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Abstract

We consider the general supersymmetric one-dimensional quantum
system with boundary, critical in the bulk but not at the boundary.
The renormalization group (RG) flow on the space of boundary condi-
tions is generated by the boundary beta functions βa(λ) for the bound-
ary coupling constants λa. We prove a gradient formula ∂ ln z/∂λa =
−gS

abβ
b where z(λ) is the boundary partition function at given temper-

ature T = 1/β, and gS
ab(λ) is a certain positive-definite metric on the
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space of supersymmetric boundary conditions. The proof depends on
canonical ultraviolet behavior at the boundary. Any system whose short
distance behavior is governed by a fixed point satisfies this requirement.
The gradient formula implies that the boundary energy, −∂ ln z/∂β =
−Tβa∂a ln z, is nonnegative. Equivalently, the quantity ln z(λ) decreases
under the RG flow.

1 Introduction

In this paper we consider the renormalization group (RG) flow for supersym-
metric one-dimensional quantum systems with boundary which are critical
in the bulk but not critical on the boundary. First, we give a brief overview
of what is known without the assumption of supersymmetry. There are
many condensed matter applications for such systems, such as quantum
impurities and quantum Hall edge excitations (see, e.g., [1] for a review).
We expect that supersymmetric bulk-critical one-dimensional systems with
boundaries — and junctions — can be realized in practice. Such super-
symmetric quantum circuits might be useful for large-scale quantum
computing [2].

Consider a bounded system of length L at low temperature T = 1/β.
Let HL be the hamiltonian1 of the bounded system. The partition func-
tion is ZL = tr

(
e−βHL

)
. There are two boundaries, one at each end. In

the limit L → ∞, the two boundaries decouple and the partition function
of the whole system factorizes into a bulk contribution and two boundary
contributions:

ZL ∼ eπcL/6βzz′. (1.1)

Here c is the central charge of the conformal field theory describing the bulk
critical system, −πc/6β2 is the universal free energy density of the bulk
conformal field theory, and z and z′ are the L-independent contributions of
the boundaries. For a unitary theory the sign of z can be fixed so that z is
positive. The quantity z is the boundary partition function. It is a function
z(λ, μβ) depending on the boundary coupling constants λa that parametrize
the boundary condition and on the temperature T = 1/β (in dimensionless
units of the energy scale μ).

1We are considering 1d quantum mechanical systems so we can assume unitarity: the
hamiltonian is a self-adjoint operator acting on a Hilbert space of states. By Wick rotation,
our results apply equally well to 2d statistical systems that satisfy reflection positivity.
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The boundary partition function has no representation of the form z =
tr

(
e−βh

)
so there is no reason to believe that the boundary thermodynamic

functions constructed from z will satisfy the usual thermodynamic princi-
ples. Nevertheless, it can be proved [3] that the boundary entropy

s =
(

1 − β
∂

∂β

)
ln z (1.2)

does decrease monotonically with temperature. That is, the boundary
satisfies the second law of thermodynamics. We emphasize that this was
not necessarily to be expected. The entropy of the whole system behaves as

SL ∼ s + s′ +
cπL

3β
(1.3)

as L → ∞. The total entropy SL decreases monotonically with temperature,
but so does the bulk term. The subtraction of the bulk term precludes
a straightforward derivation of the second law of thermodynamics for the
boundary entropy s.

The RG equation is

μ
∂ ln z

∂μ
= βa ∂ ln z

∂λa
, (1.4)

where the βa(λ) are the boundary beta functions. The critical boundary
conditions are described by the fixed points, βa = 0. The boundary par-
tition function at a fixed point is a number, scale invariant and therefore
independent of temperature, traditionally denoted z = g. The number g was
introduced as an invariant of critical boundary systems by Affleck and Lud-
wig [4], who called it the universal noninteger ground state degeneracy. They
conjectured [4,5] that, for two critical boundary conditions connected by an
RG trajectory, the value of g at the infrared fixed point is always smaller
than the value at the ultraviolet fixed point. Affleck and Ludwig’s con-
jecture follows from the second law of boundary thermodynamics, because
s = ln g at each of the fixed points, and the scale μ can be traded for the
temperature.

The second law of boundary thermodynamics is a consequence of yet a
stronger statement, the boundary gradient formula proved in [3]:

∂s

∂λa
= −gabβ

b, (1.5)

where gab is a certain positive-definite metric on the space of boundary
couplings. Since ln z and s depend on the dimensionless product μβ, the
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RG equation for s can be written

μ
∂s

∂μ
= β

∂s

∂β
= βa ∂s

∂λa
. (1.6)

Contracting (1.5) with βa gives

β
∂s

∂β
= βa ∂s

∂λa
= −βagabβ

b ≤ 0 (1.7)

which says that s decreases as the temperature decreases. The boundary
second law thus follows from the gradient formula.

The proof of the gradient formula given in [3] used the euclidean descrip-
tion of the finite-temperature quantum system. The metric in equation (1.5)
is

gab = β

∫ β

0
dτ [1 − cos (2πτ/β)] 〈φa(τ)φb(0)〉c, (1.8)

where 〈 · · · 〉c stand for the connected thermal correlation functions. The one-
dimensional system with a single boundary is described by a two-dimensional
euclidean field theory with spatial coordinate x, 0 ≤ x < ∞, and euclidean
time τ . The boundary is at x = 0. The euclidean time τ is periodic with
period β. The euclidean space–time is the semi-infinite cylinder with coor-
dinates (x, τ). The boundary coupling constants λa couple to boundary
operators φa(τ), localized at x = 0, so that

∂ ln z

∂λa
=

∫ β

0
dτ 〈φa(τ)〉 = β〈φa〉. (1.9)

An alternative proof of the gradient formula (1.5) using real-time methods
was presented in [6]. There, the metric gab was expressed via response func-
tions. The proof of the gradient formula (1.5) relies on the assumption that
the two-point correlation functions of the boundary operators φa(τ) with
themselves and with the stress-energy tensor and Tμν(x, τ) behave canoni-
cally at short distance. This assumption is valid if the ultraviolet limit is
governed by a fixed point, because then the boundary operators φa(τ) must
be relevant at the fixed point. It is interesting to note that no assumption
of this kind is needed to prove Zamolodchikov’s c-theorem [7], which estab-
lishes the monotonic decrease of the c-function under the RG flow in the
space of bulk 2d field theories.

