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Abstract

We show how two topologically distinct spaces — the Kähler K3 × T 2

and the non-Kähler T 2 bundle over K3 — can be smoothly connected
in heterotic string theory. The transition occurs when the base K3 is
deformed to the T 4/ZZ2 orbifold limit. The orbifold theory can be mapped
via duality to M-theory on K3 × K3 where the transition corresponds to
an exchange of the two K3’s.

1 Introduction

Background geometry affects strings and point particles very differently.
From the many well-studied string dualities, we know that string theories
on different geometrical spaces can be dual, that is, identical up to some
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identification. Moreover, string theory can also smoothly connect topolog-
ically different spaces. Some of these string transitions, for example, those
of flops [1–3] and conifolds [4–7], have geometrical origins and are closely
related to the mathematics of singularity resolutions.

It is conceivable that many vacua in the string theory landscape are con-
nected by transitions and one may wonder if the more recently studied man-
ifolds with torsion can be connected to more conventional string theory
compactifications. Many years ago, it was conjectured [8] that Calabi–Yau
manifolds can indeed be connected via transitions through non-Kähler man-
ifolds [9, 10] (see also [11]). Kähler/non-Kähler transitions have also been
described recently from the worldsheet conformal field theory point of view
in [12] in the context of gauged linear sigma models [13].

In this paper, we take the space–time approach to explore transitions
between Kähler and non-Kähler manifolds in the context of flux compact-
ifications of heterotic string theory.1 In the heterotic theory, there can
be two types of fluxes — the gauge 2-form FMN and the 3-form HMNP .
Preserving supersymmetry in four dimensions will constrain both the com-
pactification geometry and the fluxes. It is the goal of this paper to relate
two different types of spaces both of which are locally K3 × T 2. The first
is the geometry of the K3 × T 2 manifold with non-zero U(1) gauge fields.
The second is the non-Kähler geometry of a T 2 bundle over K3, the FSY
(Fu–Strominger–Yau) geometry.

This paper is organized as follows. In Section 2, we analyze the condi-
tions under which a Kummer surface can be blown down to a T 4/ZZ2 orbifold
in the presence of fluxes while maintaining supersymmetry throughout. In
Section 3, we show that a transition between the Kähler geometry K3 × T 2

and the non-Kähler FSY geometry can take place using the mapping to M-
theory on K3 × K3 where the transition corresponds to an exchange of the
two K3’s. In Section 4, we present our conclusions. In an appendix, we
work out the conditions for the FSY geometry to preserve N = 2 supersym-
metry, which is necessary in order that a smooth transition to the K3 × T 2

geometry can take place.

2 N = 2 heterotic compactifications

We are interested in supersymmetric compactifications to four dimensions
in heterotic string theory. The conditions on the hermitian form J and the

1For non-compact geometries, non-Kähler to non-Kähler transitions in heterotic strings
have been discussed in [14].
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holomorphic (3,0)-form Ω are2

d(‖Ω‖J J ∧ J) = 0, (2.1)

F (2,0) = F (0,2) = 0, FmnJmn = 0, (2.2)

2i ∂∂̄J =
α′

4
[tr(R ∧ R) − tr(F ∧ F )]. (2.3)

The standard background fields — the 3-form H and the dilaton φ — are
determined from the supersymmetric constraints

H = i(∂̄ − ∂)J, (2.4)

‖Ω‖J = e−2(φ+φ0). (2.5)

We focus on two special classes of solutions. The first is the K3 × T 2

solution [16]. The hermitian metric and the holomorphic 3-form is taken
to be

J = e2φJK3 +
i

2
dz ∧ dz̄, Ω = ΩK3 ∧ dz. (2.6)

In general, φ is non-constant and has dependence on the K3 coordinates.
By (2.4), this gives a contribution to the H-field. The second is the torus
bundle over K3 solution [15, 17, 18] with the torus twisted with respect to
the K3 base. The metric and the 3-form are generalized to

J = e−2φJK3 +
i

2
(dz + α) ∧ (dz̄ + ᾱ), Ω = ΩK3 ∧ θ, (2.7)

where θ = (dz + α) is a globally defined (1, 0)-form. We shall only consider
the case where the curvature of the torus bundle ω = ω1 + iω2 = dθ = dα ∈
H2(K3, ZZ) is a (1,1)-form; that is,

ω(2,0) = ω(0,2) = ωmnJK3
mn = 0. (2.8)

The H-field now has contributions from both the derivative of φ and also ω.

