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Abstract

We classify orbifolds obtained by taking the quotient of a 3-torus by
Abelian extensions of Z/n × Z/n automorphisms, where each torus has
a multiplicative Z/n action (n ∈ {3, 4, 6}). This ‘completes’ the classifi-
cation of orbifolds of the above type initiated by Donagi and Faraggi [4]
and Donagi and Wendland [5].

1 Introduction

In 1985, Dixon, Harvey, Vafa and Witten pioneered the study of string
theory on orbifolds [3]. A recurrent model, the Z/2 × Z/2 orbifold, which
was introduced by Vafa and Witten [6] has been studied extensively. In
particular, Donagi and Faraggi classified further quotients using symmetric
shifts [4]. They deduce that the three generation vacua are not obtained
in this manner. Seeking a better model, Donagi and Wendland [5] studied
quotients of 3-tori by Abelian extensions of the Z/2 × Z/2 automorphisms.

We classify here the orbifolds obtained by taking the quotient of 3-tori
by Abelian extensions of Z/n × Z/n automorphisms, where each torus has
a multiplicative Z/n action (n ∈ {3, 4, 6}).
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2 Construction and results

2.1 Construction

Consider the elliptic curve E3, quotient of the complex plane by the sublat-
tice Λn = Z ⊕ ω3Z, where ω3 = eiπ/3. This curve is endowed with a multi-
plicative automorphism: if we write [x] for the class in E3 of x ∈ C and ζ3
for a primitive third root of unity, the map is given explicitly by [x] �→ [ζ3x].
This automorphism generates an action of Z/3Z on E3. Consequently, if we
take the variety obtained by taking three copies of E3, X3 = E3 × E3 × E3,
it comes with an action of (Z/3Z)3. This action restricts to an action of
(Z/3Z)2 as schematized in the following diagram:

0 �� (Z/3Z)2 ��
� �

���
�

�
�

�
(Z/3Z)3

+ ��
� �

��

Z/3Z �� 0

Aut(X3)

Define T3 to be the set of points of X3 which are fixed by (Z/3Z)2. It is a
subgroup of E3[3] × E3[3] × E3[3] isomorphic to (Z/3Z)3 (E3[3] denotes the
3-torsion points of the elliptic curve). The group T3 acts by translation on X3
and its action commutes with the one of (Z/3Z)2 which was just introduced.
We have therefore an action of the direct product V3 := (Z/3Z)2 × (Z/3Z)3

which we will call the Vafa–Witten action of order 3.

In the following sections, we will deal with quotients of X3 by subgroups
of V3 which project onto the multiplicative (Z/3Z)2.

The above construction can be mimiced with the elliptic curves E4 =
C/(Z ⊕ iZ) and E6 = E3, respectively, endowed with the automorphisms
[x] �→ [ζ6x] and [x] �→ [ζ4x]. As a result, we construct an action of V4 =
((Z/4Z)2 × (Z/2Z)3) and V6 = ((Z/6Z)2 × Id), respectively, on X4 and X6;
these actions will be called the Vafa–Witten actions of order 4 and 6. As
for X3, we will be interested in quotients of Xn=4,6 by subgroups of Vn=4,6
which project onto the multiplicative part.

We can synthesize the situation in the following table.

n ωn ζn Tn

3 eiπ/3 e2iπ/3 (Z/3Z)3 ⊂ E3[3]3

4 i i (Z/2Z)3 ⊂ E4[2]3

6 eiπ/3 eiπ/3 {0}
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2.2 Notation

The element g : ([z1], [z2], [z3]) �→ ([ζm1
i z1 + a1tn], [ζm2

i z2 + a2tn], [ζm3
i z3 +

a3tn]) will be denoted as g = (m1, m2, m3; a1, a2, a3). The element tn is
a generator of Tn|En . Notice that the mi add up to zero in Z/nZ. We will
call the mi’s the twist part and the ai’s the shift part.

Definition 2.1. The rank of G is its number of generators minus 2.

The definition is such that, when G is a direct product of the multiplicative
group by some subgroup of Tn, the rank corresponds to the number of
generators of the translation part.

2.3 Results

Definition 2.2. We call Hn the set of orbifolds obtained by taking the
quotient of Xn by subgroups of the nth Vafa–Witten group, Vn, which surject
onto the multiplicative component.

In the next sections we get the following classification.

Proposition 2.3. The sets Hn contain only finitely many homeomorphism
classes of orbifolds. The number of classes is 8 for H3 and H4 and is 1
for H6.

The Hodge numbers of the spaces are given in the tables which follow.
For each homeomorphism class of Hn, we give a representative group G by
listing its generators, as well as the Hodge numbers of Xn/G.

2.3.1 Case n = 3

For n = 3, the generators are (where applicable): (1, 2, 0; a1, a2, a3), (2, 0, 1;
b1, b2, b3), (0, 0, 0; c1, c2, c3) and (0, 0, 0; d1, d2, d3).

Number (a1, a2, a3) (b1, b2, b3) (c1, c2, c3) (d1, d2, d3) (h11, h12)
III.1 (0, 0, 0) (0, 0, 0) (84, 0)
III.2 (0, 0, 0) (0, 1, 0) (24, 12)
III.3 (0, 0, 0) (1, 1, 0) (18, 6)
III.4 (0, 0, 1) (1, 1, 0) (12, 0)
III.5 (0, 0, 0) (0, 0, 0) (0, 1, 1) (40, 4)
III.6 (0, 0, 0) (0, 0, 0) (1, 1, 1) (36, 0)
III.7 (0, 0, 0) (0, 1, 0) (1, 0, 1) (16, 4)
III.8 (0, 0, 0) (0, 0, 0) (1, 1, 1) (18, 6)
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All the above orbifolds are simply connected, except III.4 whose funda-
mental group is Z/3Z.