Now we specialize to supersymmetric one-dimensional systems with
boundary. In supersymmetric systems the thermodynamic energy −∂ lnZ/

∂β is always nonnegative, because the hamiltonian is of the form H = Q̂2,
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where Q̂ is the supercharge operator. However, it is not obvious that the
boundary energy in such a supersymmetric system should be nonnegative.
Consider again a finite system of length L. For the whole system, certainly
−∂ lnZL/∂β ≥ 0, but

−∂ lnZL

∂β
= −∂ ln z

∂β
− ∂ ln z′

∂β
+

πcL

6β2 (1.10)

as L → ∞. The positivity of the large bulk energy prevents us from con-
cluding that the boundary energy is positive.

In this paper we prove the positivity of the boundary energy by deriving
a new gradient formula for the supersymmetric boundary RG flow

∂ ln z

∂λa
= −gS

abβ
b, (1.11)

where gS
ab is a certain positive-definite metric on the space of supersym-

metric boundary conditions (not the same metric as in the general gradient
formula). Contracting with βa gives

−∂ ln z

∂β
= TβagS

abβ
b ≥ 0 (1.12)

which proves that the boundary energy is nonnegative.

As in the case of the general gradient formula (1.5), which was to a large
extent inspired by work done in string theory [8–12], the existence of a
different gradient formula for the supersymmetric boundary RG flow was
anticipated in the string theory literature [13–15]. It was conjectured in
[13–15] that z is a potential function for such a gradient formula.2 In [15]
the expression for the metric gS

ab was put forward, which we will show to be
correct, but a proof of the gradient formula was still lacking. In this paper
we give two different proofs of (1.11). In Section 3 we give a proof using
the formalism of euclidean quantum field theory. In Section 4 we use real-
time methods. The two proofs are compared in Section 5. In the euclidean

2In string theory, one wants a gradient formula for the beta function, such as (1.11), in
order to have a space–time action principle. In string theory it is z rather than ln z that
is a natural potential function (a string field theory action). The link between (1.5) and
its stringy version requires special treatment of the tachyon zero mode [3]. The stringy
version of the supersymmetric gradient formula (1.11) is trivially obtained by multiplying
both sides by z.
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approach the metric is written

gS
ab = 2π

∫ β

0
dτ sin (πτ/β) 〈φ̂a(τ)φ̂b(0)〉, (1.13)

where the φ̂a(τ) are the fermionic superpartners3 of the bosonic boundary
operators φa(τ). In the real-time approach, the same metric is written in
terms of real-time response functions of the φ̂a(t),4

gS
ab = π

∫ ∞

−∞
dt e−π|t|/β〈 {φ̂b(t), φ̂a(0)} 〉. (1.14)

Like the general gradient formula, formula (1.11) is proved under the con-
dition of canonical short distance behavior at the boundary, now for the cor-
relation functions 〈φ̂a(τ)φ̂b(τ ′)〉, 〈φ̂a(τ)θ̂(τ ′)〉, and 〈Gμr(τ, x)φ̂b(τ ′)〉 where
Gμr is the bulk supersymmetry current and θ̂ is its boundary part. Again,
the condition is satisfied if the extreme UV limit is described by a fixed
point (which would necessarily be supersymmetric). Then the UV scaling
dimension of φ̂a is at most 1/2 and the bulk supercurrent Gμr has canonical
scaling dimension 3/2. At present, we see only technical reasons for the
gradient formulas to depend on canonical UV behavior at the boundary.

The metric gS
ab(λ), like the bosonic metric gab(λ), is covariant under

change of coordinates λa in the space of boundary conditions. This follows
from formulas (1.8) and (1.13) where the metrics are defined by expressions
that are insensitive to possible contact terms in the two-point functions.

However both metrics may fail to be invariant under the RG flow. RG
invariance is the condition that change of scale is equivalent to flow under
the RG,

μ
∂gab

∂μ
= (Lβg)ab = βc ∂gab

∂λc
+

∂βc

∂λa
gcb + gac

∂βc

∂λb
. (1.15)

RG invariance means that the metric, although it is defined at a certain tem-
perature (scale), in fact does not depend on the arbitrary choice of scale. The
metric depends only on the running coupling constants at the temperature at

3The one-point functions 〈φa(τ)〉 which appear on the left-hand side of the gradient
formula can be non-vanishing because the global supersymmetry is spontaneously broken
at non-zero temperature.

4We abuse notation in writing φ̂b(τ) when we are discussing physics in euclidean time,
and φ̂b(t) when discussing real-time physics. To be consistent, we should write either
φ̂b(τ) and φ̂b(it) or φ̂b(−it) and φ̂b(t). We are perhaps also abusing terminology when we
refer to response functions of fermionic operators.
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which it is measured. Without RG invariance, the metric depends on more
than the running coupling constants at the physical temperature. There
are many different gradient formulas, one for each temperature, all satis-
fied. We suppose that this unsatisfactory situation might be alleviated by
introduction of some auxiliary couplings.

The problem with RG invariance of the metric is that the local fields
need only transform covariantly under the RG flow up to total derivative
operators,

μ
∂φa(τ)

∂μ
=

∂βb

∂λa
φb(τ) + ∂τχa(τ). (1.16)

Such admixtures do not affect such quantities as ∂s/∂λa and ∂ ln z/∂λa but
do affect local correlators such as are used in the definition of the metric
(1.8). The transformation law (1.16) is consistent with our UV assumptions
as long as the UV scaling dimension of the field χa is zero. Such fields can
exist if the UV fixed point theory has multiple — degenerate — ground
states. This is in the ultraviolet limit, not in the infrared, so there is no
physical pathology. Note that the left-hand side of the gradient formula
is RG invariant, so the right-hand side, gabβ

b, must also be RG invariant.
This puts constraints on the correlators of the χa(τ). For supersymmetric
theories, the scale transformation of the metric gS

ab is affected by analogous
admixtures in the RG transformation law for the fermionic boundary fields,

μ
∂φ̂a(τ)

∂μ
=

∂βb

∂λa
φ̂b(τ) + {Q̂, χa(τ)}. (1.17)

It would be desirable both to find explicit examples where the metric is
not RG invariant and also to get a deeper general understanding of such
situations.

