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Abstract

In this paper, we use trivial defects to define global taffy-like oper-
ations on string worldsheets, which preserve the field theory. We fold
open and closed strings on a space X into open strings on products of
multiple copies of X, and perform checks that the “taffy-folded” world-
sheets have the same massless spectra and other properties as the original
worldsheets. Such folding tricks are a standard method in the defects
community; the novelty of this paper lies in deriving mathematical iden-
tities to check that e.g., massless spectra are invariant in topological
field theories. We discuss the case of the B model extensively, and also
derive the same identities for string topology, where they become state-
ments of homotopy invariance. We outline analogous results in the A
model, B-twisted Landau–Ginzburg models, and physical strings. We
also discuss the understanding of the closed string states as the Hoch-
schild homology of the open string algebra, and outline possible applica-
tions to elliptic genera.
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1 Introduction

Defects in two-dimensional theories are forms of domain walls, boundaries
which connect open strings on potentially different spaces, and so act as
some type of two-dimensional domain wall, see for example [1–6]. Defects
have appeared in numerous papers in the physics literature recently, for a
sample see for example [7–15] and references therein. They also seem to be
implicit in parts of the mathematics literature, in connection with “enriched”
topological field theories described by higher categories (see e.g. [16]), as we
shall review.

In this paper, we use “identity” (“trivial”) defects to perform taffy-like
reparametrizations of string worldsheets, folding worldsheets over them-
selves to create new, physically equivalent but different-looking, worldsheet
theories.

Using folding tricks locally around a defect is not new, indeed is a stan-
dard method for computing spectra of operators in the defects community.
What is (we believe) novel to this paper is the development of explicit math-
ematical identities required to carefully demonstrate that global foldings of
worldsheets leave the physics invariant. For example, given an open string
on X, we develop mathematical identities required to show that one gets
physically equivalent open strings on products of any number of copies of X
by folding and flattening along multiple identity defects. One case of this is
illustrated below:

X
E F

E

F

X×X ×X
E ⊗Δ F ⊗Δ

The diagram above illustrates an open string on X3 corresponding to an
open string on X, with boundaries determined in part by Δ, a diagonal
corresponding to the identity defect. From the general principles of folding,
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one expects that these diagrams should describe equivalent physics. We
check that statement by comparing, for example, massless spectra in the
B model, deriving the identity

Ext∗X (E ,F) = Ext∗X3

(
Lπ∗

1E ⊗L Δ∨
23, Δ12 ⊗L Lπ∗

3F
)

confirming that the topological field theory is unchanged, at the level of e.g.,
D-branes described as objects in the derived category Db(X). We can also
fold closed strings along identity defects and flatten; for example,

X

X6Δ3 Δ3

gives an open string on X6 corresponding to a closed string on X. In the
case of the B model, we check the identity above by comparing massless
spectra:

H∗ (X, Λ∗TX) = Ext∗X6

(
Δ∨

12 ⊗L Δ∨
36 ⊗L Δ∨

45, Δ14 ⊗L Δ23 ⊗L Δ56

)

checking that topological field theories are, indeed, invariant under this oper-
ation. We can also include twists as we fold; for example,

X
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X6Δ3 Δ3

gives a different open string on X6 corresponding to the same closed string
on X. In this case, demanding that B model states be invariant under this
operation implies the identity

H∗ (X, Λ∗TX) = Ext∗X6

(
Δ∨

12 ⊗L Δ∨
36 ⊗L Δ∨

45, Δ13 ⊗L Δ24 ⊗L Δ56

)

which we check rigorously.

As these operations involve folding worldsheets over onto themselves, we
refer to them as taffy operations.

For readers not acquainted with such folding tricks, the philosophy is
that inserting identity defects is, in principle, a trivial operation, so these
global foldings, these taffy operations we describe, are no more than global
reparametrizations, and so should encode equivalent physics. Much of this
paper is devoted to carefully checking that hypothesis.

One important special case of these constructions involves taking a closed
string on X and constructing a physically equivalent open string on X×X
by folding and flattening along two identity defects:

X

X

X×X
Δ Δ

(a manipulation well known in the defects community). The resulting identity
relates Hochschild (co)homology (describing closed string states) to endo-
morphisms of the open string algebra, and for the B model is a well known
mathematical result, the “Hochschild–Kostant–Rosenberg (HKR) isomor-
phism.” Physically, this identity is a special case of the taffy operations;
mathematically, this identity (and its analogues in other field theories) is one
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of the foundations on which these taffy identities are constructed. We dis-
cuss this in detail, and in particular argue that closed string states are more
closely identified with Hochschild homology, instead of Hochschild cohomol-
ogy, of the open string algebra.

The mathematical work in this paper for justifying taffy operations
amounts to using homological algebra identities to reduce more complicated
cases to the one above. An important point is homotopy invariance, as
explained in Section 5, which in some sense for this purpose is more funda-
mental than the HKR isomorphism or its analogues. The homological alge-
bra identities we derive are the expressions of topological identities resulting
from homotopy invariance.

Let us briefly illustrate what we mean by homotopy invariance. Consider
the B-model on a Calabi–Yau manifold X. In that model, D-branes corre-
spond to elements E of the derived category Db(X) of bounded complexes
of quasi-coherent OX -modules. Given two such complexes E and F , the
massless states of open strings emanating from E and terminating on F are
measured by RHom(E ,F), while closed string states should be measured
by the Hochschild cohomology HomX×X(OX ,OX). These two observations
are simply related as follows. Consider a “closeable configuration” of open
strings of the form

E0

E1

E2

E3

E4

E5

Given that the massless states for a string from E to F are given by
RHom(E ,F), it is natural to mathematically associate to this configura-
tion the group

RHom(E0, E1)×RHom(E1, E2)× · · · ×RHom(E5, E0). (1.1)

There is a certain redundancy in this description: products of open string
states derived from
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E0
E1

E2

E3

E4

are related to those of the form (1.1) by the composition1

RHom(E4, E5)×RHom(E5, E0)→ RHom(E4, E0)

in one direction, and by setting E5 = E4 and inserting the identity in the
other. There is a standard mathematical way for encoding all this data,
and, as we recall in Section 5.2, Keller and McCarthy [17–19] show that one
can extract the Hochschild homology of X from these data. This is part of
what we mean by “homotopy invariance,” above.

This observation raises several questions. For example, do diagrams of
the form above have any physical sense? And can one use physical ideas to
be more explicit about the relationship to Hochschild homology? We shall
address these issues in this paper.

We begin in Section 2 by briefly reviewing defects in two-dimensional
quantum field theories. In Section 3 we work through the taffy operations
in detail for the B model, giving explicit descriptions and rigorously check-
ing identities for relating folded strings to the original strings. Carefully
studying these identities for the B model occupies the bulk of this paper.
In Section 4 we quickly rederive the same results in the context of “string
topology,” a mathematical abstraction of bosonic string field theory. In
Section 5 we discuss old lore relating closed string states to Hochschild
homology (instead of cohomology) of the open string algebra, and briefly
outline some generalizations. In Sections 6–8, we outline analogous results
and conjectures in the A model, B-twisted Landau–Ginzburg models, and
critical strings, respectively. We conclude in Section 9 by outlining some
conjectural applications of this technology to elliptic genera.

1It is essential to use RHom instead of Ext here. As a related matter, composition of
RHom is defined only up to homotopy, as we discuss in Section 3.1.
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2 Review of defects

2.1 Physics basics

A defect (see for example [1–6]) is an open string boundary that connects
open strings on two potentially distinct spaces. Let X, Y be two spaces,
then a defect is an open-string-type boundary defined by a submanifold of
X×Y , together with a bundle with connection over that submanifold.

X Y

Supersymmetry enforces the same conditions on that submanifold and bun-
dle as one would have in an ordinary open string — for example, in the B
model topological field theory, one has a complex submanifold of X×Y with
a holomorphic vector bundle.

Let us work through some examples. Work locally on the complex plane,
with a defect along the x-axis. Consider for example a string with target C
on each side of the defect. We can describe this as a single complex boson φ
defined over the complex plane, or a pair (φU , φL) on the upper-half-plane.
Boundary conditions such as, for example,

lim
y→0+

∂nφ = 0, lim
y→0−

∂tφ = 0

or equivalently [
∂n 0
0 ∂t

] [
φU

φL

]
= 0

which would be described more formally in the B model by a sheaf on C2

with support along (C, 0) ⊂ C2. Boundary conditions such as

lim
y→0+

∂nφ = λ lim
y→0−

∂nφ

would be described more formally by a sheaf on C2 with support along
{(λx, x)|x ∈ C} ⊂ C2.

Special cases of these boundary conditions can be described by giving
separate boundary conditions on X and Y , and a map between the corre-
sponding branes, but the general case is described by a sheaf on X×Y .

One central idea from the study of defects, which we will use repeatedly
throughout this paper, is that of folding tricks (see for example [2] and
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references therein). We have already used these implicitly in giving the data
defining a defect. Given open strings on X, Y , meeting along a defect, as

X Y

we fold the combination of strings

X

Y

or

X

Y

into a single open string on the product X×Y ,

X×Y

so that the defect now appears as an ordinary boundary of an ordinary
open string on X×Y . This is one efficient way to understand why the data
defining the defect should be ordinary Chan–Paton factors on the product
of the spaces, and why the conditions for supersymmetry are the usual
conditions, but applied to Chan–Paton factors over the product of spaces.

There is one particular distinguished defect, the “identity” or ‘trivial”
defect, which joins open strings on X to open strings also on X. The trivial
defect is defined by trivial rank one Chan–Paton factors along the diagonal
embedding in X×X. It is so named because one can insert it into a string
worldsheet without changing the physics of that worldsheet theory.

In this paper, we insert identity defects and apply folding tricks globally
on worldsheets, not just locally in the neighborhood of a defect, to give
alternate (and physically equivalent) reparametrizations of worldsheets. We
will check these methods extensively in the case of the B model, at the
level of boundaries defined by branes, antibranes and tachyons, as described
mathematically by derived categories. (In fact, not only will this allow us
to work in significant generality, but in addition, the formal manipulations
required to check that massless spectra are preserved become significantly
easier when working in derived categories than when working in, for example,
an ordinary category of coherent sheaves.)

It is unclear at present whether defects can be consistently coupled to
worldsheet gravity. One potential problem is that for general defects, one
often gets infinite-dimensional moduli spaces of curves. For example, for
a defect that starts in the middle of a closed string worldsheet, the shape



188 MATT ANDO AND ERIC SHARPE

of the defect is itself a modulus. If one could consistently couple to world-
sheet gravity, and define critical string theories, the consequences appear
to be somewhat radical. For example, defects link open strings on distinct
spaces, and so, if (conformally invariant) defects can be consistently cou-
pled to worldsheet gravity, and energy/momentum can flow across those
defects, then those defects would define non-local interactions in quantum
gravity. Just as a non-local interaction in ordinary quantum field theory
violates local energy/momentum conservation, this example of a non-local
interaction in quantum gravity would violate local energy/momentum con-
servation across multiple spacetimes. In any event, we shall not attempt to
couple defects to worldsheet gravity in this paper, and leave such consider-
ations for other work.

2.2 Typical mathematics application: higher categories

A typical mathematical application of defects is to give a physical realization
of descriptions of topological field theories using higher categories, as in
e.g. [16, 20]. In this section, we will briefly review such constructions and
applications, partly to contrast with the focus of this paper, which will be
on taffy operations with defects.

