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Abstract

This note is presenting the generating functions which count the BPS
operators in the chiral ring of a N = 2 quiver gauge theory that lives on N
D3-branes probing an ALE singularity. The difficulty in this computation
arises from the fact that this quiver gauge theory has a moduli space of
vacua that splits into many branches — the Higgs, the Coulomb, and
mixed branches. As a result, there can be operators which explore those
different branches and the counting gets complicated by having to deal
with such operators while avoiding over or under counting. The solution
to this problem turns out to be very elegant and is presented in this note.
Some surprises with “surgery” of generating functions arises.

e-print archive: http://lanl.arXiv.org/abs/arXiv:hep-th/0611346



1092 AMIHAY HANANY AND CHRISTIAN RÖMELSBERGER
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1 Introduction

The chiral ring of a supersymmetric gauge theory is one of the fundamental
properties one encounters in the study of (3 + 1)-dimensional gauge theories.
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It reveals much of the structure of the vacuum of the theory as well as the
spectrum of BPS operators. There are many examples in the literature in
which the chiral ring is computed exactly, first classically and then with
quantum corrections included. There are, however, many other cases in
which the computation of the chiral ring is not possible, since it involves
many generators that satisfy relations which are not always easy to compute.
At times, one settles with specifying generic properties of the chiral ring like
the dimension and the number of generators and at times the problem is too
difficult to address.

A generic problem which deals with any supersymmetric gauge theory
is the counting of operators in the chiral ring. This is a problem which is
sometimes simpler than computing the chiral ring itself. For example, there
are many situations in which the number of operators in the chiral ring is
not changed with the inclusion of quantum effects and one can compute this
number classically. Furthermore, if we collect the number of operators into
a generating function that counts the number of BPS operators which carry
a collection of global U(1) charges then this generating function encodes
some simple properties of the supersymmetric gauge theory, properties like
the dimension of the moduli space of vacua, the number of generators in the
chiral ring and the number of relations they satisfy. The generating function
also encodes the “volume” of the moduli space of vacua.

Counting problems of operators in the chiral ring of a supersymmetric
gauge theory has recently attracted some attention due to few reasons.

1. Better understanding of supersymmetric gauge theories [1] and of a
class of string theory backgrounds [2–5].

2. The AdS/CFT correspondence — a check of this by doing the compu-
tation on the gauge theory side and comparing with the computation
from the gravity side using giant gravitons [6, 7] or dual giant gravitons
[8–10].

3. Some related work on the BPS index in quiver gauge theories [11–14].
4. Possible microstate counting of supersymmetric black holes.

In this paper we improve the generic counting problem, which is still a very
hard problem, by introducing the method of surgery and by solving for a
large class of supersymmetric gauge theories.

2 Statement of the problem

The paper [2] solves the problem of counting BPS operators for a large class
of quiver gauge theories. This is done essentially by exploiting the known
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geometric properties of the moduli space of vacua for these theories. The
class of theories which are addressed in this work all have their moduli space
of vacua as Calabi Yau (CY) spaces or their symmetric products. There are,
however, many cases in which this work does not cover the complete counting
and avoids questions of mixed branches and the emergence of fractional
branes in the geometry. The present work aims at addressing these issues.
We are going to study a class of N = 2 supersymmetric gauge theories in
(3 + 1)-dimensions which arise on the world volume of a D3-brane probing
an ALE singularity of type A, D, or E. These theories have a moduli space
of vacua which consists of a Higgs branch, a Coulomb branch, and more
importantly mixed branches. Counting the BPS operators on the Higgs
branch of this theory is relatively easy and was done in [2]. Counting the
BPS operators on the Coulomb branch follows the same techniques as in
[2] and is a simple application there. It will be reviewed in Section 3.2.
Counting BPS operators in the mixed branch has not been done and is
the focus of the present paper. The plan of the paper is as follows. In
Section 2.1 we introduce some notation. In Section 3, we introduce the
various generating functions on the Higgs, Coulomb, and mixed branches.
We discuss the intersections between these branches and end by proposing
the right solution of the problem. Equation (3.25) is the main result of the
paper. In Section 4, we introduce the concept of surgery which is the main
tool that allows the derivation of the main result. In Section 5, we present
some examples and then conclude.

Note that we are doing the calculations in the weakly coupled theory,
where we can distinguish between chiral operators which just come from
matter fields and chiral operators which contain gauginos. In this paper, we
will not deal with the gauginos.

