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Abstract

In this paper we classify all free actions of finite groups on Calabi–Yau
complete intersection of four quadrics in P

7, up to projective equivalence.
We get some examples of smooth Calabi–Yau three-folds with large non-
abelian fundamental groups. We also observe the relation between some
of these examples and moduli of polarized abelian surfaces.

1 Introduction

The original motivation of this paper is to generalize Beauville’s construction
of Calabi–Yau manifolds with a non-abelian fundamental group [1]. As
one result of this paper, we construct many new examples of Calabi–Yau
manifolds with non-abelian fundamental groups. In particular, we construct
five families of Calabi–Yau three-folds with fundamental groups of order 64.
All these families are related to pencils of certain abelian surfaces. Three
of these families have been previously studied in [6, 8]. The new examples
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are constructed as free quotients of small resolutions of singular complete
intersections of four quadrics in P

7 that contain a pencil of (2,4) polarized
abelian surfaces (Theorem 7.3).

We also classify all families of complete intersections of four quadrics in
P

7 with a free finite group action and at most ordinary double points (ODP)
singularities. The key idea is to use Holomorphic Lefschetz formula to obtain
restriction on possible group actions. This paper is quite elementary, the
reasoning is sometimes very explicit and is never very deep. Calculations of
this paper can be generalized to other complete intersections in projective
spaces or in products of projective spaces.

The paper is organized as follows. In Section 2, we review the construc-
tion of a smooth Calabi–Yau three-fold with quaternion group H8 acting
freely on it due to Beauville. We will see how the character theory of H8

and holomorphic Lefschetz formula make this the only possible family of
complete intersections with H8 action. We also see that no linear action
of the dihedral group D8 could lead to any similar examples. In Section 3,
we give a brief review about projective representations of finite groups and
define the terminology of allowable actions, semi-allowable actions and Lef-
schetz condition. Section 4 contains a scheme of the algorithm of classifying
(semi-)allowable actions on complete intersections of four quadrics in P

7.
As an application we make several tables in the next section, listing all the
(semi-)allowable actions with groups of order from 2 to 64. In Section 6 we
compute the cut out equations of families of Calabi–Yau three-folds with
order 64 semi-allowable actions. There are two such families with five dif-
ferent order 64 semi-allowable actions. In the last section we prove the
existence of equivariant small resolutions (Sections 6.1 and 6.2). We also
explain the relations between these Calabi–Yau three-folds and moduli of
polarized abelian surfaces.

All the group-theoretic calculations are done in GAP[5]. The software
package Macaulay 2[9] is also very useful to us in checking smoothness. I
am grateful to my advisor Lev Borisov, who gave many important ideas for
this project.

2 Beauville’s example

In this section we will first review Beauville’s example of a free action of
quaternion group H8 on a nine-dimensional family of smooth complete inter-
sections of four quadrics in P

7(see [1]). Additionally, we will explain why
there is no such family with free action of the dihedral group D8. In the
process we will see how holomorphic Lefschetz formula leads to restriction
on possible free group actions.
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The quaternion group H8 is the group of order 8 with elements ±1,±i,±j,
±k and i2 = j2 = k2 = −1, ij = k, jk = i, ki = j. By a character calculation,
H8 has 4 one-dimensional irreducible representations and 1 two-dimensional
irreducible representation. We denote them by V1, . . . , V4 and W . The regu-
lar representation V has decomposition V = V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ W⊕2. The
induced representation on the second symmetric product of V has decompo-
sition Sym2(V ) = V ⊕5

1 ⊕ V ⊕5
2 ⊕ V ⊕5

3 ⊕ V ⊕5
4 ⊕ W⊕8. Pick four generic

quadrics q1, . . . , q4 such that qi belongs to Vi. For generic choice of qi,
Beauville showed that the complete intersection X in P(V ∗), given by q1 =
· · · = q4 = 0 is smooth and action of H8 on X has no fixed points. As a
consequence the quotient variety X/H8 is a smooth Calabi–Yau manifold
with fundamental group H8.

The following theorem is a special case of the standard holomorphic Lef-
schetz formula:

Theorem 2.1. Let X be a smooth algebraic variety over C and f : X → X
be a holomorphic automorphism of finite order with no fixed points. For a
linearized coherent sheaf F , the Lefschetz number

Λ(f,F) : =
m∑

q=0

(−1)qTr(f∗; Hq(X,F))

is zero, where Tr stands for the trace.