In an isolated supersymmetric system, the ground state energy E0 is zero
if and only if the supersymmetry is unbroken in the ground state. The
low-temperature limit of the partition function is therefore a definitive diag-
nostic of spontaneous supersymmetry breaking in the ground state. When
the supersymmetry is broken, then lnZ decreases as −βE0, with no lower
bound. When the supersymmetry is unbroken, the partition function Z
decreases to a lower bound, the ground state degeneracy, so ln Z ≥ 0. In
supersymmetric boundary systems, the low-temperature limit of ln z is more
problematic. The gradient formula we prove here, equation (1.11), implies
that the boundary thermodynamic energy is nonnegative,

e(β) = −∂ ln z

∂β
≥ 0. (1.18)
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The general gradient formula implies the second law for the boundary,

∂e

∂β
= −∂2 ln z

∂β2 =
1
β

∂s

∂β
≤ 0. (1.19)

So the boundary energy is nonnegative and decreases monotonically as β →
∞. Therefore it must have a nonnegative limit

lim
β→∞

e(β) = e0 ≥ 0. (1.20)

The bulk superconformal invariance implies that there is no bulk ground
state energy, so all the ground state energy must be localized in the bound-
ary. The total ground state energy is e0. Therefore the supersymmetry is
spontaneously broken if and only if e0 > 0. Certainly, if e0 > 0 then ln z
goes as −βe0 for large β. When the supersymmetry is unbroken, e0 = 0,
we can ask if ln z ≥ 0 as β → ∞, as for an isolated supersymmetric system.
The elementary proof does not work, as before, because in the finite system

lnZL ∼ ln z + ln z′ +
πcL

6β
(1.21)

so ln z is the difference of two positive numbers.5 In fact, an example of
supersymmetric critical boundary with ln z < 0 has been given in [16] (the
boundary condition labeled ‘0’ there).

We cannot even say whether or not ln z is bounded below as β → ∞, in
general. There seems to be a parallel with the question of a lower bound
on the boundary entropy s in the general, non-supersymmetric case. Unlike
ordinary entropy, s can be negative. There are many examples. We cannot
prove a universal lower bound on s, or a lower bound for a given bulk
conformal field theory. We cannot even prove that s is bounded below as
a function of β for a given boundary system. Some partial results were
found in [6]. It does not seem that supersymmetry helps to get any stronger
results on a lower bound for s. The methods of [6] can be easily generalized
to study the rate of change of the boundary free energy at low temperature
in the supersymmetric case, but again we find nothing conclusive. New
methods are needed to put a definite lower bound either on s or on ln z. The
second law of boundary thermodynamics, which holds in general, and the
positivity of the boundary energy for supersymmetric systems both suggest
that boundaries of systems critical in the bulk behave in some respects like
isolated thermodynamic systems. The absence of lower bounds on s and
ln z would weaken this analogy. The absence of lower bounds also prevents

5Note that the limits L → ∞ and β → ∞ do not commute.
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the gradient formula from definitively controlling the infrared limits of the
boundary RG.

Finally, it would be desirable to have some physical insight into the crucial
roles of bulk conformal invariance and canonical UV boundary behavior
in the picture of boundary physics that is provided by the two gradient
formulas.

2 Supersymmetry in the presence of a boundary in 2d and
1+1d

A near critical one-dimensional quantum system with boundary, at temper-
ature T = 1/β, can be described by a two-dimensional Euclidean quantum
field theory on a semi-infinite cylinder with coordinates (x, τ), as defined in
the introduction. Space is the half-line 0 ≤ x < ∞. Correlation functions of
bosonic fields are periodic in euclidean time τ , with period β, while correla-
tion functions of fermionic fields are anti-periodic. The Wick rotation to real
time is given by τ = it.6 It is convenient to introduce a complex coordinate
w = x + iτ = x − t, and its complex conjugate w̄ = x − iτ = x + t. We set
the RG scale μ to 1, since variation of the RG scale is equivalent to variation
of β.

2.1 Spinor conventions

A Dirac spinor ε̂ in two dimensions has two complex components

ε̂ =
(

ε̂+
ε̂−

)
, (2.1)

where ε̂+ and ε̂− are the positive and negative chirality components. The
euclidean reality condition is (ε̂+)∗ = ε̂−. We use μ, ν, . . . for vector indices
and r, s, . . . for spinor indices. Spinor indices are raised and lowered accord-
ing to the rule ε̂+ = 2ε̂−, ε̂− = 2ε̂+. Our Dirac matrices γμ are

γw = γx − γt =
(

0 2i
0 0

)
, (γw)−

+ = 2i, γw
++ = i, (2.2)

γw̄ = γx + γt =
(

0 0
−2i 0

)
, (γw̄)+− = −2i, γw̄

−− = −i. (2.3)

6Again, we will abuse notation by writing fields and operators as functions of τ working
in euclidean time, and as functions of t when working in real time.
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2.2 Supersymmetry transformations

We now assume that the system at hand is endowed with an action of local
supersymmetry transformations δε̂ labeled by fermionic real spinor fields
ε̂r(x, τ), antiperiodic in τ . These are the superpartners of the ordinary
deformations of space–time. The transformations satisfy the algebra

[δε̂1 , δε̂2 ] = 2ε̂r
1ε̂

s
2γ

μ
rs∂μ. (2.4)

The vector fields on the right-hand side of (2.4) must preserve the boundary,
which requires a condition ε̂+ = ±ε̂− on the boundary. The choice of sign is
conventional. We adopt

ε̂+(0, τ) = ε̂−(0, τ) ≡ ε̂(τ). (2.5)

The supersymmetry transformations are generated by a local fermionic
current Gμr whose Ward identities are

〈δε̂O〉 =
∫∫

dxdτ ∂με̂r〈 Gμr(x, τ)O 〉c, (2.6)

where O stands for an arbitrary insertion of local operators and the spinor
field ε̂r(x, τ) vanishes at large x. The operator Gμr(x, τ) in the above
expression is understood as a distribution on the half-cylinder that can have
singularities on the boundary and at the points of insertion of other local
operators. Choosing ε̂r to vanish near the insertions we obtain the conser-
vation equation

∂μGμr(x, τ) = 0, (2.7)

where the derivative is taken in the distributional sense.

The Ward identity (2.6) implies that the system with boundary is invari-
ant under a single global supersymmetry transformation O → O + ε̂δO that
is generated by a conserved fermionic supercharge

ε̂δO = [iε̂Q̂, O], (2.8)

where

Q̂ =
∫

dx ρ̂(x, t), (2.9)

∂tρ̂(x, t) + ∂xĵ(x, t) = 0, (2.10)

ρ̂(x, t) = Gt+(x, t) + Gt+(x, t), (2.11)

ĵ(x, t) = −Gx+(x, t) − Gx+(x, t). (2.12)
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The supercharge density ρ̂(x, t), the supercurrent ĵ(x, t), and the super-
charge Q̂ are all self-adjoint operators. To derive explicitly the conservation
of Q̂ and the global supersymmetry transformation it generates, substitute
in the Ward identity a general spinor field ε̂r(x, τ) that is constant in x and
obeys the boundary condition (2.5). This yields, in particular, the result

〈 iQ̂(τ) φ̂a(0) 〉 =
1
2
sign(τ) δφ̂a(0) =

1
2
sign(τ) {iQ̂, φ̂a(0)} (2.13)

for φ̂a(τ) a fermionic operator localized on the boundary. The right-hand
side is the unique solution of the Ward identity anti-periodic in −β/2 ≤ τ ≤
β/2.

