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Abstract

A free field representation of the gl(1|1)k current algebra at arbitrary
level k is given in terms of two scalar fields and a symplectic fermion. The
primary fields for all representations are explicitly constructed using the
twist and logarithmic fields in the symplectic fermion sector. A closed
operator algebra is described at integer level k. Using a new super spin-
charge separation involving gl(1|1)N and su(N)0, we describe how the
gl(1|1)N current algebra can describe a non-trivial critical point of dis-
ordered Dirac fermions. Local gl(1|1) invariant lagrangians are defined
which generalize the Liouville and sine-Gordon theories. We apply these
new tools to the spin quantum Hall transition and show that it can be
described as a logarithmic perturbation of the osp(2|2)k current algebra
at k = −2.

1 Introduction

A variety of 2D models with Lie super-group symmetry are now under-
stood to be important in many diverse areas of modern theoretical physics.
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A partial list includes applications to disordered systems [1–6], statistical
mechanics [7,8], and string theory [9–11]. Although many results are known,
much remains to be understood about these models in comparison with their
ordinary bosonic counterparts.

The simplest Lie super-algebra is gl(1|1) and it’s current algebra, gl(1|1)k

at level k, is the main subject of this paper. We also obtain some results
for the osp(2|2)k=−2 case. (osp(2|2) is also referred to as su(2|1) in the
literature.) The WZNW sigma-model based on the GL(1|1) super-group
was considered long ago by Rozanski and Saleur [12], and more recently
by Schomerus and Saleur [13] using harmonic analysis on the super-group.
The latter analysis was extended to other super-groups in [14, 15]. In con-
trast, in our work the starting point is not the WZNW model field theory,
but rather the quantum field theory is constructed algebraically using the
current algebra itself, as was done for the su(2) theory by Knizhnik and
Zamolodchikov [16]. In this way, new results concerning the spectrum of
fields are obtained, and explicit constructions of the vertex operators for all
representations are given in terms of twist and logarithmic fields.

For the remainder of this introduction, we summarize our main results
and describe the organization of the remainder of the paper. After reviewing
the definitions of the super-current algebras in Section 2, we construct a free
field representation in Section 3 involving two scalar fields and a symplectic
fermion. It is known from the work [4] that such a representation exists at
level 1, but it was not evident that this extends to arbitrary level k with
the same field content. In Section 4, the finite-dimensional representations
of gl(1|1) are reviewed. Explicit constructions of the vertex operators are
given in Section 6 and require the twist fields of the symplectic fermion
sector. This rôle of twist fields was previously recognized for the special
case of osp(2|2)−2 by Ludwig [17]. These twist fields were first studied
by Kausch [18] and their properties are summarized in Section 5. Some
additional properties of the twist fields that were needed are derived in
Appendix B. The vertex operator construction indicates that the level can
be interpreted as a radius of compactification R =

√
k.

The vertex operators for the so-called atypical indecomposable represen-
tations are also explicitly constructed and are logarithmic. We wish to
emphasize that this is only possible in the second-order description of sym-
plectic fermions because of the additional zero modes that are not present
in the first-order description.

The properties of the twist fields place restrictions on the allowed spec-
trum of primary fields and this shows how to obtain a closed operator alge-
bra (Section 7). We compare the k = 2 case with c = 0 minimal Virasoro
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models and thereby show that it is very closely related, but not identical,
to percolation.

We consider N -copies in Section 8 and present a super version of the
ordinary spin-charge separation. More specifically, the stress tensor of N
free Dirac fermions and ghosts can be decomposed as the sum of two com-
muting pieces which are the stress tensors for gl(1|1)k=N and su(N)k=0.
This generalizes the result found in [5] for N = 2 to arbitrary N . This fact
opens up possibilities for the interpretation of gl(1|1)k=N as a disordered
critical point, and we explain one simple scenario. Our generalization of
spin-charge separation to arbitrary N differs from the one in [19] which
involves osp(2|2)−2N ⊗ sp(2N)0, and is more relevant to generalizations of
the spin quantum Hall transition (SQHT). The two are equivalent at N = 2
since sp(2) = su(2) and osp(2|2)−2 = gl(1|1)2 (see Section 11).

Local (non-chiral) operators that are gl(1|1) invariant are constructed
in Section 9. For the logarithmic representations, these operators can be
expressed explicitly in terms of the free fields and can be used to define
gl(1|1) invariant lagrangians (Section 10). In this way, we obtain gl(1|1)
invariant versions of the Liouville and sine-Gordon models.

The osp(2|2)k current algebra at k = −2 is known to describe the critical
point of Dirac fermions subject to a random su(2) gauge potential [5,6]. We
extend our results to osp(2|2)−2 in Section 11. In addition to recovering
the results in [17] from the gl(1|1) embedding, we construct the local field
corresponding to the 8-dimensional logarithmic representation.

The application of the tools developed in this paper to critical points
of disordered Dirac fermions is initiated in Section 12 where we revisit the
SQHT. Based on the renormalization group (RG) analysis studied in [5,20],
we propose that the additional kinds of disorder in the network model for
the SQHT can be accounted for by an additional perturbation of the current
algebra osp(2|2)−2 by the logarithmic operator in the 8-dimensional inde-
composable representation. We argue this perturbation does not drive the
theory to a new fixed point but rather gives logarithmic corrections. This is
consistent with the work of Read and Saleur which emphasized that the crit-
ical point possesses osp(2|2) symmetry but is not precisely a current algebra.

2 The gl(1|1)k and osp(2|2)k super-current algebras

In this section, we define the super-current algebras and present their stress
tensors. There are various conventions in the literature for the level k.
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Our conventions are natural for applications to disordered Dirac fermions.
Consider the 2D free conformal field theory for a single component U(1)
charged Dirac fermion ψ± and its ghost partners β±, with action

S =
1
4π

∫
d2x

(
ψ−∂zψ+ + ψ−∂zψ+ + β−∂zβ+ + β−∂zβ+

)
, (2.1)

where z, z are euclidean light-cone coordinates, z = (x + iy)/
√

2, z = z∗.
The ghost fields have bosonic statistics and the same conformal dimension
as the fermions: Δ(β±) = 1

2 . First order systems of this type were treated in
generality in [21], in connection with string world sheet ghosts. In particular,
the fermions have Virasoro central charge c = 1, whereas the bosons have
c = −1, and the total central charge is zero. The two-point functions of the
left-moving fields are

〈ψ−(z)ψ+(w)〉= 〈ψ+(z)ψ−(w)〉 = 〈β+(z)β−(w)〉= −〈β−(z)β+(w)〉=
1

z − w
(2.2)

and similarly for the right-movers, 〈ψ−(z)ψ+(w)〉 = 1/(z − w), etc. In the
sequel, we will not display the right-moving counterparts if they are the
obvious duplications of the left.

Define the currents

H = ψ+ψ−, J = β+β−, S± = ±ψ±β∓ . (2.3)

H and J are the U(1) currents underwhich ψ± and β± have charge ±1
and ∓1, respectively. Throughout the sequel, we will mainly present our
results using operator product expansions (OPEs). Using equation (2.2),
the currents satisfy the gl(1|1)k super-current algebra OPEs at k = 1:

H(z)H(0) ∼ k

z2 , J(z)J(0) ∼ − k

z2 ,

H(z)S±(0) ∼ J(z)S±(0) ∼ ±1
z

S±(0),

S+(z)S−(0) ∼ k

z2 +
1
z

(H − J)(0).

(2.4)

The above k dependence establishes our convention for gl(1|1)k at arbitrary k.

For a general current Ja, define its modes Ja
n as follows: Ja(z) =

∑
n∈ZZ

Ja
n z−n−1. The modes satisfy the affine Lie super-algebra:

[Hn, Hm] = −[Jn, Jm] = k n δm+n,0,

[Hn, S±
m] = [Jn, S±

m] = ±S±
n+m,

{S+
n , S−

m} = k n δn+m,0 + Hn+m − Jn+m.