2.3.2 Case n = 4

For n = 4, the generators are (where applicable): (1, 3, 0; a1, a2, a3), (3, 0, 1;
b1, b2, b3), (0, 0, 0; c1, c2, c3) and (0, 0, 0; d1, d2, d3).

Number (a, b, c) (a′, b′, c′) (c1, c2, c3) (d1, d2, d3) (h11, h12)
IV.1 (0, 0, 0) (0, 0, 0) (90, 0)
IV.2 (0, 0, 0) (0, 1, 0) (54, 0)
IV.3 (0, 0, 0) (1, 1, 0) (42, 0)
IV.4 (0, 0, 1) (1, 1, 0) (30, 0)
IV.5 (0, 0, 0) (0, 0, 0) (0, 1, 1) (61, 1)
IV.6 (0, 0, 0) (0, 0, 0) (1, 1, 1) (54, 0)
IV.7 (0, 0, 0) (0, 1, 0) (1, 0, 1) (38, 0)
IV.8 (0, 0, 0) (0, 0, 0) (1, 1, 1) (42, 0)

All these orbifolds have trivial fundamental group.

2.3.3 Case n = 6

For n = 6, there is a unique case corresponding to the quotient by the Vafa–
Witten group. The orbifold X6/V6 has Hodge numbers (80, 0) and is simply
connected.

3 Homeomorphism classes of Hn

In this section, we will classify the elements of Hn up to homeomorphism.
The classification will be made according to the rank of the group acting
on Xn.

3.1 General lemmas

To identify groups, we will make recurrent use of the following lemma.

Lemma 3.1. Let G be a subgroup of V4 of V4 (resp. V3) which surjects onto
the multiplicative part, then G has at least two generators. The first two gen-
erators can be taken of the form g1 = (1, 2, 0; ∗, ∗, ∗) and g2 = (2, 0, 1; ∗, ∗, ∗)
(resp. g1 = (1, 3, 0; ∗, ∗, ∗) and g2 = (3, 0, 1; ∗, ∗, ∗)). If there are more than
two generators, then they can be taken of the form gi>2 = (0, 0, 0; ∗, ∗, ∗).
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Proof. Since G must surject onto the multiplicative part, it clearly has at
least two generators. These two generators g1, g2 can be chosen to be the lifts
of the generators of the multiplicative group. For n = 4 (resp. n = 3), this
group admits as generators (1, 2, 0) and (2, 0, 1) (resp. (1, 3, 0) and (3, 0, 1)),
so the nature of the first two generators is settled.

Let gi be another generator of G. Since the twist part of g1 and g2
generates the multiplicative part, there exists a word w in the first two
generators so that w · gi = (0, 0, 0; ∗, ∗, ∗). We can now substitute gi by
w · gi. �

The most powerful tool to identify groups will be conjugation by torsion
elements of E3

n. For simplicity we will work on a single torus. Consider the
transformation z �→ ζa

i z + τti. We will conjugate it with the translation by
λ, any given element of En:

(ζa
i (z + λ) + τti) − λ = ζa

i z + τti + (ζa
i λ − λ)

︸ ︷︷ ︸

new shift

.

If a 	= 0, we can choose a λ such that τti + (ζa
i λ − λ) = 0, which implies that

our transformation is conjugate to ζa
i z.

3.2 Quotients of X3

3.2.1 Rank 0

Although there are a priori (33)2 = 729 possible choices of g1 = (1, 2, 0;
a1, a2, a3) and g2 = (2, 0, 1; b1, b2, b3), by using conjugation and symmetry,
we can, to begin with, restrict ourselves to at most four cases.

Lemma 3.2. Without loss of generality, we can assume g1 and g2 to be of
the form (1, 2, 0; 0, 0, a3) and (2, 0, 1; b1, b2, 0) with a3, b1, b2 ∈ {0, 1}.

Proof. Let G be a group with generators g1 = (1, 2, 0; a1, a2, a3) and g2 =
(2, 0, 1; b1, b2, b3). Conjugate both elements by (0, 0, 0; α1, α2, α3). The ele-
ment g1 gets mapped to (1, 2, 0; a1 + (ζα1 − α1), a2 + (ζ2α2 − α2), a3) while
g2 gets mapped to (2, 0, 1; b1 + (ζ2α1 − α1), b2, b3 + (ζα3 − α3)). We can
take α1,...,3 so that

a1 + (ζα1 − α1) = a2 + (ζ2α2 − α2) = b3 + (ζα3 − α3) = 0.

Finally, the symmetry between t3 and 2t3 allows us to take the remaining
entries in {0, 1}. �
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Lemma 3.3. If we take generators as in the previous lemma, the entries b1
and b2 are symmetric.

Proof. Note that g1 = (1, 2, 0; 0, 0, δ3) with δ3 ∈ {0, 1} and g2 = (2, 0, 1;
b2, b3, 0). The group spanned by g1, g2 is the same as the group spanned
by g2

1, g1g2, that is, (2, 1, 0; 0, 0, 2δ3) and (0, 2, 1; b1, b2, δ3). We now rear-
range the order of the tori: (1 2 3) � (2 1 3) so that the new generators
read (1, 2, 0; 0, 0, δ3) and (2, 0, 1; b2, b1, δ3). By conjugating by an appro-
priate element of the third torus, we get as second generator the required
(2, 0, 1; b2, b1, 0). �

The above lemmas restrict the number of cases to 6:

• g1 = (1, 2, 0; 0, 0, 1), g2 = (2, 0, 1; 0, 0, 0);
• g1 = (1, 2, 0; 0, 0, 1), g2 = (2, 0, 1; 1, 0, 0);
• g1 = (1, 2, 0; 0, 0, 1), g2 = (2, 0, 1; 1, 1, 0);
• g1 = (1, 2, 0; 0, 0, 0), g2 = (2, 0, 1; 0, 0, 0);
• g1 = (1, 2, 0; 0, 0, 0), g2 = (2, 0, 1; 1, 0, 0);
• g1 = (1, 2, 0; 0, 0, 0), g2 = (2, 0, 1; 1, 1, 0).

