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Abstract

New heterotic torsional geometries are constructed as orbifolds of T2
bundles over K3. The discrete symmetries considered can be freely
acting or have fixed points and/or fixed curves. We give explicit con-
structions when the base K3 is Kummer or algebraic. The orbifold
geometries can preserve N = 1,2 supersymmetry in four dimensions or
be non-supersymmetric.

1 Introduction

Heterotic string compactifications play a prominent role in string theory
model building as the standard model gauge group can be easily incorporated
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in this approach. Some recent progress in heterotic model building was made
in [1], where a heterotic M-theory model was constructed that reproduces the
charged particle content of the MSSM without additional exotics.! Inter-
estingly, F-theory models that incorporate GUT gauge groups have also
recently been constructed in the literature [5,6]. Common to these recent
developments is that moduli fields coming either from metric deformations
and/or deformations describing brane positions are not stabilized, so that
making predictions for physical observables become challenging.

Now more than ever it is important to develop techniques to construct het-
erotic flux compactifications in which moduli stabilization can be addressed.
Having a heterotic three generation model with stabilized moduli allows us
to remove this (uncharged) “exotic” matter and in principle predict the
masses of quarks and leptons, an important step towards connecting string
theory to the real world.

Heterotic flux compactifications have been known for quite some time,
starting with the seminal works of [7-9] in the mid-1980s. All the more,
it is surprising that the number of torsional geometries that can serve as
backgrounds for heterotic string compactifications seems rather limited. The
most studied class of smooth heterotic torsional compactifications is the FSY
geometry [10,11]. The manifold is a 72 bundle over a K3 surface [12,13]
similar to the well-known non-Kéhler torus bundle construction of Calabi
and Eckman [14]. The solution was first identified as the heterotic dual of
M-theory on K3 x K3 with non-zero G-flux [15,16]. It was proven in [10] to
satisfy both the requirements of supersymmetry and the anomaly condition
of the heterotic theory. A conformal field theory description in the language
of a gauged linear sigma model has also been developed in [17].

As was discussed in [13,18], this model has a vanishing Euler characteristic
as well as a vanishing number of generations. When the spin connection
is embedded into the gauge connection, the net number of generations is
given by the Euler characteristic of the internal Calabi-Yau geometry [19].
However, for the more general heterotic flux compactifications that we are
interested in, where the spin connection cannot be embedded into the gauge
connection, the net number of generations is given by one-half of the third
Chern number of the gauge bundle [18].

Our goal here is to expand the set of consistent heterotic torsional geome-
tries by constructing orbifolds of the FSY geometry. Orbifolding tech-
niques [20] were already used in the early days of string model building

!Other standard model motivated heterotic constructions are given in [2,3]. A CFT
model with no exotics has also been presented in [4].
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to construct models with a small number of generations. Modding out
some heterotic string compactifications with an unrealistically large num-
ber of generations by a discrete symmetry, led to more realistic models (see,
e.g., [21,22]). In fact, the first heterotic three generation model was con-
structed by quotienting a complete intersection Calabi—Yau three-fold [21].

To construct orbifolds of a 7?2 bundle over K3 surface, we use special
classes of K3 base surfaces. One set of models arises from Kummer K3 sur-
faces which have a T%/Zs orbifold limit. A second set of models uses alge-
braic K3 surfaces with finite discrete group actions. The simplest ones are
those with a branched covering description. The orbifold actions described
in this approach are either freely acting or have fixed curves and/or fixed
points. The freely acting orbifold actions give smooth geometries which may
preserve N' = 0, 1, 2 supersymmetry in four dimensions. For the non-freely
acting discrete symmetries, the resulting orbifolds will contain singulari-
ties which geometrically need to be resolved. Physically, if the resolution
can involve turning on non-vanishing gauge bundles, this may lead to mod-
els with a non-zero third Chern class. Unfortunately, unlike the Calabi—
Yau case where orbifold singularities can be straightforwardly resolved by
means of toric resolution (see reviews in [23-25]), singularity resolution in
the non-Kéahler context seems much more involved and has not been stud-
ied previously. The required analysis is delicate and rather technical, and
hence, we will leave the discussion of non-Ké&hler resolution for a subse-
quent work.

The organization of this paper is as follows. In Section 2, we review
the properties of torsional manifolds that we need in the later sections and
describe the FSY geometry in some detail. In Section 3, we discuss prop-
erties of the orbifolds of the FSY geometry, i.e., ¥ = X/I" where I' is a
discrete symmetry group of X, a torus bundle over K3 geometry. The dis-
crete symmetries can act on the torus fiber either as a shift or a rotation.
In the former case the orbifold actions are always freely acting and lead to
smooth models with vanishing Euler characteristic and third Chern class.
In the latter, the orbifold action may have fixed points and fixed curves
singularities. In Section 4, we construct models that realize these differ-
ent possibilities starting from the FSY geometry with the K3 base in the
Zs orbifold limit T*/Zsy. In Section 5, we take as the base K3 those with
a branched covering description to build a second set of orbifold torsional
geometries. Section 6 discusses constructions based on more general alge-
braic K3 base with a discrete symmetry group action. In particular, we give
a supersymmetric orbifold model with only fixed point singularities. Orbi-
fold models with only fixed points should be easier to resolve than those
containing fixed curves. In Section 7, we present our conclusions and raise
some open questions.
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2 Review of torsional geometry

The internal six-dimensional complex geometries of supersymmetric flux
compactifications of the heterotic string are characterized by a hermitian
(1,1)-form J, a holomorphic (3,0)-form 2, and a non-abelian gauge field
strength F' that are constrained by supersymmetry and anomaly cancella-
tion conditions [7]

d([|]sJ A J) =0, (2.1)

FEO =02 =g F,,Jm™ =0, (2.2)
/

2i00.J = %[tr(}z AR) — tr(F A F)]. (2.3)

These equations (sometimes termed the “Strominger system” in the mathe-
matics literature) provide the necessary and sufficient conditions for space—
time supersymmetry in four dimensions and imply the equations of motion
to one-loop order in /. Given a solution, the physical fields (g, Hs, ¢) are
expressed in terms of (J, Q) as

gal_j = _iJal_ﬂ (24)
HabE = _i(anbE - abJaE)v (25)
— i 0 aa 1bb ycc
e = 21 QabeSane Jb ee, (2.6)

where we have set the integrable complex structure to take the diagonal
form J? =i4°.

The most well-known solution to these equations consists of the complex
T? bundle over a K3 surface which we denote by X.?2 The explicit form of
the holomorphic (3, 0)-form for this manifold is

Q=Qg3 N0, (2.7)
where Q3 is the holomorphic (2,0)-form on the K3 base and § = (dz + «)

(with 2 the fiber coordinate and o a connection one form on K3?) is defined
to be a global (1,0)-form. The hermitian (1,1)-form J comes from the

2A T* base geometry can satisfy the necessary SU(3) intrinsic torsion conditions of
conformally balanced (2.1) and the existence of a holomorphic three form [26]. It would
however not be consistent with the anomaly condition [11,27].