To fully describe both solutions, we have to specify the gauge bundle. In
addition to being hermitian Yang–Mills (2.2), the gauge bundle must satisfy
the anomaly equation (2.3). Integrating the anomaly equation over K3 leads
to the topological condition

1
16π2

∫
K3

trF ∧ F −
∫

K3
ω ∧ ω̄ = 24, (2.9)

2We mostly follow the notation and conventions of [15]. In this paper, F = F aT a is
taken to be anti-hermitian with tr T aT b = −δab. For convenience, we shall subsequently
also set 2π

√
α′ = 1.
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where ω̄ = ω1 − iω2 is the complex conjugate of ω. It turns out that this
condition is sufficient to guarantee that the anomaly equation, which for
these geometries can be interpreted as a highly non-linear second-order
partial differential equation for φ, can be solved [18, 15]. Note that by
(2.2) and (2.8), both F and ω are anti-self-dual and therefore the left hand
side of (2.9) is positive semi-definite. As a simplification, we will consider
only direct sums of U(1) gauge bundles. Dirac quantization requires that
i

2πF a ∈ H2(K3, ZZ). Considering also (2.2) and (2.8), the field strength F
and ω indeed satisfy identical equations. This is suggestive that the gauge
bundle and torus bundle under appropriate conditions might perhaps be
interchangeable. In general, this is not the case. But we shall show in Sec-
tion 3 that different values for the pair (F, ω) can be smoothly connected.

We point out that the K3 × T 2 solution preserves N = 2 SUSY in four
dimensions. Likewise, with ω ∈ H(1,1)(K3, ZZ), the FSY geometry also pre-
serves N = 2 SUSY. These two solutions must preserve the same amount
of supersymmetry if we desire a smooth transition between them. It is
worthwhile to emphasize that the conditions for spacetime supersym-
metry do allow for the presence of a (2, 0) component for ω. However, the
resulting four-dimensional supersymmetry would then be reduced down to
N = 1. A discussion of the supersymmetry of the FSY geometry is provided
in Appendix A.

2.1 Deforming to the orbifold limit of K3

We will take the K3 surface S to be a Kummer surface. This can be
described as the blow-up of T 4/ZZ2 at all 16 fixed points. Here, we want
to find the conditions under which a Kummer surface can be blown down to
a T 4/ZZ2 orbifold in the presence of fluxes while maintaining supersymme-
try throughout. Keeping the complex structure fixed, the supersymmetry
variation conditions with non-zero fluxes were worked out in [19]. For ease
of presentation, we describe below the equivalent reverse process of blowing
up the fixed points for a given flux.

Let Ci ∈ H2(S, ZZ), i= 1, . . . , 16, be a basis for the 16 blown up (−2)-curves
of the Kummer surface.3 We let βi ∈ H2(S, ZZ) be the associated dual
2-forms. Since these rational curves are localized and thus disjoint, the
matrix of intersection numbers is

Ci · Cj =
∫

S
βi ∧ βj = −2 δij . (2.10)

3For a review of the mathematical aspects of K3 surfaces, see [20].
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Note that this intersection matrix is different from that for the standard
basis of H2(S, ZZ), which is given by

(−E8) ⊗ (−E8) ⊗
(

0 1
1 0

)
⊗

(
0 1
1 0

)
⊗

(
0 1
1 0

)
, (2.11)

where E8 denotes the Cartan matrix of the Lie algebra E8. Though the 16
Ci’s together with the six 2-cycles of T 4/ZZ2 provide a natural set of elements
in H2(S, ZZ) for the Kummer surface, this set as constituting a basis turns out
to only generate a sublattice of the full H2(S, ZZ) lattice (see, for example,
[21]). This “Kummer” basis however can be used as a basis for H2(S,Q).

