do not
know if this construction is complete.

6 Construction of non-commutative instantons

6.1 Instanton bundles on S4
θ

In this section we will use the monadic description of non-commutative real
ADHM data on the twistor space CP

3
θ to construct canonical bundles, called

“instanton bundles”, on the non-commutative sphere S4
θ obtained in Sec-

tion 4.5. This will be achieved via the twistor transform of framed torsion
free sheaves E on Open(CP

3
θ) which satisfy the reality condition E† ∼= E
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of Section 5.4. It is determined by the non-commutative correspondence
diagram

A
(

Flθ(1, 2; 4)
)

Atw = A
(

CP
3
θ

)

p1

��������������
A
(

Grθ(2; 4)
)

.

p2

��������������

The generators wi, i = 1, 2, 3, 4 and Λ(ij), 1 ≤ i < j ≤ 4 of the homogeneous
coordinate algebra of the non-commutative flag variety Flθ(1, 2; 4) obey rela-
tions given by (4.27) and by (4.1) for d = 2, n = 4, the Plücker equations
(4.9), and the relations (4.11) and (4.12), with the q-values (4.15) for q ∈ R.

Using Lemma 4.14 we can apply the derived functor of the twistor trans-
form p2

∗ p1∗ to a self-conjugate linear monad complex C tw• (W,V ) on CP
3
θ to

get

p2
∗ p1∗

(

C tw
• (W,V )

)

: 0 −→ V0 ⊗ OGrθ(2;4)
(idV ⊗η̂)◦τw−−−−−−−→ V ⊗ Sθ −→ 0, (6.1)

where η̂ is the rank two projector of (4.7) defining the tautological bundle
over the Grassmann variety as Sθ

∼= η̂
(

A(Grθ(2; 4)) ⊗ Atw
1

)

, and Atw
1 is the

degree-one part of the algebra Atw. It follows that the image of a cohomol-
ogy sheaf E = H0

(

C tw• (W,V )
)

under the twistor transform is the sheaf on
Open(Grθ(2; 4)) given by

E′ = p2
∗ p1∗(E) = ker

(

(idV ⊗ η̂) ◦ τw
)

.

We are interested in the restriction of this complex to the affine subvariety
R

4
θ of the non-commutative Grassmannian Grθ(2; 4) described by Proposi-

tion 4.19 and the real structure (4.20).

It follows from (4.30) that the complex (6.1) restricts to the “Dirac oper-
ator”

D := j• (idV ⊗ η̂) ◦ τw :
(

V ⊗ (A!
	)1 ⊕W

)⊗ A
(

R
4
θ

)

−→ (V ⊕ V ) ⊗ A
(

R
4
θ

)

, (6.2)
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which can be written explicitly using (5.42) with (4.29), and the decompo-
sitions (5.14) and (5.36) as

D =

(

(idV ⊗μA!
�
) ◦ (B⊗ idA!

�
)⊗ 1− idV ⊗ (q−1 w̌1 ⊗ ξ1 + q w̌2 ⊗ ξ2) I

(idV ⊗μA!
�
) ◦ (B†⊗ idA!

�
)⊗ 1− idV ⊗ (q−1 w̌1 ⊗ ξ̄2 + q w̌2 ⊗ ξ̄1) −J†

)

=

( (

B1 − q−1 ξ1
)⊗ w̌1 +

(

B2 − q ξ2
)⊗ w̌2 I

(−B†
2 − q−1 ξ̄2

)⊗ w̌1 +
(

B†
1 − q ξ̄1

)⊗ w̌2 −J†

)

. (6.3)

By construction, D is a surjective morphism of free right A(R4
θ)-modules.

Recall from the proof of Theorem 5.32 that surjectivity of the differential
τw is equivalent to the stability condition (2) of Definition 5.17. For the
same reason, and by point (3) of Proposition 3.17, the map τ †w is injective,
and hence D† is also injective. Here the †-involution is the tensor product
of the real structures given by (4.20) and (5.35), and those of the chosen
Hermitean structures on the vector spaces V and W .

Next we define the “Laplace operator”

� := D ◦ D† : (V ⊕ V ) ⊗ A
(

R
4
θ

) −→ (V ⊕ V ) ⊗ A
(

R
4
θ

)

. (6.4)

Proposition 6.5. The operator � ∈ EndA(R4
θ)

(

(V ⊕ V ) ⊗ A(R4
θ)
)

is an iso-
morphism.

Proof. Since D† ∈ HomA(R4
θ)

(

(V ⊕ V ) ⊗ A(R4
θ), V0 ⊗ A(R4

θ)
)

is injective, it
follows that im(D†) is a free A(R4

θ)-submodule of V0 ⊗ A(R4
θ). Its orthogonal

complement with respect to the induced hermitean structures above can be
naturally identified with the kernel of D, and hence there is a decomposition

V0 ⊗ A(R4
θ) = im(D†) ⊕ ker(D) (6.6)

of A(R4
θ)-modules. In particular, im(D†) ∩ ker(D) = 0, and hence � is injec-

tive since D† is injective.

Now let v ∈ (V ⊕ V ) ⊗ A(R4
θ). Since D is surjective, there exists v0 ∈

V0 ⊗ A(R4
θ) such that D(v0) = v. Using the decomposition (6.6) one has

v0 = v′0 + v′′0 for some v′0 ∈ im(D†) and v′′0 ∈ ker(D). Setting v′0 = D†(v′) for
v′ ∈ (V ⊕ V ) ⊗ A(R4

θ), we then have v = D(v0) = D(v′0) = D
(

D†(v′)
)

and
hence � is also surjective. �
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The operators D, D† and � are all Hθ-coequivariant morphisms with
respect to the coactions given by (3.4), (4.21) and (5.16). The right A(R4

θ)-
module

E := ker(D) = ker
(

j• (idV ⊗ η̂) ◦ τw
)

(6.7)

is projective by (6.6). It is also finitely generated, and has rank dimC(W ) = r
since D is surjective. In fact, the isomorphism invariants of E are described
by Corollary 5.8. Using Proposition 6.5 the corresponding projection can
be given as

P := idV0 − D† ◦ �−1 ◦ D : V0 ⊗ A
(

R
4
θ

) −→ E, (6.8)

with P 2 = P = P † and trace TrP = dimC(V0) − dimC(V ⊕ V ) = r. The
module (6.7) is called an instanton bundle over R

4
θ; it defines an object of the

category HθM . Using (5.28), one easily demonstrates that the isomorphism
class of E depends only on the class of the non-commutative ADHM data
(B, I, J) in the moduli variety Mtw

θ (W,V ). Moreover, the reality condition
E† ∼= E follows from the construction of Section 5.4.

Now we consider the restriction of the complex (6.1) to the affine sub-
variety ˜R4

θ of the non-commutative Grassmannian Grθ(2; 4) described by
Proposition 4.22 and the real structure (4.23). Using (5.42) with (4.31), and
the decompositions (5.14) and (5.36) we define a Dirac operator

˜D := j̃ • (idV ⊗ η̂) ◦ τw

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−q (B1 ζ̄1 +B†
2 ζ2 − q−2

)⊗ w̌1

− q
(

B2 ζ̄1 −B†
1 ζ2
)⊗ w̌2

−q (I ζ̄1 + J† ζ2
)

q−1
(

B1 ζ̄2 +B†
2 ζ1
)⊗ w̌1

+ q−1
(

B2 ζ̄2 −B†
1 ζ1 + q2

)⊗ w̌2
q−1

(

I ζ̄2 + J† ζ1
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(6.9)

in Hom
A(˜R4

θ)

(

V0 ⊗ A(˜R4
θ), (V ⊕ V ) ⊗ A(˜R4

θ)
)

. The operator ˜D is surjective
by construction, and by repeating the arguments used above the module

Ẽ := ker
(

˜D
)

= ker
(

j̃ • (idV ⊗ η̂) ◦ τw
)

is a projective module over A(˜R4
θ), called an instanton bundle on ˜R4

θ. More-
over, the coequivariant map

˜� := ˜D ◦ ˜D† ∈ End
A(˜R4

θ)

(

(V ⊕ V ) ⊗ A(˜R4
θ)
)

(6.10)
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is an isomorphism in the category HθM , and the rank r projection ˜P describ-
ing Ẽ is

˜P := idV0 − ˜D† ◦ ˜�−1 ◦ ˜D : V0 ⊗ A
(

˜R
4
θ

) −→ Ẽ

with ˜P 2 = ˜P = ˜P † and Tr ˜P = r.

It remains to determine the gluing automorphism between the two instan-
ton bundles E and Ẽ. For this, we use Proposition 4.25 to write the commu-
tative diagram

0 �� V0 ⊗ A
(

R
4
θ

)

[ρ̃ ] D ��

idV0
⊗G

��

(V ⊕ V ) ⊗ A
(

R
4
θ

)

[ρ̃ ] ��

(G⊗1)◦(idV ⊕V ⊗G)
��

0

0 �� V0 ⊗ [ρ]A
(

˜R
4
θ

)

˜D

�� (V ⊕ V ) ⊗ [ρ]A
(

˜R
4
θ

) �� 0

(6.11)

in the category HθM , where the linear map G : V ⊕ V → (V ⊕ V ) ⊗ A(˜R4
θ)

is defined by
(

v1

v2

)

�−→
(−q (v1 ζ̄1 − v2 ζ2

)

q−1
(

v1 ζ̄2 − v2 ζ1
)

)

.

The cohomology of the first row is E[ρ̃ ] := E ⊗A(R4
θ) A(R4

θ)[ρ̃ ], while the

cohomology of the second row is [ρ]Ẽ := [ρ]A(˜R4
θ) ⊗A(˜R4

θ)
Ẽ. In this way

the isomorphism of Proposition 4.25 induces the desired isomorphism of
modules GE : E[ρ̃ ] → [ρ]Ẽ which is compatible with the †-involutions and
obeys GE(σ � a) = G(a) � GE(σ) for σ ∈ E[ρ̃ ], a ∈ A(R4

θ)[ρ̃ ], thus defining
an Hθ-coequivariant instanton bundle on the non-commutative sphere S4

θ .

6.2 Instanton gauge fields

We will now construct canonical connections on the instanton bundles intro-
duced in Section 6.1. For this, we first need to write down a canonical exte-
rior differential algebra over the sphere S4

θ as a deformation of its classical
counterpart, following the general construction of Kähler differentials given
in [13, Section 4.4]. We begin by constructing differential forms on the open
subvariety R

4
θ.