3To be rigorous, a should be the pull-back of the connection one form on K3 to X.
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Kéahler form of the K3 and the metric on the torus bundle
2% 1A o
J=e JK3+§—(dz+oz)/\(dz+a), (2.8)
T2

where the moduli of the torus are parametrized by the area A and the
complex structure 7 = 7y + iTy. The dilaton ¢ is non-constant and depends
on the base coordinates only. Supersymmetry demands that the curvature
of the torus bundle is of type (2,0) @ (1,1)

w=w 41wy =df = do € H*Y ¢ HOV(K3) with wy,ws € H?(K3,7Z).
(2.9)

Additionally, w is required to be primitive with respect to the base
wA Jgz =0. (2.10)

Turning on a (2,0) component for w reduces the N/ = 2 four-dimensional
supersymmetry to N' = 1, whereas a (0,2) component breaks supersymme-
try completely.®

The solution also includes a gauge bundle with a gauge field strength
that satisfies the hermitian-Yang—Mills conditions (2.2). The field strength
is related to the metric and curvature two form by the anomaly equation
(2.3). Integrating the anomaly equation over the base K3 leads to the
topological condition

1 A
/ trEEANF — — wAw =24, (2.11)
1672 J 3 T2 JKks3

where @ = w1 + Twy is the complex conjugate of w. This is the main suf-
ficiency condition to ensure that the anomaly equation, which for these
geometries, can be interpreted as a non-linear second-order partial differen-
tial equation for ¢, can be solved [10,11].

As for ordinary Calabi-Yau manifolds (see [19]), it was shown in [18] that
the net number of generations is determined by an index which (for bundles
with ¢;(F) = 0, such as the SU(N) bundles we are considering) is related
to the third Chern number of the bundle

1
Nyen = 5C3(F). (2.12)

“A derivation of these supersymmetry constraints can be found in the appendix of [28].
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More concretely, the third Chern class of the bundle is

e3(F) = ———[2tr(F A F A F) — 3te(F A F) A teF + toF A teF A teF),

4873
(2.13)

where the trace is taken over the generators of the Lie-algebra. The gener-
ators are traceless for SU(N) gauge groups, so that trivially the first Chern
class, ¢1(F') = 0. Thus for SU(N) bundles, the last two contributions to the
above formula vanish and integrating the first term gives the index of the
Dirac operator [29,30]. If the spin connection is embedded into the gauge
connection (which is not the case of interest here) this formula reduces to
the more familiar expression Ngen = /2, where ¥ is the Euler characteristic
of the internal manifold. It was shown in [11] that all stable gauge bun-
dles on X that can satisfy the anomaly condition (2.3) are those obtained
by lifting stable bundles on K3 to X. From (2.13), it then becomes evi-
dent that the net number of generations vanishes. Moreover, the existence
of a non-vanishing vector field along the torus fiber implies that the Euler
characteristic x(X) = 0 [12,13].

Some of the new torsional manifolds we construct in the next sections
will have a non-vanishing FEuler characteristic. Although not given here,
a more detailed understanding of the resolution of orbifold singularities of
non-Kahler geometries may reveal whether the resolution may allow gauge
bundles with non-vanishing third Chern class.

3 Orbifolding T2-bundles over K3

New solutions can be constructed by orbifolding the 72 bundle over K3
geometry X by a discrete symmetry group I' to obtain Y = X/I". We will
discuss the characteristic features of such orbifolds in this section and give
explicit models in the following sections.

When constructing orbifold models, we will in general only require that
the physical fields (g, Hs, ¢, F) remain invariant under the orbifold action
I FSY geometries are supersymmetric and thus solve the supergravity
equations of motion which are written in terms of the physical fields. Thus,
as long as the physical fields are invariant under I', the orbifold solution will
also be a solution of the equations of motion.

However, the resulting orbifold solution will in general not be supersym-
metric. Preserving supersymmetry will require additionally that the pair
(J,Q) is also invariant under I'. As J and Q are bilinears of the spinor n that
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generates N/ = 1 supersymmetry, e.g., Jy, = inT’Yan and Qppp = ﬁT'ymnpn,
a nowhere vanishing 7 implies (J, £2) must be globally well-defined on Y and
hence must be invariant on X under the action of T.

The relations between the physical fields and (J,2) are given in (2.4)
to (2.6). From there, we see that J must be invariant under I', since it is
directly related to the physical metric. A central component of J is Jx3
which by uniqueness of the Calabi—Yau metric remains unchanged under I
as long as the discrete symmetry action leaves invariant the Kahler class and
the complex structure of the base K3. €2 however need not be invariant; the
holomorphic (3,0)-form can transform by a phase, I' : Q@ — (Q for |(| =1,
and still leave ¢ invariant in (2.6) and the complex structure of X unchanged.
Thus, if ¢ # 1 then the resulting orbifold solution breaks all supersymmetry.

An element of the discrete symmetry group acting on X can be thought
of as being composed of two components: p = (p1,p2), where p; acts on
the K3 base whereas p2 acts on the torus fiber. It is useful to consider
each action, p; and po, separately. On the K3, finite group actions are
standardly categorized by their actions on the holomorphic (2,0)-form. If
an action leaves invariant 920, ie., p; : Q%0 — Q%0 then it is called a
symplectic automorphism. If instead p; : %0 — ¢Q for ¢ # 1, it is a called
a non-symplectic automorphism. In general, the action p; on K3 will have
a non-empty fixed locus set which may consist of points and/or curves.
On the other hand, the symmetry group action on the torus is much more
limited. For a group of order N, we can have either a shift ps : z — z + ¢ for
some complex constant ¢ such that z + Nc ~ z + ny + no7, or a rotation,
p2 iz — Cz with ¢V = 1.

Because the torus bundle is generically non-trivial and does not have a
zero section, not any combination of (p1, p2) will give a consistent symmetry
action on X. Of importance, X has a globally defined (1, 0)-form 6 = dz + «
which must have a well-defined transformation rule under I'. We require for
any pe I’

plO] = paldz] + prfe] = ¢6. (3.1)

We see, for instance, that a rotation on the torus fiber by itself cannot be
well defined on X. Consider the overlap region between two coordinate
charts labelled by A and B. The corresponding coordinates z4 and zp and
the local connection one-form a4 and ap are related as follows:

24 =2+ pap mod 1,7, a4 =ap—dpas, (3.2)

where @ 4 p is the transition function with dependence on the local base K3
coordinates. Thus, a rotation acting on z (compatible with the torus lattice
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structure 7) p2 : 2 — (z, only makes sense if there is a complementary action
on the base K3 such that the transition function transforms as p; : wap —
Cpap. By (3.2), we see that the connection o must then transform similarly
with the phase ¢ which thus results in a well-defined transformation phase for
6. Condition (3.1) thus imposes a restriction on the allowable combination
of (p1, p2); and moreover, this restriction depends on the curvature w = da.