Proceeding on, the area of the ith-rational curve is given by4

Ai =
∫

Ci

J =
∫

S
J ∧ βi, (2.12)

where we have used the dual relation associating Ci ∼ βi. In the orbifold
limit, each rational curve shrinks to a point and thus Ai = 0. To deform
away from the orbifold limit, we want to deform J such that δAi > 0. That
is, we need ∫

Ci

J + δJ =
∫

Ci

δJ =
∫

S
δJ ∧ βi > 0. (2.13)

Furthermore, to preserve supersymmetry in the presence of fluxes, i.e., non-
zero torus bundle and/or gauge bundle curvature, we have to satisfy the
additional conditions [19]

∫
S

δJ ∧ ω = 0,

∫
S

δJ ∧ F = 0. (2.14)

These arise from varying the primitivity condition for the curvatures ω and F.
Let us focus below on the torus bundle curvature as the conditions for gauge
bundle are identical. Varying ω ∧ J = 0 implies

0 = δω ∧ J + ω ∧ J

= i∂∂̄f ∧ J + ω ∧ δJ,
(2.15)

where δω = i∂∂̄f imposes that ω can only vary in its cohomology class. Tak-
ing the hodge star of (2.15) results in Δf = ∗(ω ∧ δJ). This then implies the
integral condition in (2.14), which is the necessary and sufficient condition
that a solution for f exists.

4We will take J = JK3 in this subsection since we are only interested here in deforming
the K3.
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It is not difficult to satisfy both (2.13) and (2.14). Using the βi basis, let
δJ = ajβj and ω = biβi.5 Then, we have∫

Ci

δJ =
∫

S
ajβj ∧ βi = −2 ai = δAi > 0, (2.16)

∫
S

δJ ∧ ω =
∫

S
ajβj ∧ biβi = −2 aib

i = δAib
i = 0, (2.17)

where δAi = −2 ai. Thus, as long as two of the bi’s are non-zero and also
not of the same signs, there exist positive δAi’s as required for (2.16) that
satisfy (2.17). This is the condition for ω (and similarly for F ) that ensures
that the singularities can be blown up.

As a simple example, let ω for the FSY model be given by

ω = ω1 + iω2 = (1 + i)β1 + (1 + i)β2 − 2(1 + i)β3, (2.18)

and F = 0. With (2.10), this model satisfies that anomaly condition (2.9)

−
∫

S
ω ∧ ω̄ = −

∫
S

2(β1 ∧ β1 + β2 ∧ β2) + 8 β3 ∧ β3 = 24. (2.19)

It can be easily checked that (2.16) and (2.17) are satisfied for δA1 = δA2 =
δA3 = a > 0, where a is an arbitrary positive constant. δAi > 0 for i =
4, . . . , 16 are not constrained. We shall show in the next section that this
FSY model at the orbifold limit K3 = T 4/ZZ2 is smoothly connected to the
K3 × T 2 model with non-zero U(1) gauge field strengths

F 1

2π
=

F 2

2π
= −F 3

4π
= (1 + i) dz̄1 ∧ dz2 + (1 − i) dz1 ∧ dz̄2, (2.20)

where the superscript index in F i, i = 1, . . . , 16, denotes the 16 U(1) gauge
field strengths and (z1, z2) are the complex coordinates on T 4/ZZ2.

3 Duality at the orbifold point

At the T 4/ZZ2 orbifold of K3, we can map the heterotic solutions to those of
M-theory on Y = K3 × K3, where each K3 is a T 4/ZZ2 orbifold. Let us recall
the chain of dualities [22, 23]. Starting from M-theory compactified on Y , we
can treat the second T 4/ZZ2 orbifold as a torus fibration over T 2/ZZ2. Taking
the area of the torus fiber to zero, we arrive at the type IIB theory on an
orientifold T 4/ZZ2 × T 2/ZZ2, where at each of the four fixed points of T 2/ZZ2,
there are four D7 branes and one O7 brane. Such a brane configuration gives
an SO(8)4 enhanced gauge symmetry[24]. Now applying a T-duality along

5Here, we have suppressed the non-relevant terms associated with the six non-localized
(1,1)-forms on T 4/ZZ2 which are orthogonal to the localized forms βi.
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the two directions of T 2/ZZ2 and then followed by an S-duality, we obtain
the heterotic theory on K3 × T 2 with SO(8)4 gauge group [23].