The bosonic stress-energy tensor satisfies the Ward identity

〈 vμ∂μO 〉 =
∫∫

dxdτ ∂μvν〈 Tμν(x, τ) O 〉c (2.14)

from which we get

∂tO = [iH, O] (2.15)

with hamiltonian

H =
∫

dx Ttt(x, t). (2.16)

Consistency of the supersymmetry algebra (2.4) and the two Ward identities
requires Gμr and Tμν to be superpartners:

δε̂Gμr(x, τ) = −2ε̂sγν
rsTμν(x, τ). (2.17)

The global variations are

{Q̂, Gμ+} = −2Tμw, {Q̂, Gμ−} = 2Tμw̄. (2.18)

In particular, the global variation of the supercharge density gives the energy
density,

{Q̂, ρ̂(x, t)} = 2Ttt(x, t) (2.19)

implying the supersymmetry operator algebra

Q̂2 = H, (2.20)

which is consistent with the global transformation algebra δ2O = i∂tO that
follows from (2.4).
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2.3 Bulk superconformal invariance

A theory that is superconformal in the bulk satisfies the operator equation

(γμ)r
sGμr(x, τ) = 0, x > 0. (2.21)

We write, in the bulk,

Gμr(x, τ) = Gbulk
μr (x, τ), x > 0. (2.22)

The bulk superconformal equation reads, in complex coordinates,

Gbulk
w̄+ (x, τ) = Gbulk

w− (x, τ) = 0. (2.23)

By (2.17), the bulk superconformal condition implies the ordinary conformal
invariance condition for the bulk stress-energy tensor, Tμ

μ (x, τ) = 0, x > 0.
The conservation law for the nonvanishing bulk currents is

∂w̄Gbulk
w+ = ∂wGbulk

w̄− = 0 (2.24)

so they are holomorphic and antiholomorphic, respectively. They are related
to the conventional superconformal currents by

Gbulk
w+ (w) =

eπi/4

2π
G(−iw), Gbulk

w̄− (w̄) =
e−πi/4

2π
Ḡ(iw̄). (2.25)

The conventional superconformal currents are adapted to the alternate quan-
tization, called the bulk quantization, in which −x is the euclidean time
coordinate, τ is the spatial coordinate, and −iw = τ − ix is the complex
coordinate. This rotation by π/2 is responsible for the factors of (−i)±3/2

in the relation between the spin-3/2 superconformal currents.

Bulk superconformal invariance implies in addition that the currents decay
at spatial infinity as

Gbulk
μr (x, τ) ∼ exp(−3πx/β), x → ∞. (2.26)

This is equivalent to the superconformal condition G−1/2|0〉 = Ḡ−1/2|0〉 =
0 on the bulk ground state |0〉 at x = ∞ in the bulk quantization. The
operators G−1/2, Ḡ−1/2 are the usual Fourier modes of G(−iw) and Ḡ(iw̄),
respectively. The bulk ground state is the only state in the bulk quantization
that contributes at large x in the limit where the bulk system is infinitely
long, L/β → ∞.
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2.4 The boundary supercharge

When the bulk system is superconformally invariant, the chirality of the
bulk currents Gbulk

w+ , Gbulk
w̄− ensures that they stay finite on the boundary.7

The total current can be written as

Gμr(x, τ) = Gbulk
μr (x, τ) − θ̂μr(τ)δ(x). (2.27)

Boundary terms proportional to derivatives of δ(x) are excluded by our
assumption that the system has no boundary operators of negative ultravi-
olet scaling dimension.

Substituting the expansion (2.27) into the Ward identity (2.6) and inte-
grating by parts, we derive the boundary conservation equations

θ̂xr(τ) = 0, (2.28)

∂τ [θ̂τ+(τ) + θ̂τ−(τ)] = Gbulk
x+ (0, τ) + Gbulk

x− (0, τ). (2.29)

It is convenient to introduce the operators

θ̂ =
i
2
(θ̂τ+ + θ̂τ−) =

1
2
(θ̂t+ + θ̂t−), (2.30)

q̂ = −2θ̂. (2.31)

The boundary conservation equation now reads

−2i∂τ θ̂(τ) = Gbulk
x+ (0, τ) + Gbulk

x− (0, τ) (2.32)

or, switching to real time,

∂tq̂(t) + ĵbulk(0, t) = 0, (2.33)

where q̂(t) = −2θ̂(t) is the boundary supercharge. The supercharge density
and supercurrent are separated into bulk and boundary parts:

ρ̂(x, t) = q̂(t)δ(x) + ρ̂bulk(x, t),

ĵ(x, t) = ĵbulk(x, t) (2.34)

7For a nonconformal bulk theory, a blow-up in the bulk supercurrent Gbulk
μr at the

boundary would be compensated by subtractions in the construction of the total distri-
butional current Gμr.
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and the bulk parts are written in terms of the chiral currents

ρ̂bulk(x, t) = Gbulk
t+ (x, t) + Gbulk

t− (x, t),

ĵbulk(x, t) = −Gbulk
x+ (x, t) − Gbulk

x− (x, t). (2.35)

The stress-energy tensor is obtained by varying the supercurrent, equation
(2.17), so it takes the form

Tμν(x, τ) = T bulk
μν (x, τ) − θμν(τ)δ(x), (2.36)

where the only nonvanishing boundary component is θττ . Again, it is con-
venient to introduce

θ(τ) = −θττ (τ) = θtt(τ) (2.37)

so the boundary energy is −θ(t).

Because of the bulk conformal invariance, the trace of the stress-energy
tensor lives entirely in the boundary

Tμ
μ (x, τ) = θ(τ)δ(x) (2.38)

so θ(τ) expresses the departure from conformal invariance in the system
with boundary.8 From (2.18) we see that the operators θ̂(τ) and θ(τ) are
superpartners:

δθ̂(τ) = iθ(τ), {Q̂, θ̂(t)} = θ(t). (2.39)

We choose a complete set {φ̂a(τ)} of self-adjoint fermionic boundary oper-
ators. Their self-adjoint superpartners are the bosonic boundary operators
φa(τ),

δφ̂a(τ) = iφa(τ), {Q̂, φ̂a(τ)} = φa(τ). (2.40)

The space of supersymmetric boundary conditions is parameterized by the
boundary coupling constants λa coupled to the φa(τ) as in equation (1.9).
These couplings preserve supersymmetry because

δφa(τ) = i∂τ φ̂a(τ) (2.41)

so the variation of the lagrangian is a total derivative in time.