(2.5)

The zero modes H0, J0, S
±
0 satisfy the finite gl(1|1) algebra.
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The algebra gl(1|1)k has an inner automorphism that flips the sign of the
level k:

H → J, J → H, S± → ±S±, k → −k. (2.6)

This implies that results for negative k can be deduced from the case of
positive k.

The only additional currents one can define in this theory are:

J± = β2
∓, Ŝ± = ψ∓β∓. (2.7)

The complete set of currents satisfy the osp(2|2)k algebra at level k. The
complete set of relations are presented in Appendix A. Rescaling J± →
2
√

2J±, J → 2J , one sees that they together satisfy the su(2) current algebra
at level −k/2. Also, making the redefinition H → −H, J → J, Ŝ± → ±Ŝ±,
one sees that they also satisfy gl(1|1)k, so that osp(2|2)k contains two non-
commuting gl(1|1)k’s.

We will need the Sugawara stress tensor T (z). The algebra gl(1|1) has
two independent quadratic casimirs:

C2 = J2 − H2 + S+S− − S−S+, C ′
2 = (J − H)2 (2.8)

where it is implicit that the above operators are the zero modes of the
currents. The stress tensor is fixed by the condition T (z)Ja(0) ∼ Ja(0)/z2,
which requires it to be built out of both casimirs [12]:

T (z) = − 1
2k

(
J2 − H2 + S+S− − S−S+

)
+

1
2k2 (J − H)2. (2.9)

The leading term in the OPE T (z)T (0) shows that c = 0.

3 Free field representation

In this section, we present a free field representation of gl(1|1)k for any
level k. The free Dirac fermion can be bosonized with a single scalar field.
The results in [21] show that the first-order bosonic β± system can be rep-
resented in terms of a single scalar field for the U(1) current and another
first-order fermionic η − ξ system. The latter can be formulated as a second-
order symplectic fermion (see Appendix B). Thus, it is clear that the k = 1
representation of the last section constructed out of the fields ψ±, β± can
be represented with two scalar fields and a symplectic fermion. What is
not so evident is that this same field content is sufficient to provide a free
field construction of gl(1|1)k at any level. This is in contrast to su(2)k for
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example where the higher level case requires additional Zk parafermions.
(For a review of 2D conformal field theory see [22,23]).

Introduce two scalar fields φφφa and a symplectic fermion χχχa, a = 1, 2, with
the following free action:

S =
1
8π

∫
d2x

2∑
a,b=1

(
ηab∂μφφφa∂μφφφb + εab∂μχχχa∂μχχχb

)
(3.1)

where

η =
(

1 0
0 −1

)
, ε =

(
0 1

−1 0

)
(3.2)

and ∂μ∂μ = 2∂z∂z. The χχχ fields are Grassman: (χχχa)2 = 0. Note that the
metric for the bosonic fields has indefinite signature. The equations of
motion imply that the fields can be decomposed into left- and right-moving
parts:

φφφa(z, z) = φa(z) + φ
a(z),

χχχa(z, z) = χa(z) + χa(z).
(3.3)

In the sequel, we will continue to display local fields in bold face. The
two-point functions are

〈φa(z)φb(w)〉 = −ηab log(z − w), 〈χa(z)χb(w)〉 = −εab log(z − w). (3.4)

(Our conventions are ηab = ηab, ε
ab = εab.)

It is straightforward to verify the following representation of the OPEs in
equation (2.4):

H = i
√

k ∂zφ
1, J = i

√
k ∂zφ

2,

S+ =
√

k ∂zχ
1 ei(φ1−φ2)/

√
k, S− = −

√
k ∂zχ

2 e−i(φ1−φ2)/
√

k.
(3.5)

In the sequel, where there is no cause for confusion, we will simply write ∂φ
for ∂zφ(z).

4 Finite-dimensional representations of gl(1|1)

The complete solution of the current algebra as a quantum field theory
requires the determination of the spectrum of fields. The chiral primary
fields Vr (z) transform as finite-dimensional representations r of gl(1|1),
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which is equivalent to the OPE:

Ja(z) Vr (0) ∼ 1
z

tar Vr (0), (4.1)

where Ja, a=1, . . . , 4 are the gl(1|1)k currents and tar is the finite-dimensional
matrix representation of r of gl(1|1). (In the sequel we will continue to refer
to general super-currents as Ja).

Before explicitly constructing the primary fields Vr , we first describe the
relevant finite dimensional representations [13, 24, 25]. The gl(1|1) algebra
has the following non-zero (anti) commutation relations:

[H, S±] = [J, S±] = ±S±, {S+, S−} = H − J. (4.2)

The fermionic operators are nilpotent: S2
± = 0. (It is implicit that the above

generators are the zero modes of the currents.) First, there are 1-dimensional
representations where S± = 0, H = J = h. We will denote these as 〈h〉(1).

The so-called typical representations are 2-dimensional:

H =
(

h 0
0 h − 1

)
, J =

(
j 0
0 j − 1

)
, (4.3)

S+ =
(

0 b
0 0

)
, S− =

(
0 0
c 0

)
, (4.4)

where bc = h − j. Let us denote these representations as 〈h, j〉. When h 
= j,
these representations are irreducible. The tensor product of two typical
representations can be deduced by simply considering the U(1)’s:

〈h1, j1〉 ⊗ 〈h2, j2〉 = 〈h1 + h2, j1 + j2〉 ⊕ 〈h1 + h2 − 1, j1 + j2 − 1〉. (4.5)

When h = j, the representations are reducible but indecomposable. There
are two different representations depending on whether b or c equals zero.
For b = 0, the representation will be referred to as 〈h, h〉 and for c = 0 as
〈h, h〉′. They can be reduced as 〈h, h〉 = 〈h〉(1) ⊕ 〈h − 1〉(1); however they
are indecomposable since S− : 〈h〉(1) → 〈h − 1〉(1).

Finally there are 4-dimensional indecomposable representations which will
be important in the sequel, and we denote as 〈h〉(4). They arise in the tensor
product of typical representations when h1 + h2 = j1 + j2:

〈h1, j1〉 ⊗ 〈h2, j2〉 = 〈h1 + h2 − 1〉(4). (4.6)
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From equation (4.5), one sees that 〈h〉(4) can be reduced into 〈h + 1, h + 1〉 ⊕
〈h, h〉; however, S± mixes these two representations. The generators in
〈h〉(4) are

S+ =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , S− =

⎛
⎜⎜⎝

0 0 0 0
−1 0 0 0
0 0 0 0
0 0 −1 0

⎞
⎟⎟⎠ ,

H = J =

⎛
⎜⎜⎝

h + 1 0 0 0
0 h 0 0
0 0 h 0
0 0 0 h − 1

⎞
⎟⎟⎠ (4.7)

The indecomposability can be represented by the diagram in Figure 1.

If there exists primary fields corresponding to the representation r , then
the conformal scaling dimension Δr follows from the Sugawara form (2.9)
and the values of the casimirs C2, C

′
2 in the representation r . This way one

finds

Δ〈h,j〉 =
(h − j)2

2k2 +
(h − j)(h + j − 1)

2k
(4.8)

and Δ〈h〉(1) = Δ〈h,h〉 = Δ〈h,h〉′ = 0. Note that Δ〈h,j〉(k) = Δ〈j,h〉(−k), in
accordance with the automorphism equation (2.6).

Figure 1: The 4-dimensional indecomposable representation 〈h〉(4) of gl(1|1).
The arrows indicate the action of S+.
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The novel feature of the representation 〈h〉(4) is that the casimir C2 is not
diagonal:

C2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 2 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (4.9)

As we will see, this leads to logarithmic properties of the fields, as explained
in [3] for osp(2|2).

The original fields in the k = 1 representation of Section 2 correspond to:

(ψ+, β+) ↔ 〈1, 0〉, (β−, ψ−) ↔ 〈0, 1〉. (4.10)

A consistency check is Δ〈1,0〉 = Δ〈0,1〉 = 1
2 when k = 1.