The duality can incorporate a non-zero 4-form G-flux. To preserve super-
symmetry, the G-flux in M-theory is required to be a primitive (2, 2)-form.
The G-flux is also quantized so that G ∈ H4(Y, ZZ). Additionally, it must
satisfy the constraint (assuming no M2-branes) [25, 26]

1
2

∫
Y

G ∧ G =
χ(Y )
24

. (3.1)

We shall take G to be the exterior product of two (1,1)-forms, one from
each K3. In the orbifold limit, there are 19 primitive (1,1)-forms — 16
localized at each of the fixed points and three non-localized ones. They con-
stitute the orthogonal Kummer basis, {βi, γI} with i = 1, . . . , 16, I = 1, 2, 3,
and normalized to −2, for the primitive forms in H(1,1)(S). Thus, the most
general G-flux that we consider takes the form

G = Cij βi ∧ β′
j + CIj γI ∧ β′

j + DiJ βi ∧ γ′
J + DIJ γI ∧ γ′

J , (3.2)

where we have placed primes to denote forms from the second K3 and
Cij , CIj , DiJ , DIJ are integer constants suitably chosen such that G is inte-
gral quantized and satisfies (3.1). The four different terms dualize to dif-
ferent types of fluxes in the heterotic theory. Let us fix our convention by
performing the duality operations always on the second K3. Then, the DIJ

and DiJ terms with non-localized (1,1)-forms γ′
J dualize to give a non-zero

torus curvature ω. In contrast, Cij and CIj terms with localized β′
j dualize

to non-zero heterotic field strengths F j . The case of DIJ 	= 0 in particular
was discussed in detail in [17, 22, 23, 27].

Of interest for us is the exchange of the two K3’s. What we call the first
or second K3 is certainly inconsequential for the physical theory. But for the
G-flux, such an exchange can interchange the different terms and result in
a different heterotic dual theory when the “second” K3 is dualized. The set
of Cij terms and also that of the DIJ terms map to itself under interchange.
However, for the other two sets of terms, we have DiJ → CJi and CIj →
DjI , which implies that two types of heterotic fluxes are exchanged under
interchange of the two K3’s. Hence, we shall focus below on fluxes of types
CIj and DiJ .

For simplicity, let us take the T 8 covering space of Y = T 4/ZZ2 × T 4/ZZ2
to have standard periodicities zk ∼ zk + 1 ∼ zk + i, for k = 1, . . . , 4. Let us
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begin first with the DiJ terms. We write out explicitly the non-localized
part

G = Di1 βi ∧ 1
2
(dz3 ∧ dz̄4 + dz̄3 ∧ dz4) + Di2 βi ∧ 1

2i
(dz3 ∧ dz̄4 − dz̄3 ∧ dz4).

(3.3)

Note that we have not included the term with γ3 = 1
2(dz3 ∧ dz̄3 − dz4 ∧ dz̄4)

because it is not normalizable when the area of the torus fiber is taken to
zero when mapping from M-theory to type IIB orientifold theory [22, 23].
Now re-arranging the two terms, we have

G =
1
2
(Di1 + iDi2)βi ∧ dz̄3 ∧ dz4 +

1
2
(Di1 − iDi2)βi ∧ dz3 ∧ dz̄4

=
1
2
(D3 ∧ dz4 + D̄3 ∧ dz̄4)

=
1
2
[D3 ∧ (dx10 + idx11) + D̄3 ∧ (dx10 − idx11)]

=
1
2
(D3 + D̄3) ∧ dx10 +

1
2
(D3 − D̄3) ∧ i dx11

= H3 ∧ dx10 + F3 ∧ dx11,

(3.4)

where we have introduced D3 = Diβi ∧ dz̄3 = (Di1 + iDi2)βi ∧ dz̄3 and
substituted z4 = x10 + ix11. In particular,

H3 = dB2 =
1
2
(Diβi ∧ dz̄3 + D̄iβi ∧ dz3) =

1
2
d(α ∧ dz̄3 + ᾱ ∧ dz3), (3.5)

B2 =
1
2
(α ∧ dz̄3 + ᾱ ∧ dz3), (3.6)

where we have defined Diβi = dα. Applying two T-dualities in the z3 direc-
tions, the metric and the B-field of the type IIB theory get mixed. After a
further S-duality, the resulting heterotic metric takes the form [22, 23, 27]

ds2 = e2φ(dz1dz̄1 + dz2dz̄2) + |dz3 + α|2. (3.7)

This is the metric of the FSY solution in the ZZ2 orbifold limit. Thus, we
see that the M-theory solution, with a G-flux having a non-localized (1,1)-
form γ′ on the second K3 which we dualized, gets mapped to a heterotic
FSY solution. Of course, one can check that the anomaly condition (2.9) is
satisfied. This follows from (3.1),