2.1 Some preliminaries and notation

We will be interested in N D3-branes living in Type IIB on R
3,1 × R

2×
ALE, where the D3-branes fill R

3,1 and the ALE space can admit any of the
A, D, or E singularities, namely it looks like C2/Γ and Γ can be any of
the cyclic, dihedral, or the exceptional discrete subgroups of SU(2). In [2],
the generating function counting single trace BPS operators in the chiral
ring is denoted by f and the generating function counting multi-trace BPS
operators in the chiral ring is denoted by g. In this paper, we do not deal
with the distinction between single trace and multi-trace operators and just
concentrate on multi-trace operators, with the understanding that single
trace operators are always included among the multi-trace operators. Since
these functions depend on the number of branes, we will put a subscript gN

for counting BPS operators for N D3-branes.
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The global symmetry for the A series contains a U(1)3 subgroup (includ-
ing R charges) since these spaces are toric manifolds. The global symmetry
for the D and E series contains a U(1)2 subgroup. Correspondingly, we will
denote the chemical potentials for these charges by t1, t2, t3, which are taken
to be arbitrary complex numbers living in the unit disc. For the D and E
cases t1 and t2 will be replaced by one parameter which will be denoted by t.
The parameter t3 counts operators which carry charge associated with the
complex line in the background called R

2 above.

The generating functions do depend on the background and therefore will
carry this information in the following manner

gN (t1, t2, t3;C2/Γ ×C). (2.1)

To simplify this notation we will abbreviate by writing

gN (t1, t2, t3; Γ), (2.2)

for cases when there is no ambiguity. The functions g admit a Taylor
expansion around the origin in the parameters {ti} and their coefficients are
positive integers which count the number of BPS operators. For example,
the expansion

g(t1, t2, t3) =
∞∑

i=0

∞∑

j=0

∞∑

k=0

dijkt
i
1t

j
2t

k
3 (2.3)

indicates that dijk is the number of multi-trace BPS operators in the chiral
ring, which carry charges i, j, and k with respect to the three global U(1)
charges, etc.

The moduli space of vacua of the gauge theory contains a collection of
branches, the Higgs branch, the Coulomb branch, and mixed branches. On
each of these branches there will be different BPS operators, some which
exist in few branches and some which exist only on a specific branch. Cor-
respondingly, there will be generating functions which count BPS operators
in each branch. We will replace the notation g by the first letters of these
branches, hence we will have hN , cN which are generating functions count-
ing multi-trace BPS operators in the chiral ring of the Higgs and Coulomb
branches, respectively.

We can further introduce a chemical potential ν for the number of
branes, N . Using this parameter, the generating functions for counting
multi-trace BPS operators on the Higgs branch is collected into a single
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generating function called H (for Higgs) which has the following expansion

H(ν; t1, t2, t3; Γ) =
∞∑

N=0

νNhN (t1, t2, t3; Γ). (2.4)

We can similarly collect the generating functions for multi-trace operators
in the Coulomb branch under

C(ν; t1, t2, t3; Γ) =
∞∑

N=0

νNcN (t1, t2, t3; Γ). (2.5)

3 The elementary partition functions

In this section, we derive the building blocks for the full solution of the
problem. The partition function for the Higgs branch, the Coulomb branch,
and the intersection between those. In the next section, we will then use
surgery to combine those building blocks into a full solution.

3.1 The Higgs branch

The Higgs branch of the gauge theory on a single D3-brane probing an ALE
singularity is a copy of the complex line C times the ALE space. When
N D3-branes probe this singularity, the moduli space is a copy of the Nth
symmetric product of C times the ALE. This property makes it particularly
simple to write down the generating functions on the Higgs branch by sim-
ply exploiting the properties of the plethystic exponential as discussed in
detail, in [2]. The resulting generating function H can be written in terms
of a single function, h1, counting multi-trace BPS operators for a single
D3-brane as

H(ν; t1, t2, t3; Γ) = exp
( ∞∑

k=1

νkh1(tk1, t
k
2, t

k
3; Γ)

k

)
. (3.1)

The computation of h1 is further simplified by noting that the ALE spaces
are manifolds of complete intersections and their function follows immedi-
ately from the possible symmetries of the defining equations. These func-
tions coincide with the so-called “Molien Invariant” of the discrete group Γ
and we recall from [2].