We will show that among those six classes, two are redundant. Also,
we will simplify the notation further: e.g., a = (1, 1, 1) will denote the el-
ement g1 = (1, 2, 0; 1, 1, 1) while b = (1, 1, 0) will denote the element g2 =
(2, 0, 1; 1, 1, 0).

Lemma 3.4. The group generated by a = (0, 0, 1) and b = (0, 0, 0) is
isomorphic to the group spanned by a = (0, 0, 0), b = (0, 1, 0).

Proof. We can replace the generators g1 and g2 by their squares: (2, 1, 0;
0, 0, 2) and (1, 0, 2; 0, 0, 0). If we rearrange the terms in the order (1 2 3) �

(1 3 2) and we permute the generators, we get (1, 2, 0; 0, 0, 0) and (2, 0, 1;
0, 2, 0). This is what we want up to relabeling. �

Lemma 3.5. The elements a = (0, 0, 1) and b = (1, 0, 0) and the elements
a = (0, 0, 0), b = (1, 1, 0) generate isomorphic groups.

Proof. The basis g2, g
2
1g

2
2 is equivalent to g1, g2. It is made out of the vec-

tors (2, 0, 1; 1, 0, 0) and (0, 1, 2; 2, 0, 2). We now rearrange the tori using the
permutation (1 2 3) � (3 1 2) to get the basis (1, 2, 0; 0, 1, 0), (2, 0, 1; 2, 2, 0).
We now conjugate with an appropriate translation on the second tori to get
(1, 2, 0; 0, 0, 0), (2, 0, 1; 2, 2, 0). �
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As a conclusion, we have

Proposition 3.6. There are four homeomorphism classes of quotients of
X3 by groups of rank 0 in H3. We have written a representative of each
class in the following table.

Number (a1, a2, a3) (b1, b2, b3) (h11, h12) π1

III.1 (0, 0, 0) (0, 0, 0) (84, 0) 1
III.2 (0, 0, 0) (0, 1, 0) (24, 12) 1
III.3 (0, 0, 0) (1, 1, 0) (18, 6) 1
III.4 (0, 0, 1) (1, 1, 0) (12, 0) Z/3

Proof. We have seen through the previous lemmas that there are at most
four types of isomorphism of groups. By computing the Hodge diamond of
the associated Calabi–Yau 3-fold (see Section 3), we deduce that they yield
four different varieties. �

3.2.2 Rank 1

We label the third generator g3 = (0, 0, 0; c1, c2, c3) or c. We will extend the
list of rank 0 groups using the following rules.

Lemma 3.7 (Reduction principle) [4]. Let G be a group of which one of the
generators is of the form (0, 0, 0; x1, x2, x3) and exactly one of the xi 	= 0.
The quotient Xn/G is then homeomorphic to Xn/Ḡ, where Ḡ is the quotient
of G by the subgroup spanned by that generator.

The idea is that if there is an element which consists in a translation
on a unique curve, we can first take the quotient by this element and have
another 3-torus on which the rest of the group acts.

As a corollary, we can restrict ourselves to g3’s where at least two of the
ck’s are not zero. Furthermore, we have the following simplifications.

Lemma 3.8. If ck 	= 0 and ak = bk = 0, we can assume ck = 1.

Proof. It follows from the symmetry between t3 and 2t3. �
Lemma 3.9. We can assume that the shift part of c is not a non-zero
multiple of the shift part of a or b.

Proof. Without loss of generality, assume that c is a multiple of a, then we
can substitute g1 by g1g

k
3 (so the shift part is (0, 0, 0)) to get a new first

generator without translation. In other words, we have reduced the group
to a previous case. �
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We will now try to discern the groups.

1. a = (0, 0, 0), b = (0, 0, 0). We can choose c to be either (1, 1, 0) or
(1, 1, 1). All other cases resume to these two using the previous points
and S3 symmetry.

2. a = (0, 0, 0), b = (0, 1, 0). We can choose, using the previous points, a
c of the form (δ1, c2, δ3) where the δi ∈ {0, 1}. However, we can also
assume that c2 ∈ {0, 1}.

Proof. The generator g3 is equivalent to g2
3, so since we can relabel the

first and third translations without loss of generality, we see that we
can assume c2 to be in {0, 1}. �

It now seems that we have four possible choices for c, namely (1, 1, 0),
(0, 1, 1), (1, 0, 1) and (1, 1, 1). We will show that the first two are
actually redundant.

Proof. Consider the group obtained by adjoining the element
(0, 0, 0; 0, 1, 0) to the group generated by a = (0, 0, 0), b = (0, 1, 0) and
c = (1, 1, 0). It is easy to see that up to S3 symmetry, this group is
equivalent to the action of the group obtained by joining (0, 0, 0; 0, 1, 0)
to the group generated by a = (0, 0, 0) b = (0, 0, 0) and c = (0, 1, 1). By
the reduction principle, all these groups generate the same space up
to homeomorphism, so the first case reduces to an ancient case.
For the second case, notice that the group generated by g1, g2, g3 is the
same as the group spanned by g1, g2g

2
3, g3. The element g2g

2
3 = (2, 0, 1;

0, 0, 2). If we conjugate these new elements by an adequate translation
on the third torus, the first and last generator are unchanged while
g2g

2
3 � (2, 0, 1; 0, 0, 0). �

The computation of the Hodge numbers will assure us that the two
remaining cases are independent.