8This formula motivates the choice of sign in equation (2.36) defining θ(τ).
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Expanding θ̂(τ) in the complete set of fermionic boundary operators,

θ̂(τ) = βaφ̂a(τ) (2.42)

so

θ(τ) = βaφa(τ) (2.43)

so the coefficients βa are the boundary beta functions. The entire sys-
tem becomes superconformally invariant when θ̂(τ) vanishes, given the bulk
superconformal invariance. Then, from (2.29), the boundary conservation
equation becomes e3πi/4G = e−3πi/4Ḡ, in terms of the conventional super-
conformal currents, which is the standard superconformal gluing condition
on the cylinder.

In proving the gradient formula, we will use correlation functions and
response functions of the boundary supercharge q̂(τ) and the bulk currents
Gbulk

μr (x, τ). We suppose that the correlation functions of the physical cur-
rents Gμr(x, τ) are given. We can define the correlation functions of q̂(τ) by
an approximation such as

q̂ε(τ) =
∫ ε

0
dx ρ̂(x, τ), (2.44)

〈 q̂(τ) O 〉 = lim
ε→0

〈 q̂ε(τ) O 〉. (2.45)

The approximation can be controlled by virtue of the bulk superconformal
invariance and the consequent chirality of the bulk currents,

〈 q̂ε′(τ) O 〉 − 〈 q̂ε(τ) O 〉 =
∫ ε′

ε
dx 〈 [Gbulk

w+ (x, τ) + Gbulk
w̄− (x, τ)] O 〉. (2.46)

Canonical UV behavior at the boundary ensures that the correlation func-
tions of q̂ε(τ) exist in the limit and are independent of the method of approx-
imation, up to a limited set of possible contact terms in τ . The boundary
supercharge q̂(τ), so defined, then differs within correlation functions from
the linear combination βaφ̂a(τ) of physical boundary operators by a simi-
larly limited set of possible contact terms in τ . We need only ensure that our
calculations are insensitive to these limited sets of possible contact terms.

3 Proof of the gradient formula using Euclidean field theory

We assume that our supersymmetric 1-D system with boundary is unitary
and is superconformally invariant in the bulk. We also assume some regu-
larity in the short distance behavior at and near the boundary. We require
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the following limits to exist (in the distributional sense):

lim
ε→0

ε〈φ̂a(ετ)φ̂b(0)〉, lim
ε→0

ε〈φ̂a(ετ)θ̂(0)〉, lim
ε→0

ε2〈Ĝbulk
μr (εx, ετ)φ̂a(0)〉, (3.1)

and we require that there be no operators whose UV scaling dimension is
negative. These requirements on the short distance behavior are satisfied
if there is a supersymmetric short distance fixed point of the RG (thereby
permitting canonical scaling analysis), and if the UV fixed point theory
satisfies a weak cluster decomposition principle, that correlation functions
should not grow at large separation (thereby forbidding negative dimension
operators). Our short distance assumptions imply constraints on the contact
terms that can occur in boundary correlation functions:

lim
ε→0

∫

|τ |<ε

dτ τk〈φ̂a(τ)φ̂b(0)〉 = lim
ε→0

∫

|τ |<ε

dτ τk〈φ̂a(τ)θ̂(0)〉 = 0, for k ≥ 1.

(3.2)

The Ward identities for conformal Killing spinor fields are of particular
interest, given bulk superconformal invariance. A spinor field ε̂r(x, τ) is a
conformal Killing spinor field if there exists a spinor field ηs(x, τ) such that

∂με̂r = (γμ)r
sη̂

s (3.3)

(which means that the local supersymmetry transformation generated by
ε̂r is compensated by the super-Weyl transformation generated by η̂s). In
complex coordinates equation (3.3) reads

∂w ε̂+ = 2∂w̄ ε̂+ = 0, ∂w̄ ε̂− = 2∂w ε̂− = 0, ∂w̄ ε̂+ = −4iη̂+, ∂w ε̂− = 4iη̂−

(3.4)

So the conformal Killing condition is the condition that the components
ε̂+ and ε̂− be holomorphic and antiholomorphic, respectively (and complex
conjugate to each other, to satisfy the euclidean reality condition).

We choose a certain special conformal Killing spinor field for each point
τ ′ on the boundary:

ε̂+(w) = ε̂0 cosh
[
π(w − iτ ′)

β

]
, ε̂−(w̄) = ε̂0 cosh

[
π(w̄ + iτ ′)

β

]
, (3.5)
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where ε̂0 is an arbitrary real fermionic constant. This special spinor field
ε̂r(x, τ) is antiperiodic in τ , satisfies the conformal Killing constraints (3.4) with

η̂+ = ε̂0η(w − iτ ′), η̂− = ε̂0η̄(w̄ + iτ ′) η(w) =
iπ
2β

sinh
(

πw

β

)
, (3.6)

and satisfies the boundary condition (2.5) with boundary spinor field

ε̂(τ) = ε̂0 cos
[
π(τ − τ ′)

β

]
. (3.7)

Let us consider the Ward identity (2.6) corresponding to this special con-
formal spinor field, with the insertion of a single boundary fermion field
φ̂a(τ ′),

〈δε̂φ̂a(τ ′)〉 =
∫∫

dxdτ ∂με̂r(x, τ)〈Gμr(x, τ)φ̂a(τ ′)〉. (3.8)

Even though the special spinor field ε̂r blows up at large x, it can be used
in the Ward identity because of the asymptotic condition (2.26) that follows
from superconformal invariance of the bulk ground state. We can substitute
on the left-hand side the global variation

〈δε̂φ̂a(τ ′)〉 = ε̂(τ ′)〈δφ̂a(τ ′)〉 = iε̂0〈φa〉 (3.9)

because the first derivatives ∂με̂r of our special spinor field vanish at the
insertion point, and because any higher derivative contributing to δε̂φ̂a would
have a negative dimension boundary operator as coefficient. By translation
invariance in τ we can choose τ ′ = 0 in the Ward identity (3.8) without
loss of generality. Substituting (2.27) into (3.8), using the conformal Killing
property (3.3) and dropping the common factor iε̂0 we obtain

〈φa〉 =
∫∫

dxdτ
[
4η(w̄)〈Gbulk

w− (x, τ) φ̂a(0)〉 − 4η(w)〈Gbulk
w̄+ (x, τ) φ̂a(0)〉

]

+
∫

dτ 4η(iτ)
[
〈θ̂(τ) φ̂a(0)〉 + 〈1

2
(θ̂x−(τ) − θ̂x+(τ)) φ̂a(0)〉

]
. (3.10)

Taking into account the explicit form (3.6) of η(w) we get

〈φa〉 =
1
β

∂ ln z

∂λa
= E − 2π

β

∫ β

0
dτ sin(πτ/β)〈θ̂(τ)φ̂a(0)〉, (3.11)
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where