h1(t1, t2, t3; Zn) =
1 − tn1 tn2

(1 − tn1 )(1 − tn2 )(1 − t1t2)(1 − t3)
, (3.2)

h1(t, t3; Dn+2) =
1 + t2n+2

(1 − t4)(1 − t2n)(1 − t3)
, (3.3)
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h1(t, t3; E6) =
1 − t24

(1 − t6)(1 − t8)(1 − t12)(1 − t3)
, (3.4)

h1(t, t3; E7) =
1 − t36

(1 − t8)(1 − t12)(1 − t18)(1 − t3)
, (3.5)

h1(t, t3; E8) =
1 − t60

(1 − t12)(1 − t20)(1 − t30)(1 − t3)
. (3.6)

The trivial dependence on t3 indicates the fact that it counts operators
on the complex line.

3.2 The Coulomb branch

Supersymmetric gauge theories of N = 2 have a single adjoint valued com-
plex field and are well studied theories. For the purpose of counting BPS
operators in the chiral ring, we can think of symmetric functions of the
eigenvalues of the adjoint matrix. Alternatively, we can think of all inde-
pendent Casimir invariants, the number of which is equal to the rank of the
gauge group. For a gauge group of rank r, the moduli space of vacua is
freely generated by the first r Casimir invariants or, alternatively, by the
lowest r symmetric functions of the eigenvalues (a special discussion needs
to be made for exceptional groups, but this is not going to be of concern to
us in the following). Restricting to a U(r) gauge group, the moduli space of
vacua Mr is a copy of the symmetric product of the complex line,

Mr = Sr(C) =
Cr

Sr
, (3.7)

where Sr is the symmetric group in r elements. The generating function
for the BPS chiral operators of this moduli space was easily calculated
in [2] to be

cr(t3;C) = c1(t3; Sr(C)) =
r∏

i=1

1
(1 − ti3)

. (3.8)

Next, suppose we are dealing with a product of gauge groups,
∏

j U(rj) as is
the typical case for a quiver gauge theory. Then the moduli space of vacua
in the Coulomb branch is easily generalized to be

M{rj} =
∏

j

Srj (C) =
∏

j

Crj

Srj

, (3.9)
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and by analogy the generating function counting BPS operators in the chiral
ring is computed to be

c{rj}(t3;C) =
∏

j

c1(t3; Srj (C)) =
∏

j

rj∏

ij=1

1

(1 − t
ij
3 )

. (3.10)

We are now ready to apply this discussion to the case of the ALE singu-
larities. The gauge group G(Γ) living on N D3-branes probing an ALE
singularity is

G(Zn) = U(N)n, (3.11)

G(Dn+2) = U(N)4U(2N)n−1, (3.12)

G(E6) = U(N)3U(2N)3U(3N), (3.13)

G(E7) = U(N)2U(2N)3U(3N)2U(4N), (3.14)

G(E8) = U(N)U(2N)2U(3N)2U(4N)2U(5N)U(6N). (3.15)

It should be pointed out that the different gauge group factors represent
fractional branes which are many more than the physical N D3-branes. As
a result, each type of fractional brane carries a conserved charge which is
associated to its fractional number. For example, the n different fractional
charges in the Zn singularity are such that taking the sum of precisely one
of each of the type of these fractional branes produces a physical brane. In
the equation for the generating function (3.10), we are taking the chemical
potential t3 to be the same for all types of fractional branes. It is possible
to keep track of each of these fractional brane charges by taking a larger set
of chemical potentials, say qj , each of which carries information about the
specific fractional brane charge. Such chemical potentials will need to obey
a conservation law which implies that for the example of Zn, the sum of n
fractional branes is a physical brane, but for simplicity we will assume that
all fractional branes carry the same charge, t3.