Holomorphic Lefschetz formula explains why Beauville needed to pick this
particular representation V and these particular choices of quadrics qi. We
identify the vector space V with H0(X,O(1)). By Kodaira’s vanishing the-
orem and holomorphic Lefschetz formula, Tr(g, H0(X,O(1))) = 0 for any
g non-identity. The quaternion group H8 has five conjugacy classes repre-
sented by {(1), (i), (j), (−1), (k)}. By computing traces of each conjugacy
class, we obtain the trace vector [8, 0, 0, 0, 0] for V , which means it must be
the regular representation. The induced representation Sym2(V ) has trace
vector [36, 0, 0, 4, 0]. By Lefschetz formula H0(X,O(2)) has trace vector
[32, 0, 0, 0, 0]. Their difference [4, 0, 0, 4, 0] is the trace vector for the space
of four quadrics. This is an actual group character for H8. More precisely,
[4, 0, 0, 4, 0] is the sum of characters of the 4 one-dimensional irreducible
representations V1, . . . , V4. This is why Beauville picked qi from the direct
sum of copies of Vi in Sym2(V ).

The only other non-abelian group of order 8 is the dihedral group D8.
It is natural to ask that whether D8 acts freely on any smooth complete
intersections of four quadrics in P

7. Dihedral group D8 is presented by
{a, b|a4 = 1, b2 = 1; ab = ba3}. It has five conjugacy classes {(1), (b), (ab),
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(a2), (a)}. Again, we identify V with H0(X,O(1)), and we assume O(1) can
be linearized so that D8 acts on V . If D8 acts freely on X, the trace vector
of V should be [8, 0, 0, 0, 0], i.e., V must be the regular representation. The
trace vector for Sym2(V ) is then [36, 4, 4, 4, 0]. Subtracting [32, 0, 0, 0, 0], we
obtain [4, 4, 4, 4, 0]. It is not a character of D8. So D8 cannot act linearly
on any smooth complete intersection of four quadrics in P

7.

For any group G of order bigger than eight, O(1) cannot be G-linearized.
Because otherwise the holomorphic Lefschetz formula shows that the charac-
ter of the action on V = H0(X,O(1)) is a fractional multiple of the character
of the regular representation, which leads to a contradiction. Hence instead
of linear representations we should look for projective representations. In
next section, we will give a brief review on projective representations of finite
groups. We will see how holomorphic Lefschetz formula puts restriction on
these projective representations.

3 Preliminaries of projective representations

In the first part of this section we recall some facts about projective repre-
sentations of finite groups. Our notations follow [3]. After that we define
the notion of allowable action of a subgroup of PGL(8, C).

Definition 3.1. Let G be a finite group. A triple (Γ, f, A) is called a central
extension of G if Γ is a group, A ⊆ Z(Γ) and f is a homomorphism of Γ onto
G such that kerf = A. A central extension (Γ, f, A) is called Schur Cover of
G if A equals the second group homology H2(G, Z); this homology group is
called Schur multiplier of G.

Theorem 3.1 ([3]). If (Γ, f, A) is a Schur cover of G, then every projective
representation P of G lifts to a linear representation of Γ. Conversely, any
linear representation of Γ where A acts by scalar matrices is a lift of a
projective representation of G.

Remark 3.1. Schur multiplier is an invariant of G while the Schur cover is
not uniquely defined. But by last theorem, given a Schur cover of G, all the
projective representations of G can be realized by linear representations of Γ.

Definition 3.2. Two projective representations of G are called projective
equivalent if they are conjugated in PGL(n, C).
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Any projective representation of G is given by a morphism of short exact
sequences:

0 ��
C
∗ �� GL(8, C) �� PGL(8, C) �� 1

0 �� K ��

��

Γ ��

��

G ��

��

1

(3.1)

where Γ is a Schur cover of G. Usually the map τ is not injective. Consider
the short exact sequence:

0 −−−−→ K/Ker(τ) −−−−→ Γ/Ker(τ) −−−−→ G −−−−→ 1.

Here K/Ker(τ) is a cyclic group. By Theorem 3.1, projective representa-
tions of G are in one-to-one correspondence with linear representations of
Γ/Ker(τ).

Definition 3.3. We say that a finite group G ⊂ PGL(8, C) has an allowable
action if G acts freely on some smooth complete intersection X of four
quadrics in P

7. We will call the correspondent G-action linear allowable
action if G can be lifted to a subgroup of GL(8, C). Similarly, if the variety
X is singular with ordinary double points, we say that G has a semi-allowable
action.

Proposition 3.1. If G has an allowable or semi-allowable action then |G|
divides 256.