3. a = (0, 0, 0), b = (1, 1, 0).
We can choose c to be of the form (c1, c2, δ3), where δ3 ∈ {0, 1} (same
argument as previously). Now, we could replace g3 by its square and,
since we can change the last component of c freely, it means that
we could replace (c1, c2, δ3) by (c2

1, c
2
2, δ3). We will do this to have

a minimal number of entries equal to 2 in (c1, c2). Using the above
rules, the possible c’s are (1, 2, 0), (0, 1, 1), (1, 0, 1), (1, 1, 1) or (1, 2, 1).
Actually, none of these cases is new:
• (1, 2, 0). We have (g1, g2, g3) = (g1, g2g

2
3, g3). The element g2g

2
3 =

(2, 0, 1; 0, 2, 0). After conjugation, and up to transforming the third
generator g3, we can let g2g

2
3 � (2, 0, 1; 0, 0, 0).
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• (0, 1, 1). We have (g1, g2, g3) = (g2
1, g1g2g

2
3, g3), where g2

1 = (2, 1, 0;
0, 0, 0) and g1g2g

2
3 = (0, 2, 1; 1, 0, 2). Conjugating by some appro-

priate translation on the third torus, the second generator becomes
g1g2g

2
3 �(0, 2, 1; 1, 0, 0). We now reorder the tori (1, 2, 3) � (2, 1, 3)

and we get a previous case.
• (1, 0, 1). We have (g1, g2, g3) = (g1, g2g

2
3, g3). The element g2g

2
3 =

(2, 0, 1; 0, 1, 2). After conjugating with an element of translation on
the third torus, the second generator can be taken to be (2, 0, 1;
0, 1, 0).

• (1, 1, 1). We have (g1, g2, g3) = (g1, g2g
2
3, g3). The element g2g

2
3 =

(2, 0, 1; 0, 0, 1). Again, we can conjugate by an element of transla-
tion on the third torus to have our second generator
(2, 0, 1; 0, 0, 0).

• (1, 2, 1). We have (g1, g2, g3) = (g1, g2g
2
3, g3). The element g2g

2
3 =

(2, 0, 1; 0, 2, 2). We can conjugate by an element of translation on
the third torus to have our second generator � (2, 0, 1; 0, 2, 0). Up
to renaming, we again reduced to a previous case.

So we conclude that there are no interesting extensions in this case.
4. a = (0, 0, 1), b = (1, 1, 0).

We can choose c to be of the form (c1, c2, c3). Let us first undercover
some symmetry: we have (g1, g2, g3) = (g2

1, g1g2, g3), and if we per-
mute the order of the tori (1, 2, 3) � (2, 1, 3), we get the generators
(1, 2, 0; 0, 0, 2), (2, 0, 1; 1, 1, 1) and (0, 0, 0; c2, c1, c3). Now we can con-
jugate by a translation on the third torus to let the second generator
become (2, 0, 1; 1, 1, 0) and leave the other two unchanged. Now we
can relabel the new a3 into a1, and we must therefore substitute the
new c3 by its square. Finally, we get the generators (1, 2, 0; 0, 0, 1),
(2, 0, 1; 1, 1, 0) and (0, 0, 0; c2, c1, c

2
3).

So we can let c3 be 0 or 1 up to a permutation of the c1, c2.
Using the above symmetry, we have the following possibilities which

we show to be reducible to previous cases:

• (1, 2, 0). We have (g1, g2, g3) = (g1, g2g3, g3), where g2g3 = (2, 0, 1;
2, 0, 0). Using the symmetry of the first translation entries of the
second generator (up to variation of g3), we have reduced to a
previous case.

• (1, 0, 1). We have (g1, g2, g3) = (g1g
2
3, g2, g3), where g1g

2
3 = (1, 2, 0;

2, 0, 0). Up to changing g2, we can conjugate by a translation
element on the first torus to get the first generator to become
(1, 2, 0; 0, 0, 0). So we reduced to a previous case.

• (0, 1, 1). We have (g1, g2, g3) = (g1g
2
3, g2, g3), where g1g

2
3 = (1, 2, 0;

0, 2, 0). We can conjugate by a translation element on the second
torus to get the first generator to become (1, 2, 0; 0, 0, 0). So we
reduced to a previous case.
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• (1, 1, 1). We have (g1, g2, g3) = (g1, g2g
2
3, g3), where g2g

2
3 = (2, 0, 1;

0, 0, 2). We can conjugate by a translation element on the third
torus to get the second generator to become (2, 0, 1; 0, 0, 0).

• (2, 1, 1). We have (g1, g2, g3) = (g1g
2
3, g2, g3), where g1g

2
3 = (1, 2, 0;

1, 2, 0). Up to changing g2, we can conjugate by a translation
element on the first and second torus to get the first generator
to become (1, 2, 0; 0, 0, 0). So we reduced to a previous case.

• (1, 2, 1). We have (g1, g2, g3) = (g1g
2
3, g2, g3), where g1g

2
3 = (1, 2, 0;

1, 2, 0). Up to changing g2, we can conjugate by a translation
element on the first and second torus to get the first generator
to become (1, 2, 0; 0, 0, 0). So we reduced to a previous case.

From the above discussion, we conclude:

Proposition 3.10. There are four homeomorphism classes in H3 coming
from groups of rank 1. We have written a representative of each class in the
following table.