5 Twist and logarithmic operators in the symplectic fermion
theory

In this section, we present the two important features of symplectic fermions
we will need in order to construct the primary fields of the current alge-
bra, namely the logarithmic and twist fields. More details are provided
in Appendix B.

5.1 Logarithmic fields

The c = −2 symplectic fermion theory is the simplest and most studied
example of a logarithmic conformal field theory [18,26]; for a review see [27,
28]. The original investigation of these properties was based on the null
vector differential equation for the c = −2 minimal model four-point func-
tions [26]. In this abstract approach, the explicit construction of the logarith-
mic operators is not evident. The logarithmic operator is also not contained
in the first-order η − ξ description [18] (see Appendix B). An important
feature of the second-order χ description is that the logarithmic fields are
explicitly contained in the theory because of the additional zero modes.

Generally, let �0(z), �(z) denote a logarithmic pair with scaling dimension
Δ. By definition they satisfy the following OPE with the stress tensor:

T (z) �0(0) ∼ Δ
z2 �0(0) +

1
z

∂�0(0),

T (z) �(0) ∼ Δ
z2 �(0) +

a

z2 �0(0) +
1
z
∂�(0),

(5.1)
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which implies
L0|�0〉 = Δ|�0〉, L0|�〉 = Δ|�〉 + a|�0〉. (5.2)

The conformal Ward identities lead to the following two-point functions
[3, 29]:

〈�0(z)�0(0)〉=0, 〈�(z)�0(0)〉 =
C

z2Δ , 〈�(z)�(0)〉=
C ′ − 2aC log z

z2Δ , (5.3)

where C, C ′ are constants.

The stress tensor of the symplectic fermion is

T (z) =
1
2
εab∂χa∂χb. (5.4)

Define

�(z) = −1
2
εabχ

aχb = −χ1χ2. (5.5)

Then �(z) and �0 = 1 satisfy the OPEs (5.1) with Δ = 0. On the states
|�〉 = �(0)|0〉 and |0〉 = |�0〉, the Virasoro zero mode L0 has the usual form

for a logarithmic pair: L0 =
(

0 1
0 0

)
.

The field can be expanded as follows:

χa(z) = χa
0 − iχ̃a

0 log(z) + i
∑
n	=0

1
n

χa
n z−n, (5.6)

where {χa
0, χ̃

b
0} = iεab and {χa

m, χb
n} = mεabδm+n,0. In terms of the zero

modes:
|�〉 = −χ1

0χ
2
0|0〉. (5.7)

Functional integrals over χχχ are zero unless they contain the zero modes:

〈�〉 = 1, 〈1〉 = 0 (5.8)

consistent with equation (5.3).

5.2 Twist fields

As for the spin fields of the Ising model, the twist fields modify the boundary
conditions of the fundamental field χ:

χ1(e2πiz)μλ(0) = e−2πiλχ1(z)μλ(0),

χ2(e2πiz)μλ(0) = e2πiλχ2(z)μλ(0).
(5.9)
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The properties of these fields were studied in [18]. It is clear from the above
equation that 2πλ is a phase and is restricted to −1 < λ < 1. In the presence
of μλ, the mode expansion is twisted:

χ1(z) = χ1
0 + i

∑
n∈ZZ

1
n + λ

χ1
n+λ z−n−λ,

χ2(z) = χ2
0 + i

∑
n∈ZZ

1
n − λ

χ2
n−λ z−n+λ.

(5.10)

The expansion equation (5.6) arises as λ → 0.

We will need the OPE of the twist fields with ∂χ, which involves new
fields σa

λ. The results are derived in Appendix B:

∂χ1(z) μλ(0) ∼
√

1 − λ

zλ
σ1

λ(0), ∂χ2(z) σ1
λ(0) ∼

√
1 − λ

z2−λ
μλ(0),

∂χ2(z) μλ(0) ∼
√

λ

z1−λ
σ2

λ(0), ∂χ1(z) σ2
λ(0) ∼ −

√
λ

z1+λ
μλ(0).

(5.11)

The scaling dimensions of these fields is

Δ(μλ) = Δ(χ)
λ , Δ(σ1

λ) = Δ(χ)
λ−1, Δ(σ2

λ) = Δ(χ)
λ+1 (5.12)

where we have defined:

Δ(χ)
λ ≡ λ(λ − 1)

2
. (5.13)

The powers of z in equation (5.11) are fixed by these scaling dimensions.

The factors of
√

λ,
√

1 − λ are not arbitrary and will be important in the
next section. They are fixed once the normalizations 〈μ1−λ|μλ〉 = 1 and
〈σa

1−λ|σb
λ〉 = εab are fixed (see Appendix B).

6 Vertex operators

In this section, we explicitly construct the chiral (left-moving) vertex opera-
tors for the gl(1|1) representations in Section 4. We present formulas for k >
0; negative k results follow from the k → −k automorphism (2.6). For a gen-
eral current Ja, the vertex operators for a finite-dimensional representation
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r are a vector of fields V α
r (z), α = 1, 2, . . . ,dim(r) satisfying the OPE

Ja(z) V i
r (0) =

1
z

tajiV
j
r , (6.1)

where ta is the finite-dimensional matrix representation of r .

Introduce the notation for the bosonic sector:

Vφ
h,j ≡ ei(hφ1−jφ2)/

√
k. (6.2)

The above field has U(1) charges (H, J) = (h, j) and conformal dimension

Δφ
h,j =

h2 − j2

2k
. (6.3)

The vertex operators V〈h〉(1) for the 1-dimensional representation 〈h〉(1) are
purely bosonic:

V〈h〉(1) = Vφ
h,h. (6.4)

Let V〈h,j〉 denote the vertex operator for the 2-dimensional typical repre-
sentation with h 
= j. They require the twist fields with λ = h−j

k . For h > j
one has

V〈h,j〉 = (h − j)1/4

⎛
⎝ −μλ Vφ

h,j

σ2
λ Vφ

h−1,j−1

⎞
⎠ , λ =

h − j

k
. (6.5)

For h < j the proper expression is

V〈h,j〉 = (j − h)1/4

⎛
⎝ σ1

1+λ Vφ
h,j

μλ+1 Vφ
h−1,j−1

⎞
⎠ , λ =

h − j

k
. (6.6)

To verify that these expressions satisfy equation (6.1), one uses the explicit
expressions for the gl(1|1)k currents (3.5), the representations ta given in
Section 3, and the OPEs (5.11). In doing so, one finds that the factors
of

√
λ,

√
1 − λ in the OPEs (5.11) are necessary. The construction is also

consistent with the scaling dimension Δ〈h,j〉 in equation (4.8):

Δ〈h,j〉 = Δφ
h,j + Δ(χ)

λ = Δφ
h−1,j−1 + Δ(χ)

λ+1, λ =
h − j

k
. (6.7)

When h = j, the vertex operators for the representations 〈h, h〉 and 〈h, h〉′ are

V〈h,h〉 =

(
χ1 Vφ

h,h

−
√

k Vφ
h−1,h−1

)
, V〈h,h〉′ =

(
−

√
k Vφ

h,h

χ2 Vφ
h−1,h−1

)
. (6.8)
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The vertex operators for 〈h〉(4) are novel because they are logarithmic.
The zero modes of the χ fields span a 4-dimensional vector space |0〉, χ1|0〉,
χ2|0〉, χ1χ2|0〉, and the vertex operator is built on this structure:

V〈h〉(4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ1 Vφ
h+1,h+1

√
k Vφ

h,h

χ1χ2 Vφ
h,h/

√
k

χ2 Vφ
h−1,h−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6.9)

The two middle fields �′
0 =

√
kVφ

h,h, �′ = χ1χ2Vφ
h,h/

√
k form a logarithmic

pair (5.1) with Δ = 0 and a = −1/k since �0 = 1 and �(z) in equation (5.5)
form such a pair. As explained in [3], this logarithmic property is reflected in
the fact that the casimir C2 is not diagonal for 〈h〉(4), equation (4.9). Using
the Sugawara form (2.9) and equation (4.9), one indeed sees that on 〈h〉(4):

L0 = −1
k

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , (6.10)

where L0 is the zero mode of T (z) =
∑

n Lnz−n−2, which is consistent with
the form of the vertex operator (6.9).