Starting with the real affine variety R
4, let Ω•

R4 =
∧• Ω1

R4 be the usual
classical differential calculus on the coordinate algebra A(R4), generated as
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a differential graded algebra by degree zero elements ξi, ξ̄i and degree one
elements dξi,dξ̄i satisfying the skew-commutation relations

dξi ∧ dξj = −dξj ∧ dξi, dξi ∧ dξ̄j = −dξ̄j ∧ dξi, dξ̄i ∧ dξ̄j = −dξ̄j ∧ dξ̄i

and the symmetric A(R4)-bimodule structure

ξi dξj = dξj ξi, ξi dξ̄j = dξ̄j ξi, ξ̄i dξ̄j = dξ̄j ξ̄i

for i, j = 1, 2. The differential d : Ω0
R4 := A(R4) → Ω1

R4 is defined by ξi �→
dξi, ξ̄i �→ dξ̄i. It is extended uniquely to a map of degree one, d : Ωn

R4 →
Ωn+1

R4 , using C-linearity and the graded Leibniz rule

d(ω ∧ ω′) = dω ∧ ω′ + (−1)deg(ω) ω ∧ dω′

with d2 = 0, where the product is taken over A(R4) using the bimodule
structure of Ω•

R4 . We will demand that the differential calculus on A(R4) is
coequivariant for the torus coaction ΔL given in (4.21). Then we can extend
this coaction to a left coaction ΔL : Ω•

R4 → H ⊗ Ω•
R4 such that d is a left

H-comodule morphism and ΔL is an A(R4)-bimodule morphism.

Following the prescription of Section 2.2, we can now use the comodule
cotwist to deform the differential structure in the same way as for the algebra
itself in Proposition 4.19. One finds

ξi �θ dξj = Fθ(ti, tj) ξi dξj , ξ̄i �θ dξ̄j = Fθ(ti+1, tj+1) ξ̄i dξ̄j ,

ξi �θ dξ̄j = Fθ(ti, tj+1) ξi dξ̄j , ξ̄i �θ dξj = Fθ(ti+1, tj) ξ̄i dξj ,

dξi ∧θ dξj = Fθ(ti, tj) dξi ∧ dξj , dξ̄i ∧θ dξ̄j = Fθ(ti+1, tj+1) dξ̄i ∧ dξ̄j ,

dξi ∧θ dξ̄j = Fθ(ti, tj+1) dξi ∧ dξ̄j , dξ̄i ∧θ dξj = Fθ(ti+1, tj) dξ̄i ∧ dξj ,

with indices read modulo 2. The braided exterior product ∧θ describes how
the tensor product acts on the quotient of the tensor algebra

Tθ

(

Ω1
R4

)

= A
(

R
4
θ

) ⊕
⊕

n≥1

(

Ω1
R4

)⊗
A(R

4
θ
)
n

by the ideal generated by the braided skew-commutation relations (see
(2.6)). The undeformed differential d is still a derivation (of degree one)
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of the deformed product ∧θ, as follows from general results of twist defor-
mation theory [30] or simply by direct computation

d(ω1 ∧θ ω2) = Fθ

(

ω
(−1)
1 , ω

(−1)
2

)

d
(

ω
(0)
1 ∧ ω(0)

2

)

= Fθ

(

ω
(−1)
1 , ω

(−1)
2

) (

dω(0)
1 ∧ ω(0)

2 + (−1)deg(ω
(0)
1 ) ω

(0)
1 ∧ dω(0)

2

)

= dω1 ∧θ ω2 + (−1)deg(ω1) ω1 ∧θ dω2

for homogeneous forms ω1, ω2, with the usual Sweedler notation ΔL(ω) =
ω(−1) ⊗ ω(0).

The above construction defines a canonical differential graded algebra
Ω•

R
4
θ

=
∧•

θ Ω1
R4 for A(R4

θ) with the same generators and the same differential
d, but now subject to the braided skew-commutation relations

dξi ∧ dξj = −q2ij dξj ∧ dξi, dξ̄i ∧ dξ̄j = −q2i+1 j+1 dξ̄j ∧ dξ̄i,

dξi ∧ dξ̄j = −q2i j+1 dξ̄j ∧ dξi (6.12)

and the braided symmetric A(R4
θ)-bimodule structure

ξi dξj = q2ij dξj ξi, ξ̄i dξ̄j = q2i+1 j+1 dξ̄j ξ̄i,

ξi dξ̄j = q2i j+1 dξ̄j ξi, ξ̄i dξj = q2i+1 j dξj ξ̄i.

Again we drop the explicit deformation symbols from the products. This
also identifies Ω•

R
4
θ

via the restriction

j•Ω1
Grθ(2;4)

∼= Ω1
R

4
θ

of the bundle of non-commutative Kähler differentials (4.6). The real struc-
ture (4.20) extends to Ω•

R
4
θ

by graded extension of the morphism ξi �→ ξ†i .

We are now ready to construct a canonical connection on the right A(R4
θ)-

module E, i.e., a C-linear map

∇ : E −→ E ⊗A(R4
θ) Ω1

R
4
θ

satisfying the Leibniz rule

∇(σ � f) = (∇σ) � f + σ ⊗ df
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for f ∈ A(R4
θ) and σ ∈ E. The connection ∇ extends to one-forms as a

C-linear map

∇ : E ⊗A(R4
θ) Ω1

R
4
θ

−→ E ⊗A(R4
θ) Ω2

R
4
θ

satisfying

∇(σ ⊗ ω) = (∇σ) ⊗ ω + σ ⊗ dω

for ω ∈ Ω1
R

4
θ

and σ ∈ E. Two connections ∇ and ∇′ are gauge equivalent if

there exists an automorphism g ∈ AutA(R4
θ)(E) such that ∇ = g̃ ◦ ∇′ ◦ g−1,

where g̃ = g ⊗ id. The curvature F∇ = ∇ ◦∇ is defined by the composition

E
∇−−→ E ⊗A(R4

θ) Ω1
R

4
θ

∇−−→ E ⊗A(R4
θ) Ω2

R
4
θ
.

Since F∇ is right A(R4
θ)-linear, it may be regarded as an element

F∇ ∈ HomA(R4
θ)

(

E,E ⊗A(R4
θ) Ω2

R
4
θ

)

.

If ∇ and ∇′ are gauge equivalent via the gauge transformation g ∈ AutA(R4
θ)

(E), then the corresponding curvatures are easily found to be related as
F∇ = g̃ ◦ F∇′ ◦ g−1.

To define the instanton connection, let ι : E → V0 ⊗ A(R4
θ) denote the

natural inclusion, and d : A(R4
θ) → Ω1

R
4
θ

the differential introduced above.
We then take ∇ to be the Grassmann connection associated to the projection
P , which is defined by the composition

∇ : E
ι−→ V0 ⊗ A(R4

θ)
idV0

⊗d−−−−→ V0 ⊗ Ω1
R

4
θ

P⊗id−−−→ E ⊗A(R4
θ) Ω1

R
4
θ
,

or ∇ = P ◦ d ◦ ι. It is easily seen to be compatible with the †-involution,
since

∇(σ† ) = P d
(

σ†
)

= P (dσ)† = (P dσ)† = ∇(σ)†

for σ ∈ E. Its curvature is given by

F∇ = ∇2 = P (dP )2.

Lemma 6.13. The gauge equivalence class of the instanton connection ∇ =
P ◦ d ◦ ι depends only on the class of the non-commutative ADHM data
(B, I, J) in the moduli variety Mtw

θ (W,V ).
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Proof. Let g0 : E → E′ be the A(R4
θ)-module isomorphism induced by g̃ ⊕

idW ∈ U(V0) in (5.28). Let ι′ : E′ → V0 ⊗ A(R4
θ) be the inclusion, and let P ′ :

V0 ⊗ A(R4
θ) → E′ be the projection defined as in (6.8). Then ι′ = g0 ◦ ι ◦ g−1

0

and P ′ = g0 ◦ P ◦ g−1
0 . Thus

∇′ = P ′ ◦ d ◦ ι′
=
(

g0 ◦ P ◦ g−1
0

) ◦ d
(

g0 ◦ ι ◦ g−1
0

)

=
(

g0 ◦ P ◦ g−1
0

) ◦ ((dg0) ◦ ι ◦ g−1
0 + g0 ◦ d(ι ◦ g−1

0 )
)

= g̃0 ◦
(

P ◦ d ◦ ι) ◦ g−1
0 = g̃0 ◦ ∇ ◦ g−1

0 ,

where we have used the Leibniz rule together with the fact that g0 acts as
the identity on A(R4

θ) so that dg0 = 0 = dg−1
0 . �

Similarly, the coequivariant differential calculus
(

Ω•
˜R

4
θ

,d
)

over the affine

variety ˜R4
θ is generated by ζi, ζ̄i and dζi,dζ̄i with i = 1, 2. The relations

between ζi, ζ̄i are given in Proposition 4.22 with the torus coaction in (4.24).
By coequivariance, one has

ΔL(da) = (id ⊗ d)ΔL(a),

a �θ ΔL(ω) = ΔL(a �θ ω), ΔL(ω) �θ a = ΔL(ω �θ a)

for a ∈ A(˜R4
θ) and ω ∈ Ω1

˜R
4
θ

, where here A(˜R4
θ) acts on A(˜R4

θ) ⊗ Ω1
˜R

4
θ

in the

tensor product representation. Thus the differentials dζi,dζ̄i for i = 1, 2
behave algebraically in exactly the same way as ζi, ζ̄i, and so we have the
relations

ζi dζj = q−2
ij dζj ζi, ζ̄i dζ̄j = q−2

i+1 j+1 dζ̄j ζ̄i,

ζi dζ̄j = q−2
i j+1 dζ̄j ζi, ζ̄i dζj = q−2

i+1 j dζj ζ̄i,

dζi ∧ dζj = −q−2
ij dζj ∧ dζi, dζ̄i ∧ dζ̄j = −q−2

i+1 j+1 dζ̄j ∧ dζ̄i,

dζi ∧ dζ̄j = −q−2
i j+1 dζ̄j ∧ dζi (6.14)

for i, j = 1, 2. The instanton connection ˜∇ = ˜P ◦ d ◦ ι̃ : Ẽ → Ω1
˜R

4
θ

⊗
A(˜R4

θ)
Ẽ

on the projective left A(˜R4
θ)-module Ẽ is similarly defined as in the previ-

ous case, with curvature F
˜∇ = ˜P (d ˜P )2 as an element of Hom

A(˜R4
θ)

(

Ẽ,Ω2
˜R

4
θ

⊗
A(˜R4

θ)
Ẽ
)

.