Proof. In [4], Browder and Katz proved a general theorem about free action
of finite groups on projective varieties:

Theorem 3.2 ([4]). Let X be a projective variety in P
n and G is a finite

subgroup of PGL(n + 1, C). If G acts freely on X then, |G| divides the square
of the degree of X.

We are considering complete intersections of four quadrics X in P
7, which

have degree 16. By theorem of Browder and Katz, if G acts freely on X
then |G| divides 256. �

Remark 3.2. Later we are going to argue the maximal order of G is 64.

If G has an allowable action on X, then H0(X,O(1)) becomes a projective
representation of G. We denote this vector space by V . By Theorem 3.1,
the group Γ/Ker(τ) acts linearly on V with the cyclic subgroup K/Ker(τ)
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acting by scalar matrices. By Holomorphic Lefschetz formula, those ele-
ments in Γ but not in K/Ker(τ) have trace zero. If we fix a generator
σ of K/Ker(τ) of order 2d, then it should act on V as a scalar matrix
ξI where ξ is a primitive 2dth root of unity and I stands for identity
matrix. Let us denote the trace vector of Γ for a given representation
V by tΓV . All the entries in tΓV are zero except those corresponding to
the conjugacy classes {(σk), k = 0, 1, . . . , 2d − 1}. These conjugacy classes
have trace 8ξk. Similarly entries of tΓH0(X,O(2)) are 32ξ2k for conjugacy
classes {(σk), k = 0, 1, . . . , 2d − 1} and zero otherwise. We can also com-
pute the trace vector of the induced representation Sym2(V ) and denote it
by tΓ

Sym2(V )
. The difference vector v = tΓ

Sym2(V )
− tΓH0(X,O(2)) is the trace vec-

tor for the subrepresentation spanned by the four quadrics. The assumption
that G acts freely on X will force tΓV and v to be group characters.

Definition 3.4. We say a central extension

0 −−−−→ K/Ker(τ) −−−−→ Γ/Ker(τ) −−−−→ G −−−−→ 1

satisfies Lefschetz condition if the trace vectors tΓV and v defined above are
both group characters.

Proposition 3.2. If G has a semi-allowable action then it satisfies Lefschetz
condition.

Proof. Apply holomorphic Lefschetz formula to π∗(O(1)) and π∗(O(2)) on
the resolution π : X̂ → X. �

Remark 3.3. A priori, Lefschetz condition is only necessary but not suffi-
cient for G to have allowable action. We still need to check the fixed loci of
G in P

7 do not intersect with X in order to verify the freeness. However, in
our cases it turns out that all the groups satisfying Lefschetz condition are
allowable when |G| < 64. When |G| = 64 the necessity of Lefschetz condition
follows from the fact that ordinary double points are rational singularities.
Details are left to the readers.

4 Classification algorithm

Our target is to classify the allowable and semi-allowable actions on complete
intersections of four quadrics in P

7 up to projective equivalence. In this
section we describe the scheme of our algorithm.
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Recall that every projective representation gives a commutative diagram:

0 ��
C
∗ �� GL(8, C) �� PGL(8, C) �� 1

0 �� K ��

τ

��

Γ ��

��

G ��

��

1

(4.1)

where Γ is a Schur cover of G and K is its Schur multiplier. Generally K is
quite big but the exponent of K is controlled by order of G by the following
lemma.

Lemma 4.1. Let G be a finite group and K be its Schur multiplier. Denote
exponent of K by e. Then e2 divides |G|.

Proof. See [3]. �

This lemma tells us the cyclic group K/Ker(τ) in the central extension

0 −−−−→ K/Ker(τ) −−−−→ Γ/Ker(τ) −−−−→ G −−−−→ 1

has order at most eight. By Theorem 3.1, given a group G of order less
or equal to 64, all projective representations of G can be lift to a linear
representation of Γ/Ker(τ).

Now we will describe the algorithm for |G| = 64. Lower order groups are
handled similarly.

Lemma 4.2. If |G| = 64 and G acts freely on X then |K/Ker(τ)| ≥ 4.

Proof. If K/Ker(τ) has order 2 then the sheaf O(2) must be G lineariz-
able, i.e., dim(H0(X,O(2))) must be divisible by 64. But H0(X,O(2)) has
dimension 32. �

Following this lemma, it suffices to consider projective representations of
a 64 group G given by the following two types of central extensions:

(1) A group H of order 256 with a subgroup Z/4 acting as diagonal matrix
ξ2
8I.

(2) A group H of order 512 with a subgroup Z/8 acting as diagonal matrix
ξ8I.

Again I represents the 8 × 8 identity matrix and ξ8 is a primitive 8th root
of unity.
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Now we can summarize our algorithm step by step.