7 Closed operator algebras and the spectrum of fields

As for ordinary current algebras, not all representations of gl(1|1) correspond
to primary fields. For example, for su(2)k, only the primary fields with spin
j ≤ k/2 are present in the spectrum [30]. For gl(1|1)k there are similar
restrictions depending on the level k. Since the twist fields μλ are defined
for −1 ≤ λ ≤ 1 and the vertex operators V〈h,j〉 involve λ = h−j

k , it is clear
that:

−k ≤ h − j ≤ k. (7.1)

The above restriction can also be understood directly in the affine super-
algebra. Let |h, j〉hw denote a highest weight state satisfying

S±
n |h, j〉hw = S+

0 |h, j〉hw = 0, n > 0. (7.2)
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Consider the modes S±
1 , S±

−1 which satisfy two gl(1|1)’s:

{S+
1 , S−

−1} = k + H0 − J0, {S+
−1, S

−
1 } = −k + H0 − J0. (7.3)

Then one has

{S+
−1, S

−
1 }|h, j〉hw = S−

1 S+
−1|h, j〉hw = (h − j − k)|h, j〉hw = 0. (7.4)

This means there is a null state S+
−1|h, j〉hw = 0 if h − j = k. Using this null

state inside a three-point function one deduces that the primary fields must
satisfy equation (7.1). The fusion rules are as in equation (4.5) where only
fields satisfying h − j ≤ k are kept on the right hand side.

Thus far there is no restriction on the level k. The manner in which k
enters the vertex operator construction shows that in the bosonic sector Vφ

h,j ,
k can be interpreted as a radius of compactification R =

√
k.

For generic irrational k, one does not have a closed operator algebra. A
closed operator algebra is obtained when k is an integer and (h, j) are inte-
gers. These are the “minimal models” based on gl(1|1)k. This situation
arises naturally in the application to disordered systems since the funda-
mental fields ψ±, β± at k = 1 correspond to the doublets 〈1, 0〉 and 〈0, 1〉,
equation (4.10). It will be shown in the next section how one can obtain
higher integer k in the multi-copy theory via a super spin charge separation.
Thus it appears the locality considerations in [1], which led to the restriction
k = 1/m with m is an integer, is too restrictive.

The closed operator algebra at higher integer level k is generated by
repeated OPE of the two vertex operators V〈1,0〉 and V〈0,1〉, and are sub-
ject to the restriction (7.1). Note that the scaling dimensions follow the
pattern

Δ〈h+n,j+n〉 = Δ〈h,j〉 +
n(h − j)

k
. (7.5)

7.1 The case of k = 2

Let us illustrate these features in the next simplest case of k = 2. The twist
fields μ1/2 and σa

1/2 have Δ equal to −1/8 and 3/8, respectively. These fields
have the following OPE [18]

μ1/2(z) μ1/2(0) = z1/4 (�(0) + log(z) + · · ·) ,

σa
1/2(z) σb

1/2(0) =
1

z3/4 εab (�(0) + log(z) + · · ·) ,

μ1/2(z) σa
1/2(0) = − 1√

2
1

z1/4 (χa(0) + · · ·) .

(7.6)
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The vertex operators V〈1,0〉 and V〈0,1〉 both have conformal dimension 1/8
and take the form

V〈1,0〉 =

(
−μ1/2 Vφ

1,0

σ2
1/2 Vφ

0,−1

)
, V〈0,1〉 =

(
σ1

1/2 Vφ
0,1

μ1/2 Vφ
−1,0

)
. (7.7)

Using the OPEs (7.6), one finds

V〈1,0〉(z) V〈0,1〉(0) ∼ 1
z1/4 V〈0〉(4) , (7.8)

where V〈0〉(4) is the 4-dimensional logarithmic field (6.9).

To find the other OPEs, we need the λ = 0, 1 limit of the twist fields in
the expressions (6.5) and (6.6) for the vertex operators V〈2,0〉, V〈1,−1〉, V〈0,2〉,
V〈−1,1〉. The following linear combinations are consistent with the λ = 0, 1
limit of the OPEs in equation (5.11):

μ1 = a + b χ2, σ2
1 = a ∂χ2 + b ∂χ2 χ2,

μ0 = c + d χ1, σ1
0 = c ∂χ1 + d ∂χ1 χ1,

(7.9)

where a, b, c, d are constants. Which linear combinations appear in the vertex
operators follows from equation (7.6). One finds

V〈1,0〉(z) V〈1,0〉(0) ∼ z−1/4 V〈1,−1〉 + z3/4 V〈2,0〉,

V〈0,1〉(z) V〈0,1〉(0) ∼ z−1/4 V〈0,2〉 + z3/4 V〈−1,1〉,
(7.10)

where

V〈2,0〉 =
√

2

(
−Vφ

2,0

∂χ2Vφ
1,−1

)
, V〈1,−1〉 =

√
2

(
−χ2Vφ

1,−1

∂χ2χ2Vφ
0,−2

)

V〈0,2〉 =
√

2

(
∂χ1χ1Vφ

0,2

χ1Vφ
−1,1

)
, V〈−1,1〉 =

√
2

(
∂χ1Vφ

−1,1

Vφ
−2,0

) (7.11)

The remaining low dimension fields are V〈2,1〉 and V〈1,2〉 with Δ = 5/8,
−3/8, respectively. By virtue of equation (7.5), the other fields have dimen-
sion which differs by an integer from the fields considered thus far.

Since gl(1|1)2 has c = 0, it is interesting to compare it with the c = 0
minimal Virasoro model. Let us refer to the minimal model fields at c = 0 as
Φm,n with conformal dimension Δ(min)

m,n (see [22,23]). The two models share
the dimensions 1/8 and 5/8 since Δ(min)

2,2 = 1/8 and Δ(min)
2,1 = 5/8. The latter

determines the correlation length exponent for percolation, νperc. = (2(1 −
5
8))−1 = 4/3. Note that the field Φ1,3 with Δ = 1/3 is not present in the
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gl(1|1)2 theory. The field Φ1,3 is known to determine the correlation length
exponent for self-avoiding walks, νSAW = 3/4. Thus, as a possible disordered
critical point, gl(1|1)2 is more closely related to percolation. However it is
not entirely equivalent to it since it does not contain for example all the
hull exponents considered in [31]. We will return to this point in Section 12
where we discuss applications to the SQHT.

8 Super spin-charge separation and disordered critical
points.

Spin-charge separation for ordinary su(2) Dirac fermions has many impor-
tant applications, for example to Luttinger liquids in 1d. In this section,
we present the extension of this construction to super-current algebras. We
also explain how the higher level gl(1|1)k theory can arise as a disordered
critical point.