ALGEBRAIC DEFORMATIONS OF TORIC VARIETIES II 1879

We need to check consistency between the connections ∇ρ̃ and ρ
˜∇ on the

adjoinment bundles E[ρ̃ ] and [ρ]Ẽ, respectively, using the module isomor-
phism GE : E[ρ̃ ] → [ρ]Ẽ induced by the commutative diagram (6.11). For
this, consider the diagram

E[ρ̃ ]
ι ��

GE

��

V0 ⊗ A
(

R
4
θ

)

[ρ̃ ]
idV0

⊗d
��

idV0
⊗G

��

V0 ⊗ Ω1
R4

θ
[ρ̃ ] P ��

idV0
⊗G(1)

��

E ⊗
A(R4

θ
) Ω1

R4
θ
[ρ̃ ]

G
(1)
E

��
[ρ]Ẽ

ι̃

�� V0 ⊗ [ρ]A
(

˜R
4
θ

)

idV0
⊗d

�� V0 ⊗ [ρ]Ω1
˜R4

θ P̃

�� [ρ]Ω1
˜R4

θ
⊗

A(˜R4
θ
) Ẽ

. (6.15)

The commutativity of the first square follows from commutativity of the
diagram in (6.11). Next, we can lift G to the bimodule isomorphism G(1) :
Ω1

R
4
θ
[ρ̃ ] → [ρ]Ω1

˜R
4
θ

through the intertwining relation defined by commutativity

of the second square. Finally, with this definition we can extend G(1) to the
bundle isomorphism

G
(1)
E : E ⊗A(R4

θ) Ω1
R

4
θ
[ρ̃ ] −→ [ρ]Ω1

˜R
4
θ

⊗
A(˜R4

θ)
Ẽ

by demanding that the third square be commutative; it is also compatible
with the †-involutions. Then the instanton connections are related by the
gauge transformation

ρ
˜∇ = G

(1)
E ◦ ∇ρ̃ ◦G−1

E , (6.16)

as desired. This defines the instanton connection on the non-commutative
sphere S4

θ .

6.3 Anti-selfduality equations

We will now demonstrate that the Grassmann connections constructed in
Section 6.2 define non-commutative instantons in analogy with the classical
case, i.e., that they satisfy some form of anti-selfduality equations. For this,
we need to construct suitable versions of the classical Hodge duality operator
acting on two-forms. The euclidean metric on R

4 induces a Hodge duality
operator which on two-forms is the linear map ∗ : Ω2

R4 → Ω2
R4 defined by

∗(dξ1 ∧ dξ̄2) = −dξ1 ∧ dξ̄2, ∗(dξ1 ∧ dξ2) = dξ1 ∧ dξ2,

∗(dξ1 ∧ dξ̄1) = −dξ2 ∧ dξ̄2, ∗(dξ2 ∧ dξ̄2) = −dξ1 ∧ dξ̄1,

∗(dξ̄1 ∧ dξ̄2) = dξ̄1 ∧ dξ̄2, ∗(dξ2 ∧ dξ̄1) = −dξ2 ∧ dξ̄1. (6.17)
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In contrast to the case of isospectral deformations [7, 8, 14, 28], the coac-
tion (4.21) of the torus algebra H = A((C×)2) on A(R4) is not isometric.
However, it does coact by conformal transformations on A(R4), and hence
preserves the Hodge operator. This is easily checked using (6.17) and (4.21)
which shows that the operator ∗ : Ω2

R4 → Ω2
R4 is coequivariant,

ΔL(∗ω) = (id ⊗ ∗)ΔL(ω) for ω ∈ Ω2
R4 ,

and hence defines a morphism of the category HM . Since the vector space
Ω2

R
4
θ

coincides with its classical counterpart Ω2
R4 , and since the quantization

functor Fθ : HM → HθM acts as the identity on objects and morphisms of
HM , we can define a Hodge duality operator ∗θ : Ω2

R
4
θ
→ Ω2

R
4
θ

by the same

formula (6.17), which by construction is a morphism in the category HθM .
In particular, it satisfies ∗2

θ = id and the Hθ-coequivariant decomposition of
the right A(R4

θ)-module

Ω2
R

4
θ

= Ω2,+
R

4
θ
⊕ Ω2,−

R
4
θ

into submodules, corresponding to eigenvalues ± 1 of ∗θ, is identical as a
vector space to that of the classical case. Hence the eigenmodules of selfdual
and anti-selfdual two-forms are given respectively by

Ω2,+
R

4
θ

= A
(

R
4
θ

)〈

dξ1 ∧ dξ2,dξ̄1 ∧ dξ̄2,dξ1 ∧ dξ̄1 − dξ2 ∧ dξ̄2
〉

,

Ω2,−
R

4
θ

= A
(

R
4
θ

)〈

dξ1 ∧ dξ̄2,dξ2 ∧ dξ̄1,dξ1 ∧ dξ̄1 + dξ2 ∧ dξ̄2
〉

. (6.18)

In a completely analogous way, by using the H-coaction (4.24) one con-
structs a morphism ∗̃θ : Ω2

˜R
4
θ

→ Ω2
˜R

4
θ

in the category HθM with the same

formula (6.17) but with affine coordinates ξi substituted with ζi, and with
overall changes of sign reflecting the change of “orientation”. There is an
analogous Hθ-coequivariant decomposition

Ω2
˜R

4
θ

= Ω2,+
˜R

4
θ

⊕ Ω2,−
˜R

4
θ

of two-forms into selfdual and anti-selfdual two-forms with

Ω2,+
˜R

4
θ

=
〈

dζ1 ∧ dζ̄2,dζ2 ∧ dζ̄1,dζ1 ∧ dζ̄1 + dζ2 ∧ dζ̄2
〉

A
(

˜R
4
θ

)

,

Ω2,−
˜R

4
θ

=
〈

dζ1 ∧ dζ2,dζ̄1 ∧ dζ̄2,dζ1 ∧ dζ̄1 − dζ2 ∧ dζ̄2
〉

A
(

˜R
4
θ

)

. (6.19)

The consistency condition for the corresponding morphisms on the adjoin-
ment bimodules ∗θ

ρ̃ : Ω2
R

4
θ
[ρ̃ ] → Ω2

R
4
θ
[ρ̃ ] and ρ ∗̃θ : [ρ]Ω2

˜R
4
θ

→ [ρ]Ω2
˜R

4
θ

are given
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by lifting the isomorphism G(1) of (6.15) to the bimodule isomorphism
G(2) : Ω2

R
4
θ
[ρ̃ ] → [ρ]Ω2

˜R
4
θ

through the intertwining relation defined by com-

mutativity of the diagram

Ω1
R

4
θ
[ρ̃ ] d ��

J̃2◦G(1)

��

Ω2
R

4
θ
[ρ̃ ]

G(2)

��
[ρ]Ω1

˜R
4
θ d

�� [ρ]Ω2
˜R

4
θ

,

where J̃2 : Ω•
˜R

4
θ

→ Ω•
˜R

4
θ

is induced by graded extension of the map (ζ1, ζ2) �→
(ζ1, q2 ζ̄2). One then has

ρ ∗̃θ = G(2) ◦ ∗θ
ρ̃ ◦G(2) −1, (6.20)

which defines the Hθ-coequivariant Hodge operator on the non-commutative
sphere S4

θ .

Proposition 6.21. The curvatures F∇ and F
˜∇ of the instanton connections

are anti-selfdual, i.e., as two-forms they obey the anti-selfduality equations

∗θF∇ = −F∇, ∗̃θF˜∇ = −F
˜∇.

Proof. Using D(σ) = 0 for σ ∈ E, so that D(dσ) = −(dD)(σ) by the Leib-
niz rule, and P (im(D†)) = 0, the action of the curvature F∇ = P (dP )2 ∈
HomA(R4

θ)

(

E,E ⊗A(R4
θ) Ω2

R
4
θ

)

is given by

F∇(σ) = P
(

d(idV0 − D† ◦ �−1 ◦ D) ∧ dσ
)

= P
(

dD† ◦ �−1 ∧ dD(σ)
)

.

Using the commutation relations of Proposition 4.19 and (5.12), the real
structures (4.20) and (5.35), and the ADHM equations (5.18) and (5.38),
one finds that the Laplace operator (6.4) assumes the block diagonal form

� =
(

δ 0
0 δ

)

,

where the isomorphism δ ∈ EndA(R4
θ)

(

V ⊗ A(R4
θ)
)

is given by

δ = B1B
†
1 + q−2B2B

†
2 + I I† + q−1 ρ− q−1B1 ξ̄1

−B†
1 ξ1 + q−1B2 ξ̄2 −B†

2 ξ2.
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It follows that F∇ is proportional to dD† ∧ dD as a two-form. The exterior
derivative of the Dirac operator (6.3) and its adjoint are easily computed to
be

dD =

(−q−1 dξ1 ⊗ w̌1 − q dξ2 ⊗ w̌2 0

−q−1 dξ̄2 ⊗ w̌1 − q dξ̄1 ⊗ w̌2 0

)

,

dD† =

⎛

⎜

⎜

⎝

−q−2 dξ̄1 ⊗ w̌1 dξ2 ⊗ w̌1

dξ̄2 ⊗ w̌2 −q2 dξ1 ⊗ w̌2

0 0

⎞

⎟

⎟

⎠

.

Using the commutation relations (6.12) we then find

dD† ∧ dD =

⎛

⎜

⎜

⎝

−q−1
(

dξ1 ∧ dξ̄1 + dξ2 ∧ dξ̄2
) −(q + q−1

)

dξ2 ∧ dξ̄1 0
(

q + q−1
)

dξ1 ∧ dξ̄2 q3
(

dξ1 ∧ dξ̄1 + dξ2 ∧ dξ̄2
)

0

0 0 0

⎞

⎟

⎟

⎠

.

Comparing with (6.18), we see that each entry of F∇ belongs to the sub-
module Ω2,−

R
4
θ

.

The anti-selfduality equation for the curvature F
˜∇ = P̃ (dP̃ )2 ∈ Hom

A(˜R4
θ)

(

Ẽ,Ω2
˜R

4
θ

⊗
A(˜R4

θ)
Ẽ
)

follows analogously. This time we use Proposition 4.22

and (4.23) to write the Laplace operator (6.10) in the block diagonal form

�̃ =
(

δ̃ 0
0 δ̃

)

,

where the isomorphism δ̃ ∈ End
A(˜R4

θ)

(

V ⊗ A(˜R4
θ)
)

is given by

δ̃ = q−1
(

B1B
†
1 + q−2B2B

†
2 + I I†

)

ρ̃−B1 ζ̄1 − q−1B†
1 ζ1

+ q−2B2 ζ̄2 − q B†
2 ζ2 + 1.