Let us now consider the distinguishing features of the orbifold solution
for different types of symmetry group actions. We shall order them by the
action on the torus fiber.

For po that involves only a torus shift, the action is freely acting, i.e.,
without fixed points, and hence, the resulting orbifold geometry is always
smooth. The amount of supersymmetry that is preserved depends on the
action on 230 =020 A 0. But since § = dz + a must be invariant under
the torus shift (with « invariant under p; so that (3.1) is satisfied), the
p1 action on Q%0 determines whether supersymmetry is preserved. Thus,
for symplectic K3 automorphisms, Y = X/I" will preserve the supersymme-
try of X whereas the non-symplectic automorphism action will break all
supersymmetry. The base action will, in general, have fixed points and/or
fixed curves. From the fiber bundle description, the complex structure of
the torus will jump along the fixed point locus of the base. Thus the torus
bundle becomes a torus fibration. Clearly, Y is topologically distinct from
X as the first fundamental group of Y now contains I'. Moreover, we note
that the Betti numbers of Y will generally differ from those of X as the orb-
ifolding by T" (with a non-trivial p;) will project out non-invariant harmonic
forms. Nevertheless, the Euler characteristic and c3(F') will remain zero as
the orbifold is freely acting.

For the case where the torus fiber action involves a rotation, there should
be an associated symmetry action on the base K3 by (3.1). Moreover, the
discrete symmetry group I' will, in general, have a fixed locus set which
is invariant under (pi, p2). The resulting orbifold geometry Y will then
be singular along the fixed points and/or fixed curves. These singularities
will need to be resolved to obtain again a smooth solution.® Here, the
task of resolving singularities consists of two parts: resolving the manifold
and smoothing out the physical fields such that the supersymmetry condi-
tions (2.1) to (2.3) (or the supergravity equations of the motion) remain
satisfied.

5Singularity resolution can be thought of as the geometrical analog of adding twisted
sector states when constructing an orbifold conformal field theory.
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Resolving singular orbifolds Y which are supersymmetric should follow
the standard local toric resolutions of singular Calabi—Yau manifolds (see,
, [25]) by the requirement of a non-vanishing holomorphic (3,0)-form.
However, unlike the Calabi—Yau case, where the vanishing of the first Chern
class is the sole obstruction to the existence of a Calabi-Yau metric on a
Kéahler manifold, we do not presently know what are the obstructions or
sufficient conditions for the existence of a solution to the heterotic super-
symmetry differential constraints of (2.1) to (2.3). Without this, we must
explicitly demonstrate the existence of solutions on a manifold on a case-by-
case basis. Thus, the resolution of singularities in the non-Kéhler scenario is
a challenging mathematical problem. It requires constructing local models
(such as [31]) that smooth out the singularities and carefully gluing the local
geometries into Y.

Nevertheless, having orbifold singularities may lead to new non-Kéhler
solutions that might be phenomenologically appealing. For instance, in
resolving the singularities, it may be possible to introduce local gauge bun-
dles that have non-trivial ¢3(F'), and hence non-zero number of generations.
In essence, one may try to satisfy the requirements of low-energy
phenomenology by inserting appropriate local models into the compact
geometry. We shall, however, leave the subtleties of non-Kéahler singularity
resolutions for future work.

In the following sections, we will give concrete constructions of new het-
erotic solutions from orbifolding X by discrete symmetries. This requires
identifying those K3 surfaces with a discrete symmetry group action. We
will consider three types of K3 surfaces that naturally contain discrete sym-
metries: K3 surfaces of Kummer type, K3 surfaces with a branched covering
description, and more general algebraic (i.e., projective) K3 surfaces with
finite group actions.

4 Orbifold limit of Kummer K3 base

In this section, we construct new orbifold geometries starting from those
FSY geometries with a Kummer K3 base. A Kummer K3 has a T%/Zs
orbifold limit with the involution (i.e., Zy action) given by

o:(z1,22) = (—z1, —22), (4.1)

where (21, 22) are the complex coordinates of 7%. The smooth Kummer
surface is obtained by blowing-up each of the 16 singular fixed points of the
involution o with a P!. Away from the singularities, the hermitian metric
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and holomorphic (3, 0)-form take the simple form

. 1
J = %e%(dzl Adz1 + dzg A dZ) +i50 A,
Q=dz Ndzay N\ 0,

(4.2)

where ¢ is the dilaton field and § = dz 4+ « denotes the one-form associated
to the twisted torus fiber. For simplicity, we have set the complex structure
of the three covering-space tori to be 7 =1i. Thus for the base coordinates
(21, 22) and fiber coordinate z, we identify z; ~ z; + 1~ z; + 1, for i = 1,2,
and z ~ z+ 1 ~ z +1i. Given a torus twist curvature w, we can then set the
torus fiber area A to satisfy the topological condition (2.11).

We shall work mainly in the T*/Zs orbifold limit of the Kummer K3.6
This simplification will allow us to write down explicitly the discrete symme-
try group I acting on X and demonstrate clearly some of the characteristics
of the new orbifold geometries discussed in Section 3. The discrete sym-
metry groups I' that we consider are all cyclic and thus are generated by a
single element which we will denote by p.

4.1 N = 1,2 supersymmetric orbifolds

Different types of orbifold actions will leave unbroken different amounts of
supersymmetry in four dimensions. We consider first those orbifold actions
that leave invariant the holomorphic (3,0)-form and preserve the supersym-
metry of the covering FSY geometry. We will give four examples below and
will point out the distinctive features of each.

Example 1. Freely acting with a shift action on the torus fiber.

We start with a simple model that has no fixed points, and therefore
has a vanishing Fuler characteristic and a vanishing number of generations.
Consider the Zs action generated by

p:(z1,22,2) = (1217 —iz9, 2z + %), (4.3)

which rotates the base in an SU(2.2) invariant manner and shifts the torus
fiber. For the above discrete identifications, it is easy to see that on the

5Some earlier discussion on torsional orbifolds obtained via duality from Borcea four-
folds in M-theory appeared in [18].
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four-dimensional base, the Zs action has four fixed points located at

(21, 2) = {(0,0), (0, 12+l> , <12+10> , (1 ;i, ! ;“) } (4.4)

But since the torus fiber is concurrently shifted by z — z + 1/2, the six-
dimensional quotient manifold does not have any singularities and is thus
smooth.

The above background is supersymmetric because, as follows from (4.2),
the pair (J,€) is invariant under p as long as § = dz + « is invariant. This
can be easily satisfied by choosing a curvature twist w = df € HZ0 ¢ gD
(T*/Zs,7) that is primitive with respect to the base and invariant under p.
For example, w can be any linear combination of dz; A dzy and dz; A dz; —
dzy A\ dZa. As shown in [28], theories with a twist of type (1,1) have N' = 2
supersymmetry whereas a more general twist of type (2,0) + (1, 1) leads to
a theory with A/ = 1 supersymmetry. Similarly, for the gauge field, we can
choose U(1) gauge field strengths F = F(I1) which are invariant under p.
This then ensures that the three supersymmetry constraint equations (2.1)
to (2.3) are invariant under p. This background also naturally satisfies the
equations of motion since the physical fields (g3, H, ¢, F,;) are invariant
under the orbifold action.