Step I : Check the Lefschetz condition for the central extensions

0 −−−−→ Z/4 −−−−→ H −−−−→ G −−−−→ 1

and

0 −−−−→ Z/8 −−−−→ H −−−−→ G −−−−→ 1.

Let H go over all groups of order 256 and 512 and produce all G that satisfy
Lefschetz condition. We use the GAP([5]) library of finite groups of small
order. There are 56, 092 different groups of order 256 and 10, 494, 213 order
512 groups.

Step II : For each group G that appears in Step I, compute all possible
extensions of G of the form:

0 −−−−→ K/Ker(τ) −−−−→ Γ/Ker(τ) −−−−→ G −−−−→ 1

for a fixed Schur cover Γ. This can be done by computing kernels of all the
group characters of K. By Theorem 3.1, such extensions are in one-to-one
correspondence with non-equivalent projective representations.

Step III : Check Lefschetz condition on extensions above and output those
that satisfy it.

Step IV : Check the fixed loci of the group actions obtained above and
show they do not intersect X.

Step V : Check that the generic complete intersection has at most ODP
singularities in the semi-allowable case or is smooth in the allowable case.

The final output of the algorithm is a list of projective representations
of groups with allowable or semi-allowable actions. The same group might
appear on this list for several times with different projective representations.
Computer algebra system involving in our algorithm are GAP ([5]) and
MACAULAY ([?]). The results of these calculations are presented in the
next section.

5 Results

In this section we present the results of the algorithm of the last section.
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Remark 5.1. Many group-theoretic computations in this paper are done
in GAP. It has a small group library where all groups of given order less
than 2000 are listed. For instance, the quaternion group H8 is represented
by (8, 4) in GAP library, where 8 for its order and 4 for its index in GAP
library.

There are eight non-trivial groups of order less and equal to 8. We will
see all of them have allowable actions except the dihedral group D8. Further
all the order 8 allowable action are linear.

There are 14 (resp. 51) non-isomorphic 16-groups (resp. 32-groups). In
the following tables we list all the allowable groups by their indices, together
with the extension Γ/Ker(τ) representing the correspondent projective
representation. We also give number of allowable actions up to projective
equivalence.

When the order of the group is less than 64, the generic element of
the family with allowable action is a smooth complete intersection of four
quadrics in P

7. However this is no longer true for 64 groups.

There are 267 different groups of order 64. In these 267 groups there are
five groups that are semi-allowable.

Remark 5.2. We want to explore a little more about these five 64 groups
because it turns out the geometry of them are particularly interesting. The
group (64, 2) is the abelian group Z/8 × Z/8. Its Schur cover is the Heisen-
berg group (Z/8)2 � Z/8. The group (64, 3) is a semi-direct product of two
copies of Z/8 and (64, 179) is a semi-direct product of quaternion group H8

and Z/8. These first three groups all contain a maximal abelian subgroup
Z/4 × Z/8, which has GAP index (32, 3). It was observed in [?] that these
three 64 groups act on the same family. This is a two-dimensional subfamily
of the three-dimensional family with (32, 3) action, which is invariant under
certain involution.

The other two groups (64, 68) and (64, 72) do not have obvious semi-
direct product structures. Both of them contain a maximal abelian subgroup
(Z/4)2 × Z/2, which has GAP index (32, 21). These two groups act on a
different two-dimensional family (see Theorem 6.2).

Remark 5.3. All groups listed in Table 1 are subgroups of these five 64
groups with only two exceptions: (32, 4) and (32, 5). In (32, 2) case, we are
not sure whether both projective representations are induced from represen-
tations of 64 groups. It turns out all the actions for |G| ≤ 32 in Table 1 are
allowable. When |G| = 64, they are semi-allowable.
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Table 1: (Semi-)allowable action of order 2–64

Groups Extension Schur multiplier
Z/2 Z/2 id group
Z/4 Z/4 id group
Z/2 × Z/2 Z/2 × Z/2 id group
Z/8 Z/8 id group
Z/2 × Z/4 Z/2 × Z/4,(16,3) Z/2
(Z/2)3 (Z/2)3 (Z/2)3

H8 H8 id group
(16,2) (64,18) Z/4
(16,4) (32,14) Z/2
(16,5) (32,5) Z/2
(16,10) (32,22) (Z/2)3