The exterior derivative of the Dirac operator (6.9) and its adjoint have the
form

dD̃ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−q (B1 dζ̄1 +B†
2 dζ2

)⊗ w̌1

− q
(

B2 dζ̄1 −B†
1 dζ2

)⊗ w̌2
−q (I dζ̄1 + J† dζ2

)

q−1
(

B1 dζ̄2 +B†
2 dζ1

)⊗ w̌1

+ q−1
(

B2 dζ̄2 −B†
1 dζ1

)⊗ w̌2
q−1

(

I dζ̄2 + J† dζ1
)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,
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dD̃† =

⎛

⎜

⎜

⎝

−(B†
1 dζ1 − q−2B2 dζ̄2

)⊗ w̌1 −(q2B†
1 dζ2 +B2 dζ̄1

)⊗ w̌1

−(B†
2 dζ1 + q−2B1 dζ̄2

)⊗ w̌2 −(q2B†
2 dζ2 −B1 dζ̄1

)⊗ w̌2

−I† dζ1 + q−2 J dζ̄2 −q2 I† dζ2 + J dζ̄1

⎞

⎟

⎟

⎠

,

and using (6.14) we find

dD̃† ∧ dD̃ = q F1,1
(

dζ1 ∧ dζ̄1 − dζ2 ∧ dζ̄2
)

+
(

q + q3
)

F2,0 dζ1 ∧ dζ2 +
(

q + q−1
)

F0,2 dζ̄1 ∧ dζ̄2

where

F1,1 =

⎛

⎜

⎜

⎝

B†
1B1 +B2B

†
2 B†

1B2 −B2B
†
1 B†

1 I +B2 J
†

B†
2B1 −B1B

†
2 B1B

†
1 +B†

2B2 B†
2 I −B1 J

†

I B1 − J B†
2 I†B2 + J B†

1 I† I − J J†

⎞

⎟

⎟

⎠

,

F2,0 =

⎛

⎜

⎜

⎝

B†
1B

†
2 −(B†

1

)2
B†

1 J
†

(

B†
2

)2 −B†
2B

†
1 B†

2 J
†

I†B†
2 −I†B†

1 I† J†

⎞

⎟

⎟

⎠

,

F0,2 =

⎛

⎜

⎜

⎝

−B2B1 −B2
2 −B2 I

B2
1 B1B2 B1 I

J B1 J B2 J I

⎞

⎟

⎟

⎠

.

Comparing with (6.19), we see that F
˜∇ belongs to Ω2,−

˜R
4
θ

as a two-form. �

It is easy to see that the anti-selfduality equations of Proposition 6.21
are consistent with the overlap relations (6.16) and (6.20). This defines the
instanton equations on the non-commutative sphere S4

θ .

7 Construction of instanton moduli spaces

7.1 Instanton moduli functors

In this section we will exploit the fact that our non-commutative variety
CP

2
θ is a member of one of the general classes of non-commutative projec-

tive planes considered in [15,36]; hence we can straightforwardly utilize their



1884 LUCIO CIRIO, GIOVANNI LANDI AND RICHARD J. SZABO

moduli space constructions, and in the following we will freely borrow from
their results. In the notation of [36], our CP

2
θ is of type S1, associated to a

curve E ⊂ CP
2 which is isomorphic to a triangle (union of three lines CP

1)
such that each component is stabilized by an automorphism σ. Note that
this is very different from the projective planes considered in [25], which
are each of type S′

1 with E isomorphic to the union of a line and a conic
(and in particular are not given by toric non-commutative deformations of
CP

2). Recall from Section 2.3 that the non-commutative toric variety CP
2
θ

occurs in the (universal) flat family A = A(CP
2
θ) parameterized by the com-

mutative unital algebra A(C×) = C(q) over C dual to the smooth irreducible
curve

∧2 T ∼= C
×. This family includes the commutative polynomial alge-

bra A(CP
2) := C[w1, w2, w3] (for q = 1 or θ = 0). The moduli spaces con-

structed by Nevins and Stafford in [36] all behave well in this family, and are
C-schemes in the usual sense; they are constructed as geometric invariant
theory quotients of subvarieties of products of grassmannians.

In [36] it is shown that there exists a projective coarse moduli space
M

CP
2
θ
(r, c1, χ) for semistable torsion free modules in coh(CP

2
θ) of rank r ≥ 1,

first Chern class c1, and Euler characteristic χ. This moduli space behaves
well in families. In particular, there exists a quasi-projective T -scheme
MT (r, c1, χ) → ∧2 T which is smooth over

∧2 T and whose fibre over q =
exp( i θ) ∈ ∧2 T is precisely the moduli space M

CP
2
θ
(r, c1, χ); it follows that

M
CP

2
θ
(r, c1, χ) is smooth. We will show that the variety ̂MADHM

θ (r, k) of
non-commutative (complex) ADHM data is a fine moduli space for framed
sheaves of rank r, first Chern class c1 = 0, and Euler characteristic χ = r − k
on Open(CP

2
θ). This isomorphism induces the bijections of Section 5. Recall

that by a “fine” moduli space M here we mean that there exists a uni-
versal framed sheaf Ê, i.e., a family of framed sheaves parameterized by
M such that for any other family of framed sheaves E parameterized by
a C-scheme S, there exists a unique morphism α : S → M and an isomor-
phism E ∼= (id × α∗)(Ê) preserving the framing isomorphisms. In this case,
M

CP
2
θ
(r, 0, r − k) is a smooth quasi-projective C-scheme for all r ≥ 1 and for

all k ∈ N0; when non-empty it has dimension

dimC

(

M
CP

2
θ
(r, 0, r − k)

)

= 2 r k − r2 + 1

as in the classical case, and the tangent space at a point [E] is the vector
space

T[E]MCP
2
θ
(r, 0, r − k) = Ext1(E,E).

To construct our instanton moduli spaces, we look not for a set of objects
as before but rather for a space which parameterizes those objects. For
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this, we consider functors from the category Alg of commutative, unital
noetherian C-algebras to the category Set of sets. Let A be a unital noe-
therian C-algebra. We write CP

n
θ,A for the non-commutative variety dual to

the algebra A(CP
n
θ,A) := A⊗ A(CP

n
θ ). We consider such families of algebras

A(CP
n
θ,A) in order to study the global structure of our moduli spaces, and

endow them with geometric structure.

Definition 7.1. (1) A family of (W,V )-framed sheaves parameterized by
the algebra A is an A-flat torsion free module E of rank r on A⊗ A

such that H1
(

CP
2
θ,A,E(−1)

) ∼= A⊗ V and i•(E) ∼= W ⊗A⊗ O
CP

1
θ
.

(2) Two families of (W,V )-framed sheaves E and E′ are isomorphic if they
are isomorphic as (W,V )-framed modules on A⊗ A.

For A = C, i.e., for a family parameterized by a one-point space, this
definition reduces to Definition 5.3.

Definition 7.2. (1) The instanton moduli functor is the covariant functor

M inst
CP

2
θ
(W,V ) : Alg −→ Set

that associates to every algebra A the set M inst
CP

2
θ
(W,V )(A) of isomor-

phism classes of families E of (W,V )-framed sheaves parameterized
by A, and to every algebra morphism f : A→ B associates the push-
forward M inst

CP
2
θ
(W,V )(f) sending families parameterized by A to fam-

ilies parameterized by B. When bases have been fixed for the vec-
tor spaces V ∼= C

k and W ∼= C
r, we will denote this moduli functor

by M inst
CP

2
θ
(r, k).

(2) A fine instanton moduli space is a variety dual to a universal object
representing the instanton moduli functor, i.e., a pair (Â, Ê), where Â
is an object of the category Alg and Ê ∈ M inst

CP
2
θ
(W,V )(Â), such that for

any pair (A,E) with A an object of Alg and E ∈ M inst
CP

2
θ
(W,V )(A) there

exists a unique morphism α ∈ HomAlg(Â, A) such that M inst
CP

2
θ
(W,V )(α)

(Ê) ∼= E.

By Yoneda’s lemma, a fine instanton moduli space given by (Â, Ê) cor-
responds bijectively to a representation of the instanton moduli functor via
an isomorphism of functors

HÂ := HomAlg(Â,−) ≈−−→ M inst
CP

2
θ
(W,V ),
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with universal sheaf represented by Ê = HÂ(idÂ). For example, if c1 = 0
and (r, k) are coprime integers, then M

CP
2
θ
(r, 0, r − k) is a fine moduli space

(when non-empty) by [36, Prop. 7.15].

Proposition 7.3. For any r ≥ 1 and k ≥ 0, the quotient ̂MADHM
θ (r, k) is a

fine instanton moduli space.

Proof. We show that the coordinate algebra A
(

̂MADHM
θ (r, k)

)

is a univer-
sal object in Alg which represents the instanton moduli functor M inst

CP
2
θ
(r, k).

As detailed computations have been carried out in an analogous context
in [36] (see [36, Prop. 8.13]), we only outline the main steps and skip many
details. Given (B, I, J) ∈ MADHM

θ (r, k) and a commutative C-algebra A, we
use Theorem 5.32 to define a monad complex C •(B, I, J)A in coh(CP

2
θ,A) as

in (5.29)–(5.31). By Theorem 5.32 and [36, Thm. 5.8], the cohomology sheaf
H0
(

C •(B, I, J)A

)

is an A-flat family of torsion free sheaves in coh(CP
2
θ,A)

with i•
(

H0(C •(B, I, J)A)
)

=H0
(

i•(C •(B, I, J)A)
)

, and soH0
(

C •(B, I, J)A

)

is (W,V )-framed. This defines a natural transformation of functors
H

A(̂MADHM
θ (r,k))

→ M inst
CP

2
θ
(r, k), which is injective by (5.28) and [36, Lem.

5.11]. Applying Theorem 5.25 and Theorem 5.32 to A-flat families of (W,V )-
framed torsion free objects of coh(CP

2
θ,A) shows that this transformation is

surjective. Finally, to demonstrate universality we use the proof of Lemma
5.20 to observe that the quotient map MADHM

θ (r, k) → ̂MADHM
θ (r, k) is a

principal GL(k)-bundle in the étale topology. The group functor GL(k) acts
on HA(MADHM

θ (r,k)), hence using Lemma 5.10 and [36, Thm. 4.3] one argues
as in the proof of [36, Prop. 8.13] that the map of functors HA(MADHM

θ (r,k)) →
M inst

CP
2
θ
(r, k) is also a principal GL(k)-bundle, and hence that A

(

̂MADHM
θ (r,k)

)

represents M inst
CP

2
θ
(r, k). �

We may summarize the main consequences of the results described thus
far in this section as follows.

Theorem 7.4. Let (r ≥ 1, k ≥ 0) be coprime integers. Then the instanton
moduli space Mθ(r, k), when non-empty, is a smooth quasi-projective variety
of dimension

dimC

(

Mθ(r, k)
)

= 2 r k.