Consider the action (2.1) for Dirac fermions only, extended to N -copies:

SN−copy =
1
4π

∫
d2x

N∑
α=1

(
ψα

−∂zψ
α
+ + ψ

α
−∂zψ

α
+

)
. (8.1)

The model now has an su(N)k=1 symmetry with currents

La
ψ = ψα

−taαβψβ
+, (8.2)

where here ta are a matrix representation of the vector of su(N). The
model also has a u(1) symmetry which commutes with su(N). Spin-charge
separation is the statement that the full stress tensor for the free theory can
be decomposed into commuting parts:

TN-copy
free = −1

2

∑
α

ψα
−∂zψ

α
+ = Tu(1) + Tsu(N)1 , (8.3)

where Tsu(N)1 is the Sugawara stress tensor and Tu(1) is the stress tensor for a
single scalar field (see for instance [23]). A check of the above decomposition
is the central charge. The su(N)k theory has csu(N)k

= k(N2−1)
(k+N) , whereas the

u(1) has c = 1. When k = 1, the total c equals N , as appropriate for N
Dirac fermions. The other check involves the scaling dimension. The N -
dimensional vector representation at level k has

Δsu(N)k
=

N2 − 1
2N(k + N)

. (8.4)

The u(1) is at radius R =
√

N , with Δu(1) = 1
2N , and one verifies Δ(ψ±) =

Δu(1) + Δsu(N)1 = 1
2 .
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Consider now N copies of the theory (2.1) with ghosts βα
±. This theory

has the maximal osp(2N |2N)1 symmetry. In the ghost sector the currents

La
β = β−taβ+ (8.5)

satisfy su(N)k=−1. We will need the following basic result. Given two
copies of the same current algebra with currents Ja

1 at level k1 and Ja
2 at

level k2 which furthermore commute, [Ja
1 (z), Jb

2(w)] = 0. Then Ja = Ja
1 + Ja

2
satisfies the current algebra at level k1 + k2. The complete su(N) currents
La = La

ψ + La
β thus have level k = 0.

The model also has a gl(1|1) symmetry generated by the currents:

H =
∑
α

ψα
+ψα

−, J =
∑
α

βα
+βα

−, S± = ±
∑
α

ψα
±βα

∓. (8.6)

Since the above currents are sums of the currents in each copy with level
k = 1, they satisfy gl(1|1)k with k = N . It is also important that these
gl(1|1)N currents commute with the su(N)k=0. The super spin charge sep-
aration is the non-trivial statement:

TN-copy
free = −1

2

∑
α

(ψα
−∂zψ

α
+ + βα

−∂zβ
α
+) = Tgl(1|1)N

+ Tsu(N)0 . (8.7)

As we will show in section X, Tgl(1|1)2 = Tosp(2|2)−2 , and this form of the
relation (8.7) was proved for k = 2 in [5], see also [32]. The more gen-
eral relation above for any N can be proved similarly. Note that since
both current algebras have c = 0, this is consistent with cfree = 0. A more
non-trivial check at arbitrary N is based on the conformal dimensions.
The fields (ψ+, β+), (β−, ψ−) transform in the 〈1, 0〉, 〈0, 1〉 representations
of gl(1|1)N with Δ〈1,0〉 = Δ〈0,1〉 = 1

2N2 . The vector representation of su(N)0
has Δsu(N)0 = N2−1

2N2 so that

Δ(ψ±, β±) = Δ〈1,0〉 + Δsu(N)0 =
1
2
. (8.8)

The gl(1|1)N theory can arise as a disordered critical point as follows.
More generally, consider two commuting current algebras GA and GB with
currents JA, JB. Furthermore, let us suppose that the stress tensor for
a given conformal theory separates as in equation (8.7). Consider the
perturbation of the conformal field theory by left–right current–current
perturbations:

S = Scft +
∫

d2x

2π

(
gA JA · JA + gB JB · JB

)
, (8.9)



276 ANDRÉ LECLAIR

where J · J is the invariant built on the quadratic casimir. Since the currents
commute, the RG beta-functions decouple; to 1-loop the result is

dgA

d�
= Cadj

A g2
A,

dgB

d�
= Cadj

B g2
B, (8.10)

where � is the logarithm of the length scale and Cadj
A is the casimir for

the adjoint representation of GA. Let us suppose that the physical regime
corresponds to positive gA,B. If Cadj

B is positive, then the coupling gB is
marginally relevant and the flow is to infinity. This is a massive sector
as in the Gross–Neveu model. These massive GB degrees of freedom are
decoupled at low energies. We will refer to the GB degrees of freedom as
being “gapped-out” in the RG flow to low energies. If Cadj

A is negative,
then the coupling gA is marginally irrelevant. This results in the fixed point
defined by the theory with current algebra symmetry GA. If the original
conformal field theory corresponds to the current algebra Gmax, then the
fixed point may be viewed as the coset Gmax/GB. For N -copies of Dirac
fermions and ghosts, Gmax = osp(2N | 2N)1. This scenario was proposed
for generic fixed points of marginal current–current perturbations in [33],
however, here it is a somewhat trivial example of the GKO construction [34]
because of the decomposition of the stress tensor. In fact, what was missing
in the arguments in [33] was precisely the spin-charge separation.

Returning to disordered Dirac fermions, the N-copy version is relevant for
the computation of averages of multiple moments (multi-fractality) or can be
part of the definition of the 1-copy theory, as in the SQHT which has an su(2)
symmetry from the very beginning and thus the 1-copy theory corresponds
to N = 2. Disorder averaging generally leads to left–right current–current
perturbations. For certain kinds of disorder, where perhaps some of the
disorder is set to zero, the disorder averaged effective action takes the form
(8.9) with GA = gl(1|1)N and GB = su(N)0. The su(N)0 current interactions
can arise from a disordered su(N) gauge field, but not necessarily so; other
scenarios will be described in [35].

For the su(N)0 currents La, Cadj > 0. For super-current algebras like
osp(2N |2N), Cadj < 0. For gl(1|1) the situation is somewhat more subtle
because there are two quadratic casimirs [4]. Consider

S = Sgl(1|1)k
+

∫
d2x

2π

(
g

(
JJ −HH + S+S− −S−S+

)
+ g′(J −H)(J −H)

)
,

(8.11)
where Sgl(1|1)k

formally represents the conformal theory with gl(1|1)k sym-
metry. The latter can be taken to have the free field form (3.1). Then
the 1-loop beta-function for g is zero, whereas dg′/d� = −g2. Therefore the
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gl(1|1) current interactions are marginally irrelevant. This is to be con-
trasted with the situation for the model in [4] since there g′ corresponded to
the variance of disordered imaginary u(1) gauge field and this changes the
sign of the coupling. The higher loop corrections computed in [33] do not
alter this picture.

For N = 2 the analogue of this flow to osp(2|2)−2 for pure su(2) gauge
disorder was proposed in [5]. In [6] the osp(2|2)−2 description of strongly
disordered gauge fields was shown to be consistent with other approaches
such as [1, 2]. More interesting models, such as the SQHT, have additional
kinds of disorder besides pure gauge field disorder and thus should corre-
spond to relevant perturbations of the current algebra. We will return to this
issue in Section 12, where we show that the perturbation is by a logarithmic
operator.

9 Local gl(1|1) invariant operators

The left and right sectors must be put together in a consistent manner in
order to obtain local operators Φ(z, z) with single-valued correlation func-
tions. In this section we describe how to construct such operators that are
also gl(1|1) invariant.

We first need to fix our conventions for the right-moving sector. Given
the decomposition (3.3), we define the right-moving currents as

H = −i
√

k ∂zφ
1
, J = −i

√
k ∂zφ

2
. (9.1)

Right-moving vertex operators of charge (h, j) are

Vφ
h,j = e−i(hφ

1−jφ
2
)/

√
k. (9.2)

Local u(1) invariant bosonic vertex operators are then

Vφ
h,j = Vφ

h,j Vφ
−h,−j = ei(hφφφ

1−jφφφ
2
)/

√
k. (9.3)

Imposing locality for the symplectic fermion χχχ(eiαz, e−iαz) = χχχ(z, z) iden-
tifies the zero modes χ̃0 = χ̃0 so that the field has the expansion

χχχ(z, z) = χχχ0 − iχ̃χχ0 log(zz) + i
∑
n	=0

(
1
n

χn z−n +
1
n

χn z−n

)
(9.4)
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with {χχχa
0, χ̃χχ

b
0} = iεab. This implies for example that the local version of the

logarithmic field �(z) in (5.5) is simply:

���(z, z) = −1
2
εabχχχ

aχχχb. (9.5)

It satisfies

T (z)���(0) ∼ 1
z2 +

1
z
∂z���(0), T (z)���(0) ∼ 1

z2 +
1
z
∂z���(0). (9.6)

When we encounter χ1χ2 this is thus equated to χχχ1χχχ2. For the remainder of
this section and the next, we will not display the local fields φφφ,χχχ, ��� in bold
face but simply as φ, χ, �.