Using this gauge theory data written above, we can compute the gener-
ating function cN (t3; Γ) for counting BPS operators in the Coulomb branch
of N D3-branes probing an ALE singularity of type Γ to be

cN (t3; Zn) =
N∏

i=1

1
(1 − ti3)n

, (3.16)

cN (t3; Dn+2) =
N∏

i=1

1
(1 − ti3)4

2N∏

i=1

1
(1 − ti3)n−1 , (3.17)
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cN (t3; E6) =
N∏

i=1

1
(1 − ti3)3

2N∏

i=1

1
(1 − ti3)3

3N∏

i=1

1
(1 − ti3)

, (3.18)

cN (t3; E7) =
N∏

i=1

1
(1 − ti3)2

2N∏

i=1

1
(1 − ti3)3

3N∏

i=1

1
(1 − ti3)2

4N∏

i=1

1
(1 − ti3)

, (3.19)

cN (t3; E8) =
N∏

i=1

1
(1 − ti3)

2N∏

i=1

1
(1 − ti3)2

3N∏

i=1

1
(1 − ti3)2

×
4N∏

i=1

1
(1 − ti3)2

5N∏

i=1

1
(1 − ti3)

6N∏

i=1

1
(1 − ti3)

.

We can further collect the generating functions depending on the number
of branes N into a single generating function C (for Coulomb), but it is not
known to us how to sum this function into a simpler form. We will settle
with an implicit expression,

C(ν; t3; Γ) =
∞∑

N=0

νNcN (t3; Γ), (3.20)

with cN expressed in equations (3.16)–(3.20). The case n = 1 in equation
(3.16) corresponds to flat space and in fact to the N = 4 supersymmetric
gauge theory restricted to one adjoint field. It takes the form (since the
group Γ is trivial we replace the notation to be C2 corresponding to flat
space)

C(ν; t3;C2) =
∞∑

N=0

νN
N∏

i=1

1
(1 − ti3)

=
∞∏

k=0

1
(1 − νtk)

, (3.21)

and is related to the number of integer partitions. (For ν = 1 this is the
inverse of the Euler function). The case n = 1 is in fact relevant to the
discussion on the mixed branch to which we now turn.

3.3 The intersection between Coulomb and Higgs branches

It is useful to think about the intersection between the Coulomb and Higgs
branches by using some physical reasoning. Let us turn to branes as they
serve as a good intuitive thinking about such points. The Coulomb branch
meets the Higgs branch at the origin of the ALE space in the Higgs branch.
On the other hand, the Coulomb branch is the moduli space of fractional
branes and in order to move to the Higgs branch they must split into appro-
priate sets of coinciding fractional branes that form a D3-brane bound state.
At the intersection of both branches, the physical brane is still free to move
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along the complex direction corresponding to R
2 and with chemical poten-

tial t3. When M physical branes reach the intersection between the Higgs
and Coulomb branches they are indistinguishable and therefore their moduli
space of vacua is that of equation (3.7),

MM = SM (C) =
CM

SM
, (3.22)

with a generating function which is familiar by now, as in equation (3.8)

lM (t3;C) = l1(t3; SM (C)) =
M∏

i=1

1
(1 − ti3)

. (3.23)

We can collect all of these functions into a single generating function of the
complex line (hence the name L) using the chemical potential, t3, for the
number of such branes, M , at the intersection between the Coulomb and
Higgs branches. (It is important to note that the number of branes at the
intersection, M , is different than the total number of D3-branes, N , since
not all branes need to be at the intersection).

L(ν; t3) =
∞∑

M=0

νM
M∏

i=1

1
(1 − ti3)

=
∞∏

k=0

1
(1 − νtk3)

= exp
( ∞∑

k=1

νk

k(1 − tk3)

)
.

(3.24)
We now turn to final words about the mixed branch.

3.4 The mixed branches

Generically, there are many mixed branches in which there are M D3-branes
in the Higgs branch and the rest of the branes are in the Coulomb branch.
Away from special points the moduli space of such a mixed branch looks
like the direct product of the appropriate Higgs and Coulomb branch.

The generating function for BPS operators of branes propagating on the
Higgs branch is given by H, equation (3.1), and the generating function for
BPS operators of branes propagating along the Coulomb branch is given by
C, equation (3.20). Finally, we should be careful not to over-count BPS
operators of branes which live at the intersection between the Coulomb and
Higgs branches, as they are counted in both. These come with a gener-
ating function given by L. In the next section we will show that, using
the rules of “surgery”, we can simply combine these points and are now
ready to state the main result of this paper: the generating function for
counting BPS operators in the mixed branch is given by the product of the
Higgs and Coulomb branch generating functions divided by the generating
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function of their intersection.

G(ν; t1, t2, t3; Γ) =
H(ν; t1, t2, t3; Γ)C(ν; t3; Γ)

L(ν; t3)
. (3.25)

Even though this result is very simple to state and looks intuitive, it is
harder to prove. This is the main point of the next section.