(16,12) (32,29) (Z/2)2

(32,2) (64,18),(64,23) (Z/2)3

(32,3) (128,6) Z/4
(32,4) (64,28) Z/2
(32,5) (64,4) (Z/2)2

(32,13) (64,46) Z/2
(32,21) (128,462) (Z/2)2 × Z/4
(32,35) (64,182) (Z/2)2

(32,47) (64,224) (Z/2)5

(64,2) (Z/8)2 � Z/8 Z/8
(64,3) (256,321) Z/4
(64,68) (256,4235) Z/2 × Z/4
(64,72) (256,4222),(256,4233) (Z/2)2 × Z/4
(64,179) (256,6447) Z/4

Remark 5.4. The readers might observe that the 32-group (32, 2) and the
64-group (64, 72) have two different projective representations, i.e., there
are two non-conjugated embeddings of these finite groups into PGL(8, C).
Recall that projective representations are one-to-one correspondent with
central extensions. They are quotient groups of some Schur cover. It is
a natural question to ask that whether these two representations can be
identified by some outer automorphism of the group. It turns out that
the two different projective representations of (64, 72) are identified by some
outer automorphism of (64, 72). In other words, these are two different ways
of parameterizing the same subgroup of PGL(8, C) (see Section 6).

By Proposition 3.1 the maximal order of allowable action we can get is
256. Suppose there is an order 128 semi-allowable group. Then all its 64 sub-
groups must be semi-allowable. By a GAP calculation we check that there
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are no 128 groups, all of whose order 64 subgroups are among {(64, 2), (64, 3),
(64, 68), (64, 72), (64, 179)}. Hence there is no (semi-)allowable group of
order bigger than 64.

6 Complete intersection varieties

In the last section we found five semi-allowable 64 groups. The following two
theorems show that three of them act freely on a two-dimensional family of
complete intersections of four quadrics in P

7, and the other two groups act
freely on a different dimension two family.

Theorem 6.1. Let X be complete intersection of four quadrics:

q1 = t1(x2
1 + x2

5) + t2(x2x8 + x4x6) + t3x2x7,

q2 = t1(x2
2 + x2

6) + t2(x3x1 + x5x7) + t3x3x8,

q3 = t1(x2
3 + x2

7) + t2(x4x2 + x6x8) + t3x4x1,

q4 = t1(x2
4 + x2

8) + t2(x5x3 + x7x1) + t3x5x2.

There are three groups G1, G2, G3 contained in PGL(8, C). Group G1 is gen-
erated by τ and σ where σ = (12345678) is permutation of the coordinates
xi and τ(xi) = ξi−1xi with ξ a primitive 8th root of unity. Group G2 gener-
ated by τ and σ1 = (18325476). Then G2 is a non-abelian group isomorphic
to a semi-direct product of two copies of Z/8. Group G3 is generated by
τ and the permutations σ2 = (1357)(2468) and σ3 = (1256)(4387). It is a
non-abelian group isomorphic to a semi-direct product of normal subgroup
Z/8Z generated by τ and the quaternion group H8 generated by σ2 and σ3.
As in Remark 6.3, G1 = (64, 2), G2 = (64, 3) and G3 = (64, 179). They act
on X without fixed points.

Proof. See [?]. �

Now we introduce the other two groups of order 64 having semi-allowable
actions. Define groups G4, G5, G

′
5 as following subgroups of GL(8, C). Group

G4 generated by coordinates transformations σ1, σ2, σ3, where

σ1 : (x1, . . . , x8) 	→ (ξx7, ξx8, ξ
3x5, ξ

3x6,−ξx3,−ξx4, ξ
3x1, ξ

3x2),

σ2 : (x1, . . . , x8) 	→ (−x2, ix1,−x4,−ix3,−ix6, x5, ix8, x7),

σ3 : (x1, . . . , x8) 	→ (ξ3x5,−ξ3x6,−ξx7, ξx8, ξ
3x1,−ξ3x2,−ξx3, ξx4).
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Group G5 is generated by σ3, σ4, σ5 where

σ4 : (x1, . . . , x8) 	→ (ξx7, ξx8,−ξ3x5, ξ
3x6,−ξx3,−ξx4, ξ

3x1,−ξ3x2),

σ5 : (x1, . . . , x8) 	→ (ξ3x6, ξ
3x5,−ξx8, ξx7, ξ

3x2, ξ
3x1, ξx4,−ξx3).

Group G′
5 is generated by σ3, σ4, ξσ5.

These three groups G4, G5, G
′
5 all have order 256. Their indices in GAP

are respectively (256,4235), (256,4222) and (256,4233). The corresponding
projective linear groups in PGL(8, C) are (64, 68) and (64, 72). The last two
groups G5, G

′
5 have the same projective group (64,72).

Remark 6.1. The two groups G5, G
′
5 lead to two non-equivalent projective

representations of (64, 72)(see 1). However, the corresponding projective
subgroups of PGL(8, C) are the same, i.e., these two representations only
differ by an outer automorphism of (64, 72).