E =
∫∫

dxdτ
[
4η̄(w̄)〈Gbulk

w− (x, τ)φ̂a(0)〉 − 4η(w)〈Gbulk
w̄+ (x, τ)φ̂a(0)〉

]

+
∫

dτ 2η(iτ)
[
〈θ̂x−(τ)φ̂a(0)〉 − 〈θ̂x+(τ)φ̂a(0)〉

]
. (3.12)

We now argue that the quantity E vanishes under the assumptions on
UV behavior. The correlation functions of the bulk currents Gbulk

w̄+ (x, τ),
Gbulk

w− (x, τ) vanish up to contact terms, because of the bulk conformal invari-
ance (2.23). Thus the two-point functions in the first line of (3.12) are
linear combinations of δ(x)δ(τ) and its derivatives.9 The assumptions on
UV behavior then imply that the correlators 〈Gbulk

w̄+ (x, τ)φ̂a(0)〉, 〈Gbulk
w− (x, τ)

φ̂a(0)〉 are each proportional to δ(x)δ(τ). There are no higher order contact
terms. Such terms however vanish upon integration in (3.12) because the
functions η(w), η̄(w̄) vanish at the insertion point x = 0, τ = 0. Therefore
the term in the first line in (3.12) vanishes. The terms in the second line
contain the operators θ̂x± that vanish by the equations of motion (2.29), so
their correlators are pure contact terms. It follows from (3.2) that the con-
tact terms in the correlators in the second line of E can be no more singular
than δ(τ), and hence vanish upon integration with η(iτ), which vanishes at
τ = 0. Therefore E = 0.

Next, we substitute βaφ̂a for θ̂ in (3.11). The canonical UV behavior
(3.2) makes this possible. The correlation function might be changed by a
contact term, but nothing more singular than δ(τ). The smearing function
sin(πτ/β) vanishes at τ = 0 so such a contact term would have no effect.10

We obtain the gradient formula

∂ ln z

∂λa
= −gS

abβ
b (3.13)

with

gS
ab = 2π

∫ β

0
dτ sin(πτ/β)〈φ̂a(τ)φ̂b(0)〉. (3.14)

9There are no terms of the form f(τ)δ(x) where f is a smooth function because the
supercurrent has been split into bulk and boundary parts so that such terms are all
contained in the 〈θ̂(τ)φ̂i(0)〉 correlators.

10A similar step is implicitly present in the proof of bosonic gradient formula given
in [3].



BOUNDARY RENORMALIZATION GROUP 1865

To see that the metric gS
ab is positive definite, we rewrite it

∫ β

0
dτ sin(πτ/β)〈φ̂a(τ)φ̂b(0)〉 = lim

ε→0

∫ β−ε

ε
dτ sin(πτ/β)〈φ̂a(τ)φ̂b(0)〉,

(3.15)

again making use of the canonical UV behavior (3.2). The operators φ̂a

are self-adjoint, so the two-point function at finite separation is positive by
reflection positivity. Therefore the right-hand side of (3.15) is positive.

The proof depends on the canonical UV behavior at three points: the
vanishing of the term E in (3.11), the substitution of βaφ̂a for θ̂, and the
positivity of the metric. The issue in all three cases is that operator identities
apply in correlation functions only up to contact terms. The technique
of the present proof is a subtle improvement on the proof for the general
gradient formula [3]. There we used the bulk and boundary conservation
equations separately. Here we use the single Ward identity (2.6). This is
more economic and also more transparent as we do not need to worry about
the contact terms associated with the separate conservation equations. In
essence the above euclidean proof hinges on the special Ward identity plus
the assumptions about canonical UV behavior.

4 Proof of the gradient formula using real-time field theory

Here we give a second proof of the gradient formula (1.11), using real-time
methods to evaluate

∂ ln z

∂λa
= β〈 φa 〉 = β〈 {Q̂, φ̂a} 〉. (4.1)

First, we separate the supercharge into the contribution q̂ε(t) from a neigh-
borhood of the boundary and the contribution Q̂ε(t) from the rest of the
system:

q̂ε(t) =
∫ ε

0
dx ρ̂(x, t) Q̂ε(t) = Q̂ − q̂ε(t). (4.2)

Let

fa,ε(ω) =
∫ ∞

−∞
dt eiωt〈 {q̂ε(t), φ̂a(0)} 〉, (4.3)

Fa,ε(ω) =
∫ ∞

−∞
dt eiωt〈 {Q̂ε(t), φ̂a(0)} 〉, (4.4)
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so that

2πδ(ω)〈 φa 〉 = fa,ε(ω) + Fa,ε(ω). (4.5)

It is convenient to introduce an IR regulator δ > 0 into equation (4.4),

Fa,ε(ω) = lim
δ→0

∫ ∞

−∞
dt eiωt−δ|t|〈 {Q̂ε(t), φ̂a(0)} 〉, (4.6)

in order to regularize the singularity at ω = 0 in intermediate stages of our
calculation.

Locality tells us that, for t sufficiently near 0,

{Q̂ε(t), φ̂a(0)} = 0. (4.7)

We combine this with charge conservation at x = ε,

∂tQ̂ε(t) = ĵbulk(ε, t), (4.8)

to get the identity

{Q̂ε(t), φ̂a(0)} =
∫ t

0
dt′ {ĵbulk(ε, t′), φ̂a(0)} . (4.9)

We use this identity in (4.6) to derive

Fa,ε(ω) = lim
δ→0

[
R+

a,ε(ω)
ω + iδ

+
R−

a,ε(ω)
ω − iδ

]

= iπδ(ω)
[
R−

a,ε(0) − R+
a,ε(0)

]
+ P(1/ω)

[
R+

a,ε(ω) + R−
a,ε(ω)

]
, (4.10)

where R±
a,ε(ω) are the response functions

R±
a,ε(ω) = ±

∫ ±∞

0
dt eiωt〈 {iĵbulk(ε, t), φ̂a(0)} 〉. (4.11)

We do without the IR regulator δ in the construction of the response func-
tions, because they are regular at ω = 0, otherwise the correlation functions
Fa,ε(ω) would be more singular than δ(ω), meaning that the real-time cor-
relators would grow with time. R+

a,ε(ω) is analytic in the upper half-plane,
and R−

a,ε(ω) is analytic in the lower half-plane.
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The bulk supercurrent separates into the two chiral superconformal cur-
rents,

ĵbulk(x, t) = −Gbulk
w+ (x, t) − Gbulk

w̄− (x, t). (4.12)