In the B model, a defect defines a Fourier–Mukai transform. The data of
the defect, an object E in Db(X×Y ), defines the kernel of a Fourier–Mukai
transform, hence a functor

FE(−) ≡ RpY ∗
(E ⊗L Lp∗X−

)

Such transforms can act on closed string states on either space to generate
closed string states on the other: one pulls back a polyvector field to the
product, wedges with the Chern character of the object along the defect,
then pushes forward to the other space. (This has been previously proposed
in e.g. [6, pp 43–44].)

Given a defect on X×Y and another on Y×Z, if those two defect lines
collide in parallel, the result is a defect along X×Z. In the B model, which
will be a focus of this paper, this composition is believed to be defined as
follows [21][prop. 5.1]. Consider X×Y×Z with its projections p12 to X×Y ,
p13 to X×Z, p23 to Y×Z. Given E an object in Db(X×Y ) and F an object
in Db(Y×Z), the composition is defined by the object

p13∗ (p∗12E ⊗ p∗23F)

in Db(X×Z) (taking all operations to be derived).
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In this language, there is an “identity” defect, defined by the diago-
nal [21][section 6.5]. If ΔY is the diagonal on Y×Y , then for any E on
X×Y ,

p13∗ (p∗12E ⊗ p∗23ΔY ) ∼= E
Suppose a defect line ends in the middle of a disk, as outlined below:

In the B model, if one is describing maps into a space X, then along the
defect line one has an object E ∈ Db(X×X). At the endpoint one naturally
has a boundary-condition-changing operator defined by an element2 of

Ext∗X×X (Δ∗OX , E)

This has a natural categorical interpretation in terms of traces3 in 2-categories.
If we view Db(X) as a higher-categorical version of a vector space (a 2-vector
space), then Db(X×X) is some version of the space of endomorphisms of
Db(X), and a trace map should be a map to the analogue of the ground
field, which in this case is Db(C− vect), the derived category of complex
vector spaces. In this language, the trace functor sends any object E in

2As a check, boundary-condition-changing operators inserted at the intersection of
the defect and the boundary would be counted, in the B model, by elements of
Ext∗X2 (π∗

1F ⊗ π∗
2F∨, E), where F ∈ Db(X) defines the disk boundary, and all operations

assumed derived, conventions as explained later in this text. If we reel in the defect line,
shrinking it to zero length, then the states at the triple intersection are composed with
the states at the endpoint, namely elements of Ext∗X2 (E , Δ∗OX) (which for X Calabi–Yau
matches the groups above), to form elements of

Ext∗X2

(
π∗

1F ⊗ π∗
2F∨, Δ∗OX

)
= Ext∗X (F ,F)

as expected for insertions along the disk boundary, using a mathematical identity we shall
derive later in this paper.

3E.S. would like to thank T. Pantev for explaining this material on 2-category traces.
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Db(X×X) to
Tr E ≡ RHomX×X (Δ∗OX , E)

and any morphism f : E → F in Db(X×X) is mapped to a morphism Tr(f)
defined by

Tr(f)(φ) ≡ f ◦ φ

This is a special case of the Ganter–Kapranov categorification of the notion
of trace to any 2-category [22].

We should also note that open string defect diagrams seem to naturally
correspond to “string diagram” pictures of 2-category structures (see for
example [23] for a discussion of the mathematical notion of string diagrams).
Briefly, in what mathematicians call a string diagram, objects are repre-
sented by 2-dimensional areas, 1-morphisms by boundaries between those
areas, and 2-morphisms by boxes or marked points along the boundaries.
Let us work through a simple example, both to illustrate string diagrams
and to display their correspondence to physics. In the language of string
diagrams, a commutative diagram in 2-categories

X

F
��

G
��⇓ α Y

would be represented by the (mathematical) string diagram

X Y

G

F
α

Physically, given open strings on X and Y , defects joining the open strings
are defined (in the B model, say) by objects F ,G ∈ Db(X×Y ), each of which
defines a Fourier–Mukai transform (hence a functor)

F ,G : Db(X) −→ Db(Y )

Furthermore, along the defect, one can insert an operator α, which will be
an element of

Ext∗X×Y (F ,G) = H∗ (RHomX×Y (F ,G))
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and so will define a natural transformation between the two functors defined
by F and G. Clearly the mathematical “string diagram” above corresponds
very closely to the physical picture of corresponding open strings joined
along defects.

Although we will not work with mathematical string diagrams per se
further in this paper, the picture above lends itself to higher categori-
cal structures: a defect along a k-codimensional submanifold defines a k-
morphism, and operators on the defect and smaller defects define higher-
order morphisms. There is, in fact, a mathematical definition of (“enriched”)
topological field theories (see e.g. [16,20,24]), which involves representations
not just of the category of d-dimensional bordisms of d− 1-manifolds, but
of appropriate d-categories (0, d)-Bord (actually, “(∞, d)-categories”) of bor-
disms of manifolds of dimension 0 through d.

The Baez-Dolan cobordism hypothesis (now a family of theorems of Lurie
[16]) says that an enriched topological field theory is determined by its value
on a point. That is, to specify a representation of (0, d)-Bord in a d-category
C is equivalent to specifying an object of C, which is required to satisfy
some hypotheses depending on the precise flavor of enriched field theory one
considers.

For example, ([16, Theorem 4.2.11]) to specify a 0–2-dimensional sym-
metric monoidal TFTs is equivalent to specifying a “Calabi–Yau” object
in a symmetric monoidal 2-category (actually symmetric monoidal (∞, 2)-
category). This is an object X with a dual X∨, an evaluation map

ev : X ⊗X∨ −→ 1

a coevaluation map
coev : 1 −→ X ⊗X∨

(satisfying various properties), and so a map, sometimes labelled

dim(X) = coev ◦ ev : 1→ 1

This (strangely labelled) object dim(X) automatically carries an S1-action
(because, despite the name, it represents the massless states of a closed
string). Finally, one should have an S1-equivariant evaluation map

η : dim(X)→ 1

It is often equivalent ([16, 4.2.17]) to consider an S1-invariant cotrace 1→
dim(X).
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To obtain the B model on a Calabi–Yau X, consider the 2-category of dif-
ferential graded categories, and for an object in it, take the (∞, 1)–category
of complexes of quasi-coherent OX -modules on X (whose homotopy category
is the derived category). We interpret 1 as OX , the open string algebra, and
the holomorphic top-form on the Calabi–Yau defines a map 1→ dimX. For
details, and an explanation of why ∞-categories are required, see Section
4.2 of [16].

In this paper, we will be concerned with naively distinct mathematical
structures arising from defects, namely taffy operations.

3 String states and taffy operations in the B model

In this section, we will describe string states in strings with defects, in
the topological B model. We will compute the spectrum of string states
using folding tricks for defects. Folding tricks have been widely discussed in
the defects literature previously, see for example [2] and references therein.
Moreover, some of the mathematical consequences of applying such folding
tricks to topological field theories have been previously described elsewhere,
see for example [24]. Our contribution is to work out and check explicit
detailed expressions relating various (folded) open and closed strings.

We should emphasize at this point that this “folding” is actually a trivial
operation on the string worldsheet — in particular, despite the name, no
folds in the sense of non-differentiable structures are being introduced into
the maps into the target space. Rather, this is merely a reparametrization
of the string worldsheet.

The result of this folding is to create physically equivalent (but different-
looking) string diagrams. As a consistency check, we will demonstrate that
massless spectra of various physically equivalent configurations agree.

3.1 Operations on derived categories

In our discussion of taffy-esque identities in the B model, we will be working
extensively with objects in derived categories. When we perform operations
such as duals, tensor products, and homomorphisms, we necessarily mean
derived duals, derived tensor products, and so forth. As these concepts are
not widely used in the physics community, in this section we briefly recall
some of the basic facts about derived categories and the derived operations
we use in this paper. We would also like to take this opportunity to thank
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A. Caldararu for numerous discussions of the identities in this and the next
subsection.

Let X be a ringed space, such as a Calabi–Yau manifold, with structure
sheaf OX . By “OX -module” we will always mean a quasi-coherent sheaf
of OX -modules. We write Mod(X) for the category of OX -modules. If E,
F , and G are OX -modules, then we can form the OX -modules E ⊗X F ,
HomX(F, G), and E∗ = HomX(E, OX). The sheaf HomX(F, G) is some-
times called the “internal hom”, because it is itself an OX -module: it
is internal to the category of OX -modules. Also, we can form the ring
R = Γ(X,OX) and the R-module ΓE. The essential properties of these oper-
ations are expressed by the identities

HomX(E ⊗X F, G) ∼= HomX(E, HomX(F, G))

E∗ ⊗X F ∼= HomX(E, F ) if E is finitely generated

(E∗)∗ = E if E is finitely generated

E∗ ⊗ F ∗ = (E ⊗ F )∗ if E and F are finitely generated (3.1)

E ∼= HomX(OX , E)

HomMod(X)(E, F ) ∼= Γ(X, Hom(E, F )) and so

Γ(X, E) ∼= Γ(X, Hom(OX , E)).

Let f : X → Y be a map of ringed spaces. Associated to these we have
operations

Mod(Y )
f∗

��
Mod(X)

f∗
��

Some essential properties of these operations are4

f∗E(U) = E(f−1(U)) if U is an open set of Y. In particular

f∗E ∼= Γ(X, E) if Y is a one-point space.

HomMod(X)(f
∗E, F ) ∼= HomMod(Y )(E, f∗F )

f∗(E ⊗ F ) = f∗E ⊗ f∗F
f∗(E∗) = (f∗E)∗

Let Db(X) be the the derived category of bounded complexes of quasi-
coherent OX -modules. An OX -module E gives rise to an object of Db(X),

4The second line is a slight abuse of notation. The point is that if ∗ is a point, then
O∗ is the sheaf whose value global sections are just the complex numbers. Taking global
sections is an equivalence of categories between O∗-modules and C-modules. On the left
one has an OC-module, on the right one has the corresponding C-module.
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namely the complex . . . 0→ E → 0 · · · which is E in degree 0 and 0 in
other degrees. We simply write E for this object of Db(X). The mor-
phisms in the derived category from E to F form a cochain complex, denoted
RHomX(E ,F). The derived category has a tensor product, denoted E ⊗L

X F ,
an internal Hom, denoted RHomX(E ,F), and a dual E∨ = RHom(E ,OX).
Moreover, given a complex of OX -modules E we can form the chain com-
plex of Γ(X,OX)-modules RΓ(X, E). These constructions are related by
identities much like those for Mod(X), namely

RHomX(E ⊗X F ,G) � RHomX(E ,RHomX(F ,G))
E∨ ⊗L

X F � RHomX(E ,F) if E is finitely generated

E � RHomX(OX , E)
RHomX(E ,F) � RΓRHom(E ,F)

RΓE � RΓRHom(OX , E).

In the above, the symbol � denotes quasi-isomorphism, meaning the
cochain complexes have isomorphic cohomology. Familiar cohomological
invariants may be accessed via the identities

Exti
X(E ,F) = H iRHomX(E ,F)

H i(X; E) = H iRΓ(E) ∼= Exti(OX , E).

Remark 3.1. The classical derived category Db(X) is obtained from the
classical category Ch(X) of cochain complexes in Mod(X) by inverting the
quasisomorphisms, and it is a triangulated category. The symbol � therefore
indicates an isomorphism in the derived category.