24 =
1
2

∫
Y

G ∧ G =
1
4

∫
S

Diβi ∧ D̄jβj

∫
S

dz3 ∧ dz̄3 ∧ dz4 ∧ dz̄4

= −
∫

S
Diβi ∧ D̄jβj , (3.8)

which is (2.9) after setting ω = Diβi = (Di1 + iDi2)βi and F = 0. Note
that the torus bundle curvature here is localized at the fixed points of the
base T 4/ZZ2.
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Let us now return to the M-theory model and exchange the two K3’s.
The G-flux of (3.3) maps to a G-flux with CIj terms

G = C1i
1
2
(dz1 ∧ dz̄2 + dz̄1 ∧ dz2) ∧ β′

i + C2i
1
2i

(dz1 ∧ dz̄2 − dz̄3 ∧ dz4) ∧ β′
i

=
[
1
2
(C1i + iC2i)dz̄1 ∧ dz2 +

1
2
(C1i − iC2i)dz1 ∧ dz̄2

]
∧ β′

i

≡ 1
2
[Cidz̄1 ∧ dz2 + C̄idz1 ∧ dz̄2] ∧ β′

i (3.9)

≡ F i

4π
∧ β′

i.

Dualizing again in the z3, z4 directions, the resulting fluxes on the type
IIB orientifold are now very different. With the G-flux localized at points
on the second K3 as in (3.9), we have in type IIB non-zero gauge field
strengths F i ∼ CIiγ

I , on the D7/O7 planes [17, 22, 23]. Unaffected by the
two T-dualities and one S-duality, these gauge fluxes become the gauge field
strengths of the heterotic theory on K3 × T 2. The anomaly condition again
follows from (3.1)

24 =
1
2

∫
Y

G ∧ G =
1

32π2

∫
S

F i ∧ F j

∫
S

β′
i ∧ β′

j

= − 1
16π2

∫
S

F i ∧ F i. (3.10)

As an example, let us compare the models (2.18) and (2.20) presented in
the last section. In fact, it is easy to see that the FSY model of (2.18) arises
from the G-flux

G = (β1 + β2 − 2β3) ∧ γ′
1 + (β1 + β2 − 2β3) ∧ γ′

2, (3.11)

and that of (2.20) from

G = (γ1 + γ2) ∧ β′
1 + (γ1 + γ2) ∧ β′

2 − 2(γ1 + γ2) ∧ β′
3. (3.12)

They differ just by a switch of the two K3’s.

In short, we have shown that for identical G-flux (3.2) and (3.9), which
differs only in the assignment of what we called the first or second K3, the
resulting dual heterotic models have very different background geometries.
The first maps to an FSY-type solution and the second maps to a U(1)
gauge bundle on the Kähler manifold K3 × T 2. Since the spectrum of the
M-theory is invariant under the K3 exchange, it may seem that the distinct
dual heterotic models must be physically identical.
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This is however not the case in four dimensions. We point out that
such a heterotic–heterotic duality can only be apparent when both heterotic
models are compactified further on an additional circle so that the external
spacetime theory is three dimensional. The low energy theory would then be
identical to that of M-theory on K3 × K3, which is also three dimensional.
For in the process of “dualizing” from M-theory to heterotic theory, we
shrank down the area of the elliptic fiber, AT 2 → 0, to obtain a type II
and then later heterotic theory in four dimensions. If we had not taken the
zero area limit, then the exact duality would result in a seven-dimensional
compact geometry, e.g., the FSY geometry times an additional S1. More
specifically, AT 2 ∼ 1/RS1 , and thus the AT 2 → 0 limit corresponds to the
decompactification limit of the extra circle in heterotic theory.

Taking into account of the deformation to the orbifold limit discussed in
Section 2, we have thus demonstrated a connection between two smooth
geometries, one Kähler and the other non-Kähler, via a path through an
orbifold limit on the moduli space of the K3 surface.

4 Discussions and outlook

We have utilized the mapping to M-theory to connect Kähler and non-Kähler
flux compactifications in heterotic theory. The M-theory model organizes
the heterotic models’ torus and gauge bundle curvatures into a single
4-form G-flux. Turning on the torus and gauge bundle curvatures correspond
to turning on different types of forms for the G-flux. As we have shown,
an exchange in the two K3’s with non-zero G-flux can lead to either the
heterotic K3 × T 2 model or the FSY model. Interestingly, M-theory on
K3 × K3 can also be dual to type IIA theory on X3 × S1, where X3 is a
Calabi–Yau 3-fold. It has been pointed out in [28] that the exchange of
two K3’s in this set up corresponds to mirror symmetry for the Calabi–Yau
3-fold. Following this observation, it is conceivable that the duality we have
pointed to is related to a “generalized” mirror symmetry in the heterotic
theory with fluxes.