Chirality implies that

Gbulk
w+ (ε, t) = Gbulk

w+ (ε − t, 0), t < +ε,

Gbulk
w̄− (ε, t) = Gbulk

w̄− (ε + t, 0), t > −ε
(4.13)

so, by locality of the equal-time anti-commutators,

{−iGbulk
w+ (ε, t), φ̂a(0)} = 0, t < +ε,

{−iGbulk
w̄− (ε, t), φ̂a(0)} = 0, t > −ε

(4.14)

so

{iĵbulk(ε, t), φ̂a(0)} = {−iGbulk
w̄− (ε, t), φ̂a(0)}, t < +ε,

{iĵbulk(ε, t), φ̂a(0)} = {−iGbulk
w+ (ε, t), φ̂a(0)}, t > −ε

(4.15)

so we can write

R+
a,ε(ω) =

∫ ∞

0
dt eiωt〈 {−iGbulk

w+ (ε, t), φ̂a(0)} 〉

=
∫ ∞

−∞
dt eiωt〈 {−iGbulk

w+ (ε, t), φ̂a(0)} 〉, (4.16)

R−
a,ε(ω) =

∫ 0

−∞
dt eiωt〈 {−iGbulk

w̄− (ε, t), φ̂a(0)} 〉

=
∫ ∞

−∞
dt eiωt〈 {−iGbulk

w̄− (ε, t), φ̂a(0)} 〉. (4.17)

The dependence on ε is trivial because of the chirality, now in the form

Gbulk
w+ (ε, t) = Gbulk

w+ (0, t − ε), Gbulk
w̄− (ε, t) = Gbulk

w̄− (0, t + ε). (4.18)

We have

R+
a,ε(ω) = e+iωεR+

a (ω), R−
a,ε(ω) = e−iωεR−

a (ω), (4.19)
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with

R+
a (ω) =

∫ ∞

−∞
dt eiωt〈 {−iGbulk

w+ (0, t), φ̂a(0)} 〉,

R−
a (ω) =

∫ ∞

−∞
dt eiωt〈 {−iGbulk

w̄− (0, t), φ̂a(0)} 〉.
(4.20)

The limit ε → 0 of equation (4.10) is now taken easily,

Fa(ω) ≡ lim
ε→0

Fa,ε(ω) = lim
δ→0

[
R+

a (ω)
ω + iδ

+
R−

a (ω)
ω − iδ

]

= iπδ(ω)
[
R−

a (0) − R+
a (0)

]
+ P(1/ω)

[
R+

a (ω) + R−
a (ω)

]
. (4.21)

Then, from equation (4.5), we get the limit

fa(ω) ≡ lim
ε→0

fa,ε(ω) = 2πδ(ω)〈 φa 〉 − Fa(ω). (4.22)

We have thus used the chirality of the bulk superconformal currents to con-
struct the correlation functions of q̂(t) = limε→0 q̂ε(t),

fa(ω) = lim
ε→0

∫ ∞

−∞
dt eiωt〈 {q̂ε(t), φ̂a(0)} 〉 =

∫ ∞

−∞
dt eiωt〈 {q̂(t), φ̂a(0)} 〉.

(4.23)

At this point, we could assume that fa(ω) has no delta-function contribution
at ω = 0, and conclude from (4.22) that

〈 φa 〉 =
i
2
R−

a (0) − i
2
R+

a (0). (4.24)

This is the assumption that the boundary correlators decay in time, that all
boundary degrees of freedom return to equilibrium after any perturbation in
the boundary. This is essentially the assumption that all boundary degrees
of freedom couple to the bulk, thereby thermalizing. This tack was taken
in [6]. In fact, we will not need to make this thermalization assumption to
prove the gradient formula.
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Our next step is to show that the global bulk superconformal invariance
expresses itself by vanishing formulas

R+
a (iπ/β) = 0, R−

a (−iπ/β) = 0. (4.25)

First, we use the usual relation between thermal correlation functions and
expectation values of anti-commutators:

〈 {Gbulk
w+ (0, t), φ̂a(0)} 〉 = 〈 Gbulk

w+ (0, t) φ̂a(0) 〉 + 〈 Gbulk
w+ (0, t − iβ) φ̂a(0) 〉

(4.26)

to obtain

〈 Gbulk
w+ (x, t) φ̂a(0) 〉 =

∫ ∞

−∞

dω

2π

eiω(x−t)

1 + e−ωβ
R+

a (ω). (4.27)

This expression analytically continues to euclidean time τ = it for 0 < τ < β,

〈 Gbulk
w+ (x, t) φ̂a(0) 〉 =

∫ ∞

−∞

dω

2π

eiωx−ωτ

1 + e−ωβ
R+

a (ω). (4.28)

If we take x > 0, we can deform the contour of integration into the upper
half-plane, where the response function R+

a (ω) is analytic. The euclidean
correlation function is then expressed as a sum of the residues at the thermal
poles

〈 Gbulk
w+ (x, τ) φ̂a(0) 〉 =

∞∑

k=1

e−ωk(x+iτ) iβ−1R+
a (iωk), ωk =

2π

β

(
k − 1

2

)
.

(4.29)

The same thermal correlation function is given in the bulk quantization,
where −x is the euclidean time, as the matrix element

〈 Gbulk
w+ (x, τ) φ̂a(0) 〉 = 〈B|φ̂a(0) Gbulk

w+ (x, τ)|0〉, (4.30)

where |0〉 is the superconformal bulk ground state and 〈B| is the bulk state
representing the boundary condition at x = 0. The global superconformal
invariance condition in the bulk, G−1/2|0〉 = 0, implies that the k = 1 term
vanishes in the sum (4.29) over the thermal poles. Therefore R+

a (iπ/β) =
0. Similarly, using the analyticity of R−

a (ω) in the lower half-plane and
the global bulk superconformal condition Ḡ−1/2|0〉 = 0, we derive the other
vanishing formula R−

a (−iπ/β) = 0. The error in these vanishing formulas is
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exponentially small in L/β, the exponent given by the scaling dimension of
the most relevant operator in the bulk superconformal field theory.11

We can now derive a sum rule
∫

dω

2π

π2/β2

ω2 + π2/β2 Fa(ω)

= lim
δ→0

∫
dω

2π

π2/β2

ω2 + π2/β2
R+

a (ω)
ω + iδ

+ lim
δ→0

∫
dω

2π

π2/β2

ω2 + π2/β2
R−

a (ω)
ω − iδ

= − i
2
R+

a (iπ/β) +
i
2
R−

a (−iπ/β) = 0. (4.31)

The calculation starts from equation (4.21) for Fa(ω). In the first step,
we can exchange the integral over ω with the removal of the IR regulator
and separate the two integrals, as long as R±

a (ω)/ω3 is integrable at infinity.
Then the contours of integration are deformed into the upper and lower half-
planes, respectively. The growth condition on R±

a (ω) justifies discarding the
contours at infinity. The last step uses the vanishing formulas (4.25).