These leads to some subtlely in viewing RHomX(E ,F) as the morphisms
of Db(X). The problem is that, first of all, even to build RHomX(E ,F)
involves a choice of injective resolution of F . This choice interacts with the
definition of the composition

RHomX(E ,F)×RHomX(F ,G)→ RHomX(E ,G). (3.2)

Homological algebra implies that RHomX(E ,F) is well-defined up to quasi-
isomorphism, and so the groups ExtX(E ,F) and the composition

ExtX(E ,F)× ExtX(F ,G)→ ExtX(E ,G)

are well-defined on the nose.
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For many purposes it is essential to deal with the category Ch(X) in
a way that recognizes the special importance of quasi-isomorphisms with-
out passing immediately to the derived category. The theory of∞-categories
provides a convenient framework for doing so. A key feature of∞-categories
is that they allow the cochain complex RHomX(E ,F) of morphisms to be
defined only up to quasi-isomorphism, and they recognize that the composi-
tion of morphisms (3.2) is necessarily an A∞ operation: the choices involved
in building an explicit model for the composition are analogous to the choice
of how to divide up the unit interval to building a concatenation-of-paths
operation

Map([0, 1], X)×Map([0, 1], X)→ Map([0, 1], X).

The upshot is an ∞-category Db∞(X) of chain complexes of OX -modules,
whose “homotopy category” is the classical triangulated derived category
Db(X) of Verdier. J. Lurie develops the theory of the derived category from
this point of view in [25].

In this paper, when we speak of the derived category we often implicitly
mean the ∞-category Db∞(X) associated to Mod(X): For example, when
we speak of RHomX(E ,F) as the morphisms in the derived category, we
really mean the ∞-category. When we use the symbol �, we are indicating
an equivalence in the ∞-category that becomes an isomorphism in Db(X).

This ∞-category plays an prominent role in the current mathematical
study of topological field theories. For example, Costello [20, Section 2.2]
emphasizes that it is essential to use Db∞(X) to obtain the B-model in his
framework.

Associated to a map f : X → Y of ringed spaces we have operations

Db(Y ) Lf∗ �� Db(X)
Rf∗

��

f!��

By construction, these operations satisfy properties analogous to those for
f∗ and f∗ above:

Rf∗E � RΓE if Y is a one-point space

RHomX(Lf∗E ,F) � RHomY (E ,Rf∗F)

RHomX(E ,Lf∗G) � RHomY (f!F ,G)

In particular, if f : X → ∗, then

Rif∗E ∼= H i(X; E).
We recall a number of additional properties enjoyed by these operations.
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The projection formula

Via their tensor products Db(X) and Db(Y ) can be thought of as categorical
versions of commutative rings5. The pullback Lf∗ preserves the tensor prod-
uct, and so gives Db(X) in this sense the structure of a module over Db(Y ).
The projection formula says that Rf∗ is a homomorphism of modules over
Db(Y ) : for E ∈ Db(X) and F ∈ Db(Y ), we have

Rf∗(E ⊗L
X Lf∗F) � (Rf∗E)⊗L

Y F . (3.3)

Flat base change

Suppose that

X ′ g′−−−−→ X

f ′
⏐
⏐
�

⏐
⏐
�f

Y ′ g−−−−→ Y

is a pullback diagram: that is, f ′ : X ′ → Y ′ is obtained from f : X → Y by
base change along g : Y ′ → Y .

Proposition 3.1. ([26, Prop. III.9.3]; [21, Section 2.7]) If g is flat, then so
is g′, and so Lg∗ = g∗ and (Lg′)∗ = (g′)∗. Moreover

g∗Rf∗ � (Rf ′)∗(g′)∗ : Db(X)→ Db(Y ).

Grothendieck-Serre duality

The Grothendieck duality theory describes the relationship between the
derived dual and the derived pushforward. If X is a smooth projective
variety of dimension d, let SX = Ωd

X [d] = KX [d] be its “dualizing com-
plex.” If E is a complex of coherent (=finitely generated quasi-coherent)
OX -modules, let

ED = E∨ ⊗L
X SX � E∨ ⊗X SX � RHomX(E , SX).

(if X is smooth then Ωd
X is projective, and so ⊗L and ⊗ coincide). If

f : X → Y be a proper map of smooth projective varieties, then the duality

5More generally, symmetric monoidal categories are categorical analogues of commuta-
tive rings. The category of OX modules is a symmetric monoidal category, and, because
of the tensor products mentioned above, the derived category Db(X) can also be given
the structure of a symmetric monoidal category.



TWO-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 197

theory says that6

Rf∗(ED) � (Rf∗E)D. (3.4)

Remark 3.2. More generally, the Grothendieck Duality theory concerns
the existence and properties of a right adjoint f ! of the functor f∗, so that,
for E ∈ Db(X) and F ∈ Db(Y ),

Rf∗RHomX(E , f !F) � RHomY (Rf∗E ,F). (3.5)

For example, the theory asserts that if f is proper and smooth of dimension
d, then

f !F � (f∗F)⊗L Ωd
X/Y [d] � (f∗F)⊗ Ωd

X/Y [d].

If f : X → Y is such that f ! exists and is of the form

f !F � (f∗F)⊗L SX/Y

for some element SX/Y of Db(X), then SX/Y is called a dualizing complex
for the map f. If X and Y are themselves smooth, then

SX/Y � SX ⊗ f∗S−1
Y . (3.6)

Assuming that E is finitely generated, and taking F = OY , (3.5) becomes

Rf∗(E∨ ⊗ SX ⊗ f∗S−1
Y ) � (Rf∗E)∨.

Using the projection formula (3.3), this becomes

Rf∗(E∨ ⊗ SX)⊗ S−1
Y ) � (Rf∗E)∨,

so Rf∗(ED) � (Rf∗E)D, as asserted at (3.4).

Example 3.1. Consider for example the case that X is compact and smooth
and Y = ∗ is a the one-point space. Then SY = C, considered as a sheaf
over a point, and (3.4) becomes

RHomX(E , KX [d]) � HomY (RΓE , C).

Taking cohomology, we find that

Extd−i
X (E , KX) ∼= Hom(H i(X; E), C),

which is Serre duality.

6We learned this formulation of Grothendieck duality from Neeman and Caldararu.
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3.2 Comparison of derived and underived operations

In this paper, our arguments for taffy identities in the B model will techni-
cally revolve around manipulations in derived categories, where it becomes
very simple to make strong statements. However, in many cases of physical
interest, one really is using non-derived operations on sheaves, not derived
operations. In this section, we will compare derived and underived opera-
tions, to uncover the physics hidden in the technology of derived categories.

In particular in this section, we study derived operations in the special
case that the derived category objects are pushforwards along embeddings
of vector bundles of finite rank, which is the simplest description of a single
set of D-branes. We shall discuss the relation between

1. derived pushforwards Rp∗ and ordinary pushforwards p∗,
2. derived pullbacks Lp∗ and ordinary pullbacks p∗,
3. derived duals ∨ and ordinary duals ∗,
4. derived tensor products ⊗L, and ordinary tensor products ⊗,

for such special objects in derived categories. We shall see, for example,
that the Freed-Witten anomaly [27] is implicit in derived duals.

Before specializing to pushforwards of vector bundles, we mention in pass-
ing the simplest relationships of the derived operations to their underived
analogues:

1. Rf∗E � f∗E if E is injective or if f is affine (e.g., a closed embedding);
2. Lf∗E � f∗E if E is projective or if f is flat;
3. RHomX(E, F ) � HomX(E, F ) if either E is projective or F is injec-

tive;
4. E ⊗X F � E ⊗L

X F if either E or F is projective (e.g., free).

Derived pushforwards

In the B model, we can consider a D-brane on a closed submanifold i : S →
X described by the sheaf i∗E, with E a finite rank vector bundle over S.
Since i is a closed embedding, it follows that

Ri∗E � i∗E

(and indeed for any sheaf on S). We shall make considerable use of the
particular case

Δ : X → X ×X

of the diagonal embedding: RΔ∗ � Δ∗.
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Derived pullbacks

In this paper, we shall be considering primarily pullbacks along projections,
e.g., p : X×Y → X. Projections are flat, and so derived pullbacks match
ordinary pullbacks.

In addition, we sometimes use pullbacks along other maps in derivations.
However, in other cases, derived and ordinary pullbacks typically do not
match. For example, we occasionally discuss pullbacks along closed embed-
dings, such as the diagonal map Δ : X → X×X. In the special case of pull-
backs of vector bundles, the derived and ordinary pullbacks (along closed
embeddings) do match. On the other hand, for more general sheaves, the
derived and ordinary pullbacks do not match, essentially because closed
embeddings are not flat. For example, Δ∗OΔ = OX ; however, LΔ∗OΔ �=
OX , as there are non-zero cohomology sheaves (roughly Ωi in position −i).

Derived duals

Given a vector bundle of finite rank E over a submanifold i : S ↪→ X of
codimension d, consider the derived dual

(Ri∗E)∨ ≡ RHom(Ri∗E,OX) � RHom(i∗E,OX).

(As we noted above, Ri∗ � i∗, as i the inclusion of a submanifold.) We
shall see that it is related to i∗(E∗) by a combination of grading shifts and
tensoring with canonical bundles. Specifically,

(i∗E)∨ � Ri∗(E∗ ⊗ SS/X) (3.7)

where SS/X is the dualizing sheaf of the embedding, and ∗ denotes the
ordinary vector bundle dual. To see this, note that, using (3.4), we have

(i∗E)D � i∗(ED).

That is,

(i∗E)∨ � (i∗E)D ⊗ S−1
X

� i∗(ED)⊗ S−1
X

� i∗(E∨ ⊗ SS ⊗ i∗S−1
X )

� Ri∗(E∗ ⊗ SS/X).

In the preceding, we used the fact that X and S are smooth, so SS and
SX are projective: thus derived tensor products and pullbacks reduce to
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ordinary ones. We used the fact that E is a vector bundle, and so locally
free, to conclude that

E∨ = RHomX(E,OX) � RHomX(E,OX) = E∗

We used the projection formula to conclude that

i∗(F)⊗L S−1
X � i∗(F ⊗L Li∗SX) � i∗(F ⊗ i∗SX)

It remains to compute SS/X . From equation (3.6), we know that

SS/X = SS ⊗ i∗S−1
X = KS [dim S]⊗ i∗ (KX [dim X])−1

= KS ⊗ (KX |S) [−d]

where recall d is the codimension of S in X. For completeness, note from
the short exact sequence

0 −→ N∗
S/X −→ Ω1

X |S −→ Ω1
S −→ 0

it is straightforward to show that

ΛtopNS/X
∼= KS ⊗ (KX |S)−1

hence

SS/X = ΛtopNS/X [−d]

Putting this together, we have that

(i∗E)∨ ∼= i∗
(
E∗ ⊗KS ⊗ (KX |S)−1

)
[−d] ∼= i∗

(
E∗ ⊗ ΛtopNS/X

)
[−d].

(3.8)

Example 3.2. Consider the diagonal embedding Δ : X → X×X. Then
NX/X×X

∼= TX , KX×X = π∗
1KX ⊗ π∗

2KX , KX×X |X = K⊗2
X , and (3.8)

becomes

(Δ∗OX)∨ � Δ∗
(
OX ⊗KX ⊗

(
K⊗2

X

)−1
)

[−dim X] = Δ∗K−1
X [−dim X]

(3.9)
(See also [23] for a discussion of the dual of the diagonal.)
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Now, let us return to our discussion of the derived dual of i∗E. In this
case, for X a Calabi–Yau, equation (3.8) becomes

(i∗E)∨ = i∗ (E∗ ⊗KS) [−d].

Note that the factor of KS is ultimately due to the Freed–Witten anom-
aly [27]. Recall from [28] that because of the Freed–Witten anomaly, the
sheaf i∗E is associated with D-brane Chan–Paton factors7 E ⊗K

−1/2
S . If we

dualize the Chan–Paton factors, they become

(
E ⊗K

−1/2
S

)∗
= E∗ ⊗K

+1/2
S = E∗ ⊗K

−1/2
S ⊗KS ;

which means that the appropriate dual of the sheaf i∗E (modulo grading
shifts) should be i∗(E∗ ⊗KS) � i∗(ED) � (i∗E)D. In effect, this means that
the Freed–Witten anomaly is baked into the formalism of derived categories,
as it is automatically encoded in the natural dual in the sense of derived
categories (the derived dual).