The transition we have discussed preserves N = 2 supersymmetry in four
dimensions. An interesting old question is whether the space of all N = 2
string vacua is actually connected. Prior to the current popularity of flux
compactifications, many works in the mid-90s gave evidences to unforeseen
connectedness between different vacua and thus hinted at such a possibility.
But with the recent increases in flux models which are quantized in integral
units, hopes of a single connected moduli space have now faded. But perhaps
the simple well-known moduli space of c = 1 closed bosonic string theory
[29, 30] will give a guide to the moduli space of N = 2 vacua. In c = 1,
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the moduli space includes the circle S1 with radius Rc and the ZZ2 orbifold
S1/ZZ2 with radius Rt for the target space, geometry. Rather surprisingly,
these two distinct geometries are connected or dual at precisely the point
Rc/2 = Rt =

√
α′. In addition, there are three points in the moduli space,

which are disconnected to all other theories. Taking this example as a lead,
we may think that the moduli space of N = 2 string vacua also smoothly link
together topologically distinct manifolds, but yet there will also be regions of
isolated vacua which do not have any moduli that connect to the rest. Our
examples here of a connection between Kähler and non-Kähler geometries
is an example of a somewhat surprising link.

Finally, we have for simplicity focused our attention on a subset of non-
Kähler FSY solutions. It would be interesting to explore the connected-
ness of the moduli space when the gauge bundle is non-Abelian. Studying
this may involve non-perturbative effects. For instance, on the M-theory
side, we would need to consider M2-branes wrapping singular 2-cycles of the
K3 in order to generate non-Abelian flux. On the heterotic side, wrapped
branes of the sort discussed in [31] might also be required. FSY solutions
with torus curvature ω having a (2,0) component should also be investi-
gated for possible transitions. These N = 1 vacua would sit in the moduli
space of all N = 1 heterotic compactifications, which include the conven-
tional Calabi–Yau compactifications. This moduli space should incorporate
the well-studied conifold transitions, both Kähler/Kähler and Kähler/non-
Kähler types, which are N = 1 transitions in heterotic theory. We hope to
explore some of these issues in future works.
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Appendix N = 2 supersymmetry conditions

We check that FSY geometry has N = 2 supersymmetry in four dimensions.
Assuming N = 1 SUSY, we derive the additional conditions N = 2 SUSY
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imposes. Discussions and references on the SU(2) structure relevant for
N = 2 SUSY can be found in [32, 33]. We start from the supersymmetry
constraints

∇Mη +
1
8

HMNP γNP η = 0, (A.1)

γM∂Mφ η +
1
12

HMNP γMNP η = 0, (A.2)

γMNFMNη = 0, (A.3)

N = 1 SUSY implies the existence of a no-where vanishing spinor η1 on the
manifold X. This gives an SU(3) structure and in particular we can define

Jmn = −iη1
†γmnη1, Ωmnp = e−2φη̄1

†γmnpη1, (A.4)

where the complex conjugate spinor is defined to be η̄1 = B∗η∗
1.

6 The
manifold is required to be complex hermitian and the metric conformally
balanced. Moreover, we have the relations

H = i(∂̄ − ∂)J, ΩmnpΩ̄mnp = 8e−4φ. (A.5)

N = 2 SUSY implies the existence of a second no-where vanishing spinor
η2. Both spinors have the same chirality, which we take to be positive, and
we shall assume that the two spinors are never parallel. We can therefore
normalize so that

η†
i ηj = δij , i, j = 1, 2. (A.6)

With the additional spinor, there now exists a no-where vanishing 1-form

vm = η̄1
†γmη2. (A.7)

Alternatively, we can write η2 = 1
2vmγmη̄1. In the holomorphic coordinates

Jb
a = iδb

a, we have Jn
mvn = ivm; that is, v has only holomorphic components.

Moreover, the normalization of η2 implies that |v|2 = gab̄vav̄b̄ = 2.