4 Surgery

The goal of this section is to prove equation (3.25) with the help of surgery
techniques which we develop using examples in Sections 4.1 and 4.2.

4.1 An illustrative example

The simplest example for a situation in which there is a moduli space of
solutions to an algebraic equation which has different branches is probably
the equation for two complex variables x and y,

xy = 0. (4.1)

The solution to this equation has two branches:

1. x �= 0, y = 0 — The moduli space is a copy of the complex line.
2. x = 0, y �= 0 — Here by symmetry the moduli space is again a copy of

the complex line.

The two branches meet at a single point, x = y = 0 — it can be termed the
“mixed branch” even though it is degenerate, but this is good enough for
the purpose of our demonstrative example.

The chiral operators can be identified with all the polynomials in x and
y modulo relation (4.1). In this example, it is not hard to count these
polynomials explicitly. The relation implies that every monomial either
contains only x or only y. Let us denote by t1(t2) the parameter which
counts the number of x’s (y’s). The monomials of the form xn (n ≥ 1) are
counted by t1/(1 − t1). Similarly, the monomials of the form yn (n ≥ 1)
are counted by t2/(1 − t2). Furthermore, there is the identity operator. In
summary, the generating function to count the chiral operators is

g(t1, t2) =
t1

1 − t1
+

t2
1 − t2

+ 1 =
1 − t1t2

(1 − t1)(1 − t2)
. (4.2)

This counting problem can be translated into a language of moduli spaces.
The chiral operators correspond to holomorphic functions on the moduli
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space. For this reason, we need to count all the holomorphic functions on
the moduli space.

There are infinitely many holomorphic functions on the complex line, xn,
n = 0, 1, 2, . . . . The generating function for these functions on this moduli
space can be described as follows. For the first branch, x is a good coordinate
and the generating function of the line is 1

1−t1
. By a complete analogy, the

generating function on the second branch is 1
1−t2

. The two branches meet at
the origin and therefore we should be careful not to double count this point.
Alternatively, the identity function appears in both generating functions and
we should not double count it. As a result, the total generating function is

g(t1, t2) =
1

1 − t1
+

1
1 − t2

− 1 =
1 − t1t2

(1 − t1)(1 − t2)
, (4.3)

reaching the same result as in equation (4.2). This is the simplest type of
“surgery” of moduli spaces. We add the contributions from the two branches
and subtract the contribution from the “mixed” branch.

Let us derive this generating function using an third derivation which
follows from the reasoning given in [2]. Inspection of the equation xy = 0
reveals that this is a simple example of a complete intersection manifold,
namely one can treat this as a one complex dimensional space given as
one relation in two variables. As such it satisfies the condition that the
dimension of the moduli space of solutions and the number of relations sum
up to the number of variables, 1+1 = 2. As such the moduli space qualifies
as a complete intersection. We recall that for such a case the computation
of the generating function requires to identify the U(1) isometries and their
weights. We can observe that there are two U(1) isometries to this equation:
counting x’s, this gives a weight 1 to x, 0 to y and the relation has a weight 1.
The second U(1) counts the number of y’s giving weight 0 to x, 1 to y and
the relation has weight 1. These charges can be summarized in Table 1.

Collecting these together we can write the generating function as

g(t1, t2) =
1 − t1t2

(1 − t1)(1 − t2)
, (4.4)

where the numerator encodes the weight of the relation and the denominator
denotes the weight of the generators x and y. Having seen the three methods

Table 1: U(1) charges for the equation xy = 0.

Variable x y relation
t1 1 0 1
t2 0 1 1
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of computing the same generating function it turns out that the second
method, which involves the simplest type of “surgery”, will be our main
tool. Let us see this in the following example.

4.2 A more realistic example

A more interesting model is a Wess–Zumino model with three chiral multi-
plets x, y, and z and a superpotential

W = xyz. (4.5)

This model arises as a degenerate limit of a gauge theory. It is the theory
on a single D3-brane which probes a C3/(Zn × Zn) singularity with a non-
trivial discrete torsion turned on [15]. For such a theory, the superpotential
comes with a coefficient (1 − ε), with ε a root of 1 but this coefficient does
not affect our discussion. The superpotential (4.5) imposes three relations,

yz = xz = xy = 0. (4.6)

Here the moduli space has three branches:

• x �= 0, z = y = 0,
• y �= 0, x = z = 0,
• z �= 0, x = y = 0,

The three branches meet at a single point x = y = z = 0, the “mixed
branch”.