Derived tensor products

Next, let us compare the derived tensor product ⊗L to the ordinary tensor
product ⊗. Consider two D-branes wrapped on i : S ↪→ X and j : T ↪→ X,
S, T , and X all assumed smooth. If the intersection of S and T is transversal
(e.g., codimS/X + codim T/X = codim (S ∩ T )/X), then it is a result of
Serre that

(i∗E)⊗L (j∗F ) � (i∗E)⊗ (j∗F )

(The point is to show that the sheaf Torp(i∗E, j∗F ) is zero for p > 0, which
is precisely when the derived and underived tensor products will match. One
reduces to the case that the ring of functions on X is A, on S is A/I, and T is
A/J for prime ideals I and J. With our hypotheses TorA(A/I, A/J) can be
computed by a Koszul complex, and the transverse intersection assumption
implies that this complex is acylic. The relevant results are p. 54 Prop. 2
and p. 55 cor 2 of [29].)

More generally, however, for non-transversal intersections, the derived
tensor product will differ from the ordinary tensor product. Let k : S ∩

7It has been suggested by A. Caldararu that an alternative approach to the Freed–
Witten anomaly would be, in part, to define a “good” dual to a sheaf E by, E∗ ≡ E∨ ⊗√

SX , when this makes sense. We shall not follow that path here, but thought it warranted
mentioning.
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T ↪→ X denote the natural embedding of the intersection, then the extra
contributions arise from

k∗ (E|S∩T ⊗ F |S∩T ⊗ Λ∗B)

where
B∗ = TX|S∩T / (TS|S∩T + TT |S∩T )

(a bundle which also appeared in [28]). The bundle B expresses the amount
by which the intersection fails to be transversal.

In this paper, we shall only need the simple transverse case. In every case
in which we are initially reading off string states from a diagram, the sheaves
will be supported on different factors in a product. Let E be a vector bundle
on i : S ↪→ X, and F be a vector bundle on j : T ↪→ Y . Then the ordinary
and derived tensor products match [31]:

p∗1i∗E ⊗ p∗2j∗F = p∗1i∗E ⊗L p∗2j∗F

and if we let k denote the inclusion S×T ↪→ X×Y , then they both match

k∗ (p∗1E ⊗ p∗2F )

In the bulk of the rest of this paper, we will study examples of taffy-
like foldings of string worldsheets, and derive mathematical identities to
check that such taffy operations give alternative descriptions of physically
equivalent string worldsheets.

Our constructions in the B model necessarily take place in the derived
category, and as such, all operations will necessarily be derived. For nota-
tional simplicity, in the rest of this paper after this subsection, we will use
underived notation to implicitly mean derived constructions. In other words,
we will omit the R and the L from the notation: thus Hom means RHom,
⊗ means ⊗L, i∗ means Ri∗, and so forth.

3.3 Open string states

Let E , F be objects in Db(X), defining boundaries in the open string B
model on X.

Here is our first example of a taffy operation. Consider folding an oriented
open string

E F
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along a trivial defect inserted at the center into a U-shape:

E

F

We mean by the diagram above (and other such in this paper) to indicate
that the original open string has been folded over and then collapsed onto a
single new open string on X×X, with one boundary determined by E and
F , and the other boundary determined by the identity defect, as represented
by a diagonal embedding Δ : X → X×X:

E ,F Δ

In order to convey more information, the previous diagram was “expanded”
vertically, to show the different layers of the original open string, though
the reader should always interpret such diagrams to mean that a vertical
contraction onto a single-layer open string on multiple copies of X has taken
place.

In effect, we are encoding worldsheet geometry in D-branes. See also [30]
where something analogous was done in a different theory.

We are not quite done. We need to uniquely specify Chan–Paton factors
on the folded string (e.g., F versus F∨), and we also need to specify an ori-
entation on the folded open string. It is straightforward to see that different
reasonable choices differ only by grading shifts, so this is a matter of picking
a convention, not something essential to the physics. We shall follow the
following convention (which was chosen specifically to preserve gradings):

1. For diagonals, if the orientation on the folded string points towards the
diagonal, we describe the Chan–Paton factors by the object Δ∗OX in
the derived category, which (because it will appear commonly) we
shall abbreviate Δ. If the orientation on the folded string points away
from the diagonal, we use instead the object Δ∨. (Recall from equa-
tion (3.9) that on a Calabi–Yau, Δ differs from Δ∨ merely by a grading
shift, Δ∨ = Δ[−dimX], so we are merely choosing conventions so as
to preserve gradings.)

2. For other objects present before the fold (in the example above, E , F),
if the orientation on the folded string is parallel to the orientation on
the part of the original string going into that boundary, we use the
original object; if antiparallel, we use its dual.
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For example, if we pick the orientation on the folded string to be

E ,F Δ

then the left Chan–Paton factors are described by the derived category
object π∗

1E ⊗ π∗
2F∨, and the right Chan–Paton factors are described by the

derived category object Δ. In this case, the string states in the new (folded)
open string are counted by

Ext∗X×X

(
π∗

1E ⊗ π∗
2F∨, Δ

)

Applying the identities from Section 3.1, we have

RHomX×X(π∗
1E ⊗X×X π∗

2F∨, Δ∗OX)

� RHomX(Δ∗(π∗
1E ⊗X×X π∗

2F∨),OX)

� RHomX(E ⊗ F∨,OX) � RHomX(E ,F)

and taking cohomology yields the equality

Ext∗X×X

(
π∗

1E ⊗ π∗
2F∨, Δ

)
= Ext∗X (E ,F) (3.10)

so we see that in this convention, the open string states on the folded string
precisely match the original open string states, without even a grading shift.

If we had picked the opposite orientation on the folded string:

E ,F Δ

then the left Chan–Paton factors would be described by the derived category
object π∗

1E∨ ⊗ π∗
2F , and the right Chan–Paton factors would be described

by the derived category object Δ∨. In this case, the open string states in
the folded open string would be given by

Ext∗X×X

(
Δ∨, π∗

1E∨ ⊗ π∗
2F

)

but a trivial application of Section 3.1 and identity (3.10) implies

Ext∗X×X

(
Δ∨, π∗

1E∨ ⊗ π∗
2F

)
= Ext∗X×X

(
π∗

1E ⊗ π∗
2F∨, Δ

)
= Ext∗X (E ,F)

so again we recover the states of the original open string, without even a
grading shift.
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One technical point is that in the description above, the diagonal defect
Δ is implicitly assumed to have (trivial, rank 1) Chan–Paton factors. The
fact that the boundaries have support along the diagonal corresponds to
the fact that they correspond to folds, but, folds do not have Chan–Paton
factors. However, the open string spectrum with trivial line bundles along
the defect Δ : X → X×X is the same as the open string spectrum with no
Chan–Paton factors added at all (a trivial consequence of e.g. [28]). Thus,
we can equivalently interpret the Ext groups above as computing open string
spectra between boundaries with no added Chan–Paton factors.

Now, let us perform a consistency check of our description of folded open
strings. Consider the folded open string with orientation

E ,F Δ

so that the string states are

Ext∗X×X

(
π∗

1E ⊗ π∗
2F∨, Δ

)
= Ext∗X (E ,F)

Now that we have fixed an orientation on the folded open string correspond-
ing to the orientation on the original string, we can ask about the effect of
flipping the orientation. If we were to traverse the folded string in the oppo-
site direction, the string states would be

Ext∗X×X

(
Δ, π∗

1E ⊗ π∗
2F∨)

= Ext∗X×X

(
π∗

1E∨ ⊗ π∗
2F , Δ∨)

= Ext∗X×X

(
π∗

1E∨ ⊗ π∗
2F , Δ[−dim X]

)

(for X Calabi–Yau)

= Ext∗X
(E∨,F∨[−dimX]

)

= Ext∗X (F , E [−dimX])

which, up to an irrelevant grading shift, are precisely the states one would
get from traversing the original unfolded string in the opposite direction, as
expected.

For completeness, let us also consider folding in the opposite direction:

F

E

If we collapse this to an open string on X×X with the following orientation:
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E ,FΔ

then following our usual convention, string states are given by

Ext∗X×X

(
π∗

1E ⊗ π∗
2F∨, Δ

)

and we have already seen that this matches Ext∗X (E ,F). Similarly for the
opposite orientation convention on the folded string.

In order to show that similar results apply for more complicated folds, we
will need a slight generalization of the identity (3.10), whose proof we learned
from [31]. For any E ∈ Db(X) and any finitely generated S ∈ Db(X×Y ), we
have

Ext∗X×X×Y

(
π∗

1E ⊗ π∗
23S∨, π∗

12Δ
)

= Ext∗X×Y (π∗
1E ,S) (3.11)

This is our first “taffy identity.” Intuitively, it allows us to equate the two
diagrams

E

S
S E

(where S is being used to encode any number of additional foldings) and
hence can be used to unfold foldings.

To prove (3.11), note first of all that

Ext∗X×X×Y

(
π∗

1E ⊗ π∗
23S∨, π∗

12Δ
)

= Ext∗X×X×Y (π∗
1E , π∗

23S ⊗ π∗
12Δ)

Let
Δ12 : (x, y) �→ (x, x, y), Δ : x �→ (x, x)

We have the pullback diagram

X×Y
π1 ��

Δ12

��

X

Δ
��

X×X×Y
π12 �� X×X

with π12 flat, and so by flat base change (Prop. 3.1) we have

π∗
12Δ∗OX � Δ12∗π∗

1OX = Δ12∗OX×Y .
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Now using the projection formula (equation (3.3)) and the fact that π23 ◦
Δ12(x, y) = (x, y), we have

π∗
23S ⊗ π∗

12Δ � π∗
23S ⊗Δ12∗OX×Y

� Δ12∗(Δ∗
12π

∗
23S)

� Δ12∗S.

Thus (noting that π1 ◦Δ12 = π1)

Ext∗X×X×Y

(
π∗

1E ⊗ π∗
23S∨, π∗

12Δ
)

= Ext∗X×X×Y (π∗
1E , Δ12∗S)

= Ext∗X (E , π1∗Δ12∗S)

= Ext∗X (E , π1∗S)

= Ext∗X×Y (π∗
1E ,S) ,

which is (3.11).

One trivial application of the result above is to recheck the U-shaped
strings discussed previously. There, we argued that

Ext∗X×X

(
π∗

1E ⊗ π∗
2F∨, Δ

)
= Ext∗X (E ,F)

directly from homological algebra. If instead we apply (3.11), taking Y to
be a point and S = F , then we immediately recover the same result.

A more interesting example is to fold an ordinary open string on X with
boundaries E , F into an S-shape,

E

F

Pressing this down into a single open string on X3, and picking an orienta-
tion on the folded string, we recover

E , Δ23 Δ12,F

with states

Ext∗X×X×X

(
π∗

1E ⊗ π∗
23Δ

∨, π∗
12Δ⊗ π∗

3F
)
.
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In order for the folded string to be equivalent to the original, we conjecture

Ext∗X (E ,F) = Ext∗X×X×X

(
π∗

1E ⊗ π∗
23Δ

∨, π∗
12Δ⊗ π∗

3F
)
. (3.12)

(See also e.g. [2, fig. 6(a)] for a different discussion of this same diagram.)