As a fiber space, this smooth quotient geometry should be considered as
a T? fibration rather than a T? bundle as the complex structure of the 72
fiber jumps at the four singular points (4.4) of the base identified by the
involution action p. At the fixed points, the complex structure jumps to
7=2i with 2 ~ 2 4+ § ~ 2 +1.

Finally, we note also that the Zy action (4.3) preserves not only the holo-
morphic (3, 0)-form but also the holomorphic (2, 0)-form of the base K3. Its
action on the base K3 is thus an example of a symplectic automorphism, a
discrete symmetry group that preserve Q9.

Example 2. Freely acting with a reflection on the torus fiber.

It is also possible to consider a freely acting involution which involves a
non-symplectic automorphism, one that acts non-trivially on the holomor-
phic (2,0)-form on the base K3. One such involution is generated by

1 1
p:(z1,29,2) — <—21—|—2,z2+2,—z> . (4.5)

p here acts freely on the base coordinates (z1,22), and has been called an
Enriques involution [32] since the base holomorphic (2,0)-form is mapped
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to the minus of itself
p: QK3 — —QKg. (46)

The holomorphic (3,0)-form, however, remains invariant when we take into
account the compensating reflection action, z — —z, on the fiber coordinate.

Precisely the involution in (4.5) acting on the product space K3 x T2,
was analyzed in [33,34] in the context of type IIA /heterotic string duality.
That such a quotient can also be applied to the FSY geometry with a non-
trivial principal 72 = S' x S! bundle with no zero section may at first seem
surprising. But as explained earlier, as long as we carefully choose a torus
twist that gets reflected along with the fiber coordinate such that the one-
form 6 = dz + « has a well-defined action, then the Zy action (4.5) consisting
of a fiber reflection coupled with an involution on the base is well defined.
Let us verify this explicitly for this example.

First, a consistent torus twist for the Zy action (4.5) is
0=dz+ A (211 — §1>d2’2 + AQ(ZQ — Ez)dzl, (4.7)

where A; and Ag, are Gaussian integers (complex numbers with integral
real and imaginary parts). Note that with this one form, the torus twist
curvature w = df contains both a (1,1) and a (2,0) part so the covering
FSY geometry and also the orbifold geometry preserve only N = 1 super-
symmetry.

With the one-form (4.7), let us demonstrate explicitly the consistency of
the quotient action. We will work in the covering space which is a 7% bundle
over a T* base. The metric on this space (neglecting the warp factor and
the torus area A which do not a play a role here) takes the form

ds® = |dZ1|2 + |d22|2 + |dZ + A1(2’2 — Zg)dzl + Ag(zl - 21)d2’2’2. (48)

In order for the metric to be well defined, the local complex coordinates
must have the periodicity

21~ 21 +a,
Zo ~ 29+ b, (4.9)
z~z4c— A(b—b)zy — Az(a — @)z,

where a, b, ¢ are arbitrary Gaussian numbers. These periodic boundary con-
ditions define the transition functions on the manifold. The quotient action
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(4.5) acts on the periodicity (4.9) and results in

—21~—2z1+a=—(z+d),

ZQN22+b:ZQ+b,,

—z~ =zt ct Ai(b—b) <Zl - ;) — As(a—a) <22 i ;) (4.10)

=—(z+d - A1t =)z — As(d — @')20),
where we have defined
(a',V,cd) = (—a,b,—c +iA1Im(b) + iAsIm(a)). (4.11)

Since the constants a, b, ¢ are arbitrary Gaussian numbers, the redefinition
of (4.11) is inconsequential. Therefore, from (4.10), we see that the quotient
action preserves the periodicity (4.9) of the covering space. This implies
that the quotient is well-defined.

Example 3. An involution with fixed curves.

From the previous example, we have seen how a discrete symmetry action
can involve a reflection, a simple example of a rotation action on the fiber.
Coupled with the discrete symmetry action on the base, the discrete group
action with fiber rotation action will generally have fixed points and/or fixed
curves.

Consider the Zs action generated by

p:(21,22,2) = (iz1,122, —2). (4.12)
This is an involution since (p)? is equivalent to o, the Zs action appearing
in (4.1). This involution again involves a reflection on the 72 bundle. As
above we need to require that the curvature twist transforms w — —w under
p. For this we must have w = df ~ dz; A dzy and this will ensure that the
one-form 0 is well-defined under the involution.

The quotient manifold however will have fixed curves. On the T covering
space, the o and p actions result in 16 fixed points — four fixed points on
the base times and four fixed points on the fiber. The four base fixed points
(those of (4.4)) coincide with the singularities of the 7% /Zy orbifold and are
resolved by P’s when the base K3 orbifold is resolved. These P!’s however
are invariant under p and result in 16 fixed curves.

We can explicitly see this, for instance, in the resolution of the point
(21,22,2) = (0,0,0). Locally, this is equivalent to resolving the origin of
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C3/(Zy x 7o) with the quotient generated by o and p. This local orbifold
can be minimally resolved following the toric resolution methods of [35, 36].
We resolve the singularity in two steps. We first resolve the singularity at the
origin of C?/{1,0} x C and then proceed to quotient by p and resolve again.

For C?/{1,0} x C, the origin is resolved by a P!. Following e.g., [35],
the resolution is covered by two coordinate charts:

Ur : <22,z%,z> ,
z
! (4.13)

Zl 2
Us: (,zz,z> .
22

Here, the first entry is the coordinate of the P': & = j—f in Uy and & =1/¢
in Us. We can proceed to apply the p action (4.12) on the two coordinate

charts:
Ui : p: <Z2,z%,z> — <22,—Z%,—Z> )
21 21
(4.14)

Zl 2 21 2
Us : p: (,22,,2) — (,—22,—z>.
22 Z2

We see that p leaves the P! coordinate & (and ¢') invariant and acts only on
the two transverse coordinates. This shows that the P! curve is invariant
under the p action. To resolve the two transverse coordinates, which is
another C?/{1, 0} singularity, we can repeat the resolution of (4.13) on U;
and U charts separately. The total resolution is therefore described by four
coordinate charts: Uy, U1, Uy, Usa:

Ull : ) 2721 P U21 : ) 2)22 )
21 2 2 Z5

2 2
22 Zl 2 Zl Z2 2
U12: TR 5 U22: TR .
zZ1 < zZ9 Z

On every point of the P! curve, we have added another P'. Thus the divisor
is a ruled surface, and by the fibration structure, it is a Hirzebruch F surface
which has Euler characteristic y(Fy) = 4. After resolving all 16 P!’s, the

Euler characteristic of the resolved orbifold Y is

(4.15)

(¥) = [x(X) = 16x(PY)]/2 + 16x(F,) = —16 + 64 = 48. (4.16)

We have thus described how to resolve the singular orbifold into a smooth
manifold with non-zero Fuler characteristic. If we are only interested in
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Calabi—Yau solutions, then this is sufficient to describe the solution as Yau’s
theorem implies the existence of a Ricci-flat metric. However, without a
corresponding theorem for the existence of non-Ké&hler heterotic solutions,
we have to demonstrate explicitly that a non-Kéhler balanced metric exists
for this resolved manifold. This may be done by constructing non-compact
solutions that locally resolved the singularities. One would then need to
cut out the singularities and carefully glue in these local solutions into the
manifold.