By abusing notations, from now on we denote the projectivizations by G4

and G5.

Theorem 6.2. Let X be a complete intersection of four quadrics in P
7 cut

out by:

q1 = t1(x2
1 + x2

2) − t2(x2
3 + x2

4) + t1(x2
5 + x2

6) + t2(x2
7 + x2

8),

q2 = −t2(x2
1 + x2

2) + t1(x2
3 + x2

4) + t2(x2
5 + x2

6) + t1(x2
7 + x2

8),

q3 = s1(x2
1 − x2

2) − s2(x2
3 − x2

4) + s1(x2
5 − x2

6) + s2(x2
7 − x2

8),

q4 = −s2(x2
1 − x2

2) + s1(x2
3 − x2

4) + s2(x2
5 − x2

6) + s1(x2
7 − x2

8).

The groups G4 and G5 introduced above act freely on X.

Proof. We only prove the theorem for G4. The argument for G5 is completely
analogous. Consider central extension

0 −−−−→ Z/4 −−−−→ (256, 4235) −−−−→ G4 −−−−→ 1

The group (256, 4235) has 46 irreducible representations, indexed by
X1, . . . , X46. In particular, X1, . . . , X16 are one-dimensional irreducible rep-
resentations, X17, . . . , X44 are two-dimensional irreducible representations
and X45, X46 are eight-dimensional irreducible representations. We iden-
tify V with H0(X,O(1)). Holomorphic Lefschetz formula force V to be the



FREE ACTIONS ON C.I. OF FOUR QUADRICS 985

irreducible representation X45. The second symmetric product of V has
decomposition:

Sym2(V ) = (⊕i∈IXi) ⊕ X⊕2
35 ⊕ X⊕2

36 for

I = {19, 20, 21, 22, 25, 26, 27, 28, 33, 34, 41, 42, 43, 44}

The subrepresentation spanned by the four quadrics has decomposition
X35 ⊕ X36, again follow from holomorphic Lefschetz formula. Pick a basis
(x1, . . . , x8) for V = X45. We get an induced basis for Sym2(V ). They are
homogenous quadratic polynomials in x1, . . . , x8. In particular,

X⊕2
35 = Span{x2

1 + x2
2 + x2

5 + x2
6, x

2
3 + x2

4 + x2
7 + x2

8}
⊕ Span{x2

7 + x2
8 − x2

3 − x2
4, x

2
5 + x2

6 − x2
1 − x2

2}.

Respectively,

X⊕2
36 = Span{x2

1 − x2
2 + x2

5 − x2
6, x

2
3 − x2

4 + x2
7 − x2

8}
⊕ Span{x2

7 − x2
8 − x2

3 + x2
4, x

2
5 − x2

6 − x2
1 + x2

2}.

These polynomials give the cut out equations (see Theorem 6.2). It is clear
from these equations that parameter space of this two-dimensional family is
a subset of P

1 × P
1 where (t1 : t2) and (s1 : s2) are homogeneous coordinates

of each P
1.

To show G4 acts without fixed points, we need to check the intersection
of the fix loci of all conjugacy classes of G4 with X are empty. It is easy to
see this is the case for generic choice of t1, t2, s1, s2. �

Remark 6.2. We have mentioned (64, 72) has two different projective rep-
resentations (256, 4222) and (256, 4233). A calculation shows both of them
act freely on this family.

7 Resolutions of singularities

We will investigate more about the geometry of these two families. Let X be
a complete intersection of four quadrics cut out by equations in Theorem 6.1.
We have seen in last section three 64 groups G1, G2 and G3 act freely on X.
This family was first discovered by Gross and Popescu. In [7], they studied
the birational geometry of X, including the resolution of singularities. They
have proved the following theorem in the case of G1.
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Theorem 7.1. The singular Calabi–Yau three-fold X has an equivariant
small projective resolution X̃, i.e., X̃ is a smooth projective Calabi–Yau
three-fold with free actions by G1, G2 and G3. The resolution X̃ has Hodge
numbers h1,1 = 2 and h1,2 = 2. Furthermore, X̃ contains a pencil of abelian
surfaces with polarization (1, 8).