A similar reasoning as in the previous section leads to

g(t1, t2, t3) =
t1

1 − t1
+

t2
1 − t2

+
t3

1 − t3
+ 1 (4.7)

=
1

1 − t1
+

1
1 − t2

+
1

1 − t3
− 2 (4.8)

=
1 − t1t2 − t1t3 − t2t3 + 2t1t2t3

(1 − t1)(1 − t2)(1 − t3)
. (4.9)

Here the second equality follows from “surgery” and since we counted the
“mixed branch” three times, we need to subtract 2 in order to avoid over
counting. This moduli space turns, however, not to be a complete inter-
section. This can be seen by observing that

(xy)z = x(yz) = y(xz), (4.10)

i.e., there are relations of relations. In fact, taking the plethystic logarithm of
the generating function g in equation (4.9) gives an infinite series, showing
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that indeed the moduli space is not a complete intersection and has an
expansion

PL[g(t1, t2, t3)] :=
∞∑

k=1

μ(k)g(tk1, t
k
2, t

k
3)

k
= (t1 + t2 + t3)

− (t1t2 + t2t3 + t3t1) + 2t1t2t3 + · · · (4.11)

Here μ is the Möbius function. The first contribution indicates that there
are three generators for the chiral ring, x, y, z. It appears with a positive
sign. The second contribution indicates that there are three relations, as
in equation (4.6). It appears with a negative sign. The third contribution
indicates the relations between relations and indeed there are two of them
as in equation (4.10). It appears with a positive sign consistent with the fact
that for each relation there is an extra minus sign. The remaining terms in
the expansion indicate an increasingly complicated pattern of relations for
relations (syzygies).

4.3 The quiver gauge theory

As described in Section 3.4, the moduli space of a N = 2 supersymmetric
quiver gauge theory splits into many different branches, which are mixtures
of the Higgs and the Coulomb branch. Inspired by the D-brane picture, we
develop here a diagrammatic way to describe the moduli space. For simplic-
ity, we restrict ourselves to an A1 singularity and often to a representative
diagram instead of writing out the most general expression. It should, how-
ever, be clear how to generalize this. The final result equation (4.25) is
independent of those details.

We begin with some notation. A diagram of the form

(4.12)

can be interpreted as follows.

1. The horizontal axis is the IR2 direction and is counted by the param-
eter t3.

2. The vertical axis is the direction in the ALE space.
3. A filled dot off the horizontal axis denotes a D3-brane that can move

around the ALE space.
4. A filled dot sitting on the horizontal axis denotes a D3-brane that is

stuck at the origin of the ALE space and is indistinguishable from
another D3-brane that happens to sit at the origin of the ALE space.
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5. On an A1 singularity there are two types of fractional branes which
are stuck to the singular point. A cross denotes a fractional D3-brane
of the first kind.

6. An empty circle denotes a fractional D3-brane of the second kind.
When a fractional brane of the first kind and a fractional brane of the
second kind combine they form a physical D3-brane which can move
away to the ALE space.

From this picture, it is clear that if a cross and an empty circle are at the
same position, they can be replaced by a filled dot at the same position.
This property poses the main difficulty in counting the chiral operators.

4.3.1 The alternating sum

First, we note that the full moduli space can be split up into Higgs, Cou-
lomb, and mixed branches. The mth mixed branch, Bm, has m D3-branes
exploring the ALE space and the other N − m D3-branes split up into frac-
tional branes. An example is

B2 : (4.13)

Also, there is a natural notion of neighboring branches. The neighboring
branches, Bm and Bm+1, intersect in a locus Im, where m D3-branes are
exploring the ALE space, one more D3-brane is stuck at the origin of the
ALE space and the remaining N − m − 1 D3-branes split into fractional
D3-branes. Here is a diagrammatic representation of I1.

I1 : (4.14)

When we glue two neighboring branches together, we have to add their
generating functions for chiral primaries, but then we have to subtract the
generating function for chiral primaries in the intersection locus. Stepwise,
we can continue gluing on more neighboring branches. It is not hard to see
that if we glue another neighboring branch, Bm+l+1, to a bunch of neigh-
boring branches, Bm, . . . , Bm+l, the intersection is actually Im+l. This leads
to the alternating sum which is written here for the case of N = 3,

(4.15)
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Most terms like

(4.16)

in this alternating sum are still quite complicated because fractional D3-
branes can still recombine into D3-branes at the origin of the ALE space.
For this reason, they do not factorize into Higgs and Coulomb branch con-
tributions.