Canonical UV behavior at the boundary guarantees that R±
a (ω) grows

at most as ω, which more than satisfies the growth condition. The con-
formal supercurrents Gbulk

μr (x, t) have canonical dimension 3/2, whereas the
boundary fields φ̂a(t) have canonical UV dimension 1/2. We assume, as an
aspect of the canonical UV behavior, that there are no negative dimension
boundary operators, so no such operators can occur in operator products of
the bulk currents and the boundary fields. Therefore the response functions
R±

a (ω) defined by equations (4.20) and (4.20) have canonical UV dimen-
sion 1, and can grow no faster than ω at large ω. The leeway between the
canonical growth rate ω and the growth rate ω2 where the proof breaks
down allows for the possibility of fermionic boundary fields with UV scaling
dimensions slightly larger than 1/2, as in the α′ → 0 limit of string theory.

Combining the sum rule (4.31) with equation (4.22), we get

∂ ln z

∂λa
= β〈 φa 〉 = β

∫
dω

2π

π2/β2

ω2 + π2/β2 fa(ω). (4.32)

We substitute q̂(t) = −2βaφ̂a(t) in (4.23) to obtain

fa(ω) =
∫ ∞

−∞
dt eiωt〈 {−2βbφ̂b(t), φ̂a(0)} 〉 = −2βbfab(ω) (4.33)

11A purely real-time proof of the gradient formula would require a real-time proof of
the vanishing formulas from bulk superconformal invariance, without appealing to the
euclidean field theory.
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with

fab(ω) =
∫ ∞

−∞
dt eiωt〈 {φ̂b(t), φ̂a(0)} 〉. (4.34)

Now we have

∂ ln z

∂λa
= β〈 φa 〉 = −2β

∫
dω

2π

π2/β2

ω2 + π2/β2 fab(ω)βb, (4.35)

which is the gradient formula

∂ ln z

∂λa
= −gS

abβ
b (4.36)

with metric

gS
ab =

∫
dω

π/β

ω2 + π2/β2 fab(ω). (4.37)

We can integrate out ω to get the equivalent formula

gS
ab =

∫ ∞

−∞
dt πe−π|t|/β〈 {φ̂b(t), φ̂a(0)} 〉. (4.38)

The assumption of canonical UV behavior implies that the correlation
functions fab(ω) grow no faster than |ω|0, so the metric is well defined. By
unitarity, the fab(ω), for each ω, form a nonnegative hermitian matrix, and
fab(−ω) = fba(ω), so the metric gS

ab is symmetric and nonnegative. Any
null vector for the metric, gS

abv
avb = 0, would be a null vector for fab(ω) for

all ω, which would imply vaφ̂a(t) = 0, so va = 0, since the φ̂a are linearly
independent. Therefore gS

ab is a positive-definite metric on the space of
boundary conditions.

Note that we have made no assumptions on the IR behavior of fa(ω).
Equation (4.22) allows for the possibility that fa(ω) contains a long-time
contribution proportional to δ(ω), which is to say that the boundary energy
could fail to thermalize after a local perturbation, as when the boundary
contains a decoupled sub-system.

The assumption of canonical UV behavior at the boundary enters the
real-time proof at several points. We defined the correlation functions of
the boundary supercharge q̂(t) through the regularization procedure q̂(t) =
limε→0 q̂ε(t). We could have used some other regularized separation of the
boundary from the rest of the system. This could have modified q̂(t) by
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some boundary operator, but that operator would have negative UV scaling
dimension, which is excluded by the assumption of canonical UV behav-
ior. We assumed canonical UV scaling of the correlation functions of the
boundary fields with the bulk superconformal currents when we derived the
superconformal sum rule (4.31). This requires an upper bound on the UV
scaling dimensions of the boundary fields, and also the absence of negative
dimension operators, which could have nonzero expectation values at finite
temperature. Finally, we replaced θ̂(t) by βaφ̂a(t) in correlation functions.

The key step in the proof is the separation of the boundary from the rest
of the system by means of the sum rule (4.31). Both bulk superconformal
invariance and canonical UV behavior at the boundary are needed to derive
the sum rule. The UV regularity makes it possible to write a sum rule if just
one subtraction can be taken. The bulk superconformal invariance expressed
in the vanishing formulas (4.25) allows us to make that subtraction (at a
low thermal energy). The bulk superconformal invariance also enters at
short distance when the chirality of the superconformal currents is used to
construct the boundary supercharge. It would be good to have a physical
understanding of the need for this combination of ultraviolet and infrared
technical conditions.

5 Comparison of the two proofs

We should check that the two proofs yield the same gradient formula. The
euclidean proof produces formula (3.14) for the metric in terms of the
euclidean two-point functions of the boundary fields. The euclidean two-
point functions can be written in terms of the real-time response functions

〈 φ̂b(τ)φ̂a(0) 〉eq
1
2π

∫
dω

e−ωτ

1 + e−βω
fab(ω) (5.1)

for 0 < τ < β. Substituting in the euclidean formula (3.14) and carrying out
the integral over τ , we get the real-time formula

gS
ab = 2π

∫ β

0
dτ sin

(
πτ

β

)
1
2π

∫
dω

e−ωτ

1 + e−βω
fab(ω)

=
∫

dω
π/β

ω2 + π2/β2 fab(ω), (5.2)

so the gradient formulas are the same.

In the euclidean proof, the choice of the special spinor field in the Ward
identity is actually not unique. In particular, the real-time proof can be
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translated into a euclidean proof that uses a somewhat different special
spinor field than (3.5), namely

ε̂+(x, τ) =

⎧
⎪⎪⎨

⎪⎪⎩

ε̂0 cos
[
π(τ − τ ′)

β

]
, 0 ≤ x ≤ ε,

ε̂0 cosh
[
π(w − ε − iτ ′)

β

]
, ε ≤ x,

(5.3)

ε̂−(x, τ) =

⎧
⎪⎪⎨

⎪⎪⎩

ε̂0 cos
[
π(τ − τ ′)

β

]
, 0 ≤ x ≤ ε,

ε̂0 cosh
[
π(w̄ − ε + iτ ′)

β

]
, ε ≤ x.

(5.4)

This special spinor field is constant in x within a collar 0 ≤ x < ε around
the boundary, and conformally Killing outside the collar.12 This version of
the proof perhaps has a slight advantage, since it uses directly an explicit
construction of the correlation functions of θ̂(τ) from the physical corre-
lation functions of Gμr(x, τ), by taking the limit ε → 0. The dependence
on canonical UV behavior is somewhat rearranged between the two proofs,
though not in any way that seems significant.
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