Example 4. A Z,4 quotient with fixed points and fixed curves singularities.

In general, the generic orbifold model will have both fixed points and fixed
curves singularities which will need to be resolved. Let us give an example.

Consider the Z4 action generated by
p:(z1,22,2) = (21, —22,12) . (4.17)

Though very similar to the previous example, this action does not square
to the Zs identification (4.1) of the K3. Thus it is a Z4 action. In order for
0 to be well defined, we are constrained to require that the torus curvature
twist transforms as w — iw, which implies that w ~ dz; A dzs.

The action (4.17) has eight fixed points on the base given by

1 i 1+1i 141 1+i1 1
(Z1722) - {(070)7 <O7 2) ) <07 2> ) <07 2) <27O> ) (27 2) )
1+i i 141 141
—_ = 4.1
(55) () (118)
and two fixed points on the fiber at z = {0, %} The base fixed points
again coincide with those of the orbifold T%/Zs and are resolved by P's.

However, these P!’s are not invariant under p as defined in (4.17). We can
see this from the resolution of the point (0,0,0). The action of p on the two

charts of P! is
Ui: p: (ZQ,Z%,2> — <izz,—zf,iz>,
Z1 z1
(4.19)

21 .21 .
Us: p: (,Z%,Z) — <—1,z§,1z>.
22 22

We see that p acts differently on the two charts. But in each case, the
resolved P!, denoted by the first coordinate, is also rotated by the p action.
So considering the base and fiber together, we have here 16 true fixed points.
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There are also fixed curves in this model. They arise from points that are
fixed under p? but not p. The p? action, p? : (21, 22, 2) — (—21, 22, —2), has
fixed curves at

{0 (52) (o) () G)-(5)
02 (o) () G- 65)

(4.20)

These curves are not invariant under p; in fact, the curves on the first line
of (4.20) are identified with those on the second line in the local coordinates

(21,2). For zp #0, 1 3 ;, 14 which are the fixed points of zo under p, the
12 curves persist. At the zo fixed points, the identification reduces to six

distinct curves.

4.2 Non-supersymmetric orbifolds

Non-supersymmetric models can easily be constructed similar to the exam-
ples given above. The orbifold action now is required to act on the holomor-
phic three-form non-trivially. Consider the Zs action generated by

p:(21,292,2) = (iz1,122, 2 + 1/2). (4.21)

Here, p differs from the action in (4.3) by a minus sign in the action on
z2. As aresult, the base holomorphic two-form Qp1/7, = dz1 A dzg picks up
a minus sign and the holomorphic three-form transforms non-trivially, i.e.,
Q — —Q and is thus projected out. Therefore, this type of solution is not
supersymmetric.

The torus curvature w = df and U(1) field strength F' are required to
be primitive and invariant under p. A basis of such (1,1) forms is {dz; A
dZo,dzo NdZy,dz1 NdZy — dzo N d?g}. All the physical fields (g, Hs, ¢, F) of
the model can remain invariant under p. Thus, this gives a smooth non-
supersymmetric solution of the supergravity equations of motion.

5 Orbifolds from branched covered K3 base

We are interested in complex manifolds whose first Chern class ¢1 (M) is zero.
When the canonical bundle is non-trivial, i.e., ¢;(M) # 0, it is sometimes
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possible to eliminate the first Chern class by taking n copies (aka covers)
of the manifold M and glue them together at a divisor, a codimension one
hypersurface. More precisely, this new manifold M’, which is described as
an n-fold cover of M branched over a divisor D, can have trivial canonical
bundle.” The new Chern class is given by

c1(M') = nlcy (M) — c1(D)] + c1(D) = ney (M) — (n — 1)er (D). (5.1)

A Calabi—Yau manifold with an n-fold branched covering description clearly
has a manifest Z,, discrete symmetry acting on the N identical covers. In
this section, we construct orbifold solutions starting from FSY geometries
containing a K3 base with a branched covering description. Below, we will
make use of two examples of branched covered K3 surfaces: a triple cover of
P! x P! branched over a genus four curve and a double cover of P? branched
over a genus 10 curve.

Before jumping into the details of branched covered K3 surfaces, let us
first illustrate the basic idea of using branched covering for the simpler com-
plex dimension one case where the first Chern number agrees with the Euler
characteristic C1 (M) = x(M). Let M = P! = S2. Being in two real dimen-
sions, x1(M') = 0 means M’ = T? for compact manifolds. Since x1(M) = 2
and x1(D) equals the number of branched points, we see from (5.1) that one
can construct a torus as a two-fold cover of P! branched over four points
or as a three-fold cover of P! branched over three points. Reversing the
construction, we can start with the double covered torus M’ = T2 and quo-
tient by an involution to obtain a P! with four fixed points, or with the
triple covered torus and quotient by a Zs action to obtain a P! with three
fixed points. Such natural quotienting can be applied similarly to branched
covered K3 surfaces.

5.1 P! x P! base solution

We take the base K3 surface to be a triple cover of P! x P! branched over
a sextic curve. As described below, this K3 is a complete intersection of
a quadric and a cubic equation in P4. Using this K3 to construct a FSY
geometry, we can quotient by the natural Zs action and obtain an orbifold
non-Kahler heterotic solution that is an elliptic fibration over a P! x P! base.

"For examples of Calabi-Yau three-fold with a branched covering description,
see [21-23].
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To describe the K3, let {zo, 21, 22, 23, 24} be the homogeneous coordinates
of P4. The K3 hypersurface in P* is defined by the following two equations:

ft= 2023 — 2122 = 0,

f2=g(zo,21,22,23)+2220, (53)

where g is a degree three homogeneous polynomial in z;. The first equation
enforces the standard embedding of P* x P! — P3 C P4 by the mapping

P! X P! — P3

(5.4)
{zo, 21} % {yo,u1} {20, 21, 22, 23} = {0y, 1Y0, Toy1, 11}

The second equation exhibits the three-fold covering. For each generic point

on P! x P!, there are three different values of z4 that satisfy (5.2). Alterna-

tively, the equations above are invariant under the Zs action generated by

p:zy— Czy, where (=e*™/3, (5.5)

In particular, the special point z4 = 0 is invariant under this action and here
we have the branched curve specified by

9(20, 21, 22, 23) = 0. (5.6)

This is a cubic equation in terms of the z; variables and a sextic equation in
terms of the natural homogeneous variables x;, y; on P! x P. To ensure the
hypersurface is smooth, it is sufficient to require that the normal bundle to
the hypersurface does not vanish. That is

3
df' N df? = (z3dzg — zdz1 — z1d2s + 29d23) A (Z 019 dz; + 323dz4) # 0,
i=0
(5.7)

for any points on the hypersurface. This is a constraint for g. For instance,
it can be checked that a hypersurface defined by g = 23 + 23 + 25 + 23 is
singular for example at (20, 21,22, 23) = (1,—1,—1,1) while g = 23 + 23 +
2342 zg, the example we shall consider below, is everywhere smooth.