The tangent space to Mθ(r, k) at a point [E] is canonically the vector space

T[E]Mθ(r, k) = Ext1
(

E,E(−1)
)

.
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As an element of the Grothendieck group of the abelian category coh
(

CP
2
θ,A(Mθ(r,k))

)

, the universal module Ê on A
(

Mθ(r, k)
)⊗ A(CP

2
θ) is iso-

morphic to the virtual vector bundle whose fibre over [E] is the virtual bundle
in the K-theory of locally free coherent sheaves on Open(CP

2
θ) given by

Ê[E] = W ⊗ O
CP

2
θ

⊕ V ⊗ ((A!
	)1 ⊗ O

CP
2
θ

� O
CP

2
θ
(−1) � O

CP
2
θ
(1)
)

with V = H1
(

CP
2
θ, E(−1)

)

and W = H0
(

CP
1
θ, i

•(E)
)

.

Proof. By Lemma 5.10 the moduli space Mθ(r, k) is an open subscheme of
the moduli space M

CP
2
θ
(r, 0, r − k) which figures in [36, Cors. 8.3–8.4 and

Lem. 8.5], and it represents the corresponding moduli functor. Via Propo-
sition 5.2, its deformation theory may thus be embedded into the more gen-
eral theory of framed modules developed by Huybrechts and Lehn [22]. The
Zariski tangent space to Mθ(r, k) at a point corresponding to a framed sheaf
E on Open(CP

2
θ) is isomorphic to the cohomology group Ext1(E,E(−1)),

and there is an appropriate obstruction theory with values in Ext2

(E,E(−1)). We will show that

Hom
(

E,E(−1)
)

= 0 = Ext2
(

E,E(−1)
)

. (7.5)

For this, we use the short exact sequence (5.6) in the category coh(CP
2
θ)

to induce long exact cohomology sequences for k ∈ Z which start at

0 −→ Hom
(

E,E(k − 1)
) −→ Hom

(

E,E(k)
) −→ Hom

(

E, i• i•(E(k))
)

.

Since i•(E) = W ⊗ O
CP

1
θ
, the μ-semistability of E implies Hom

(

E, i• i•

(E(k))
)

= 0 and hence

Hom
(

E,E(k − 1)
) ∼= Hom

(

E,E(k)
)

for all k ∈ Z. In particular, Hom(E,E(−1)) ∼= Hom(E,E(−3)) and the lat-
ter vector space is trivial by [36, Lem. 7.14]. Hence Hom(E,E(−1)) =
0. By [36, Prop. 2.4 (2)], Ext2(E,E(−1)) is dual to the vector space
Hom(E,Eα(−2)) for some automorphism α ∈ Aut(A), where if E = π(M)
for a graded A-module M ∈ gr(A), then Eα = π(Mα) with Mα the right
A-module M twisted by α, i.e., the same underlying vector space Mα =
M with right A-module structure v �α f := v � α(f) for f ∈ A and v ∈M .
Since α(f) = 0 if and only if f = 0, it is easy to see that the restriction
functor i• commutes with α-twisting, i.e., i•(Eα) = i•(E)α, and hence so
does framing. Thus one can apply the short exact sequence (5.6) to the
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twisted sheaf Eα, and then repeat the previous argument verbatim to deduce
Hom(E,Eα(−2)) ∼= Hom(E,Eα(−3)), where the latter vector space is again
trivial by [36, Lem. 7.14]. Hence Ext2(E,E(−1)) = 0.

Using (7.5) and [36, Cor. 6.2], the dimension of the tangent space is given
by

dimC Ext1
(

E,E(−1)
)

= rank(E)
(

rank
(

E(−1)
)− χ

(

E(−1)
)

)

+ c1(E)
(

3 rank
(

E(−1)
)

+ c1
(

E(−1)
)

)

− χ(E) rank
(

E(−1)
)

.

Using Corollary 5.8, together with c1(E(−1)) = −r by (3.8) and χ(E(−1)) =
hE(−1) = −k by (5.9), this number is equal to 2 r k. Finally, the expres-
sion for the virtual class of the universal sheaf Ê follows from the proof of
Proposition 7.3 and [13, Prop. 6.8 (1)]. �

To incorporate the construction of instanton gauge bundles and connec-
tions on the non-commutative sphere S4

θ from Section 6, we may also wish
to extend the definition of the instanton moduli functor according to the
twistor construction of Section 5.4. Rather than going through all these
details, which are not needed in this paper, we simply axiomatize the exten-
sion of the instanton moduli space that one finds. This extension appropri-
ately reduces the dimension of the moduli space of Theorem 7.4.

Definition 7.6. A family of instantons over S4
θ parameterized by a unital

∗-algebra A is a quintuple (E, Ẽ,∇, ˜∇, GE) consisting of:

(1) Finitely generated projective right and left modules E and Ẽ over
the respective algebras A⊗ A(R4

θ) and A⊗ A(˜R4
θ) with dualizing anti-

involutions which are compatible with the ∗-algebra structures;

(2) Connections

∇ : E −→ E ⊗A⊗A(R4
θ)

(

A⊗ Ω1
R

4
θ

) ∼= E ⊗A(R4
θ) Ω1

R
4
θ
,

˜∇ : Ẽ −→ (

A⊗ Ω1
˜R

4
θ

)⊗
A⊗A(˜R4

θ)
Ẽ ∼= Ω1

˜R
4
θ

⊗
A(˜R4

θ)
Ẽ

which are compatible with the dualizing anti-involutions and whose
curvatures F∇ = ∇2 and F

˜∇ = ˜∇2 obey the anti-selfduality equations

(id ⊗ ∗θ)F∇ = −F∇, (id ⊗ ∗̃θ)F˜∇ = −F
˜∇
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in

HomA⊗A(R4
θ)

(

E,E ⊗A⊗A(R4
θ) (A⊗ Ω2

R
4
θ
)
) ∼= HomA⊗A(R4

θ)

(

E,E ⊗A(R4
θ) Ω2

R
4
θ

)

and in

Hom
A⊗A(˜R4

θ)

(

Ẽ, (A⊗ Ω2
˜R

4
θ

) ⊗
A⊗A(˜R4

θ)
Ẽ
) ∼= Hom

A⊗A(˜R4
θ)

(

Ẽ,Ω2
˜R

4
θ

⊗
A(˜R4

θ)
Ẽ
)

,

respectively; and

(3) An isomorphism

GE :
E ⊗A⊗A(R4

θ)

(

A⊗ A(R4
θ)[ρ̃ ]

)

‖
E[ρ̃ ]

−→
(

A⊗ [ρ]A(˜R4
θ)
)⊗

A⊗A(˜R4
θ)

Ẽ

‖
[ρ]Ẽ

which is compatible with the dualizing anti-involutions, and obeys
GE(σ � a) = (id ⊗G(a)) � GE(σ) for σ ∈ E[ρ̃ ], a ∈ A(R4

θ)[ρ̃ ] and ρ
˜∇ ◦

GE = GE ◦ ∇ρ̃.

Definition 7.7. Two families of instantons (E, Ẽ,∇, ˜∇, GE) and (E′, Ẽ′,∇′,
˜∇′, G′

E) are equivalent if there exist isomorphisms of projective modules
� : E

≈−−→ E′ and �̃ : Ẽ
≈−−→ Ẽ′ together with commutative diagrams

E
∇ ��

�

��

E ⊗A(R4
θ) Ω1

R
4
θ

�⊗id
��

E′
∇′

�� E′ ⊗A(R4
θ) Ω1

R
4
θ

, Ẽ
˜∇ ��

�̃

��

Ω1
˜R

4
θ

⊗
A(˜R4

θ)
Ẽ

id⊗�̃

��

Ẽ′
˜∇′

�� Ω1
˜R

4
θ

⊗
A(˜R4

θ)
Ẽ′

,

and

E[ρ̃ ]
GE ��

�⊗id

��

[ρ]Ẽ

id⊗�̃
��

E′[ρ̃ ]
G′

E

�� [ρ]Ẽ′

.

The corresponding moduli functor Alg → Set assigns to each unital
∗-algebra A the set of equivalence classes of families of instantons param-
eterized by A. We may also restrict the target of this functor to families
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of instantons with gauge bundles of rank r ≥ 1 and Euler characteristic
χ = r − k. The construction of Section 6 yields a universal object repre-
senting this functor. In Section 8 we shall also restrict the sources of these
functors to the subcategory HθAlg consisting of left Hθ-comodule algebras.
Below we consider in detail some explicit instances of these moduli space
constructions.

7.2 Rank 0 instantons

The case r = 0 (W = 0) is somewhat degenerate; it is not covered by the
general analysis of Section 7.1 and must be dealt with separately. Sheaves
E of rank 0 are given by E = π(M) for some torsion module M ∈ gr(A),
i.e., every element of M is annihilated by a non-zero element of the algebra
A = A(CP

2
θ). The deformation theory of [36, Sections 7–8] does not apply to

the moduli space of such sheaves, which is only set-theoretic, i.e., it does not
corepresent the instanton moduli functor of Section 7.1. Nevertheless, we
will now demonstrate that the moduli space of instantons of rank 0 is still
a coarse moduli space for some functor, which identifies it as the moduli
space of finite-dimensional representations of an algebra dual to an affine
non-commutative toric variety.

In terms of non-commutative ADHM data, in this case one has I = J = 0
and the braided ADHM equation (5.18) reduces to B ∧θ B = 0, or equiva-
lently

B1B2 = q−2 B2B1. (7.8)

Thus the datum B ∈ MADHM
θ (0, k) defines a k-dimensional representation

of the affine coordinate algebra A(C2
θ) of the complex algebraic Moyal plane

C
2
θ [13, Section 3.2], i.e., the polynomial algebra C[z1, z2] in two genera-

tors modulo the relation z1 z2 = q2 z2 z1. By the stability condition of Def-
inition 5.17, this representation is irreducible. Thus by [21, Section 6.2],
MADHM

θ (0, k) is the affine algebraic C-scheme representing the moduli functor
Alg → Set which sends a C-algebra A to the set of simple A⊗ A(C2

θ)-module
structures on A⊕k; for A = C this set consists of irreducible representa-
tions of A(C2

θ) on C
k. The natural GL(k)-action corresponds to changes of

basis. By [21, Prop. 6.3], the quotient ̂MADHM
θ (0, k) corepresents the mod-

uli functor which sends a C-scheme S to the set of isomorphism classes of
S-families of simple k-dimensional A(C2

θ)-modules, i.e., locally free coher-
ent OS-modules FS of rank k, together with C-algebra homomorphisms
�S : A(C2

θ) → Endcoh(S)(FS), such that FS contains no proper subsheaves
invariant under �S(zi) for i = 1, 2.
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The classical case θ = 0 is covered by [21, Prop. 6.4]. In this instance the
scheme ̂MADHM

θ=0 (0, k) is isomorphic to the affine quotient
(

̂MADHM
θ=0 (0, 1)

)k
/Sk

since all simple modules over a commutative algebra are one-dimensional,
and ̂MADHM

θ=0 (0, 1) = C
2. It follows that the moduli space ̂MADHM

θ=0 (0, k) is
canonically isomorphic to the k-th symmetric product Symk(CP

2) := (C2)k/
Sk of the commutative affine plane; it parameterizes coherent sheaves on
Open(CP

2) which have zero-dimensional support of length k contained in
C

2 ∼= CP
2 \ CP

1. Hence we write Symk
θ(CP

2
θ) := ̂MADHM

θ (0, k) for all θ ∈ C.
This construction generalizes [33, Prop. 2.10]. For generic deformation
parameters θ ∈ C this moduli space is relatively small; when q ∈ C is not a
root of unity of order 2k, the space Symk

θ(CP
2
θ) only parameterizes represen-

tations of A(C2
θ) wherein one of the matrices B1 or B2 is singular.