Number (a1, a2, a3) (b1, b2, b3) (c1, c2, c3) (h11, h12) π1

III.5 (0, 0, 0) (0, 0, 0) (0, 1, 1) (40, 4) 1
III.6 (1, 1, 1) (36, 0) 1
III.7 (0, 0, 0) (0, 1, 0) (1, 0, 1) (16, 4) 1
III.8 (1, 1, 1) (18, 6) 1

3.2.3 Rank 2

Since we do not consider rank 2 groups which we can reduce to a lower rank,
we have restrictions on the third and fourth generator: by the reduction
principle, they cannot generate an element with only one non-zero entry in
the shift part.

Consider the third and fourth generators as elements of F
3
3 (they just have

shift parts).

Lemma 3.11. There are exactly 4 linear planes in F
3
3 which do not intersect

the coordinate axes outside the origin.

Proof. Let H be a plane which does not intersect the coordinate axes outside
the origin. Since it contains the origin, it intersects the three coordinate
planes in a line. For each coordinate plane Pi, the only two possible lines
are the diagonal Δi and, the only other line which is not a coordinate axis,
li. The choice of any two lines. not in the same coordinate plane, out
of {l1, l2, Δ1, Δ2} gives an adequate plane. In particular, there are four of
them. If we include Δ3 and l3 in the picture, we look at the coplanarity of the
lines, which is readily checked and can be visualized in figure 1. Each plane
is represented by either an edge of the triangle or the inscribed circle. �
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Figure 1: Planes in F
3
3 not crossing the coordinate axes outside the origin.

Remarks.

• The three planes represented by the edges of the triangle in figure 1
are clearly S3 symmetric. Therefore, it is enough to consider the ad-
junction of any one of those three to the first case of rank 0 subgroups.

• Since all rank 1 cases associated to a = (0, 0, 0), b = (1, 1, 0) and a =
(0, 0, 1), b = (1, 1, 0) were reduced to previous cases, all rank 2 exten-
sions will also be reducible, so we just need to deal with a = (0, 0, 0),
b = (0, 0, 0) and a = (0, 0, 0), b = (0, 1, 0).

We will now work out the rank 2 cases.

• Using S3 symmetry, for a = b = (0, 0, 0), we have as possible extension
c = (0, 1, 1), d = (1, 1, 0) and c = (0, 1, 2), d = (1, 2, 0). Now, we can
replace d by its square and since c3 and d1 are freely chosen, we see
that this case is equivalent to the previous one.

• All four possible extensions of a = (0, 0, 0), b = (0, 1, 0) contain either
the element (0, 2, 2) or (0, 2, 1). Using this element, it is easy to see
that we can reduce g2 to (2, 0, 1; 0, 0, 0): multiply g2 by this element
and conjugate by an appropriate translation on the third coordinate.
We show hereby that there are no further rank 2 cases.

A priori, there is thus only one rank 2 case.

(a1, a2, a3) (b1, b2, b3) (c1, c2, c3) (d1, d2, d3)
(0, 0, 0) (0, 0, 0) (0, 1, 1) (1, 1, 0)

.

However, it can be reduced to the III.1 case: by applying the reduction
principle of Donagi and Faraggi, this case is equivalent to the Vafa–Witten
group case (adjoin any translation) which in turn is equivalent to the III.1
case.

3.2.4 Rank 3

The only group is the Vafa–Witten group. It reduces to the III.1 case.
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3.3 Quotients of X4

Since there are only two fixed points per torus, the structure of the
translation locus is simpler. A translation element will be of the form
(δ1, δ2, δ3) with δi ∈ {0, 1}.

3.3.1 Rank 0

Using the same argument as for Z/3Z (being careful to replace square by
inverse), we quickly get the following list.

Proposition 3.12. There are four homeomorphism classes in H3 obtained
by taking the quotients by rank 0 groups. We have written a representative
of each class in the following table:

Number (a, b, c) (a′, b′, c′) (h11, h12)
IV.1 (0, 0, 0) (0, 0, 0) (90, 0)
IV.2 (0, 0, 0) (0, 1, 0) (54, 0)
IV.3 (0, 0, 0) (1, 1, 0) (42, 0)
IV.4 (0, 0, 1) (1, 1, 0) (30, 0)

3.3.2 Rank 1

Again, we will use the same arguments as for n = 3.

Lemma 3.13. If a = (0, 0, 0), b = (0, 0, 0), then we can assume c to be of
the form:

• (0, 1, 1);
• (1, 1, 1).

Proof. Using S3 symmetry, all other c’s with two non-zero entries are
equivalent to the one listed here. Also, the reduction principle excludes
all c’s with a single non-zero entry. �

Lemma 3.14. If a = (0, 0, 0), b = (0, 1, 0), then we can assume that c is
one of the following:

• (1, 0, 1);
• (1, 1, 1).

Proof. The case where c is (0, 1, 1) is reducible: replace g2 by g2g3 = (3, 0, 1;
0, 0, 1) and conjugate by a translation element on the third torus to get a
second generator which is translation free.
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The case where c is (1, 1, 0) is reducible: adjoin the element (0, 0, 0; 0, 1, 0)
and use the same argument as for the order 3 case. �

Lemma 3.15. If a = (0, 0, 0), b = (1, 1, 0), then there are no new cases.

Proof. If c is

• (0, 1, 1). This case is reducible: we replace g1 by g−1
1 and g2 by g2g3 =

(0, 3, 1; 1, 0, 1). Secondly, we conjugate by a translation element on the
third torus to let the second generator become (0, 3, 1; 1, 0, 0). Finally,
we arrange the torus in the order (1, 2, 3) � (2, 1, 3). We reduced to
an extension of the previous type of rank 0.