We can write down explicitly the holomorphic two-form for the K3 hyper-
surface. (For reference, see, e.g., [37, Section 15.4].) In the local chart where
29 # 0, we define the affine coordinates Z; = z;/zo for i = 0,...,3. In these
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coordinates the constraint polynomials become

f'=123—-212,=0, (5.8)
2=9(1,21,25,Z5) + Z} = 0. (5.9)

The holomorphic two form in terms of dZ; A dZs is then

dZy N dZy

020 = dzZy N\ dZQ/(thM) = 5 ,
372

(5.10)

where the 2 x 2 matrix M;; = 0f'/0Za4; consists of the partial derivatives
of the two other coordinates (Z3, Z4). The choice of the (Z1, Zs), of course,
is arbitrary and we could have used any other two coordinates. For instance,
in terms of dZ3 A dZ4, we have

g0 _ _ s hdZi (5.11)

Z10vg — Z3 Oag
When (5.7) is satisfied for a smooth K3 hypersurface, the different det M
for different choices of coordinates never simultaneously vanish. This must
be the case since 20 is no-where vanishing. Moreover, of importance for
our construction, under the Zs action, p: Z4 — (Z4, the holomorphic two
form is not invariant and in fact transforms as Q%9 — ¢ 20, This is clearly
evident in (5.10) and (5.11). In contrast, the Calabi-Yau metric or the
hermitian form Jgg is invariant under Zg.

We now consider the non-singular example with the K3 hypersurface
defined by

1 4_ 3,3, .3 3 3
7 =9(20,21,22,23) + 24 = 25 + 21 + 25 + 225 + 2y,

= (2§ + 23)(yg + i) + iy} + 25 = 0, (5.12)

where we have substituted in the coordinates of the two Ps, x; and y;. The
branched curve C is located at g = z4 = 0. Assuming zp = zoyg # 0, the
equation of the branched curve can be written as

1+XHA+Y3)+ X33 = -7} =0, (5.13)

where X = x1/2¢and Y = y;/yo. (Note from the relation y(K3) = 3[x(P! x
PY) — x(C)] + x(C), we see that branched curve has genus g =4.) Two
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distinguished curves in this model are obviously the curves on each of the
P!, These follow from (5.13) by taking either X or Y to be fixed

Cyr: —Z3=1+Y3+ X1 +2Y%),

(5.14)
Oyr: —Z3=1+X3+Y"(1+2X?),

where X', Y’ € C are complex constants. Note that the Cx, and Cy+ curves
are holomorphically embedded into the K3 surface. The two classes are also
homologously inequivalent. The class of Cx: curves do not self-intersect
whereas they intersect three times with the Cy+ curves.

Given the above K3 surface, we can build a FSY geometry. We twist
the T2 by a curvature w = wj; — ws, where w; and wsy are the two forms
dual to the curves Cx/ and Cys. The explicit expressions for these forms
can be obtained by Poincaré duality though we will not need them. Notice
that w = w — wy is primitive with respect to the Kihler form on P! x P*
and also Ji3. Moreover, since the curves C'x: and Cy- are holomorphically
embedded, w € HY1(K3) N H?(K3,7). w can also be the curvature form of
any U(1) gauge bundles that one wish to turn on.

This construction provides an explicit algebraic description of the covering
FSY geometry. We can now orbifold by a Zs action to obtain a new solution.
Again, we can take the fiber torus to have square periodicities z ~ z + 1 ~
z + 1. The Z3 action acting on the six-dimensional geometry is generated by

p:{z0,21.22, 23, 24, 2} = {20, 21, 22, 23,24, 2 + 1/3}, (5.15)

where ¢ is a third root of unity, i.e., (3 = 1. p acting on the base reduces
the triple cover to just a single copy of P! x P'. Without the 7% bundle,
we have a singular branched curve that is invariant under p. The shift
action on T2 removes the singular identification; however, it also increases
the complex structure 7 of the T? fiber along the branched curve. The torus
complex structure thus jumps along the branched curve. But nevertheless,
the resulting geometry is smooth since there are no fixed points.

One might worry about the Zs action on the curvature w. But since w is
dual to the curves, C] and (5, which are invariant under p, w must also be
invariant under p.

The FSY geometry with the three-fold cover K3 surface is thus invariant
under p. Since the holomorphic three-form Q = Q%% A @ transforms non-
trivially p: Q — (€, the smooth orbifold solution with an elliptic fibration
over P! x P! is non-supersymmetric.
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5.2 P2 base solution

We can take the K3 surface to be a double cover over a P? base branched
over a sextic curve. The K3 surface is defined as a degree six hypersurface
in WP3,,5. With weighted homogeneous coordinates (zq, 21, 22, 23), We can
take the hypersurface to be

S48 4+8+2=0. (5.16)

Notice that (zq,z21,22) defines a P2, And for each point on P2, there are
two values of z3 that satisfy (5.16), except on the degree six (genus ten)

branched curve
9(20,21,29) = 25 + 29 + 25 = 0. (5.17)

Similar to the P! x P! case, the Q%Y form on the base is not invariant
under the Zo action z3 — —z3. However, we can preserve the holomorphic
three form by considering the Zo quotient generated by

p:(23,2) = (—23,—2). (5.18)

Taking the twist curvature w ~ Q> ensures that § — —6@ under p. Q =
020 A 6 is therefore invariant under the Zs action. The degree six branched
curve defined by (5.17) is however singular. Thus, this construction gives a
singular A" = 1 supersymmetric orbifold solution. As before, we leave the
resolution of these singular curves for future work.

6 Algebraic K3 surfaces with finite group action

In the previous section, we have seen two examples of K3 surfaces with a
branched covering description and with it a natural discrete symmetry group
action. In both cases, the discrete symmetries are non-symplectic automor-
phisms which by definition act non-trivially on the holomorphic two-form
020 of the K3. More generally, K3 surfaces with non-symplectic symme-
tries are algebraic and have been classified in [38] for the Za case and [39,40)]
for the Zs case. These K3 surfaces can all be used to construct orbifold FSY
geometries. The general construction is similar to the constructions given in
the previous sections. The main difference being the determination of the
torus curvature two-form w with the desired transformation property under
the K3 discrete group action.