4.3.2 Cancellations with surgery

We now want to express the terms appearing in (4.15) in terms of simpler
building blocks. Specifically, we want to prevent fractional D3-branes from
recombining into D3-branes. It is not hard to convince oneself of the surgical
decompositions

(4.17)

and

(4.18)

etc. Here the crosses and circles being on different sides of the horizontal
axis indicates that the fractional D3-branes cannot recombine. A cross and
a circle being at the same position along the horizontal axis indicate that
the two fractional D3-branes are forced to sit at the same position.

In the alternating sum (4.15) most of the terms cancel and only a few
remain.

(4.19)

The terms in this new alternating sum factorize into contributions of three
types: Higgs, Coulomb, and ‘restricted Higgs’.

(4.20)

The first two types were discussed in Sections 3.1 and 3.2. Using generating
functions equation (4.19) can be written as

G(ν; t1, t2, t3; Γ) = H(ν; t1, t2, t3; Γ)C(ν; t3; Γ)

− (R(ν; t1, t2, t3; Γ) − 1)C(ν; t3; Γ), (4.21)
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where R is the generating function for the ‘restricted Higgs’ branch

R(ν; t1, t2, t3; Γ) =
∞∑

N=0

νNrN (t1, t2, t3; Γ). (4.22)

4.3.3 More surgery

To deal with a ‘restricted Higgs’ branch, we need to do more surgery. It
is not hard to derive a recursion relation for the contributions from the
restricted branch:

(4.23)

In those diagrams, a crossed circle on the horizontal axis represents a brane
that is stuck at the origin of the ALE space, but can be distinguished from
a D3-brane (filled dot) that is stuck at the origin of the ALE space. The
generating function for those branes is L(ν; t3).

Using the generating functions the above recursion relation can be
written as

H(ν; t1, t2, t3; Γ)(L(ν; t3) − 1) = (R(ν; t1, t2, t3; Γ) − 1)L(ν; t3). (4.24)

Combining equations (4.21) and (4.24) leads to the desired result

G(ν; t1, t2, t3; Γ) =
H(ν; t1, t2, t3; Γ)C(ν; t3; Γ)

L(ν; t3)
. (4.25)

5 Examples and a full solution to a class of gauge theories

5.1 First few cases for small number of D3-branes

We can use the expression for G(ν; ti; Γ), the full generating function of chiral
operators to make general observations on the first few cases of small N .

We first observe that h0 = c0 = l0 = 1, from equations (3.1), (3.20), and
(3.24). This implies that

g0 = 1. (5.1)

The moduli space of this theory is a point and there is only the identity
operator in the chiral ring.
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Second, using equation (3.25), we find

g1 = c1 + h1 − l1. (5.2)

This equation expresses the simplest notions about “surgery” as discussed
in Section 4 using the simplest example of the complex equation xy = 0.
The mixed branch for one D3-brane gets contributions from.

1. The Higgs branch, where the D3-brane can propagate as a physical
D3-brane.

2. The Coulomb branch, where the D3-brane splits into fractional branes
which are propagating along the singularity.

3. The intersection between these two moduli spaces needs to be sub-
tracted to avoid double counting of operators.

Using the explicit expressions for the case of Zn, we find

g1 =
1 − tn1 tn2

(1 − tn1 )(1 − tn2 )(1 − t1t2)(1 − t3)
+

1
(1 − t3)n

− 1
(1 − t3)

. (5.3)

Finally, using equation (3.25), we find

g2 = c2 + c1h1 + h2 − (c1 + h1)l1 + l21 − l2. (5.4)

For A1 quiver gauge theories, this result can also be checked in an elementary
way by counting operators.