In this section we obtain a similar result for the family in Theorem 6.2.
We will prove the generic element X in this family also has an equivariant
small projective resolution. Recall X is cut out by equations:

q1 = t1(x2
1 + x2

2) − t2(x2
3 + x2

4) + t1(x2
5 + x2

6) + t2(x2
7 + x2

8),

q2 = −t2(x2
1 + x2

2) + t1(x2
3 + x2

4) + t2(x2
5 + x2

6) + t1(x2
7 + x2

8),

q3 = s1(x2
1 − x2

2) − s2(x2
3 − x2

4) + s1(x2
5 − x2

6) + s2(x2
7 − x2

8),

q4 = −s2(x2
1 − x2

2) + s1(x2
3 − x2

4) + s2(x2
5 − x2

6) + s1(x2
7 − x2

8).

The jacobian matrix of it is

⎛

⎜⎜⎝

t1x1 t1x2 −t2x3 −t2x4 t1x5 t1x6 t2x7 t2x8

−t2x1 −t2x2 t1x3 t1x4 t2x5 t2x6 t1x7 t1x8

s1x1 −s1x2 −s2x3 s2x4 s1x5 −s1x6 s2x7 −s2x8

−s2x1 s2x2 s1x3 −s1x4 s2x5 −s2x6 s1x7 −s1x8

⎞

⎟⎟⎠ .

A point on X is singular if and only if this matrix is degenerated.

Lemma 7.1. A point P ∈ X is singular if and only if exactly four coordi-
nates out of (x1, . . . , x8) are zero.

Proof. Let P = (x1 : . . . : x8) be a point on X. Observe that P has at most
four zeros in coordinates because otherwise P cannot sit on X with generic
choices of ti and si. We first prove if P has four zeros then it must be a
singular point. Let μ be a subset of four distinct numbers in {1, . . . , 8}.
Denote its complement by μ̄. Let Pμ be a point with {xi = 0|i ∈ μ} and
Jμ̄ be the four by four minor of the jacobian matrix by picking the μ̄th
columns. Since all equations q1, . . . , q4 consist of square terms, the jacobian
matrix J is equivalent with the coefficient matrix up to elementary trans-
formation. So Jμ̄ degenerates if and only if q1, . . . , q4 has non-zero solution
of the form {(x1, . . . , x8)|xi �= 0 for i ∈ μ xi = 0 for i ∈ μ̄}. This proves the
first direction.

If P is a singular point, we pick a μ such that {xi �= 0|i ∈ μ}. Since P is
singular the jacobian matrix J evaluated at P degenerates. In particular,
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Jμ degenerates. If the other coordinates {xi|i ∈ μ̄} do not vanish simulta-
neously, then we obtain one parameter family of solutions along which the
jacobian matrix degenerates. However the singular loci has dimension zero
generally. So all the other coordinates must be zero. �

Given (1468), (1367), (1457), (2467), (2357), (2458), (1358) and (2368) as
subsets of {1, . . . , 8}. The corresponding points Pμ for μ equals any of
these eight sets are singular points of X. Since X is cut out by degree two
equations, there are exactly eight solutions for a given set μ. Hence each
combinations give eight singular points. These 64 points form group orbits,
for both G4 and G5. We will see later these 64 singularities are ordinary
double points. Let us fix a set, say (1468). The corresponding singular points
are (0 : y2 : y3 : 0 : y5 : 0 : y7 : 0). Plug y1 = y6 = y4 = y8 = 0 into equations
given in Theorem 6.2, we obtain:

q1 = t1y
2
2 − t2y

2
3 + t1y

2
5 + t2y

2
7 = 0,

q2 = −t2y
2
2 + t1y

2
3 + t2y

2
5 + t1y

2
7 = 0,

q3 = −s1y
2
2 − s2y

2
3 + s1y

2
5 + s2y

2
7 = 0,

q4 = s2y
2
2 + s1y

2
3 + s2y

2
5 + s1y

2
7 = 0.

Solving t1, t2, s1, s2 by yi, we rewrite the original equations as:

q1 = (y2
3 − y2

7)(x
2
1 + x2

2) − (y2
2 + y2

5)(x
2
3 + x2

4)

+ (y2
3 − y2

7)(x
2
5 + x2

6) + (y2
2 + y2

5)(x
2
7 + x2

8),

q2 = −(y2
2 + y2

5)(x
2
1 + x2

2) + (y2
3 − y2

7)(x
2
3 + x2

4)

+ (y2
2 + y2

5)(x
2
5 + x2

6) + (y2
3 − y2

7)(x
2
7 + x2

8),

q3 = (y2
3 − y2

7)(x
2
1 − x2

2) − (y2
5 − y2

2)(x
2
3 − x2

4)

+ (y2
3 − y2

7)(x
2
5 − x2

6) + (y2
5 − y2

2)(x
2
7 − x2

8),

q4 = −(y2
5 − y2

2)(x
2
1 − x2

2) + (y2
3 − y2

7)(x
2
3 − x2

4)

+ (y2
5 − y2

2)(x
2
5 − x2

6) + (y2
3 − y2

7)(x
2
7 − x2

8).