Below we shall show how to go about explicitly writing down the torus
twist for algebraic K3 surfaces, and in so doing, construct non-
supersymmetric and singular supersymmetric orbifold geometries. With
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algebraic K3 surfaces, our description becomes effectively purely algebraic.
We explain this in the context of a special class of algebraic K3 with a
Zs discrete symmetry group that has only three fixed points and no fixed
curves [39,40].8  This unique class of K3 is of particular interest since the
singular orbifolds that are constructed from them will only have fixed points
and therefore should be easier to resolve. Although we focus on this special
class of K3 surfaces, the orbifold construction we give below should be appli-
cable to other algebraic K3 surfaces with a non-symplectic automorphism.

The class of algebraic K3 surfaces that we are interested in can be
described, similar to the three-fold branched cover over P! x P!, as an inter-
section of a quadric and a cubic hypersurface in P*. Again, let {zo, 21, 22,
23,24} be the homogeneous coordinates of P4. The class of K3 hypersurface
S in P* is given by the following two equations [39]:

f1 = falz0, 21) + brzazs + bazaza = 0, (6.1)
£% = f3(20,21) + b32s + g3(23, 21) + 22f1(20, 21)91(23, 24) = 0, (6.2)

where f,, g, are homogeneous polynomials of degree n and b; are non-zero
complex constants. Notice that the quadric and cubic equations are invari-
ant under the following discrete action? p acting on S:

p i (20,21, 22, 23, 24) — (P20, (P21, C22, 23, 24). (6.3)

The solutions of the two hypersurface equations with (zo, z1, 2z2) = (0,0, 0)
give the three fixed points which solve g3(z3,z4) = 0.

For instance, we can consider the K3 hypersurface defined by the homo-
geneous equations

fl= zg + z% + 29(23 + 24),

2
f :zzl)’—I—zg’—i—zg’—zi’.

(6.4)
It can be checked that this K3 hypersurface is smooth with df' A df? # 0
on the hypersurface of (6.4). In the coordinate chart z3 # 0, we can use the
affine coordinates Z; = z;/z3 for i = 0,...,4. Then the three fixed points of

81t follows from the holomorphic Lefschetz formula that any K3 surface that has a Z3
discrete symmetry with no fixed curves must have precisely three fixed points.

9To simplify notation, we will in this section use p to denote the generator of the
discrete symmetry action acting either only on the K3 base, only on the torus fiber, or on
the entire six-dimensional geometry X. The object of the p action should be clear from
the context.



NEW HETEROTIC NON-KAHLER GEOMETRIES 1837

(6.3) are located at (Z3, Z4) = {(1,1),(1,¢), (1,¢?)}. Similar to (5.10), the
holomorphic two form can be written locally for example as
dZy N\ dZ
Ry o (6.5)
—3(Z3 + Zj)
which shows explicitly that the holomorphic two-form transforms non-
trivially under the Zs action as

p: Q30— 0?0, (6.6)
as expected for a non-symplectic automorphism.

To construct orbifold FSY geometries, we need to define the torus cur-
vature twist w = w; + T7we. The conditions on w, (2.9) and (2.10), are that
it is an element of H?%(S) ® HY1(S) with wy,ws € H?(S,Z) and that it is
primitive.

For the non-supersymmetric orbifold group action that contains a shift
on the torus fiber,

p: (207 21, %2, %3, %4, Z) — (<2Z03 C2Z1, CZQa 23,2445 % + 1/3)7 (67)

the torus curvature w must be invariant under p. Since Q2 is not invariant,
we have wy,wy can only be (1, 1) and are elements of the Picard lattice N =
HYY(S) N H%(S,Z). In particular, they must be elements of the sublattice
N(p) C N that is invariant under p. We now show that the N(p) is a non-
empty lattice and in fact has rank rk N(p) = 8. This can be derived using
the Lefschetz fixed point formula which relates the Euler characteristic of
the fixed point set S, with the transformation properties of the de Rham
cohomology under p. We denote the complement lattice N(p)* of N(p) in
H?(S,7). N(p)* is not invariant under p and let us assume it has rank
rk N (p)*+ = 2m. Since the second Betti number by = 22, we have rk N(p) =
22 — 2m. The Lefschetz fixed point formula then gives

4

3=x(Sp) = ZTT(P|Hk(S,Z))
k=0

=1+1kN(p) +m(¢+¢*) +1
=24 — 3m, (6.8)

where we have used the fact that 1+ ¢ + ¢ = 0. This implies that m =7
and thus rk N(p) = 8 and tk N(p)* = 14. Thus, we need to choose primitive
wi,wy € N(p) for the torus curvature twist. (The explicit lattice N(p) is
given in equation (6.11) below.)
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For constructing supersymmetric orbifolds, the orbifold action must act
on the torus fiber by a rotation

2

z : CCQz (6.9)
so that the holomorphic three-form remains invariant. In order for the torus
lattice structure to be compatible with this Z3 rotation, we must set the
torus complex structure 7 = (. The torus curvature two-form w = wy + (wo
is now required to have the transformation property p:w — (%w. Thus,
wi,ws € N(p)*+ and because Q>0 transforms as in (6.6), we must again have
w € HYY(S). Note that elements in N (p)* are real and generally, in addition
to (1,1) components, also have (2,0) and (0,2) components. Thus to ensure
that w is purely (1,1), we need to determine explicitly the complex structure
of S. To do so will require some knowledge of the lattice L of the second
integral cohomology, H?(S,Z), which we now explain. (For more details on
L, see for example [41].)

L is a self-dual unimodular lattice. For elements x; € L, there is a natural
bilinear form on L given by the integral

dzj = (xi,xj) = / AN (610)

S
The bilinear form on L is that of the lattice U? @ (Fg) @ (Eg). Here, U
denotes the hyperbolic lattice defined by (1) (1) and A,, D, E, denote

the “negative” definite lattice of the corresponding Lie algebra root system.
The form is thus given by the negative of the Cartan matrix.

Of course, N(p) and N(p)+ are both sublattices of L. For K3 surfaces
with a Zs action having only fixed points, they take the form [39,40]

N(p)=UB) @ E;(3), N =A(-D@As  (611)

where for example U(3) denotes the lattice with three times the bilinear
form of U and E§ denotes the lattice dual to the Eg lattice. Each sub-
lattice in N(p)* contains an order three discrete symmetry action p. For

the lattice Ay associated with the negative Cartan matrix <_12 12>, let
0

en={(0)-

(1) , be the basis vectors that have the inner product
(e,e) = (f,f)=—2and (e, f) = 1. The Z3 symmetry action on the lattice
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can be described by

e = f

fr= —e=f

Under this action, the linear combinations (e —(f) and (f — (e) trans-
form as

(6.12)

Ce—Cf o le—cf)
Piople - (- Ce) (6.13)

and span an eigenbasis of two forms with eigenvalues ¢ and (2, respectively.