7.3 Rank 1 instantons

A torsion free sheaf E ∈ coh(CP
2
θ) has rank 1 if and only if M = Γ(E) ∈

gr(A) is isomorphic to a shift I(m) of a right ideal I ⊂ A [13, Section 4.3].
By [36, Cor. 6.6 (1)], there exists a smooth, projective fine moduli space
M

CP
2
θ
(1, 0, k) of dimension 2k for torsion free A-modules in coh(CP

2
θ) with

rank r = 1, first Chern class c1 = 0, and Euler characteristic χ = 1 − k. This
moduli space also behaves well in the family A = A(CP

2
θ), in the sense

described in Section 7.1. In particular, M
CP

2
θ
(1, 0, k) is irreducible, hence

connected, and is a commutative deformation of the Hilbert scheme of points
Hilbk(CP

2) parameterizing zero-dimensional subschemes of degree k in CP
2.

We thus write Hilbk
θ(CP

2
θ) := M

CP
2
θ
(1, 0, k) for all θ ∈ C; it is non-empty for

all k ≥ 0. As such sheaves are automatically (semi)stable, we may identify
Hilbk

θ(CP
2
θ) with the instanton moduli space Mθ(1, k) in this case.

De Naeghel and Van den Bergh [15] describe the deformation Hilbk
θ(CP

2
θ)

as the scheme parameterizing torsion free graded A-modules I =
⊕

n≥0 In

of projective dimension one such that

dimC(An) − dimC(In) = k for n� 0. (7.9)

In particular, it follows from [15, Lem. 3.3.1] that I has rank r = 1 as an
A-module and invariants c1(I) = 0, χ(I) = 1 − k. Thus I corresponds to
an ideal sheaf in the sense of [13, Section 4.3], and hence corresponds to a
closed subscheme of CP

2
θ by [13, Thm. 4.10]. A stratification of Hilbk

θ(CP
2
θ)

by Hilbert series is described in [15, Thm. 6.1]. There is a bijective corre-
spondence between the set Dk of integer partitions of k with distinct parts
and Hilbert series of objects in Hilbk

θ(CP
2
θ). Let D =

⋃

k≥0 Dk be the set of
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all integer partitions λ = (λi)i≥1 with distinct parts. It is a classical result [1]
that the generating function for elements of D is given by

ZD(Q) =
∑

λ∈D

Q|λ| =
∞
∏

n=1

(

1 +Qn
)

, (7.10)

where Q is a formal variable and |λ| =
∑

i λi is the weight of the partition λ.
This formula will be used in conjunction with instanton partition functions
in Section 8.

In this case there is a bijection between the set of ideals of codimension k in
the coordinate algebra A(C2

θ) of the complex algebraic Moyal plane and the
set of triples (B1, B2, I) ∈ EndC(V )⊕2 ⊕ HomC(C, V ) satisfying (7.8) such
that no properBi-invariant subspaces of V contain the image of I for i = 1, 2;
the proof is essentially a step by step repetition of that in the classical case
θ = 0 [33, Thm. 1.9]. In the classical situation one shows that J = 0 in
the rank 1 case [33, Prop. 2.9] and thus directly establishes an isomorphism
between the Hilbert scheme of k points in C

2 and the ADHM moduli space
̂MADHM

θ=0 (1, k). However, we will see directly below that the linear map J 	= 0
in general when θ 	= 0, in agreement with what we found in Section 7.2.
This reflects the fact that the non-commutative algebra A contains very few
ideals, or equivalently that CP

2
θ for generic θ has very few zero-dimensional

non-commutative subschemes [13, Section 4.3]. We can regard the scheme
Symk

θ(CP
2
θ) of Section 7.2 and Hilbk

θ(CP
2
θ) simultaneously as a commutative

deformation of the resolution of the singularity Symk(CP
2) provided by the

Hilbert–Chow morphism Hilbk(CP
2) → Symk(CP

2), which sends an ideal to
its support. Noncommutative deformations of this kind are constructed
in [19, 26] using the covering by cotangent bundles T ∗U provided by the
symplectic resolution.

7.4 Charge 1 instantons

Consider now the case k = dimC(V ) = 1. The projective plane is rigid
against commutative deformations. Hence there are no commutative defor-
mations of the Hilbert scheme Hilb1(CP

2) = CP
2, and so

Hilb1
θ

(

CP
2
θ

) ∼= CP
2

for all θ ∈ C. To see this directly, we note that in this case the mor-
phisms of the ADHM data (B1, B2, I, J) act via multiplication by scalars
(b1, b2, i, j) ∈ C

4. The stability condition of Definition 5.17 implies that
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i 	= 0, while invariance under the action (5.19) of GL(1) = C
× means that

we can rescale so that i = 1. The braided ADHM equation (5.18) can then
be used to solve for j ∈ C as

j =
(

q−2 − 1
)

b1 b2,

which for θ 	= 0 is non-zero in general. Thus the moduli space ̂MADHM
θ (1, 1) is

coordinatized by the quadruples (b1, b2, 1, (q−2 − 1) b1 b2) ∈ C
4, representing

an affine patch (b1, b2) ∈ C
2 of the projective plane CP

2. Similarly, one has
(set-theoretically)

Sym1
θ

(

CP
2
θ

) ∼= C
2

for all θ ∈ C as the one-dimensional representations over C of the algebra
relation (7.8) necessarily have either B1 = 0 or B2 = 0 when θ 	= 0.

In the higher rank cases r ≥ 2, we can regard the morphisms I and J as
vectors

I = (i1, . . . , ir) ∈W ∗, J =

⎛

⎜

⎝

j1
...
jr

⎞

⎟

⎠ ∈W

in a chosen orthonormal basis of W ∼= C
r. The braided ADHM equation

(5.18) now defines a quadric in C
2r+2 given by

(

1 − q−2
)

b1 b2 +
r
∑

l=1

il jl = 0. (7.11)

Stability is now equivalent to il 	= 0 for all l = 1, . . . , r, showing that the
moduli space ̂MADHM

θ (r, 1) is quasi-projective. An element t ∈ GL(1) = C
×

acts trivially on b1, b2, and as multiplication by t on il and by t−1 on jl
for each l = 1, . . . , r. We can use this scaling symmetry to set ir = 1, and
then use (7.11) to eliminate jr ∈ C. This coordinatizes ̂MADHM

θ (r, 1) as a
patch C

2 × C
r−1 × (C×)r−1. Again this construction is identical to that of

the classical case θ = 0, giving the charge 1 instanton moduli space

Mθ(r, 1) ∼= CP
2 × T ∗

CP
r−1

for all θ ∈ C and r ≥ 1. For k ≥ 2, the moduli spaces of non-commutative
instantons are generically different from their classical counterparts at θ = 0.



1894 LUCIO CIRIO, GIOVANNI LANDI AND RICHARD J. SZABO

7.5 Instanton deformation complex

We will now give an alternative proof of Theorem 7.4 which provides a much
more powerful description of the geometry of the instanton moduli spaces.
For this, we will view the non-commutative ADHM equation (5.18) on the
affine space of triples (5.11) as the zero locus of the map μc : X(W,V ) →
gl(V )∗ ⊗ (A!

	)2 defined by

μc(B, I, J) := B ∧θ B + I ◦ J. (7.12)

The restriction of this map to stable elements of X(W,V ) (in the sense
of Definition 5.17) is denoted μ̃c. Then the moduli space (5.21) can be
represented as the reduction

̂MADHM
θ (W,V ) = μ̃−1

c (0)
/

GL(V ).

Fixing bases of the complex vector spaces V and W naturally induces a
basis for each fibre of the tangent bundle TX(W,V ), with dual basis denoted
(dB,dI,dJ) at a point x = (B, I, J) ∈ X(W,V ). The differential

dμc = dB ∧θ B +B ∧θ dB + dI ◦ J + I ◦ dJ

is the linearization of the braided ADHM quiver relations (5.23) with

dμc(b, i, j) = b ∧θ B +B ∧θ b+ i ◦ J + I ◦ j. (7.13)

Let ϕ : GL(V ) → X(W,V ) be the orbit map g �→ g � (B, I, J) defined by
(5.19). Its restriction to stable elements of X(W,V ) is denoted ϕ̃. The
differential

dϕ(ξ) =
(

[B, ξ], (ξ ⊗ idA!
�
) I,−J ξ)

is the linearization of the action of the gauge group GL(V ) on X(W,V ). It
is easy to compute that dμc ◦ dϕ = 0 for all θ ∈ C.

Theorem 7.14. The tangent space T[E]Mθ(r, k) to the instanton moduli
space at a closed point [E] = [(B, I, J)] is isomorphic to the cohomology
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group H1(I •(E)) of the complex

I •(E) : 0 −→ EndC(V )
dϕ̃−→

(

A!
	

)

1
⊗ EndC(V )
⊕

(

A!
	

)

2
⊗ HomC(W,V )

⊕
HomC(V,W )

dμ̃c−−→ (

A!
	

)

2
⊗ EndC(V ) −→ 0.

Proof. We know that [E] ∈ Mθ(r, k) is quasi-isomorphic in the category
coh(CP

2
θ) to the monad complex C •(B, I, J) defined in (5.31). The tangent-

obstruction complex of the moduli space Mθ(r, k) can then be determined
by a standard calculation in deformation theory, using the cohomology
calculation of [13, Prop. 6.8]. In particular, the p-th hypercohomology
group H

p of the complex D •(E) := Hom(C •(E),C •(E(−1)))• computes
Extp(E,E(−1)), and the complex I •(E) is the standard hypercohomol-
ogy spectral sequence for D •(E). The infinitesimal deformation space is
H1(I •(E)) = H

1(D •(E)) and the obstruction space is H2(I •(E)) = H
2

(D •(E)). We will show that

H0
(

I •(E)
)

= 0 = H2
(

I •(E)
)

.

For this, we consider the dual of the differential dμ̃c : I 1(E) → I 2(E)
given by

dμ̃∗c : EndC(V ) −→

EndC(V ) ⊗ (A!
	