Let Qa = 1
2πi

∮
Ja(z) denote the left-moving charge for the current Ja and

similarly for Q
a. The vertex operators in the representations r , r satisfy

[Qa, V i
r ] = taji V

j
r , [Qa

, V
j
r ] = t

a
ji V

j
r . (9.7)

Introduce the notation

Vr · V r = dijV
i
r V

j
r . (9.8)

The operator Vr · V r is invariant under the diagonal gl(1|1) symmetry Qa +
Q

a if the following relation holds:

tad + d t
a = 0, ∀ a. (9.9)

Using the explicit matrix representations ta in Section 4, one finds the fol-
lowing local gl(1|1) invariant operators:

(i) Typical representations with h 
= j. An invariant is

Φ〈h,j〉 = V〈h,j〉 · V 〈1−h,1−j〉, d =
(

0 1
−1 0

)
. (9.10)

The structure of the h, j charges is dictated by the U(1) symmetries H, J .
It will also prove useful to define

Φ̃〈h,j〉 = V 〈1−h,1−j〉 · V〈h,j〉, (9.11)

which can differ from Φ〈h,j〉 by fermionic signs which arise when left and
right are interchanged.
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(ii) Two-dimensional representations with h = j. There are four types of
such operators:

Φ〈h,h〉 = V〈h,h〉 · V 〈1−h,1−h〉, d =
(

0 1
−1 a δh,1/2

)
, (9.12)

′Φ′
〈h,h〉 = V〈h,h〉′ · V 〈1−h,1−h〉′ , d =

(
a δh,1/2 1

−1 0

)
, (9.13)

Φ′
〈h,h〉 = V〈h,h〉 · V 〈1−h,1−h〉′ , d =

(
0 0
1 0

)
, (9.14)

′Φ〈h,h〉 = V〈h,h〉′ · V 〈1−h,1−h〉, d =
(

0 1
0 0

)
. (9.15)

Above a is a free parameter that is only allowed if h = 1
2 by u(1) invariance.

(iii) 4-dimensional indecomposable representations. Finally there is a local
field based on the representation 〈h〉(4):

Φ〈h〉(4) = V〈h〉(4) · V 〈−h〉(4) , d =

⎛
⎜⎜⎝

0 0 0 1
0 a −1 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠ (9.16)

As before, a is a free parameter.

The local fields based on the atypical representations are of interest since
they are expressed in terms of the original local fields φ, χ. The fields
Φ′

〈h,h〉 = kVφ
h−1,h−1 and ′Φ〈h,h〉 = kVφ

h,h are purely bosonic singlets. Φ〈h,h〉
and ′Φ′

〈h,h〉 are fermionic when a = 0. Thus the most interesting field is the
logarithmic one

Φ〈h〉(4) = χ1χ2
(
ei(h+1)(φ1−φ2)/

√
k + ei(h−1)(φ1−φ2)/

√
k
)

+ a k eih(φ1−φ2)/
√

k.

(9.17)
The case of the h = 0, which arises in the OPE of Φ〈1,0〉 with Φ〈0,1〉, is real:

Φ〈0〉(4) = 2χ1χ2 cos
(

φ1 − φ2
√

k

)
. (9.18)

In the sequel, we will need the explicit forms of some additional local
operators in the case of k = 2. The fundamental field involves the twist
fields:

Φ〈1,0〉 = eiφ1/
√

2 μμμ1/2 + eiφ2/
√

2 σσσ1/2, (9.19)
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where μμμ1/2 = μ1/2μ1/2 and σσσ1/2 = σ2
1/2σ

1
1/2. In addition to the field Φ〈0〉(4) ,

at k = 2, the fields Φ〈2,0〉,Φ〈−1,1〉,Φ〈1,−1〉 and Φ〈0,2〉 are also expressed in
terms of the original fields:

Φ〈2,0〉 − Φ̃〈−1,1〉 = 4∂μχ1∂μχ2 cos
(
(φ1 + φ2)/

√
2
)

− 4 cos(
√

2φ1),

Φ〈1,−1〉 − Φ̃〈0,2〉 = 4 χ1χ2 cos
(
(φ1 + φ2)/

√
2
)

+ 4(∂μχ1∂μχ2)(χ1χ2) cos(
√

2φ2). (9.20)

10 Logarithmic perturbations and local Lagrangians

Using the constructions of the last section, we can consider a variety of local
perturbations of the free action that preserve gl(1|1). The simplest and most
interesting are based on the 4-dimensional indecomposable representation
〈h〉(4). Consider first a perturbation by Φ〈0〉(4) :

S = Sgl(1|1)k
+

∫
d2x

8π
Φ〈0〉(4)

=
∫

d2x

8π

⎛
⎝ 2∑

a,b=1

ηab ∂μφa∂μφb + εab ∂μχa∂μχb + g χ1χ2 cos
(
(φ1 −φ2)/

√
k
)⎞⎠.

(10.1)

The above action may be viewed as a gl(1|1) invariant generalization of the
sine-Gordon theory. The interaction is a Δ = 0 logarithmic operator.

Next consider a perturbation by Φ〈1〉(4) :

S =
∫

d2x

8π

⎛
⎝ 2∑

a,b=1

ηab ∂μφa∂μφb + εab ∂μχa∂μχb + g χ1χ2 e2i(φ1−φ2)/
√

k

⎞
⎠ .

(10.2)
(We set the free parameter a = 0.) This may be viewed as a gl(1|1) invariant
Liouville theory. As for the usual Liouville, background charges �q0 can be
introduced to give the perturbation Δ = 1:

T	φ
= −1

2
∂�φ · ∂�φ +

i

2
�q0 · ∂2�φ, (10.3)

where �φ · �φ ≡ ηabφ
aφb. The dimensions are

Δ(ei	q·	φ) =
1
2
�q · (�q − �q0). (10.4)
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The new central charge in the bosonic sector is cbosonic = 2 − 3�q0 · �q0. For
the perturbation in (10.2), �q = 2(1, 1)/

√
k with �q · �q = 0. Choosing �q0 =√

k(−1, 1)/2 endows it with dimension 1. Note that since �q0 · �q0 = 0, the
total central charge remains zero. Note also that �q0 =

√
k(−1, 1) renders

the full cosine term of the sine-Gordon version with Δ = 1. We will not
pursue adding background charges further in this paper.

An important feature of logarithmic perturbations such as in equation
(10.1) is the following. Because of the indefinite metric for the bosons,
OPEs of the dimension zero operators in the bosonic sector are regular:

eih(φ1−φ2)(z) eih′(φ1−φ2)(w) ∼ regular. (10.5)

Therefore in perturbation theory, the perturbation by Φ〈0〉(4) behaves like
a mass term χ1χ2. As for a mass term, it simply leads to logarithmic
corrections to correlation functions without changing the exponents.

More generally consider a conformal field theory perturbed by a logarith-
mic operator Φ
 with action

S = Scft +
∫

d2x

2π
g Φ
(x). (10.6)

The RG beta-function for g is determined by OPE of Φ
 with itself. If Φ


has Δ = 0, then the singular term in the OPE is at worse a logarithm:

Φ
(x) Φ
(0) = γ log(x2) Φ
(0) + · · · (10.7)

Introducing a short distance cut-off a,
∫
a d2x log(x2) = πa2(1 − log(a)) +

const., then the cut-off dependent coupling is g(a) = g + γg2a2(1 − 2 log
(a))/4. This implies that as a → 0, the beta-function dg(a)/d log(a) → 0.
Thus, in general one does not expect logarithmic perturbations to drive the
theory to a new fixed point. This feature was also discussed in [37].