The identity above can be derived by repeatedly applying identity (3.11).
For notational convenience, define

Δij ≡ π∗
ijΔ∗OX

where πij is the projection onto the ith, jth factors of X in a product of
several copies. Then the massless states associated to the S-shape above are
given by

Ext∗X3

(
π∗

1E ⊗Δ∨
23, Δ12 ⊗ π∗

3F
)

= Ext∗X3

(
π∗

1E ⊗Δ∨
23 ⊗ π∗

3F∨, Δ12

)

= Ext∗X3

(
π∗

1E ⊗ π∗
23(Δ⊗ π∗

2F)∨, Δ12

)

Applying the identity (3.11), which means, unrolling the bottommost U-shape,
this becomes

Ext∗X2 (π∗
1E , Δ⊗ π∗

2F) = Ext∗X2

(
π∗

1E ⊗ F∨, Δ
)

or graphically

E

F

We have already seen that the massless states in this diagram are just
Ext∗X(E ,F), hence we recover (3.12).

The pattern can now be repeated ad infinitum, repeatedly folding open
strings over themselves to produce open strings on higher-dimensional
spaces. To drive home that point, let us work through one last example
of these manipulations. Consider refolding an open string over itself into a
five-layer pattern, as shown:

E

F
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The result of this folding is an open string on the product of five copies of
X, with states counted by

Ext∗X5

(
π∗

1E ⊗Δ∨
23 ⊗Δ∨

45, Δ12 ⊗Δ34 ⊗ π∗
5F

)

Since this is just a folded version of a string between E and F , the states
should be counted by Ext∗X (E ,F), which we shall now check by successive
unfolding operations. We can begin by unfolding the bottommost U-shape,
using identity (3.11), revealing that the states above are the same as

Ext∗X4 (π∗
1E , Δ12 ⊗Δ34 ⊗Δ23 ⊗ π∗

4F)

= Ext∗X4

(
π∗

1E ⊗Δ∨
12 ⊗Δ∨

34, Δ23 ⊗ π∗
4F

)

or graphically

E

F

Unrolling the next bottom U-shape, applying identity (3.11), we see that
the states above are the same as

Ext∗X3

(
π∗

1E ⊗Δ∨
23, Δ12 ⊗ π∗

3F
)

or graphically

E

F

This is identical to the S-shape discussed earlier, so we can now conclude
that the states in this folded open string are indeed counted by Ext∗X(E ,F),
as expected.

It should be clear that this process can be continued for arbitrarily many
folds; regardless of the number of foldings introduced, if we start with an
open string from E to F , then after foldings the open string states will still
be given by Ext∗X(E ,F).
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3.4 Closed string states

Now, let us apply the same ideas to closed strings. Begin with a closed
string on X,

X

X

with trivial defects inserted as shown. By flattening the diagram above, as

Δ Δ

and picking an orientation, say,

Δ Δ

we predict that the closed string states are the same as elements of

Ext∗X×X

(
Δ∨, Δ

)

As we shall discuss in Section 5, this is the “Hochschild homology” of X,
and for smooth X, the HKR isomorphism [21, Theorem 6.3] says that

Ext∗X×X

(
Δ∨, Δ

)
=

⊕

p−q=∗
Hp

(
X, Ωq

X

)

and so we see that the Ext groups on X×X are differential forms, as expected
for closed string states. Using the fact that

Ωq
X = KX ⊗ Λn−qTX

where n is the dimension of X, we have that

Hp
(
X, Ωq

X

)
= Hp

(
X, KX ⊗ Λn−qTX

)
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and so

Ext∗X×X

(
Δ∨, Δ

)
=

⊕

p−q=∗
Hp

(
X, Ωq

X

)
=

⊕

p+q=n−∗
Hp (X, KX ⊗ ΛqTX)

When X is Calabi–Yau, the states above are well known to match closed
string states on X [32].

The HKR theorem above will form the intellectual basis of the taffy iden-
tities for closed strings. In effect, we will use homological algebra to reduce
all diagrams obtained by folding and twisting closed strings to the diagram
above, then apply HKR to argue that the results match closed string states.

For our first example of a folded closed string, consider folding a closed
string into a U-bar shape, as

then we get a prediction that the closed string states are given by

Ext∗X×X×X×X

(
Δ∨

14 ⊗Δ∨
23, Δ12 ⊗Δ34

)
. (3.13)

More generally, for S ∈ Db(X2 × Y ), it can be shown that

Ext∗X4×Y

(
Δ∨

12, Δ14 ⊗Δ23 ⊗ π∗
34Y S

)
= Ext∗X2×Y

(
Δ∨

12,S
)

(3.14)

which is our second “taffy identity” (and, for Y a point and S = Δ, together
with the HKR isomorphism, implies that the states (3.13) match closed
string states).

The second taffy identity (3.14) can be checked as follows [31]. First, the
left-hand side can be written as the cohomology of

RΓ
(
X4 × Y, Δ12 ⊗Δ23 ⊗Δ14 ⊗ π∗

34Y S
)

However,
Δ12 ⊗Δ23 ⊗Δ14 = Δsmall ∗OX×Y

where
Δsmall : (x, y) �→ (x, x, x, x, y)
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(Intuitively, this Δsmall is at least analogous to a small loop between the
various copies of X.) Furthermore,

Δsmall ∗OX×Y ⊗ π∗
34Y S = Δsmall ∗ (Δ∗

smallπ
∗
34Y S)

Thus, the left-hand side of (3.14) is the cohomology of

RΓ (X×Y, Δ∗
smallπ

∗
34Y S)

Similarly, the right-hand side of (3.14) can be written

RΓ
(
X2 × Y, Δ12 ⊗ S

)

where Δ12 ≡ Δ12∗OX×Y and

Δ12 : (x, y) �→ (x, x, y)

Now,

S ⊗Δ12∗OX×Y = Δ12∗ (Δ∗
12S)

so the right-hand side of (3.14) is

RΓ (X×Y, Δ∗
12S)

Finally, the left- and right-hand sides match because π34Y ◦Δsmall = Δ12:

X×Y
Δsmall��

Δ12 ������������ X4 × Y

π34Y

��
X2 × Y

Thus, we have established our second taffy identity.

Note that as a special case, if we take Y to be the empty set, and S = Δ,
then identity (3.14) reduces to

Ext∗X4

(
Δ∨

14 ⊗Δ∨
23, Δ12 ⊗Δ34

)
= Ext∗X2

(
Δ∨, Δ

)
(3.15)

as expected, which together with HKR verifies that (3.13) describe closed
string states.
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For another application of the second taffy identity, consider folding twice,
to get

and press down to form an open string on X6, then we get a prediction that
the closed string states are given by

Ext∗X6

(
Δ∨

14 ⊗Δ∨
23 ⊗Δ∨

56, Δ12 ⊗Δ36 ⊗Δ45

)

We can show this by repeatedly applying identity (3.14) to successively
unfold the diagram above. Applying it once yields

Ext∗X6

(
Δ∨

14 ⊗Δ∨
23 ⊗Δ∨

56, Δ12 ⊗Δ36 ⊗Δ45

)

= Ext∗X4

(
Δ∨

12, Δ34 ⊗Δ23 ⊗Δ14

)

which we have already demonstrated to match closed string states.

It is straightforward to check that additional folds can be straightened;
we leave the details as an exercise for the reader.

In addition to folds, we can also stretch out sections. For example, con-
sider the diagram
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The string states in this case are

Ext∗X6

(
Δ∨

16 ⊗Δ∨
23 ⊗Δ∨

45, Δ12 ⊗Δ34 ⊗Δ56

)

We can apply identity (3.14) to show that the states above match closed
string states. First, relabel the states above by exchanging 4 and 6, to get

Ext∗X6

(
Δ∨

14 ⊗Δ∨
23 ⊗Δ∨

65, Δ12 ⊗Δ36 ⊗Δ54

)

then, identity (3.14) implies that this is the same as

Ext∗X4

(
Δ∨

12, Δ34 ⊗Δ14 ⊗Δ23

)

which we have already shown matches closed string states.

Next, consider the three-pointed star:

On the one hand, we can contract this to three open strings joined at the
center, with diagonal defects at each outer corner and a more complicated
diagonal defect at the center:

On the other hand, we can “rolodex’ this star into the fat E-shape figure
described previously, which gives us the states and also tells us that they do
match closed string states, as expected.
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More generally, given an n-pointed star of the form above, the states are
given as

Ext∗X2n

(⊗n
i=1Δ

∨
2i,2i−1,⊗n

j=1Δ2j−1,2j−2

)

and by repeatedly unravelling with identity (3.14), we can show that these
match closed string states, as expected.

In addition to folds, we can also twist strings. Consider first flattening
a circle into a long flat oval, then twisting the oval into a figure eight. To
understand the spectrum, fold at the twist to get a diagram of the form8

then we get a prediction that the closed string states are given by

Ext∗X4

(
Δ∨

13 ⊗Δ∨
24, Δ12 ⊗Δ34

)
(3.16)

which we will show momentarily to be correct. More generally, it can be
shown that [31]

Ext∗X4×Y

(
Δ∨

12, Δ13 ⊗Δ24 ⊗ π∗
34Y S

)
= Ext∗X2×Y

(
Δ∨

12,S
)

(3.17)

for any S ∈ Db(X2 × Y ). This is our third taffy identity. This can be derived
in almost exactly the same fashion as the second taffy identity (3.14); the
only difference is that we utilize the result that

Δ12 ⊗Δ13 ⊗Δ24 = Δsmall

When Y is the empty set and S = Δ34, this implies that

Ext∗X4

(
Δ∨

12, Δ13 ⊗Δ24 ⊗Δ34

)
= Ext∗X2

(
Δ∨, Δ

)

which is precisely the conjecture (3.16).

For another example, consider taking a closed string, squeezing to a
flattened oval, then twisting twice and folding at each twist. The resulting

8There is no information pertinent for these considerations contained in whether lines
cross over or under one another, hence we have not tried to distinguish crossings in the
picture shown.
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diagram is

and the corresponding open string states are

Ext∗X6

(
Δ∨

13 ⊗Δ∨
24 ⊗Δ∨

56, Δ12 ⊗Δ35 ⊗Δ46

)

We can repeatedly apply the identity (3.17) to successively unroll and
untwist layers to show that these are the same as closed string states on
X. After one application, one has that the states above are the same as

Ext∗X4

(
Δ∨

12, Δ34 ⊗Δ13 ⊗Δ24

)

which is the case previously discussed, and so matches closed string states.

Because the taffy identities are insensitive to crossings, no knot invariants
can be built from these constructions.

3.5 More general open–closed strings from defects

For completeness, and later applications, let us make some easy general
observations on other more general examples of defects in the B model.

Consider, for our first example, the case of a closed string on X with a
single defect inserted:

E
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defined by E ∈ Db(X). We can compute the open string states in this case
by inserting a trivial fold at the opposite side of the circle:

E Δ

then from the previous analysis, we see that the open string spectrum is
given by

Ext∗X×X (Δ∗E , Δ)

Next, let us generalize to “closed strings” formed from gluing together
open strings on distinct spaces along defects. To begin, consider an infinite
cylinder split lengthwise into a pair of semi-infinite strips joined along two
edges, one string on X and the other on Y , so that a spacelike cross-section is

X

Y

with defects defined by S1,S2 ∈ Db(X×Y ). This is physically equivalent to
an ordinary open string on X×Y :

X×YS1 S2

In particular, in both cases the open string states (inserted in the infinite
future or past) are

Ext∗X×Y (S1,S2) (3.18)

It is somewhat tempting to incorrectly speculate that the open string states
in the first picture arise from both

Ext∗X (π1∗S1, π1∗S2) , Ext∗Y (π2∗S1, π2∗S2) (3.19)
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however, this is incorrect, as the corresponding operators are inserted at
points where X and Y come together, so one cannot meaningfully distin-
guish in the form implied in (3.19). (Moreover, there is no mathematical
equivalence between (3.18) and (3.19).)