We can now explicitly write down the complex structure S, or equiva-
lently, the associated holomorphic two form. By (6.6), Q2% € N(p)t @ C.
We can express Q%0 as a linear combination of the basis elements of the
lattice N(p)t = Ax(—1) @ AS

6
0% = Bo(eo — Cfo) + Y Bilei — i), (6.14)
i=1
where By and B; for i = 1,...,6 are complex constants and {eg, fo}, {ei, fi}

are, respectively, the basis elements of A2(—1) and the six A’s. We shall
take all pairs of {e, f} to transform under p as in (6.12). The constants
By, B; determine the complex structure and equivalently the periods with
respect to a specified marking of two cycles on the K3. They are constrained
by three consistency conditions. The two standard ones are

/ Q20 A 020 =, (6.15)
S

6
/ Q*0n 20 =3 (|Boy2 -3 yBZ»P) > 0. (6.16)
S

i=1

The first condition is automatically satisfied by an Q2° expressed as in
(6.14). The second by itself is a weak condition and can be easily satisfied.

The third consistency condition involves the Picard lattice N. In general,
the Picard lattice N consists of the invariant N(p) and also any elements in
N(p)* that are (1,1), i.e., N(p)= N Q+. Let T = N+ be the complement
lattice to N. For a generically chosen complex structure %°, we will have
T = N(p)* and N = N(p), that is all elements in N(p)* will have a (2,0)
and a (0,2) part. But for special complex structures, only 7 C N(p)* and
N(p) C N. Nevertheless, for elements in the Picard lattice that transforms
non-trivially under p, it is necessary that there exists no element h with
(h,h) = —2. For if such exists, then by the Riemann—Roch theorem applied
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to K3 surfaces, there is an effective divisor £h which under the action p :
+h — £¢h or 4+ (?h which is not possible [42]. Thus, for instance, choosing
By =1 and B; = 0 would lead to (—2)-curves for h = e; or f; and would not
be valid. A consistent choice would be

By=3, Bi=1, and 0<B; <1 for 1=2,...,6 (6.17)
for B; sufficiently generic.

Having established the lattice structure and the complex structure, we
can now determine the possible torus curvature two-form w. As mentioned,
under the discrete symmetry action, w must transform as in (6.9). Matching
the transformation property of w with those in (6.13) implies that w can be
written as a linear combination

6

w = Co(fo—Ceo) + > Cilfi = Ces), (6.18)

1=0

where Cy and Cj’s are complex constants. Since we require that w does not
have an (0,2) component, we have the additional constraint

6
/ 0?0 Aw = —3¢(BoCo — Y BiCi) = 0. (6.19)
S

i=0
Note that [¢ Q%% Aw = 0 is automatically satisfied for w given by (6.18).

For the choice of complex structure specified by (6.14) and (6.17), we can
for example choose Cy = 1, = 3, and all other C; = 0 which gives

w=wi+ (w2 = (fo+3f1) +{(—eo — 3e1) € HI’I(S). (6.20)

We see that although wi,ws € H?(S,Z) only, the combination w = w; +
Cwa € HY(S) as required. Furthermore, for w in (6.20) we also have [gw A
© = —24 (having set A = 75 in (2.11)) which would give us a N' =2 FSY
geometry with trivial gauge bundle.

Orbifolding the FSY geometry by the Zs action,

p: (20721722,23,2472) — (C2ZO,4221,C22,23, Z4,C2Z)- (62]‘)

The resulting supersymmetric orbifold geometry has 3 x 3 = 9 fixed points.
(The Zs3 action on the torus, p: 6 — (26, also lead to three fixed points.)
Each fixed point is locally a C3/Zs orbifold that can be minimally resolved
by a P2. Thus the resolved manifold of this singular orbifold has Euler
characteristic x(Y) = (0 — 9)/3 + 9x(P?) = 24. For this orbifold with only
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nine fixed points, there is already a candidate local model that we can use
to resolve each singularity of the geometry. This is the well-known local
Calabi-Yau metric that resolves C3/Z3 [22,43]. However, careful analysis is
required to verify that such gluing-in can preserve the required supersym-
metry and anomaly conditions.

7 Discussions

We have constructed new non-Kéhler heterotic geometries Y = X/T" by orbi-
folding the torus bundle over K3 base geometry by a discrete symmetry
group I'. The orbifolds Y are clearly topologically distinct from the starting
torus bundle geometry X. For smooth orbifold models, the first fundamen-
tal group m1(Y') additionally contains the symmetry group I'. For singular
orbifolds where G has a fixed locus set, the resolution of singularities will
generically give a non-zero Euler characteristic for the resolved manifold Y.

The orbifold models we have constructed can be supersymmetric or break
all supersymmetries. We have given explicit constructions of orbifold solu-
tions where the K3 base of the FSY model is either a Kummer K3 or has
a branched covering description or a more general algebraic description.
Those orbifold geometries arising from a shift action on the fiber can still be
viewed as having a fiber space structure. The base is now the K3 orbifolded
by the discrete action and the complex structure of the torus jumps along
the fixed locus set of the discrete action. Rotation actions on the torus fiber
may result in orbifold models with singularities, which potentially can have
a non-vanishing Euler characteristic as well as a non-vanishing number of
generations. The smooth resolution of these non-Kahler singular orbifold
solutions is an important question that shall be addressed in future work.

The smooth non-supersymmetric geometries we have constructed are each
an elliptic fibration over a complex surface. For example, the one in Section
5.1 utilizing a branched covered K3 surface is an elliptic fibration over a
P! x P! base. Being non-supersymmetric, the holomorphic three form of
the FSY geometry has been projected out. It is thus interesting to ask
whether these smooth torsional elliptically fibered three-folds more gener-
ally can support a no-where vanishing holomorphic three-form. Such would
lead directly to smooth supersymmetric heterotic geometries. Some prelim-
inary metric anséatze for these elliptically fibered three-folds has been pro-
posed in [44]. Interestingly, from the perspective of F-theory and heterotic
string duality [18,45], elliptically fibered three-folds should be dual to F- or
M-theory flux compactifications on Calabi-Yau four-folds [46] that are K3
fibrations. Recent work using this approach appears to indicate the existence
of such class of heterotic flux compactifications [47].
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It is worthwhile to emphasize that the FSY geometries, at least for those
that preserve N =2 SUSY, have a conformal field theory description [17]
and represent a class of string vacua valid to all orders in o/. The construc-
tion of geometric orbifold models described here should therefore have an
analogous orbifold description from the CFT perspective. The CFT orbi-
fold models that are constructed from freely acting discrete groups should
just consist of a projection. For the non-freely acting ones, the resolution of
singularities should correspond to the addition of twisted sector modes. It
would be interesting to work out the CFT description of the orbifold models
constructed herein.

An important question that we leave for future work is whether the non-
super-symmetric orbifolds are stable in the g loop expansion. Some beauti-
ful examples of non-supersymmetric stable orbifolds were constructed in [48].
Non-supersymmetric unstable orbifolds can lead to an interesting decay pro-
cess as has been discussed in the recent literature [49,50]. In particular in [50]
non-compact non-supersymmetric orbifolds were shown to decay into super-
symmetric ALE spaces. It would be interesting to see if an analysis along
the lines of [49] can be performed for the heterotic orbifold models we have
constructed.
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