Additionally y2, y3, y5, y7 satisfy a degree four relation y4
3 − y4

7 = y4
2 + y4

5.

These computations show that positions of the 64 singular points uniquely
determine the family of complete intersections.

No we will describe the explicit equivariant crepant resolution for
X for G4.
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Theorem 7.2. There exist G-equivariant small resolutions X̃ −−−−→ X by
blowing up a smooth G-invariant abelian surface in X for G = G4 and
G = G5.

Proof. To construct such a small resolution, we need to find a Weil divisor
passing through the 64 ordinary double points, and invariant under the
action of G4. Such a divisor is never Cartier since it is locally cut out by
more than one equation. By blowing up this divisor we obtain the projective
small resolution. Consider the codimension one subscheme cut out by the
following two equations:

f1 = r1x1x2 − r2x3x4 + r1x5x6 + r2x7x8,

f2 = −r2x1x2 + r1x3x4 + r2x5x6 + r1x7x8.

Notice equations x1x2 + x5x6 and x3x4 + x7x8 span the two-dimensional
irreducible representation X33 and x1x2 − x5x6 and x3x4 − x7x8 span the
two-dimensional irreducible representation X34. And f1, f2 are two generic
elements in X33 ⊕ X34. These two elements together with q1, . . . , q4 cut out
an G4 invariant surface in X. We denote it by Sr1,r2 . Under generic choices
of coefficients r1 and r2, this is a smooth abelian surface. If we pick any
one of f1 and f2 we will obtain unions of two abelian surfaces. Hence Sr1,r2

is a Weil divisor but not Cartier. The abelian surface Sr1,r2 has arithmetic
genus pa = −1, i.e., it is of degree 16 in P

7. By varying r1 and r2 any two
such surfaces intersect at the 64 singular points of X. It also follows from
the form of equations that they are ordinary double points. By blowing up
Sr1,r2 , we obtain a smooth projective Calabi–Yau three-fold X̃. Since Sr1,r2

is G4-invariant X̃ also carries with a free G4-action. �
Remark 7.1. In the case of G5, we need to blow up a different Weil divisor
cut out by equations:

f1 = r1x1x5 − r2x2x6 + r1x3x7 − r2x4x8,

f2 = −r1x1x5 + r2x2x6 + r1x3x7 − r2x4x8.

Recall that there are two different allowable actions of G5, lifted to G5 =
(256, 4222) and G′

5 = (256, 4233). Both of them act on this surface, i.e., they
have the same equivariant resolutions.

Corollary 7.1. The quotient variety X̃G4/G4(resp. X̃G5/G5) is a smooth
projective Calabi–Yau threefold with fundamental group G4(resp. G5).

Similar to [?] and [?], this family X also carries a fibration structure of
abelian surfaces.
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Proposition 7.1. The equations f1, f2 form a sublinear system of dimen-
sion one of O(2) with 64 base points exactly at the 64 ordinary double points.

Proof. We need to show φ : x 	→ (f1(x) : f2(x)) is a rational map defined
outside the 64 ordinary double points. It is obvious that φ is defined at
X \ Sr1,r2 . For any points on Sr1,r2 that are not the 64 ordinary double
points, f1 and f2 have a common divisor, i.e., Sr1,r2 is cut out locally just
one equation. By dividing out the common divisor we extend φ everywhere
except the 64 ordinary double points. �

Remark 7.2. Consider the space of quadrics spanned by q1, . . . , q4 together
with f1, f2. These equations cut out a (2, 4) polarized abelian surfaces in P

7

(see [2] for more about this abelian surface). Any four linear independent
equations of these six cut out a Calabi–Yau complete intersection with 64
ordinary double points. However only a two-dimensional subfamily has free
actions of G4 and G5.

Remark 7.3. Let X be the Calabi–Yau three-fold cut out by equations in
Theorem 6.2. It contains a pencil of (2, 4) polarized abelian surfaces [2].
Give the small resolution X̃ in Theorem 7.2. The Calabi–Yau three-fold
X̃ has Hodge number h1,1 = 10 and h1,2 = 10. As we stated in the last
remark, only a two-dimensional subfamily in this ten-dimensional family
has free actions of G4 and G5. A similar argument to Remark 4.11 in [7]
can be applied to compute the Hodge number of the quotient variety X̃/G.
We expect the quotient to have Hodge number h1,1 = 2, h1,2 = 2.
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