With larger numbers of segments, additional folding tricks are possible.
Suppose there are four segments, so that a cross-section of the partitioned
cylinder is

X1X2

X3 X4

E14

E12

E23

E34

where Eij ∈ Db(Xi ×Xj), which folds into the equivalent diagram

X2 ×X3 X1 ×X4

with middle defect on
π∗

12E12 ⊗ π∗
34E34

which folds again into an open string on

Y ≡ X1 ×X2 ×X3 ×X4

with open string states

Ext∗Y
(
π∗

12E12 ⊗ π∗
34E34, π∗

23E∨23 ⊗ π∗
14E14

)

Another folding trick involves a cylinder formed from three open strings:

X1

X2 X3
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We first split the top open string by inserting Δ∗OX1 , as

X1X1

X2 X3

Δ

and then fold it into

X1 ×X2 X1 ×X3

which, after another fold, has states counted by

Ext∗Y ′
(
π∗

12E12 ⊗ π∗
31E∨31, π∗

23E23 ⊗ π∗
11Δ∗OX1

)

where

Y ′ ≡ X1 ×X1 ×X2 ×X3

Note that we can efficiently specify locations of parallel defects along a
cylinder through a simplex: specify the location of each defect by what
fraction of the circumference it sits at, relative to the previous defect. If
there are k defects, then that gives us k real numbers between 0 and 1
whose sum is necessarily 1, which is precisely a simplex.

Another folding trick involves a diagram that cannot be understood as
just a cylinder, with cross section

X1

X2

X3

FE

where E ,F ∈ Db(X1 ×X2 ×X3). This folds into the equivalent open string
on X1 ×X2 ×X3:
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X1 ×X2 ×X3 FE

from which we see that the string states arising from this diagram are

Ext∗X1×X2×X3
(E ,F)

3.6 Correlation functions

So far, we have only checked that massless states match after performing
taffy operations. In this section, we shall outline how correlation function
matching should occur. Unlike the case of massless states, for correlation
functions we do not have rigorous proofs, so we will only outline conjectures.

Let us begin by considering correlation functions on a disk, describing an
open string on X, with the same boundary conditions everywhere along the
edge of the disk, corresponding to a object E in Db(X).

Now, split the disk in half along the identity defect, as

E EΔ

To perform such a splitting, we need to insert boundary-condition-changing
operators at top and bottom intersection points, which in the present case
will be elements of

Ext∗X×X

(
π∗

1E∨ ⊗ π∗
2E , Δ

)
(3.20)
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This group is the same as
Ext∗X (E , E) (3.21)

which matches the intuition that inserting the diagonal defect is equivalent
to doing nothing, since if we did not insert the defect, the boundary operators
would have been counted by (3.21).

We can then fold the diagram above, to obtain the disk diagram

π∗
1E∨ ⊗ π∗

2E Δ

on X×X.

In principle, we expect correlation functions on the folded disk to match
correlation functions on the original disk.

Conjecture: The open string theory formed by taking a closed string
worldsheet and triangulating into open strings with defect boundaries, is
equivalent to the original closed string theory.

This would be in analogy with the behavior of two-dimensional QCD (see
for example [33]). In the two-dimensional QCD story, one triangulates a Rie-
mann surface, roughly, by inserting traces over group representations along
edges. Here, by contrast, one is not inserting a complete set of states, but
rather is merely inserting a trivial defect, creating a trivial reparametrization
of the worldsheet, no more.

The conjecture above implies that one could fold all closed string dia-
grams into open string disk diagrams. For example, a sphere on X could be
flattened to a disk on X×X with the diagonal Δ along the edge:

X

Δ

X×X
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Similarly, a 2-torus on X can be flattened into an annulus on X×X:

X

ΔΔ

X×X

which can then be folded into a disk on X4:

Δ Δ

X×X

Δ1,2 ⊗Δ3,4 Δ1,2 ⊗Δ3,4

Δ12,34

Δ12,34

X4

Similar manipulations can be performed at higher genera, reducing all such
diagrams to disk diagrams on products of copies of X.

4 String topology

The taffy identities in Section 3 arose from studying the homological algebra
of the category of chain complexes of OX -modules, where X was a Calabi–
Yau manifold. The ingredients which lead to these identities are available
in other contexts. In this section, we shall outline the details for the case
of “string topology.” This can be described as a mathematical abstraction
of bosonic string field theory (see e.g. [35, 36]), that is well known in the
homotopy community. In this section, we shall derive precise analogues of
the taffy identities for string topology.

Let X be a manifold, and let LX be its free loop space. For simplicity, we
will assume in this section that X is simply connected [34]. (See [16, Remark
4.2.17] for an outline of the non-simply connected case.) Costello ([20]; see
also [16, Section 4.2]) explains how the string topology operations of Chas
and Sullivan on C∗LX, the rational cochains on the free loop space, can be
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understood as arising from an open-closed TFT on C∗X. In this language,
the closed string states are9 H∗(LX).

Let C∗X be its algebra of rational singular cochains, which plays the role
of the open string algebra. There is an ∞-category MX of C∗X-modules,
which plays the role for C∗X analogous to the∞-category D∞

b (X) of quasi-
coherent sheaves, whose homotopy category is the derived category (see
Remark 3.1). In other words, (complexes of) D-branes are elements of MX ,
C∗X modules. In this language, open string states between two (complexes
of) D-branes E ,F ∈MX are given by

RHom (E ,F)

(Unlike algebraic geometry, here there is no distinction between local and
global Hom; working over rational cochains is more closely analogous to
working on an affine scheme, where the module defining the sheaf is the
same as the global sections. Therefore, we use the same Hom to describe
both MX modules and also the derived functor of global sections.)

Now, we shall start working out taffy identities. If f : X → Y is a map
of spaces, then associated to the pullback of singular cochains

f∗ : C∗Y −→ C∗X

we have the derived pushforward

f∗ : MX −→ MY

which has a left adjoint

f∗ : MY −→ MX .

If E and F are C∗X-modules, then we write RHomX(E ,F) for RHomMX

(E ,F); it is again a C∗X-module. Moreover, we can define E∨ = RHomX

(E , C∗X). Provided that E is in a suitable sense finitely generated over C∗X

9We have not constructed vertex operators to physically realize such in a CFT; rather,
we are saying that formally, the object playing the role of closed string states is H∗(LX).
A similar statement is true for open string states here.
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(we will use the term “dualizable”), we have equivalences

(E∨)∨ � E
E∨ ⊗F � RHomX(E ,F)

Let E and F be dualizable C∗X-modules, and let Δ : X → X ×X be the
diagonal. Then

RHomX×X(π∗
1E ⊗ π∗

2F∨, Δ∗C∗X) � RHomX(Δ∗(π∗
1E ⊗ π∗

2F∨), C∗X)

� RHomX(E ⊗ F∨, C∗X)

� RHomX(C∗X, E∨ ⊗F)

� RHomX(E ,F)

which is the analogue of the taffy identity (3.10).

The analog of the projection formula (3.3) holds in this context. If f :
X → Y , E is a C∗X-module, and G is C∗Y -module, then

f∗(E ⊗X f∗G) � (f∗E)⊗Y G,

and, at least for products, the Eilenberg–Zilber Theorem provides the analog
of the flat base change theorem (Prop. 6). These considerations immediately
yield the taffy identity analogous to (3.11)

RHomX×X×Y (π∗
1E ⊗ π∗

23S
∨, π∗

12Δ) � RHomX×Y (π∗
1E, S)

for any dualizable C∗(X × Y )-module S.

Similarly, if S is a C∗(X2 × Y )-module, and if Δ refers to the C∗(X2 ×
Y )-module

Δ = Δ∗(C∗(X × Y ))

obtained by pushing forward along (x, y) �→ (x, x, y), and if

Δij = π∗
ijΔ

with πij projection to the indicated factors

πij : X4 × Y → X2 × Y
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then the taffy identities (3.14) and (3.17) become

RHomX4×Y (Δ∨
12, Δ14 ⊗Δ23 ⊗ π∗

34S) � RHomX2×Y (Δ∨, S)

RHomX4×Y (Δ∨
12, Δ13 ⊗Δ24 ⊗ π∗

34S) � RHomX2×Y (Δ∨, S)

The proofs follow the same pattern as the proof we gave of (3.14), using the
projection formula and the flat base change theorem already mentioned.

A more compelling observation is that the the closed string taffy identity
associated to the flattening

Δ Δ

predicts that the closed string algebra associated to C∗X should be

RHomX×X(Δ∨, Δ) � Δ⊗L
C∗(X×X) Δ

As we shall outline below, it is well known that this chain complex is equiv-
alent both to the Hochschild chains on C∗X, HC∗(C∗X; C∗X), and to the
cochains on the free loop space LX = Map(S1, X), C∗(LX). This will give
us the string-topology-analogue of the HKR isomorphism, that played a
crucial role in the B model.

Let us consider this situation mathematically. It turns out that the math-
ematics of the situation is quite close to the defects we discuss here. By intro-
ducing two points (defects) on the closed string word sheet, we can identify
the space of closed strings (“loops”) in X with the space of pairs of paths
in X, joined at their endpoints. That is, the loop space LX = Map(S1, X)
is the pullback of the diagram

PX

ev01

��
PX

ev01 �� X ×X

(4.1)

Here PX = Map([0, 1], X) is the space of maps of the unit interval to X,
and evij : PX → X2 is the map obtained by evaluating the 0-endpoint into
the i factor, and the 1-endpoint into the j factor in the product.



226 MATT ANDO AND ERIC SHARPE

Homotopically, it is equivalent to shrink the paths to constant length,
yielding the diagram

X

Δ
��

X
Δ �� X ×X

(4.2)

The point-set pullback in the diagram (4.2) is not LX, but merely X. Since
homotopy functors, such as cohomology, K-theory, and the derived category,
view these diagrams as equivalent, they cannot possibly preserve pullbacks.
It is necessary to consider in this situation a homotopy-invariant “derived
pullback.”

It turns out that one can construct an object which encodes all possible
homotopy deformations of the diagram (4.2): it is the “cosimplicial space”
B•(X, X ×X, X),

. . .

X × Y 2 ×X

��������

X × Y ×X

������

X ×X

����

Here we have written Y for X ×X. The maps are

d0(x0, y1, . . . , yn−1, xn) = (x0, Δ(x0), y1, . . . )

dn(x0, y1, . . . , yn−1, xn) = (x0, y1, . . . , yn−1, Δ(xn), xn)

di(x0, y1, . . . , yn−1, xn) = (x0, y1, . . . , yi, yi, . . . , yn−1, xn) 1 ≤ i ≤ n− 1.

A basic theorem in homotopy theory ([37], [38, esp. p. 268], [39]) implies
that the situation gets no more complicated than the pullback diagram (4.1):

Proposition 4.1. If X is simply connected, then

B•(X, X ×X, X) � LX

By applying a homotopy functor which preserves derived pullbacks, we
get more familiar results. For example, applying singular cochains C∗(−),
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we find that
B•(C∗X, C∗(X ×X), C∗X) � C∗(LX) (4.3)

The left-hand side in (4.3) refers to the bar complex which calculates Tor,
and so taking cohomology on both sides yields

TorC∗(X×X)(C∗Δ, C∗Δ) = H∗(LX)

Using the relation between Tor and Ext groups, we can rewrite this as

RHomX×X

(
C∗Δ∨, C∗Δ

)
= H∗(LX)

Moreover, it is a theorem of Cartan and Eilenberg [40, Section IX.6] that
the chain complex associated to B•(C∗X, C∗(X ×X), C∗X) is equivalent to
the cyclic complex which calculates Hochschild homology:

HC∗(C∗X) � B•(C∗Δ, C∗(X ×X), C∗Δ),

and so we have the following (well known, see for example [41, Theorem
1.5.1], [42, 43]) result.