11 Aspects of osp(2|2)−2

Normally, larger dimensional algebras such as osp(2|2)k require more fields
to be represented. However it was shown by Ludwig [17] that the special
case of k = −2 has a free field representation with the same field content
as above. In this section, we explain how this follows from our results on
gl(1|1)k and use this connection to present additional results.

First note that osp(2|2)−2 has two gl(1|1)−2 subalgebras which do not
commute. Let us try to represent H, J and both S± and Ŝ± with the same
field content as in equation (3.5). The problem with generic k is that the
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OPE S+(z)Ŝ+(0) ∝ 1/(z2+2/k) and thus does not close on integer powers,
except for k = −2. The resulting free field representation at k = −2 then
follows from previous expressions (3.5) with

√
k = i

√
2:

H = −
√

2 ∂φ1, J = −
√

2 ∂φ2, J± = ±2 e∓
√

2φ2

S± = ±i
√

2 ∂χ± e±(φ1−φ2)/
√

2, Ŝ± = ±i
√

2 ∂χ∓ e∓(φ1+φ2)/
√

2, (11.1)

where here for notational simplicity we have defined χ1,2 = χ+,−. The OPEs
of the above currents is the same as in Appendix A up to some inconsequen-
tial minus signs. Note that J, J± have the standard su(2)1 representation in
terms of a single boson. For the remainder of this section gl(1|1) refers to
the gl(1|1)−2 algebra generated by H, J, S±.

The finite dimensional representations of osp(2|2) can be labelled by
the su(2) with generators J, J± and by the u(1) charge H. The typical,
irreducible representations will be denoted as [b, s]osp where s∈ {0, 1

2 , 1, 3
2 , . . .}

is an su(2) spin and b = H/2. These representations are 8s dimensional.
In order to describe their su(2) ⊗ u(1) decomposition, let [b, s]su denote
the 2s + 1 dimensional representation with J/2 = s3 = −s,−s + 1, ..., s and
H = 2b. The generic decomposition is [3, 36]

[b, s]osp = [b, s]su ⊕ [b + 1
2 , s − 1

2 ]su ⊕ [b − 1
2 , s − 1

2 ]su ⊕ [b, s − 1]su. (11.2)

The stress tensor is built from the single quadratic casimir [3]:

Tosp(2|2) =
1

2(2 − k)

[
J2 − H2 − 1

2
(J+J− + J−J+) + (S+S− − S−S+)

+ (Ŝ−Ŝ+ − Ŝ+Ŝ−)
]
. (11.3)

Since the k = −2 case has the same free field construction as gl(1|1)−2, and
there exists the k → −k automorphism (2.6), one must have Tosp(2|2)−2 =
Tgl(1|1)−2 = Tgl(1|1)2 . The typical representations with b2 
= s2 have confor-
mal dimension

Δosp
[b,s] =

2(s2 − b2)
2 − k

. (11.4)

The vertex operators follow from the results of Section 6 and the decom-
position of the osp(2|2) representations in terms of gl(1|1). The later can be
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deduced from (11.2) with the identification H = 2b, J = 2s3. For example

[b, 1
2 ]osp = 〈2b, 1〉 ⊕ 〈2b + 1, 0〉, (11.5)

where 〈h, j〉 are the 2-dimensional gl(1|1) representations of Section 4. A
check of the above is the scaling dimension:

Δosp
[b, 12 ]

= Δgl
〈2b,1〉 = Δgl

〈2b+1,0〉, (11.6)

where Δgl
〈h,j〉 are the gl(1|1) scaling dimensions in equation (4.8) at k = −2.

The vertex operator for the 4-dimensional representation [b, 1
2 ]osp is then

V osp
[b, 12 ]

=
(

V〈2b,1〉
V〈2b+1,0〉

)
. (11.7)

Throughout this section, V〈h,j〉 refers to the k = −2 vertex operators,
which are simply related to the k = 2 expressions in Section 6 by the
automorphism (2.6).

As for gl(1|1), there are atypical, indecomposable but reducible represen-
tations at b2 = s2. The simplest is 8-dimensional and arises in the following
tensor product

[0, 1
2 ]osp ⊗ [0, 1

2 ]osp = [0, 1]osp ⊕ [8]osp. (11.8)

The gl(1|1) decomposition is

[8]osp = 〈0〉(4) + 〈2, 0〉 + 〈−1, 1〉, (11.9)

and the vertex operator is

V osp
[8] =

⎛
⎜⎜⎝

V〈2,0〉

V〈0〉(4)

V〈−1,1〉

⎞
⎟⎟⎠. (11.10)

This is a Δ = 0 logarithmic operator due to the presence of V〈0〉(4) , and
reflects the fact that the quadratic casimir is not diagonal on the [8]osp-
representation [3]. The structure of the [8]osp is shown in Figure 2. The
explicit form of the V〈2,0〉, V〈−1,1〉 operators in (11.10) can found by acting
on V〈0〉(4) with the generators according to Figure 2, where V〈0〉(4) is given in
equation (6.9) with k = −2; the result is consistent with equation (7.11).
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Figure 2: The structure of the osp(2|2) representation [8]osp. The NE arrows
(to the right) indicate the action of S+ and the dashed NW arrows indicate
the action of Ŝ+.

In the next section, we will need the local operator Φosp
[8] = V osp

[8] · V
osp
[8] ,

which can be constructed as in Section 4. Setting k = −2 and recalling the
automorphism (2.6), one finds

Φosp
[8] = Φ〈2,0〉 + Φ〈−1,1〉 + 2Φ〈0〉(4) . (11.11)

The explicit form is

Φosp
[8] = 4 χ1χ2

(
cosh

(
φ1 − φ2

√
2

)
+ cosh

(
φ1 + φ2

√
2

))

+ 4(∂μχ1∂μχ2)(χ1χ2) cosh(
√

2φ1). (11.12)

(As in Section 9, above the fields φ, χ refer to the local fields φφφ(z, z)
and χχχ(z, z).)

12 Application to the spin quantum Hall transition

In this section, we apply some of the tools developed so far to the SQHT.
Since this is tangential to the original scope of this article, details and addi-
tional results will be presented elsewhere [35]. Let us begin with a short
summary of the relevant background. Like the usual quantum Hall transi-
tion, the SQHT has a network model description [39] and can be mapped
onto a spin chain [38]. Gruzberg et al. mapped the spin chain onto perco-
lation [40]. Critical percolation explains the two main exponents that were
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studied numerically [38], namely the correlation length νperc. = 4/3 and the
density of states exponent ρ(E) ∼ E1/7.

The SQHT can also be formulated in the continuum as a model of dis-
ordered Dirac fermions. It has an su(2) gauge disorder with coupling gs,
and two additional kinds of mass/potential disorder with couplings gc and
g8. (See [5] for precise definitions). Whereas gs corresponds to current–
current interactions for the su(2)k=0 currents, the coupling gc corresponds
to the osp(2|2)−2 currents. The RG flow for the couplings was studied
in [5, 20]. Though a perturbative fixed point was not found in the latter
work, one feature related to the super spin-charge separation described in
Section 8 emerged as follows. If the g8 disorder is initially set to zero,
which amounts to an initial fine-tuning of the model, then the RG flow
of the remaining couplings decouples due to the spin-charge separation.
At 1-loop, dgs/d� = g2

s and dgc/d� = −2g2
c , and this decoupling persists

to higher orders. As described more generally in Section 8, whereas gs

is marginally relevant, gc is marginally irrelevant, so that the fixed point of
the model at g8 = 0 was argued to be osp(2|2)−2 [5]. For another approach
based on replicas, see [41].