)

1⊕
HomC(W,V )

⊕
HomC(V,W )

with

dμ̃∗c(ψ) =
(

[ψ,B1]θ ⊗ w̌1 + [B2, ψ]θ ⊗ w̌2, ψ I, J ψ
)

,

where we use the identification (A!
	)2 ∼= C. Suppose that dμ̃∗c(ψ) = 0, and

consider the subspace V ′ = ker(ψ) ⊂ V . Then it is easy to see that V ′ is
B-invariant and contains the image of I, whence by the stability condi-
tion either V ′ = 0 or V ′ = V . But if ψ ∈ EndC(V ) is injective then I = 0,
contradicting stability, and so V ′ = V . It follows that the differential dμ̃c

is surjective, and thus H2(I •(E)) = 0. The proof that the differential
dϕ̃ : I 0(E) → I 1(E) is injective, and hence that H0(I •(E)) = 0, is car-
ried out in exactly the same way. �



1896 LUCIO CIRIO, GIOVANNI LANDI AND RICHARD J. SZABO

7.6 Braided symplectic reduction

By analogy with the classical case, it is natural to hope that the non-
commutative deformation CP

2 → CP
2
θ induces a (commutative) deformation

Hilbk(CP
2) → Hilbk

θ(CP
2
θ) (as constructed in Section 7.3) that also carries a

Poisson structure and a (holomorphic) symplectic structure. In particular,
the Hilbert scheme Hilbk(C2) has an algebraic symplectic structure induced
by the hyper-Kähler metric. On the other hand, in [25, Section 9] it is
pointed out that the braided ADHM equations (5.18) and (5.38) are not
hyper-Kähler moment map equations, whence one cannot construct hyper-
Kähler or even symplectic structures on the quotient space using standard
hyper-Kähler or symplectic quotient techniques. We will now briefly describe
the sense in which our instanton moduli spaces may be regarded as sym-
plectic quotients.

For this, define a braided symplectic form on X(W,V ) by

ω
(

(B, I, J), (B′, I ′, J ′)
)

:= Tr (B ∧θ B
′ + I ◦ J ′ − I ′ ◦ J),

where we use the identification (A!
	)2 ∼= C, and Tr is the usual trace on

EndC(V ) which agrees with the quantum trace Tr q of [29, Prop. 9.3.5] for
our class of deformations. We use the same notation for the form induced
on the tangent bundle TX(W,V ). We will study conditions under which
the map μc defined by (7.12) is a braided (complex) moment map; this will
restrict the allowed hamiltonian vector fields.

Firstly, it is easy to check that μc is GL(V )-equivariant, i.e., μc(g � x) =
Ad∗

g−1μc(x). Secondly, we require compatibility with the braided symplectic
form ω, i.e., for any v ∈ TX(W,V ) and ξ ∈ gl(V ), we want

〈

dμc(v), ξ
〉

= ω(ξ̂, v) (7.15)

with ξ̂ the vector field in TX(W,V ) associated to the linearized action of
ξ ∈ gl(V ) on X(W,V ). We embed the two-torus T = (C×)2 in GL(V ); then
the compatibility condition (7.15) can be formulated as a compatibility
requirement between the “geometric” T -action and the “internal” action
of the gauge group GL(V ) on HomC(V, V ⊗ (A!

	)1).

Proposition 7.16. The map μc is compatible with the braided symplectic
form ω for coequivariant morphisms ξ ∈ EndC(V ) with left Hθ-coaction of
the form

ΔL(ξ) = ξ(−1) ⊗ ξ,
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where ξ(−1) ∈ Hθ obeys

Fθ

(

t1, ξ
(−1)
)

= q−1 = Fθ

(

ξ(−1), t2
)

.

Proof. We compute both sides of (7.15) for v = (v1 ⊗ w̌1 + v2 ⊗ w̌2, vI , vJ)
and ξ̂ = (ξ̂1 ⊗ w̌1 + ξ̂2 ⊗ w̌2, ξ̂I , ξ̂J). Using (7.13) we find that the left-hand
side of (7.15) is given by

〈

dμc(v), ξ
〉

= Tr
(

[v1, B2]θ + [B1, v2]θ + vI J + I vJ

)

ξ.

This is equal to the right-hand side of (7.15) provided that the image of
ξ ∈ gl(V ) under the tangent of the orbit map of x = (B, I, J) is given by

ξ̂1 = [ξ,B1]θ, ξ̂2 = [ξ,B1]−θ , ξ̂I = (ξ ⊗ idA!
�
) I, ξ̂J = −J ξ. (7.17)

The linearization of the GL(V )-action (5.19), with g = idV + ξ, on B is
given by

(

(idV + ξ) ⊗ idA!
�

) (

B1 ⊗ w̌1 +B2 ⊗ w̌2

) (

(idV − ξ) ⊗ idA!
�

)

,

which we compose using the braided tensor product

(Bi ⊗ w̌i) (ξ ⊗ idA!
�
) = Bi F

−2
θ

(

w̌
(−1)
i , ξ(−1)

)

ξ(0) ⊗ w̌
(0)
i

with the usual Sweedler notation ΔL(ξ) = ξ(−1) ⊗ ξ(0), and so on. Using the
coaction (3.4) the conjugate action on B becomes

(

ξ B1 −B1 F
2
θ (t1, ξ(−1)) ξ(0)

)⊗ w̌1 +
(

ξ B2 −B2 F
−2
θ (ξ(−1), t2) ξ(0)

)⊗ w̌2.

The requisite Hθ-coequivariance conditions now follow by comparing
with (7.17). �

One can take, for example, ξ(−1) = t−1
1 + t−1

2 in Proposition 7.16; this
condition is of course an identity for θ = 0, in which case there is no restric-
tion on the allowed hamiltonian vector fields. In a similar fashion, one can
treat a real moment map μr : X(W,V ) → gl(V )∗ ⊗ (A!

	)2 whose zero locus
is the non-commutative real ADHM equation (5.38).
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8 Gauge theory partition functions

8.1 Torus actions

In instanton computations one is interested in equivariant characteristic
classes with respect to the natural action of a torus ˜T on the instanton
moduli space [35]. A combinatorial formula for the instanton counting func-
tions can be computed explicitly by classifying the ˜T -fixed points in the
instanton moduli space Mθ(r, k), and computing the Euler characteristic
classes of the equivariant normal bundles to the fixed loci of the torus action.
We first describe this torus action explicitly.

For r ≥ 1, let ˜T = T × (C×)r−1 with T = (C×)2 the “geometrical” torus
used for the deformation of CP

2 and the instanton moduli below. The
canonical generators of the coordinate algebra of ˜T are denoted

z = (t1, t2, ρ1, . . . , ρr),

where we identify (C×)r−1 with the maximal torus of SL(r) given as the
hypersurface

r
∏

l=1

ρl = 1

in (C×)r. Using this presentation of the torus (C×)r−1, we denote its char-
acters by m =

∑

l ml g
∗
l = (m1, . . . ,mr) ∈ Z

r. For any [E] ∈ Mθ(r, k), there
is a natural coaction of the Hopf algebra H(r) := C(ρ1, . . . , ρr) on the fram-
ing module i•(E) ∼= W ⊗ O

CP
1
θ

obtained by fixing a basis w1, . . . , wr for the
complex vector space W and defining

Δ(r)
L : i•(E) −→ H(r) ⊗ i•(E)

on f =
∑

l wl ⊗ fl ∈ i•(E) by

Δ(r)
L (f) =

r
∑

l=1

ρl ⊗ wl ⊗ fl.

The coaction of the Hopf algebra Hθ on the moduli space ̂MADHM
θ (W,V ) is

given by (5.16). To describe the coaction of H(r), consider the corresponding
dual basis w∗

1, . . . , w
∗
r for W ∗. Similarly, introduce a basis v1, . . . , vk for

the complex vector space V with corresponding dual basis v∗1, . . . , v∗k for
V ∗. With respect to these bases, we decompose the linear maps I and J
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as I =
∑

a,l va ⊗ Ia,l ⊗ w∗
l with Ia,l ∈

(

A!
	

)

2
and J =

∑

l,a Jl,awl ⊗ v∗a with
Jl,a ∈ C. Then the left H(r)-coaction on the non-commutative ADHM data
(B, I, J) is given by

Δ(r)
L (B, I, J) =

(

1 ⊗B,

k
∑

a=1

r
∑

l=1

ρ−1
l ⊗ va ⊗ Ia,l ⊗ w∗

l ,

r
∑

l=1

k
∑

a=1

Jl,a ρl ⊗ wl ⊗ v∗a

)

.

By construction, the isomorphism Mθ(W,V ) ≈−−→ ̂MADHM
θ (W,V ) is

˜T -coequivariant.

8.2 Torus fixed points

A fixed point [E] ∈ Mθ(r, k)
˜T is an isomorphism class of a coequivariant

sheaf E (see Section 3.5) which is equipped with a natural coaction of the
Hopf algebra ˜Hθ := Hθ ⊗ H(r); hence E decomposes into a finite direct sum
of torsion free A-modules graded by the character lattice of the torus ˜T as

E =
⊕

p∈L∗

⊕

m∈Zr

E(p,m). (8.1)

The left ˜Hθ-coactions ˜ΔL : E(p,m)→ ˜Hθ ⊗E(p,m) are given for f ∈E(p,m)
by ˜ΔL(f) = tp ⊗ ρm ⊗ f .

The coaction of ˜Hθ on the moduli space naturally makes the vector spaces
V and W into objects of the monoidal category ˜HθM . By definition, as
˜Hθ-comodules there are decompositions W =

⊕

l Wl with Wl = Cwl and

V =
⊕

p∈L∗

⊕

m∈Zr

V (p,m). (8.2)

The maps (5.11) are morphisms in the category ˜HθM , i.e., there are com-
mutative diagrams

V
B ��

˜ΔL

��

V ⊗ (A!
	

)

1

˜ΔL
��

˜Hθ ⊗ V
id⊗B

�� ˜Hθ ⊗ V ⊗ (A!
	

)

1

, W
I ��

˜ΔL

��

V ⊗ (A!
	

)

2

˜ΔL
��

˜Hθ ⊗W
id⊗I

�� ˜Hθ ⊗ V ⊗ (A!
	

)

2

,
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and

V
J ��

˜ΔL
��

W

˜ΔL
��

˜Hθ ⊗ V
id⊗J

��
˜Hθ ⊗W

.

From these commutative diagrams it follows that the only non-trivial com-
ponents of the linear maps B1, B2, I, J with respect to the character decom-
position (8.2) are given by

Bi(p,m) : V (p,m) −→ V (p− e∗i ,m),

Il : Wl −→ V (−e∗1 − e∗2, g
∗
l ) ⊗

(

A!
	