• (1, 0, 1). This case is reducible: replace g2 by g2g3 = (3, 0, 1; 0, 1, 1) and
conjugate by a translation element on the third torus to get a second
generator of the form (3, 0, 1; 0, 1, 0). We reduced to an extension of
the previous type of rank 0.

• (1, 1, 1). This case is reducible: replace g2 by g2g3 = (3, 0, 1; 0, 0, 1) and
conjugate by a translation element on the third torus to get a second
generator which is translation free. �

Lemma 3.16. If a = (0, 0, 1), b = (1, 1, 0), then there are no new cases.

Proof. If c is

• (0, 1, 1). We have (g1, g2, g3) = (g1g3, g2, g3), where g1g3 = (1, 3, 0;
0, 1, 0). We can conjugate by a translation element on the second torus
to get the first generator to become (1, 3, 0; 0, 0, 0). So we reduced to
a previous case.

• (1, 0, 1). We have (g1, g2, g3) = (g1g3, g2, g3), where g1g3 = (1, 3, 0;
1, 0, 0). Up to changing g2, we can conjugate by a translation element
on the first torus to get the first generator to become (1, 3, 0; 0, 0, 0).
So we reduced to a previous case.

• (1, 1, 1). We have (g1, g2, g3) = (g1g3, g2, g3), where g1g3 = (1, 3, 0;
1, 1, 0). Up to changing g2, we can conjugate by a translation ele-
ment on the first and second torus to get the first generator to become
(1, 3, 0; 0, 0, 0). So we reduced to a previous case. �

Using those lemmas, we conclude

Proposition 3.17. There are four homeomorphism classes generated by
groups of rank 1 in H3. We have written a representative of each class in
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the following table:

Number (a1, a2, a3) (b1, b2, b3) (c1, c2, c3) (h11, h12)
IV.5 (0, 0, 0) (0, 0, 0) (0, 1, 1) (61, 1)
IV.6 (1, 1, 1) (54, 0)
IV.7 (0, 0, 0) (0, 1, 0) (1, 0, 1) (38, 0)
IV.8 (1, 1, 1) (42, 0)

3.3.3 Rank 2

Since we do not want cases which reduce to lower ranks, we need the third
and fourth generators to span a subgroup which does not contain elements
where only one of the entries is non-zero. There is actually a unique possi-
bility. In geometric language:

Lemma 3.18. There is a unique two-dimensional vector subspaces of F
3
2

which does not intersect the coordinate axes outside the origin.

Proof. Let H be a plane verifying the above conditions. Since H passes
through the origin, it must intersect each coordinate plane in at least a line.
Since H does not intersect the coordinate axes, the intersection lines must be
the first diagonals. Therefore {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)} ⊂ H and
since a plane over F2 contains four elements, we are done. �

Since the group of translations is isomorphic to F
3
3, we get the direct result

that

Corollary 3.19. There is at most one rank 2 group associated to each group
of rank 0 — which we classified earlier.

Corollary 3.20. There is no non-reducible rank 2 case associated to the
last three types of rank 0.

Proof. In the last two types of rank 0, one generator has a shift with two
non-zero entries. Since this shift belongs to the plane H, the case can be
reduced to a previous one.

In the second case of rank 0, b = (0, 1, 0), so replacing g2 with its composition
with (0, 0, 0; 0, 1, 1) we get (3, 0, 1; 0, 0, 1). We can now conjugate with an
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adequate translation on the third torus to get the second generator in the
form (3, 0, 1; 0, 0, 0), i.e., we are back to the first type of rank 0. �

So we conclude that apparently there is only one type of rank 2 subgroup,
namely:

(a1, a2, a3) (b1, b2, b3) (c1, c2, c3) (d1, d2, d3)
(0, 0, 0) (0, 0, 0) (0, 1, 1) (1, 1, 0)

.

However, as in the case of X3, it is reducible to IV.1.

3.3.4 Rank 3

The only case is the whole group V4. It is reducible to the III.1 case.

3.4 Quotients of V6

There is a unique case as there are no translations commuting with the
multiplicative Z/6Z × Z/6Z action. The Hodge numbers of the quotient are
(80, 0).

4 The Hodge structure

To compute the orbifold cohomology of the spaces that we have classified
in the previous section, we will use the orbifold cohomology introduced in
physics (see e.g., [3]) and formalized by Chen and Ruan [2].

Definition 4.1. The orbifold cohomology of the quotient of the manifold Xn

by the finite group G, which is also the cohomology of a crepant resolution
of this quotient, is

H i,j(Xn/G) =
⊕

[g] ∈ G
U ∈ Xg

n

H i−κ(g),j−κ(g)(U)C(g).

where we sum over the conjugacy classes of G and the components of the
fixed locus of each element. C(g) denotes the centralizer of g in G. The
set Xg

n is the fixed locus of any element in the conjugacy class of g, i.e.,
{x ∈ Xn such that g · x = x}; U denotes one of its components. Moreover,
if the action of g sends [zi]i=1,...,3 to [e2πiθizi]i=1,...,3 with 0 ≤ θi < 1, then we
define the shift function1 by κ(g) =

∑3
i=1 θi.

1Also known as fermionic shift, degree shifting number or age.
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In our case, the definition of the Vafa–Witten groups forces the function κ
to take its values in {0, 1, 2}. Also, since we are dealing with Abelian groups
and given that the local action is essentially unique, the formula simplifies to

H i,j

(

Xn

G

)

=
⊕

g ∈ G

H i−κ(g),j−κ(g)(Xg
n)G.

Note that the action of an element of G on the cohomology depends
uniquely on the multiplicative part: the action of ζi is ζi · dzi = ζidzi and
ζi · dz̄i = ζ̄idz̄i while the action of Ti is trivial.