The fixed point osp(2|2)−2 reproduces the main exponents of the SQHT.
This is most transparent using the gl(1|1)2 embedding, since, as explained
in Section 7, it has precisely the percolation exponents that are relevant for
the SQHT. In the osp(2|2)−2 description, the density operator ρ is identified
with the representation [0, 1

2 ]osp with Δ = 1
8 , and determines the density of

states exponent, 1
7 = Δ

1−Δ . The Δ = 5
8 field which determines νperc. = 4/3 is

a descendant of the Δ = −3
8 field [±1, 1

2 ]osp. Note also that 1-hull operator
with Δ = 1

3 in the theory of percolation is not contained in the gl(1|1)2
theory (see Section 7). This appears to be consistent with the fact this
operator does not play any known rôle in the SQHT. Related comments
were made in [7], where there also the Δ = 1

3 field was not in the spectrum.

The potential problem with the osp(2|2)−2 fixed point is that the residual
g8 perturbations potentially modify it. This is consistent with the study of
the spectrum of the spin chain in [7] which suggested that the critical point
is a new kind of theory with osp(2|2) symmetry that is not simply a current
algebra. The higher-order corrections to the beta functions computed in [20],
which are correct up to at least 4-loops [42], do not help to resolve the
problem since the flow is to a singular point.

To resolve these difficulties, we propose to carry out the RG flow in two
stages. First one sets g8 = 0 and flows to osp(2|2)−2. In the second stage,
we restore the g8 coupling as a perturbation of the current algebra. The
currents in the g8 coupling transform under the [8]osp of osp(2|2) and the
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spin 1 of the su(2). In the RG flow the su(2) is gapped out which leaves a
field transforming under the [8]osp. The resulting action is

S = Sfree + g8

∫
d2x

2π
Φosp

[8] (x), (12.1)

where Sfree is just the free action for the scalars and symplectic fermion (3.1)
and Φosp

[8] is the logarithmic operator in equation (11.12).

The proposal equation (12.1) overcomes previous difficulties in a number
of ways. First, as argued in Section 10, the dimension zero logarithmic per-
turbation by Φosp

[8] does not modify the scaling dimensions but only leads to
logarithmic corrections to the correlation functions. Second, the model has
an osp(2|2) symmetry, as expected from the spin-chain description. How-
ever, because of the logarithmic perturbation, the critical point is not strictly
speaking a conformal current algebra, even though it has the same exponents
as the current algebra. This is consistent with observations made in [7].

Further checks of this proposal will be described in [35], where we explain
how to obtain the multi-fractal exponents.

13 Conclusions

To summarize, using the detailed properties of the twist and logarithmic
fields in the symplectic fermion sector, we have explicitly constructed all the
primary fields of the gl(1|1)k current algebra at arbitrary level k. We have
also identified a closed operator algebra at integer level. For the indecompos-
able representations, the explicit construction of the logarithmic operators
led to gl(1|1) invariant models as perturbations by these operators, and the
simplest have local lagrangians that generalize the Liouville and sine-Gordon
models. We also argued that these logarithmic perturbations have a triv-
ial beta functions and just give logarithmic corrections to the correlation
functions without changing the anomalous dimensions. We derived a new
form of super spin-charge separation and gave general arguments indicating
how the gl(1|1)N theory can arise as a critical point of disordered Dirac
fermions in 2 + 1 dimensions. By studying the gl(1|1) embeddings, we also
constructed explicitly the local logarithmic field corresponding to the inde-
composable representation [8]osp of osp(2|2)−2. Since other super-current
algebras typically have gl(1|1)k subalgebras, it should be possible to obtain
other new results as well.
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We initiated the application of these new tools to the investigation of
critical points of disordered Dirac fermions by re-examining the SQHT.
It was shown that the 1-copy theory is a perturbation of the osp(2|2)−2
current algebra by the logarithmic field corresponding to the [8]osp inde-
composable representation. In [35], we will extend this analysis to N -
copies and thereby compute the multi-fractal exponents. We will also apply
these methods to the original Chalker–Coddington network model for the
ordinary quantum Hall transition, where we essentially obtain the gl(1|1)
invariant sine-Gordon model (10.1). These results are not presented here
since they require more specific details about the disordered Dirac fermion
theories.
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Appendix A. Complete osp(2|2)k relations

Our conventions for the osp(2|2)k current algebra are based on the level 1
representation in terms of ψ±, β± given in Section 2:

J(z)J(0) ∼ − k

z2 , H(z)H(0) ∼ k

z2 ,

J(z)J±(0) ∼ ±2
z

J±, J+(z)J−(0) ∼ 2k

z2 − 4
z
J,

J(z)S±(0) ∼ ±1
z
S±, J(z)Ŝ±(0) ∼ ±1

z
Ŝ±,

H(z)S±(0) ∼ ±1
z
S±, H(z)Ŝ±(0) ∼ ∓1

z
Ŝ±,

J±(z)S∓(0) ∼ 2
z
Ŝ±, J±(z)Ŝ∓(0) ∼ −2

z
S±, (A.1)

S±(z)Ŝ±(0) ∼ ±1
z
J±,

S+(z)S−(0) ∼ k

z2 +
1
z
(H − J),

Ŝ+(z)Ŝ−(0) ∼ − k

z2 +
1
z
(H + J).



288 ANDRÉ LECLAIR

Appendix B: more on symplectic fermions

In this appendix, we provide some derivations of the results used in this
paper. Most are already contained in [18,21].

First consider the first-order system for the bosonic β± ghosts (2.1) with
c = −1. It was shown in [21] that these can be bosonized in terms of a single
scalar field φ for the U(1) current and an additional auxiliary fermionic η − ξ
system with c = −2:

β+ = eiφ η, β− = e−iφ∂ξ, (B.1)

where 〈φ(z)φ(0)〉 = log(z). The η − ξ system is also first order, with action

Sη,ξ =
1
4π

∫
d2x

(
η∂zξ + η∂zξ

)
(B.2)

but now with Δ(η, ξ) = (1, 0).

Before using the equations of motion, we can relate the model to symplec-
tic fermions by identifying η = i∂zχ

1, η = i∂zχ
1, ∂zξ = i∂zχ

2, ∂zξ = i∂zχ
2.

In this way, one obtains the second-order action (3.1). After using the equa-
tions of motion, the chiral components are identified as follows:

η(z) = i∂zχ
1, ξ(z) = iχ2(z), (B.3)

consistent with the conformal dimensions. It is important to note that
the η − ξ system does not contain the zero mode of χ1, and thus does not
explicitly contain the logarithmic operator � in equation (3.5).

The η − ξ system can in turn be bosonized with a single scalar f(z)

η = e−if , ξ = eif (B.4)

with 〈f(z)f(0)〉 = − log(z). However, in order to obtain Δ(η, ξ) = (1, 0), f
has a background charge:

Tf = −1
2
(∂f)2 +

i

2
∂2f. (B.5)

With this background charge,

Δ(eiαf ) =
α(α − 1)

2
, (B.6)

and the correlation functions have the charge asymmetry:

〈eiλf eiλ′f 〉 
= 0 ⇐⇒ λ + λ′ = 1. (B.7)

All the correlation functions can be computed with Coulomb gas techniques.
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Let [λ] denote the sector eiλf |0〉 and its decendents. The twist field
μλ ∈ [λ]. Furthermore since χ1 ∈ [−1], χ2 ∈ [1], then σ1

λ ∈ [λ − 1] and σ2
λ ∈

[λ + 1]. In this way, one obtains the conformal dimensions equations (5.12)
and (5.13).

The OPEs (5.11) are derived as follows. Define |μλ〉 = μλ(0)|0〉 and
〈μ1−λ| = limz→∞ z2Δλ 〈0|μ1−λ(z). Using the mode expansions (5.10) and
χa

n−λ|μλ〉 = 0 for n > 0,

〈μ1−λ| ∂zχ
1(z) χ2(w) |μλ〉 = −

(w

z

)λ 1
z − w

. (B.8)

Taking the derivative ∂w of the above equation, letting w → 0 and z → ∞,
and using 〈μ1−λ|μλ〉 = 1, one obtains the

√
λ factor in equation (5.11). The√

1 − λ factors are obtained similarly.
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