)

2
,

Jl : V (0, g∗l ) −→ Wl (8.3)

for i = 1, 2, l = 1, . . . , r, p = p1 e
∗
1 + p2 e

∗
2 ∈ L∗, and m =

∑

l ml g
∗
l ∈ Z

r. In
particular, we have

I(W ) ⊆
r
⊕

l=1

V (−e∗1 − e∗2, g
∗
l ) ⊗

(

A!
	

)

2
. (8.4)

Moreover, from the braided ADHM equation (5.18) we have the relations

B2(p− e∗1, g
∗
l ) ◦B1(p, g∗l ) = q2 B1(p− e∗2, g

∗
l ) ◦B2(p, g∗l ) (8.5)

in HomC

(

V (p, g∗l ), V (p− e∗1 − e∗2, g∗l )
)

for any p 	= 0 and l = 1, . . . , r.

Using the isomorphism
(

A!
	

)

2
∼= C, we define the subspace V ′ ⊆ V by

V ′ =
⊕

(i1,...,in)

Bi1...in

(

im(I)
)

, (8.6)

where the sum runs through all finite ordered collections (i1, . . . , in) of
indices ia = 1, 2 of arbitrary length, and Bi1...in := Bin Bin−1 · · ·Bi1 ; to the
empty collection we assign B∅ := idV . Then Bi(V ′ ) ⊆ V ′, i = 1, 2, and
im(I) ⊆ V ′. From (8.3) and (8.4) it follows that

V ′ ⊆
⊕

p1,p2≤−1

r
⊕

l=1

V (p, g∗l ).
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Hence by the stability condition, V (p,m) = 0 in (8.2) if p1 ≥ 0 or p2 ≥
0 or m 	= g∗l , for otherwise V ′ would be a proper destabilizing subspace
of V . It follows from (8.3) that J = 0 for any fixed point [(B, I, J)] ∈
̂MADHM

θ (W,V ) ˜T , and the character decomposition (8.2) truncates to

V =
⊕

p1,p2≤−1

r
⊕

l=1

Vl(p) (8.7)

with Vl(p) := V (p, g∗l ) and V = V ′. By Section 7.3, points of ̂MADHM
θ (W,V ) ˜T

correspond bijectively to ideals of codimension k = dimC(V ) in the affine
coordinate algebra A(C2

θ). In the following we denote the finite set of lattice
points λl :=

{

(p1, p2) ∈ N
2
∣

∣ Vl(−p) 	= 0
}

for each l = 1, . . . , r.

Since dimC(Wl) = 1 for l = 1, . . . , r, using (8.5) and C-linearity the above
argument also implies

Vl(0) = C Il(1), Vl(−p) = CBp1

1,lB
p2

2,l Il(1)

for any p = (p1, p2) ∈ λl and l = 1, . . . , r, where we have equated (8.6) with
(8.7) and set

Bp1

1,l := B1

(−p1 e
∗
1 − p2 e

∗
2, g

∗
l

) ◦B1

(−(p1 − 1) e∗1 − p2 e
∗
2, g

∗
l

)

◦ · · · ◦B1

(−e∗1 − p2 e
∗
2, g

∗
l

)

,

Bp2

2,l := B2

(−e∗1 − p2 e
∗
2, g

∗
l

) ◦B2

(−e∗1 − (p2 − 1) e∗2, g
∗
l

)

◦ · · · ◦B2

(−e∗1 − e∗2, g
∗
l

)

.

In particular, dimC

(

Vl(−p)
)

= 1 for all p ∈ λl and l = 1, . . . , r. Combined
with the expression for the universal sheaf Ê given by Theorem 7.4, it follows
that the character decomposition (8.1) truncates to

E =
r
⊕

l=1

Il,

where Il =
⊕

p∈L∗ E(p, g∗l ) for each l = 1, . . . , r is an Hθ-coequivariant tor-
sion free sheaf of rank one on Open(CP

2
θ). It thus suffices to focus on the

case r = 1 and look for a combinatorial characterization of the finite lattice
λ ⊂ N

2; in this instance ˜T = T = (C×)2.
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We first note that by applying Bi to vectors of the form Bpi
i I(1), we may

conclude that

dimC

(

V (−p1, 0)
) ≥ dimC

(

V (−p1 − s1, 0)
)

,

dimC

(

V (0,−p2)
) ≥ dimC

(

V (−p2 − s2)
)

for all s1, s2 ≥ 1, where these dimensions are all either zero or one. Given
p ∈ λ, so that V (−p) ∼= C, consider now the (not commutative) diagram

V (−p) B1 ��

B2

��

V (−p− e∗1)

B2

��
V (−p− e∗2) B1

�� V (−p− e∗1 − e∗2)

and use the braided commutation relation B2B1(1) = q2 B1B2(1) to deduce
the allowed configurations of non-trivial vector spaces around each such
square. For example, the configurations with V (−p− e∗1) = 0, V (−p− e∗2) ∼=
C ∼= V (−p− e∗1 − e∗2) and V (−p− e∗2) = 0, V (−p− e∗1) ∼= C ∼= V (−p− e∗1 −
e∗2) are forbidden by the braided commutation relation. On the other hand,
configurations with V (−p− e∗i ) ∼= C for i = 1, 2 consistently allow for
V (−p− e∗1 − e∗2) to have dimension zero or one. It follows from these con-
ditions that the finite lattice λ ⊂ N

2 defines a Young diagram oriented as
in [33], i.e., if p = (p1, p2) ∈ λ, then p′ ∈ λ for all integral points p′ = (p′1, p′2)
with 1 ≤ p′1 ≤ p1 and 1 ≤ p′2 ≤ p2. The total number of points in λ is denoted
|λ| =

∑

i λi, where λi is the number of points in the i-th column of λ. In
the general case r ≥ 1, we have thus proven the following result.

Proposition 8.8. The ˜T -fixed locus Mθ(r, k)
˜T is a finite set of points in

bijective correspondence with length r sequences �λ = (λ1, . . . , λr) of Young
diagrams λl of size |�λ | = k, where

|�λ | :=
r
∑

l=1

|λl|.

This result coincides with that of the classical case θ = 0 [34, Prop. 2.9].
It can be understood in terms of the non-commutative toric geometry as fol-
lows. By [13, Prop. 4.15], Hθ-coequivariant ideal sheaves on Open(CP

2
θ) are

in bijective correspondence with L∗-graded subschemes of CP
2
θ, where L∗ is

the character lattice of T = (C×)2; in particular, irreducible subschemes
correspond to prime ideals in the spectrum of the homogeneous coordi-
nate algebra A. Moreover, the Hθ-coinvariant ideals I ⊂ A are monomial
ideals. If I obeys the condition (7.9), then it determines a finite partition
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λI(k) of k by considering lattice points corresponding to monomials not
contained in I.

8.3 Instanton partition functions

In the classical case, instanton partition functions of topologically twisted
supersymmetric gauge theories are given by integrating suitable character-
istic classes over the instanton moduli spaces. The equivariant partition
function is then the generating function for the integral

Zinst(r;Q, z) =
∞
∑

k=0

Qk

∫

Mθ(r,k) ˜T
ω(z),

where Q is a formal variable and ω(z) is an equivariant cohomology class
depending on the canonical generators z of the coordinate algebra of ˜T .
The integral is evaluated formally by applying the localization theorem in
equivariant cohomology, hence

∫

Mθ(r,k) ˜T
ω(z) is a rational function in the

coordinate algebra A(˜T ).

From Section 8.2 it follows that the equivariant characters of the ˜Hθ-
comodules V and W are given by

ch
˜T
(V ) =

r
∑

l=1

∑

p∈λl

ρl t
1−p1
1 t1−p2

2 , ch
˜T
(W ) =

r
∑

l=1

ρl,

as in the classical case [34]. By (3.4), the restriction I •(E)
∣

∣

�λ
of the complex

of Theorem 7.14 to a ˜T -fixed point �λ is a complex in the category ˜HθM . By
Proposition 8.8, the computation of the ˜T -equivariant character of the tan-
gent bundle over the instanton moduli space thus proceeds exactly as in the
classical case (see [17] and [34, Thm. 2.11]). At a fixed point parameterized
by a length r sequence �λ = (λ1, . . . , λr) of Young diagrams with |�λ | = k,
one has

ch
˜T

(

T�λ
Mθ(r, k)

)

=
r
∑

l,l′=1

ρ−1
l ρl′

⎛

⎝

∑

p∈λl

t
p1−(λl′ )t

p2
1 t

λl
p1

−p2+1

2

+
∑

p′∈λl′
t
(λl)t

p′2
−p′1+1

1 t
p′2−λl′

p′1
2

⎞

⎠
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where λt
j denotes the number of points in the j-th row of the Young diagram

λ. In particular, the corresponding equivariant Euler class of the normal
bundle to the fixed point is given by

∧

−1

T ∗
�λ
Mθ(r, k) =

r
∏

l,l′=1

∏

p∈λl

(

1 − ρl ρ
−1
l′ t

(λl′ )t
p2

−p1

1 t
p2−λl

p1
−1

2

)

×
∏

p′∈λl′

(

1 − ρl ρ
−1
l′ t

p′1−(λl)t
p′2

−1

1 t
λl′

p′1
−p′2

2

)

.

With these ingredients one can now write down the standard equivariant
instanton partition functions for supersymmetric gauge theories (without
matter fields). The equivariant cohomology class ω(z) is, by the localization
theorem, given by the pullback of a class ω̃ on Mθ(r, k) which descends from
an equivariant class, evaluated at the fixed point �λ, and divided by the Euler
character

∧

−1 T
∗
�λ
Mθ(r, k). For example, for ω̃ = 1 we reproduce Nekrasov’s

partition function [35] for pure N = 2 gauge theory

ZN=2
inst (r;Q, z) =

∞
∑

k=0

∑

�λ : |�λ |=k

Q|�λ |
∧

−1T
∗
�λ
Mθ(r, k)

.

Another standard example is obtained by taking ω̃ to be the Euler class
of the tangent bundle over Mθ(r, k); in this case ω(z) = 1 (independently
of the equivariant parameters z) and the localization integral simply counts
the fixed points of the ˜T -action on the instanton moduli spaces. This results
in the Vafa–Witten partition function [38] for N = 4 gauge theory

ZN=4
inst (r;Q) =

∑

�λ

Q|�λ | =
∞
∏

n=1

1
(

1 −Qn
)r . (8.9)

For r = 1, we can compare the “bosonic” partition function (8.9) enumerat-
ing torus fixed points with the “fermionic” partition function (7.10) which
counts Hilbert series stratifications of the instanton moduli spaces. It would
be interesting to combine these two partition functions in the non-equivariant
case in order to truly capture the generic differences between the moduli
spaces Mθ(r, k) for θ = 0 and θ 	= 0 away from the torus fixed points.
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