Example 4.2. Take g = (m1, m2, m3; a1, a2, a3) and Ω = dz1 ∧ dz2 ∧ dz̄1 ∧
dz̄3. We have

Ω
g�−→ ζ

(m1+m2)−(m1+m3)
i Ω = ζ

(m2−m3)
i Ω.

In order to compute the Hodge structure of the Xn/G, we first need to
classify the possible fixed loci of an element of g ∈ G on Xn.

Lemma 4.3. Consider the element g = (m1, m2, m3; a1, a2, a3) ∈ G. Its
fixed locus Xg

n can be of four different topological types.

Proof. There are four exclusive forms of g which correspond to the four
different fixed loci:

1. The identity element (0, 0, 0; 0, 0, 0) has as fixed locus the whole variety
Xn.

2. If for a certain index k ∈ {1, 2, 3} we have that mk = 0, and ak 	= 0,
then the fixed locus of g is the empty set. Indeed, g acts by translation
on each elliptic curve, and these translations do not fix any point.

3. The fixed locus of g where all mk’s are different from 0 is a collection
of points.

4. The fixed locus of g, where for exactly one of the k’s mk = ak = 0 (and
excluding case 2), is made out of elliptic curves (the number depends
on n).

Note that if two of the mk’s are zero, then the third one also has to be
zero and therefore all cases have been exhausted in the above list. �

We will now compute the G invariant cohomology from these fixed loci.



TOROIDAL ORBIFOLDS À LA VAFA–WITTEN 699

Lemma 4.4. For all n ∈ {3, 4, 6}, the G-invariant part of the cohomology
of Xn is2

H∗(Xn)G =

1 0 0 1
0 3 0 0
0 0 3 0
1 0 0 1

.

Proof. The Hodge diamond of the 3-torus is

1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

.

The invariance of H0,0 and H3,0 is straightforward.

For the other components, note that the action of G on H1,0 and H0,1, and
thus on the whole of H(Xn), is diagonal with respect to the standard basis.
Therefore, it will be enough to check the behavior of the basis elements to
find the G-invariant part. Let dzk be a generator of H1,0, and it is not fixed
by the element (1, 1, n − 2; ∗, ∗, ∗). Therefore, we have h1,0G = 0.

Similarly, dzk ∧ dzl, a generator of H2,0, is not fixed by the element (1, 1, n −
2; ∗, ∗, ∗) and thus h2,0G = 0.

Only the generators of H1,1 of the form dzi ∧ dz̄i are invariant, the others
are killed by the element (1, n − 1, 0; ∗, ∗, ∗). Therefore, the dimension of
the G-invariant part of H1,1 is 3.

Consider now H2,1; by symmetry, we can restrict ourselves to the generators
dz1 ∧ dz2 ∧ dz̄3 and dz1 ∧ dz2 ∧ dz̄1. The former is not fixed by (1, 0, n −
1; ∗, ∗, ∗), while the latter is not fixed by (1, 1, n − 2; ∗, ∗, ∗). We conclude
that h2,1G = 0. Finally, the diamond is completed using dzk ↔ dz̄k and
Hodge symmetry. �
Lemma 4.5. Assume that after identification via G-action, g ∈ G has as
fixed locus a collection of n points. The contribution to the cohomology of
g and g−1, H∗(Xg)G ⊕ H∗(Xg−1

)G is equivalent to the contribution of n
projective lines: H∗(nP

1).

Proof. The elements g and g−1 have the same fixed locus, whose cohomology
is exclusively H0,0. Given that the fixed locus of g is made of points, we

2We have tilted the Hodge diamonds 45◦ to the left to facilitate typesetting.
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know that κ(g) is non-zero and that none of the θi is 0. We claim that
{κ(g), κ(g−1)} is exactly {1, 2}. Indeed, if we denote by θ′

i the linearized
action of g−1 on the ith component, then we have the relation θ′

i = 1 − θi.
Therefore, κ(g−1) = 3 − κ(g). �

Lemma 4.6. The G-invariant part of the cohomology of a fixed elliptic
curve will be either the cohomology of the projective line 1 0

0 1 or the one

of an elliptic curve 1 1
1 1 . In either case κ will be 1.

Proof. Since H0,0 is obviously invariant, only H1,0 which is of dimension 1
might not preserved, in which case the invariant cohomology corresponds to
that of a P

1.
Since we do not deal with the fixed locus of the identity, κ is not 0. Moreover,
we know that the action is trivial on one component. Therefore, we have
that κ, which is the sum θ1 + θ2 + θ3 where one θi = 0 and the two others
of norm less than one, can only be one. �

4.1 Notation

We are now ready to compute the Hodge numbers of each orbifold.
Each group will be represented, as previously, by the shift part of its gener-
ators. We will list the group elements g which have a non-empty fixed locus
Xg and their contribution, i.e., for each group, we will have a collection
{(g, (h1,1, h1,2))}.

To lighten the notation,

1. We will count twice the contribution of non-trivial elements which are
not involutions but have a union of curves as fixed locus. In compen-
sation, we will not be writing their inverse.

2. if a non-involutive element fixes a union of points, then we will count
its contribution together with the one of its inverse. We will not write
down its inverse.