Starting with the alternating sum (4.15) and noting that b2 = h2 and
b0 = c2 we have,

g2 = b2 − i2 + b1 − i1 + b0 = h2 − i2 + b1 − i1 + c2. (5.5)

We therefore need to show that,

i2 − b1 + i1 = l2 + (c1 + h1)l1 − c1h1 − l21. (5.6)

Let us start by constructing b1, the contribution of the mixed branch. The
D and F flatness constraints imply that φi, Ai, and Bi, i = 1, 2 can be
diagonalized and have the form

φi =
(

λ0 0
0 λi

)
, Ai =

(
ai 0
0 0

)
, and Bi =

(
bi 0
0 0

)
. (5.7)

The gauge invariant operators are then polynomials in λ0, λi, ai, and bi.

trφi = λ0 + λi, (5.8)

trφ2
i = λ2

0 + λ2
i , (5.9)

trφm
i AiBi = λm

0 aibi etc. (5.10)

Equations (5.8) and (5.9) have three independent parameters. We could try
to generate all operators containing only φi by trφi and trφ2

i . These are four
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variables and therefore we need to introduce one constraint which turns out
to be quartic. This implies that they are counted by the generating function

1 − t43
(1 − t3)2(1 − t23)2

. (5.11)

Operators that contain only Ai and Bi are counted by

1 + t1t2
(1 − t21)(1 − t22)

. (5.12)

Finally, it is not hard to see that operators that contain at least one Ai or
Bi can have any polynomial in λ0, λ1, and λ2 in front of it, i.e., they are
counted by

(
1 + t1t2

(1 − t21)(1 − t22)
− 1

)
1

(1 − t3)3
. (5.13)

This implies that

b1 =
(

1 + t1t2
(1 − t21)(1 − t22)

− 1
)

1
(1 − t3)3

+
1 − t43

(1 − t3)2(1 − t23)2
. (5.14)

Similarly, one can derive

i1 =
1 − t43

(1 − t3)2(1 − t23)2
(5.15)

and

i2 =
(

1 + t1t2
(1 − t21)(1 − t22)

− 1
)

1
(1 − t3)2

+
1

(1 − t3)(1 − t23)
. (5.16)

This implies that

i2 − b1 + i1 =
(

1 − 1 + t1t2
(1 − t21)(1 − t22)

)
t3

(1 − t3)3
+

1
(1 − t3)(1 − t23)

= l2 + (c1 + h1)l1 − c1h1 − l21, (5.17)

which proves (5.4) in a more elementary way.
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5.2 The An series

The generating function of the Higgs branch was calculated in [2] and takes
the form

h1(t1, t2, t3;C2/Zn ×C) =
1 − tn1 tn2

(1 − tn1 )(1 − tn2 )(1 − t1t2)(1 − t3)
. (5.18)

Taking the plethystic exponential of this function gives the generating func-
tion for multi-trace operators and rank of the gauge group equal to N ,

H(ν; t1, t2, t3;C2/Zn ×C) = exp

( ∞∑

k=1

νkh1(tk1, t
k
2, t

k
3)

k

)
. (5.19)

The generating function on the Coulomb branch is given by

C(ν; t;C2/Zn ×C) =
∞∑

k=0

νk
k∏

i=1

1
(1 − ti)n

. (5.20)

The generating function of the line is given by

L(ν; t) = exp

( ∞∑

k=1

νk

k(1 − tk)

)
. (5.21)

Finally, the full generating function is given by

G(ν; t1, t2, t3;C2/Zn ×C)

=
H(ν; t1, t2, t3;C2/Zn ×C)C(ν; t3;C2/Zn ×C)

L(ν; t3)

= exp

[ ∞∑

k=1

νk

k(1 − tk3)

(
1 − tnk

1 tnk
2

(1 − tnk
1 )(1 − tnk

2 )(1 − tk1t
k
2)

− 1
)]

×
∞∑

j=0

νj
j∏

i=1

1
(1 − ti)n

6 Conclusions

In this paper, we studied the generating function that counts BPS operators
in the chiral ring of a N = 2 quiver gauge theory which arises on the world
volume of D3-branes probing an ALE singularity in Type IIB superstring
theory. The difficulty in finding the generating function lies in the presence
of mixed Coulomb and Higgs Branches and careful analysis of the counting
needs to be done. Luckily we develop “surgery” techniques which allow the
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precise calculation of the generating functions and in fact give a very simple
final result, equation (3.25).

The problem of counting BPS operators in the chiral ring of a generic
supersymmetric gauge theory remains elusive. Some recent progress has
been made in incorporating baryonic charges in dimer theories [16] and some
progress in understanding theories with no superpotential. More results are
hoped to be reported in the near future.

The behavior of the generating functions at large values of the charges is
of importance to evaluate the entropy of these gauge theories and will be
deferred to a future publication.
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