Proposition 4.2. If X is simply connected, then

HH∗(C∗X) = H∗(LX) = TorC∗(X×X)(C∗Δ, C∗Δ)

= RHomX×X

(
C∗Δ∨, C∗Δ

)
.

This is precisely the analogue of the HKR isomorphism, expressing closed
string states on X in terms of open string states on X×X, and in terms of
the Hochschild homology of the open string algebra C∗X.

Hopkins and Lurie ([16, 24]; see also Blumberg et al. [44]) have shown
that C∗X is the open string algebra of an open-closed TFT, whose closed
string algebra is C∗(LX); and they have shown that the resulting structure
on C∗(LX) includes the string topology operations of Chas and Sullivan.

We emphasize that the identification of LX as the derived pullback of

X
Δ−→ X ×X

Δ←− X

encodes the closed string taffy identities we consider in Section 3, at the level
of topological spaces: they then have instances in many algebraic settings
by applying homotopy functors. To give an example, consider a loop in X
viewed as assembled from four paths, as in
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12

41

34

23

That is, the loop space is the pullback in the diagram

PX × PX

ev12×ev34

��
PX × PX

ev14×ev23 �� X4

But this diagram is homotopy equivalent to

X×X

Δ12×Δ34

��
X ×X

Δ14×Δ23 �� X4

The same analysis as Proposition 4.1 shows that, if X is simply connected,
then

B•(Δ12 ×Δ34, X
4, Δ14 ×Δ23) � LX

and so by applying singular cochains we find that

TorC∗(X4)(C∗(Δ12)⊗ C∗(Δ34), C∗(Δ14)⊗ C∗(Δ23))

= TorC∗(X2)(C∗(Δ), C∗(Δ)) = H∗(LX),

with all of these agreeing with the Hochschild homology of the singular
cochains, HH∗(C∗X). This is the analog, for string topology, of the taffy
identity (3.15) for closed strings in the B-model.

5 Hochschild (co)homology and closed string states

It is sometimes said that closed string states are the Hochschild (co)homology
of the open string algebra. In the physics literature, closed string states
are often related to Hochschild cohomology; see for example [45, Section
2], [46, Section 3.3] and references therein. In the mathematics community,
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closed string states are often related to Hochschild homology10, see work of
e.g., Kontsevich11, Blumberg–Cohen–Teleman [16,20,24,44]. In this section,
we shall examine this correspondence. Among other things, we shall argue
that, based on the taffy identities, the natural relation is between the closed
string states and Hochschild homology instead of cohomology.

It is also worth pointing out specifically that Costello, Hopkins and Lurie
[16, 20, 24] have developed an approach to topological field theory in which
the rotational symmetry of the closed string states is reflected in Connes’
cyclic structure on the Hochschild complex, and so cyclic homology also
naturally appears in their framework (see e.g. [16, Section 4.2]). In physics,
the relationship between cyclic homology and closed (bosonic) strings was
recently discussed in [47]. (As string topology is a mathematical extraction
of bosonic string field theory, there are close parallels between their work and
parts of our discussion of string topology; our Proposition 4.2, for example,
is essentially [47, equation (95)].)

5.1 B model

In the language of the B model topological field theory, closed string states
can be related to Hochschild (co)homology via the “HKR isomorphism,”

H∗ (X, Λ∗TX) = Ext∗X×X (Δ, Δ)

for a Calabi–Yau X. One, somewhat vague, reason sometimes stated for this
relationship between closed and open strings is that if one accepts that closed
strings should be derived from open strings, then closed string states should
arise as some sort of cohomology operation on the open string algebra, and
Hochschild cohomology arises very naturally in this role. A more refined
intuition is sometimes stated, in terms of folding closed strings into open
strings.

In Section 3.4 we learned how to make such intuitions physically precise
for the B model. In the process, we learned that the closed string states are
naturally given by Hochschild homology, not cohomology. In this section,
we will review Hochschild homology and cohomology, and their relationship.

10M.A. first learned that closed string states are related to open string states in this
way from Berenstein in 2001.

11The work of Hopkins and Lurie places this relationship in the context of enriched
topological field theory, which we outlined in Section 2.2.
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In general, for an algebra A, the Hochschild homology is [48, Prop. 1.1.13]

HH∗(A) = TorA⊗Aop

∗ (A, A)

and the Hochschild cohomology is [48, Prop. 1.5.8]

HH∗(A) = Ext∗A⊗Aop (A, A)

In the case of the B model, the open string algebra is OX , as the B branes
are coherent OX -sheaves. Since the local Ext groups reduce to Hochschild
cohomology for algebras, one defines the Hochschild cohomology of X to
be [21, Def’n 6.2]

Ext∗X×X (Δ, Δ)

where, as usual, Δ denotes Δ∗OX . A natural guess would be that the Hoch-
schild homology should be defined similarly as a global Tor group; however,
global Tor groups for sheaves do not seem to be consistently defined. It is
true, however, true that

Ext∗X
(
A∨, B

)
= RΓ (X, A⊗B)

for any two elements A, B ∈ Db(X), and the right-hand side of that expres-
sion is morally, if not literally, a global Tor group. Thus, the reader should
not be surprised to learn that Hochschild homology of X is defined to be [21,
Def’n 6.2]

HH∗(X) = Ext−∗
X×X

(
Δ∨, Δ

)

(The change in sign of the grading is the convention in this context. Although
Hochschild cohomology of a space is always in positive degrees, Hochschild
homology is in both positive and negative degrees.)

In Section 3.4, we saw from folding operations that the closed string states
in the B model are given by Hochschild homology,

HH∗(X) = Ext−∗
X×X

(
Δ∨, Δ

)

ultimately because a closed string can be flattened into an open string on
X×X with diagonal boundary conditions. Let us compare this to more
standard expressions for states in the closed string B model.

The Hochschild homology and cohomology can be related to differential
forms [21, Section 6.4], thanks to the “HKR isomorphism” [49–52], which
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says that for X a smooth quasi-projective variety over C,

HHn(X) ≡ Extn
X×X (Δ, Δ) ∼=

⊕

p+q=n

Hp (X, ΛqTX) (5.1)

HHn(X) ≡ Ext−n
X×X

(
Δ∨, Δ

) ∼=
⊕

q−p=n

Hp
(
X, Ωq

X

)
(5.2)

Using the fact that
Ωq

X = KX ⊗ Λn−qTX

where n is the dimension of X, we see that

Hp
(
X, Ωq

X

)
= Hp

(
X, KX ⊗ Λn−qTX

)

and so

HH∗(X) =
⊕

q−p=∗
Hp

(
X, Ωq

X

)
=

⊕

q−p=∗
Hp

(
X, KX ⊗ Λn−qTX

)

=
⊕

p+q=n−∗
Hp (X, KX ⊗ ΛqTX)

When X is Calabi–Yau, we see from the above that

HH∗(X) = HHn−∗(X)

If KX is non-trivial but 2-torsion, then the Hochschild homology and coho-
mology no longer have a simple relationship.

5.2 String topology

In Section 3 we used taffy identities built from defects to explain why the
closed string in a topological field theory should be the Hochschild homology
of the open string states.

We discussed an analogue of the HKR isomorphism for string topology in
Section 4. Specifically, we argued there that

HH∗(C∗X) = H∗(LX) = RHomX

(
C∗Δ∨, C∗Δ

)

This tells us, in part, that open string states on X×X match closed string
states on X, but more to the point, it identifies closed string states with
the Hochschild homology (instead of Hochschild cohomology) of C∗X, the
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open string algebra. Just as in the B model, the closed string states are
naturally associated to Hochschild homology instead of cohomology, in this
framework.

5.3 Generalized cohomology

Our analysis of the relationship between Hochschild homology and closed
strings has the virtue that one can insert other homotopy functors which
preserve derived pullbacks, yielding potentially other topological field the-
ories. For example, replacing singular cochains with maps to Z×BU , one
can hope to build a topological field theory based on K-theory, whose closed
string algebra is the Hochschild homology HH∗(KX). In fact Hopkins
announced a result like this at the Fields Institute [24]. Note that some
care must be taken in interpreting this assertion: for example the usual
analysis of Hochschild homology and loop spaces requires the space X to be
simply connected; in this context, it also suggests that one might have to
use “connective” K-theory.

One situation to which this analysis of Hochschild homology does not
apply directly is the B-model considered in Section 3. We could analyze
that case in this language by using the ideas outlined in the introduction.
Specifically, consider a “closeable” configuration of n open strings of the
form

E0

E1

E2

E3

· · ·

En

to which we associate

Hom(E0, E1)×Hom(E1, E2)× · · · ×Hom(En, E0)

(Note this is not the same thing as the massless spectrum of the diagram,
but rather is a more abstract quantity. Also note that in this discussion, the
Homs should be taken in the ∞-category D∞

b (X): they are really RHoms.)
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A similar configuration containing only n− 1 open strings should be associ-
ated a product of Hom’s related to the one above via the composition

Hom(En−1, En)×Hom(En, E0) −→ Hom(En−1, E0)

in one direction, and by setting En = En−1 with the identity operator in the
other direction. This gives rise to a complex

⊕
E0,...,En

Hom(E0, E1)×Hom(E1, E2)× · · · ×Hom(En, E0)

. . .

⊕
E0,E1,E2

Hom(E0, E1)×Hom(E1, E2)×Hom(E2, E0)

�� �� ��

⊕
E0,E1

Hom(E0, E1)×Hom(E1, E0)
�� ��⊕

E0
Hom(E0, E0)

In this complex, the structure maps are those of the Hochschild complex,
and (modulo important technical subtleties) McCarthy and Keller [17–19]
use this complex to define the Hochschild homology of the category of OX -
modules, in such a way that HH∗(Mod(OX)) is the Hochschild homology
of X.

6 A model

So far, we have discussed the B model and string topology in this paper.
Let us now turn to the analogous constructions in the A model, and briefly
outline the highlights. A complete analysis would involve working through
the analogous constructions in derived Fukaya categories, which we have not
done; instead, we will work solely in a large-radius limit (hence turning off
quantum corrections), and only consider a few special cases.

Let us first consider folds in the A model. Open strings in the A model
have boundaries on either Lagrangian or co-isotropic submanifolds, depend-
ing upon the Chan–Paton factors. If we let ω denote the symplectic form on
X, then because the folding operation reverses the orientation on the second
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sheet12, the symplectic form on X×X is

π∗
1ω − π∗

2ω

With respect to this13 symplectic form on X×X, the diagonal embedding
Δ : X → X×X defines a Lagrangian14 submanifold of X×X for any X, and
so partly as a result that submanifold together with a trivial line bundle
define a supersymmetric boundary for the A model. That boundary will
play the same role here that it did for the B model, i.e., it will play the role
of an identity in folding operations.

For the moment, let us assume all boundaries are on Lagrangian sub-
manifolds, for simplicity. Omitting worldsheet instanton corrections, the
massless spectrum of an A model open string between boundaries (L1, E1)
and (L2, E2), where L1, L2 are Lagrangian submanifolds of X, and E1, E2
are flat vector bundles with connection over those Lagrangian submanifolds,
is given by

H i
d (L1 ∩ L2, E∗1 ⊗ E2)

Let us first consider open string states and folding tricks, and try to
re-derive a few of our results from the B model and string topology.