We point out that the existence of a no-where vanishing 1-form is a strong
constraint on X. Specifically, from the Poincaré–Hopf theorem, the num-
ber of zeroes of a vector field (and its dual 1-form) is at least that of the
Euler characteristic (i.e., ≥ |χ|). Thus, N = 2 SUSY having a non-vanishing
1-form requires χ(X) = 0.

6The B matrix here satisfies BγmB∗ = −γ∗ and we shall work in a basis where Bt = B.
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Besides the vector, the additional spinor allows us to write down the
forms,

η2
†γmnη1 =

1
2
v̄sΩsmne2φ ≡ (K2)mn + i(K1)mn,

η2
†γmnη2 = −iJmn − 2v[mv̄n] ≡ −2i(K3)mn + iJmn, (A.8)

η̄1
†γmnpη1 = (v ∧ (K2 + iK1))mnp,

η̄2
†γmnpη2 = (v ∧ (K2 − iK1))mnp,

η̄2
†γmnpη1 = (v ∧ J)mnp. (A.9)

Note that the hermitian form and holmorphic 3-form can be written as

J = K3 +
i

2
v ∧ v̄,

Ω = e−2φ(K2 + iK1) ∧ v.
(A.10)

The KA’s, with A = 1, 2, 3 , reside in a four-dimensional subspace and give
a hyperkähler structure

(KA)m
n(KB)n

k = −δAB

[
δk
m − 1

2
(vmv̄k + v̄mvk)

]
+ εC

AB(KC)m
k, (A.11)

where the additional terms in v’s are present since the forms are defined
in six dimensions and not in four. In particular, we have, for example,
(K1)n

m(K1)m
n = −4 as typical for a four-dimensional hyperkähler space.

The first constraint equation (A.1) requires that all the non-vanishing
forms are covariantly constant with respect to the H-connection. Note that
N = 1 SUSY already ensures that J and Ωe2φ are covariantly constant.
Hence, the additional constraint of N = 2 comes from requiring the covari-
antly constancy of the 1-form

∇H
mvn = ∇mvn − 1

2
Hm

r
nvr = 0. (A.12)

The second equation (A.2) gives further differential constraints on the
forms. For A = γn1···np antisymmetric combination of gamma matrices, we
can re-express (A.2) as [34]

∂mφ η†
j [A, γm]±ηi +

1
12

Hmnpη
†
j [A, γmnp]∓ηi = 0, (A.13)

∂mφ η̄†
j [A, γm]±ηi +

1
12

Hmnpη̄
†
j [A, γmnp]∓ηi = 0, (A.14)

where the + or − sign for the brackets denotes symmetric or antisymmetric
brackets, respectively. The condition on the 1-form v can be derived with
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A = γn1n2 resulting in the constraint

d[e−2φv] + i ∗ (H ∧ e−2φv) = 0. (A.15)

For the 2-forms and 3-forms in (A.8) and (A.9) which we will denote gener-
ically as χ2 and χ3, the conditions are

d[∗(e−2φχ2)] = 0,

d[∗(e−2φχ3)] = 0.
(A.16)

Now for the gauge field strength F , in addition to being holomorphic
F (2,0) = F (0,2) = 0 and primitive FmnJmn = 0, we now have in general the
condition Fmn(χ2)mn = 0, which gives the additional requirement

Fmn(K3)mn = 0. (A.17)

We now check that the FSY geometry with torus bundle curvature ω ∈
H(1,1)(K3, ZZ) satisfies the N = 2 SUSY conditions. First, note that as
required, the Euler characteristic of a T 2 bundle over K3 is zero. From
the decomposition of (A.10), it is clear that we have the identification

v = θ, K3 = e2φJK3, K2 + iK1 = e2φΩK3. (A.18)

The KA’s are thus the hyperkähler forms on the conformal K3. We now
check that the differential equations are also satisfied. First, the covariantly
constancy as in (A.12) can be shown using (A.5) and (A.10) to be equivalent
to ∂θ = 0. Therefore, the torus bundle curvature twist can not contain a
(2,0) component. The condition (A.15) can be shown to reduce to

∂̄c̄φ θc̄ = 0, Habc̄ θc̄ = 0. (A.19)

This easily holds as vc̄ = gc̄ava = (0, 0, 2). The conditions of (A.16) for var-
ious forms in (A.8) and (A.9) can also easily be checked to hold. And lastly,
for the gauge field strength, we see that the additional requirement (A.17) is
satisfied since all field strengths are hermitian Yang–Mills on the base K3.
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