Consider first a closed string on X in the A model. If we crush it to an
open string on X×X, as

then (ignoring orientation issues on the boundaries for the moment), we
would expect that closed string states should match

H∗
d (Δ,O) = H∗

DR(X)

where Δ : X ↪→ X×X is the diagonal in X×X. Such a case has been con-
sidered previously in [53]. In fact, that reference also considered the effect
of quantum corrections (meaning, for example, that open string states are
Hom’s in a derived Fukaya category), and conjectured that the product

12We can see this by following the orientation on a string; across a fold, the direction
flips. In the B model, this is a complex conjugation, and this is one way of understanding
why the Chan–Paton factors on one sheet are defined by the dual bundle.

13It is straightforward to check that without the relative sign, i.e. for π∗
1ω + π∗

2ω, the
diagonal is not Lagrangian.

14More generally, if W , Y are Lagrangian in X, then W × Y is Lagrangian in X × X.
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structure on open string Hom’s should match the quantum cohomology ring
of X.

Let us also outline some of the basic manipulations of open strings, also
for simplicity in a large-radius limit where worldsheet instanton corrections
have been turned off. Start with an oriented open string

1 2

between (L1, E1) and (L2, E2), with states given by

H∗
d (L1 ∩ L2, E∗1 ⊗ E2)

Now, fold this into a U-shape:

1

2

Following the usual procedure, open string states on the U-shaped diagram
should be given by

H∗
d (L ∩Δ, π∗

1E∗1 ⊗ π∗
2E2)

where L is the Lagrangian submanifold of X×X given by

L = { (x1, x2) ∈ X×X |x1 ∈ L1, x2 ∈ L2 }

i.e., L = L1 × L2 ⊂ X×X.

As the physics matches, it should be true that

H∗
d (L1 ∩ L2, E∗1 ⊗ E2) = H∗

d (L ∩Δ, π∗
1E∗1 ⊗ π∗

2E2)

and indeed, this is trivial to check.

Similarly, if we fold the same oriented string in the opposite direction
to get

2

1
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then the corresponding open string states should again be

H∗
d (L ∩Δ, π∗

1E∗1 ⊗ π∗
2E2)

So far we have merely outlined how the simplest taffy manipulations would
work in the A model, in the large-radius limit. More generally, we conjecture
that there exist analogues of the B model taffy identities (3.11), (3.14), (3.17)
for derived Fukaya categories.

One quick check that we shall mention is to compare to open string
Gromov–Witten invariants. We are implicitly predicting that open string
Gromov–Witten invariants of open strings on X×X, with the boundary
conditions determined by the diagonal, should match closed string Gromov–
Witten invariants. (For example, a rational curve on X would be a calzone-
shaped object on X×X.) Furthermore, this would also test whether the
same ideas are applicable after coupling to worldsheet gravity. We have
been informed [54] that, indeed, open string Gromov–Witten invariants on
X×X as above do in fact match closed string Gromov–Witten invariants on
X, and that there also it is merely an unravelling of definitions.

7 Matrix factorizations

In a Landau–Ginzburg theory, we can understand a defect joining two open
strings as follows [4, 5]. If one space is X with superpotential WX , and the
other space is Y with superpotential Y , then denoting the projections from
X×Y to X, Y by pX , pY , respectively, the defect is defined by a matrix
factorization in the superpotential

p∗XWX − p∗Y WY

over X×Y .

We can understand the identity defect as follows. Over the image of the
diagonal embedding Δ : X ↪→ X×X, the superpotential

W ≡ p∗1WX − p∗2WX

vanishes. A matrix factorization is defined over a submanifold S by a pair
of vector bundles E , F over S with maps f : E → F , g : F → E such that
f ◦ g = (W |S) IdE , g ◦ f = (W |S) IdF . In the present case, for S the diagonal
submanifold, W |S = 0, so we can take E = OX , F = 0, and f = g = 0.



TWO-DIMENSIONAL TOPOLOGICAL FIELD THEORIES 237

Given the structure above, we make the following conjectures for matrix
factorizations:

1. The hypercohomology groups

H∗
(
X, · · · −→ Λ2TX

dW−→ TX
dW−→ OX

)

which count closed string states in Landau–Ginzburg models [55] match
RHom’s on X×X in the category of matrix factorizations

RHomX×X,p∗1W−p∗2W ((Δ∗OX , 0), (Δ∗OX , 0))

as would be suggested from the general considerations of Section 5.
This has been confirmed for the local case (meaning, affine X, iso-
lated critical points) in [56] in the mathematics literature and [45] in
the physics literature. The more general form above has also been
conjectured by others.

2. Analogues of the taffy identities (3.11), (3.14), (3.17) hold.

8 Critical strings, supercritical dimensions

So far we have spoken exclusively about two-dimensional topological field
theories, but identical ideas apply, with some caveats, to full string theories.
After all, the folding operation is trivial, it is an artifact of the worldsheet
description, and does not itself convey any physics. (The catch, the caveat,
is the coupling to worldsheet gravity. We do not understand how to couple
theories with defects to worldsheet gravity. In this section, we will consider
physical untwisted strings, but not coupled to worldsheet gravity.)

This does lead to some counterintuitive results, however. For example,
consider a closed string on a 10-manifold X. If we fold the closed string
to an open string on X×X, then we have discovered that, for certain spe-
cial boundary conditions, open strings on 20-dimensional spaces behave like
critical strings.

If we track through the physics in detail, we find that this is largely correct
(albeit with subtleties involving coupling to gravity). Consider an ordinary
closed string bosonic field φμ, canonically quantized as

φ̂(τ, σ) = x +
p

4π
+

i√
4π

∑

n	=0

1
n

(
αne−in(τ−σ) + α̃ne−in(τ+σ)

)
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Suppose these describe a local description of some manifold X of dimension
k. An open string on X×X with boundary conditions in the diagonal would
be described by operators

φ̂μ(τ, σ) = xμ +
pμ

4π
+

i√
4π

∑

n	=0

1
n

(
αμ

ne−in(τ−σ) + α̃μ
ne−in(τ+σ)

)

with μ ∈ {1, . . . , 2k}, and the boundary conditions

φ̂μ>k(σ = 0, π) = φ̂μ−k(σ = 0, π)

force
xμ>k = xμ−k, pμ>k = pμ−k, αμ>k

n = αμ−k
n , α̃μ>k

n = α̃μ−k
n

With these constraints, however, φ̂ is equivalent to a closed string field on X.

So far, we have demonstrated that in canonical quantization on the world-
sheet, operators on an open string on X×X with diagonal boundary condi-
tions are equivalent to operators on closed strings on X. It is tempting to
therefore conclude that physical open strings on X×X as above are there-
fore equivalent to physical closed strings on X; however, the result should
be interpreted with a certain amount of care. For example, the computa-
tion of the bulk central charge in the open string theory is unaffected by
the boundary conditions, and so will be twice its value for the correspond-
ing closed string theory. In the present case, that might possibly signal15

that the number of ghost fields on the open string worldsheet should also be
doubled, also with diagonal boundary conditions.

To properly understand the issues above would involve understanding how
defects are coupled to worldsheet gravity, which we shall not attempt here.

In passing, we feel we should mention the tangentially-related fact that
there exist tachyon-free closed string theories in dimensions 8k + 2 [57, Sec-
tion 5].

9 Conjectures on elliptic genera

Let us now apply some of these ideas to try to gain some insight into elliptic
genera. Physically, an elliptic genus is the torus partition function of a
(half-twisted) closed string on a space X. Now, insert two identity defects

15We would like to thank Hellerman for suggesting this possibility.
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along the sides, along which the torus can be cut open like a bagel, and glue
together the two sides to get an annulus diagram on X×X.

Now, from the Cardy condition, an annulus diagram can be thought of
as either a closed string propagating between two boundary states, or an
open string propagating in a loop, and furthermore that either method of
computation should give the same result.

For example, for an ordinary annulus diagram in the B model, the Cardy
condition reduces to Hirzebruch–Riemann–Roch [23]. In the present case,
we have a half-twisted closed string one-loop diagram on X, represented
as an annulus diagram on X×X. Following the same philosophy of annu-
lus diagrams, it is natural to try to interpret the partition function of the
annulus as describing an index computation on X×X.

For the right notion of open string states, index theory should recover
elliptic genera. For example, following [58], a prototype for the elliptic
genus is the expression

∑
qk/2Rk =

⊗

k=1/2,3/2,5/2,···
ΛqkTX

⊗

�=1,2,3,···
Sq�TX

where

R0 = 1
R1 = TX

R2 = Λ2TX ⊕ TX

R3 = Λ3TX ⊕ (TX ⊗ TX)⊕ TX

and so forth. The Ri are defined by the string states; the expression above
defines an index of the form

∑

i,k

qk/2(−)idim H i(X, Ri)

=
∫

X
Td(TX) ∧ ch

⎛

⎝
⊗

k=1/2,3/2,5/2,···
ΛqkTX

⊗

�=1,2,3,···
Sq�TX

⎞

⎠

The right-hand side we could interpret as closed strings on X×X propagat-
ing between two copies of the diagonal; the left-hand side we could interpret
as the partition function of open string states.
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So far, however, this picture of elliptic genera is not particularly notewor-
thy. We can try to significantly generalize this picture as follows. Instead
of starting with an ordinary closed string, begin with n open strings on X
joined together along defects, defined by pushforwards along the diagonal of
n elements of K theory of X (and so sitting on the diagonal embedding in
X×X).

We can understand those n elements of K theory as giving a finite approx-
imation to K theory on the loop space, in the spirit of [43]. (Given that
elliptic genera are understood [58] in terms of index theory on loop spaces,
this is already pertinent.)

Now, imagine propagating those defects around in a circle, to form a torus
with slanted sides. We can use the folding tricks discussed earlier in this
paper to collapse such a diagram down to an annulus, with collections of
K theory elements on the boundaries. If one could compute those annulus
amplitudes explicitly, and furthermore “trace over” the boundary K theory
elements, then one would be able to construct an explicit map to ordinary
elliptic genera, giving an new way to understand the relationship between
elliptic genera and K theory on loop spaces.

Although we do not have anything definitive to say here, we feel we should
observe that the work [59] may be relevant to such questions.

10 Conclusions

In this paper, we have worked out mathematical identities to verify that B
model and string topology are invariant under taffy-like operations, which
involve folding and twisting worldsheets into different-appearing yet phys-
ically equivalent forms. Those identities are essentially consequences of
homotopy invariance of the underlying theory. We have also outlined anal-
ogous results and conjectures in other contexts, including the A model,
B-twisted Landau–Ginzburg models, and physical strings, and presented
some conjectured applications to the study of elliptic genera.

One natural speculation for future work concerns other applications of
trivial defects. For example, although one typically only thinks of using
differential forms to compute (real-valued) cohomology on manifolds, differ-
ential forms can also be applied to more general topological spaces, see for
example [60]. It is natural to speculate whether ideas similar to those of [60]
might be applied physically to understand string states in higher-order defect
junctions.
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Another direction for future work is to apply the same ideas to topological
field theories in higher dimensions, where defects have also appeared. Are
there analogous taffy-like constructions there?

Yet another directions is to understand whether the taffy identities pre-
sented here are a consequence of general mathematical axiomatic frameworks
for (enriched) topological field theories.

In a different direction, U-shaped branes have appeared in discussions of
holographic duals to chiral symmetry breaking, see e.g. [61] and references
therein. We do not see a direct connection — our work is concerned with
worldsheet reparametrizations and alternate descriptions, whereas there a
brane is physically being bent — but it would certainly be interesting if a
direct link could be found.
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