4.2 Order 3

We have eight cases to compute:

• (0, 0, 0)(0, 0, 0) � (h11, h12) = (84, 0)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 2, 0; 0, 0, 0), (18, 0)),



TOROIDAL ORBIFOLDS À LA VAFA–WITTEN 701

((2, 0, 1; 0, 0, 0), (18, 0)), ((0, 1, 2; 0, 0, 0), (18, 0)),
((1, 1, 1; 0, 0, 0), (27, 0))};

• (0, 0, 0)(0, 1, 0) � (24, 12)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 2, 0; 0, 0, 0), (6, 6)),
((0, 2, 1; 0, 1, 0), (6, 6)), ((1, 1, 1; 0, 1, 0), (9, 0))};

• (0, 0, 0)(1, 1, 0) � (18, 6)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 2, 0; 0, 0, 0), (6, 6)),
((1, 1, 1; 1, 1, 0), (9, 0))};

• (0, 0, 1)(1, 1, 0) � (12, 0)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 1, 1; 1, 1, 2), (9, 0))};

• (0, 0, 0)(0, 0, 0)(0, 1, 1) � (40, 4)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 2, 0; 0, 0, 0), (6, 0)), ((2, 0, 1; 0, 0, 0), (6, 0)),
((0, 1, 2; 0, 0, 0), (6, 0)), ((0, 1, 2; 0, 1, 1), (2, 2)), ((0, 1, 2; 0, 2, 2), (2, 2)),
((1, 1, 1; 0, 0, 0), (9, 0)), ((1, 1, 1; 0, 1, 1), (3, 0)), ((1, 1, 1; 0, 2, 2), (3, 0))};

• (0, 0, 0)(0, 0, 0)(1, 1, 1) � (36, 0)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 2, 0; 0, 0, 0), (6, 0)),
((2, 0, 1; 0, 0, 0), (6, 0)), ((0, 1, 2; 0, 0, 0), (6, 0)), ((1, 1, 1; 0, 0, 0), (9, 0)),
((1, 1, 1; 1, 1, 1), (3, 0)), ((1, 1, 1; 2, 2, 2), (3, 0))};

• (0, 0, 0, )(0, 1, 0)(1, 0, 1) � (16, 4)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 2, 0; 0, 0, 0), (2, 2)),
((0, 2, 1; 0, 1, 0), (2, 2)), ((1, 1, 1; 0, 1, 0), (3, 0)), ((1, 1, 1; 1, 1, 1), (3, 0)),
((1, 1, 1; 2, 1, 2), (3, 0))};

• (0, 0, 0)(0, 1, 0)(1, 1, 1) � (18, 6)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 2, 0; 0, 0, 0), (2, 2)),
((2, 0, 1; 2, 0, 2), (2, 2)), ((0, 2, 1; 0, 1, 0), (2, 2)), ((1, 1, 1; 0, 1, 0), (3, 0)),
((1, 1, 1; 1, 2, 1), (3, 0)), ((1, 1, 1; 2, 0, 2), (3, 0))}.

4.3 Order 4

For this family, we also have eight cases to compute:

• (0, 0, 0)(0, 0, 0) � (h11, h12) = (90, 0)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 3, 0; 0, 0, 0), (8, 0)),
((3, 0, 1; 0, 0, 0), (8, 0)), ((0, 3, 1; 0, 0, 0), (8, 0)), ((1, 1, 2; 0, 0, 0), (12, 0)),
((1, 2, 1; 0, 0, 0), (12, 0)), ((2, 1, 1; 0, 0, 0), (12, 0)),
((2, 2, 0; 0, 0, 0), (9, 0)), ((2, 0, 2; 0, 0, 0), (9, 0)), ((0, 2, 2; 0, 0, 0), (9, 0))};

• (0, 0, 0)(1, 1, 0) � (42, 0)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 3, 0; 0, 0, 0), (4, 0)),
((1, 1, 2; 0, 0, 0), (8, 0)), ((1, 2, 1; 1, 1, 0), (4, 0)), ((2, 1, 1; 1, 1, 0), (4, 0)),
((2, 2, 0; 0, 0, 0), (5, 0)), ((2, 0, 2; 0, 0, 0), (7, 0)), ((0, 2, 2; 0, 0, 0), (7, 0))};

• (0, 0, 0)(0, 1, 0) � (54, 0)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 3, 0; 0, 0, 0), (4, 0)),
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((0, 1, 3; 0, 1, 0), (4, 0)), ((1, 1, 2; 0, 0, 0), (8, 0)), ((1, 2, 1; 0, 1, 0), (4, 0)),
((2, 1, 1; 0, 1, 0, [3], 0), (8, 0)), ((2, 2, 0; 0, 0, 0), (7, 0)),
((2, 0, 2; 0, 0, 0), (9, 0)), ((0, 2, 2; 0, 0, 0), (7, 0))};

• (0, 0, 1)(1, 1, 0) � (30, 0)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 1, 2; 0, 0, 0), (4, 0)),
((1, 2, 1; 0, 1, 0), (4, 0)), ((2, 1, 1; 0, 1, 0), (4, 0)), ((2, 2, 0; 0, 0, 0), (5, 0)),
((2, 0, 2; 0, 0, 0), (5, 0)), ((0, 2, 2; 0, 0, 0), (5, 0))};

• (0, 0, 0)(0, 0, 0)(0, 1, 1) � (61, 1)
{, ((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 3, 0; 0, 0, 0), (4, 0)),
((3, 0, 1; 0, 0, 0), (4, 0)), ((0, 3, 1; 0, 0, 0), (4, 0)), ((1, 1, 2; 0, 0, 0), (6, 0)),
((1, 2, 1; 0, 0, 0), (6, 0)), ((2, 1, 1; 0, 0, 0), (6, 0)), ((2, 2, 0; 0, 0, 0), (6, 0)),
((2, 0, 2; 0, 0, 0), (6, 0)), ((0, 2, 2; 0, 0, 0), (5, 0)), ((0, 3, 1; 0, 1, 1), (2, 0)),
((1, 1, 2; 0, 1, 1), (2, 0)), ((1, 2, 1; 0, 1, 1), (2, 0)), ((2, 1, 1; 0, 1, 1), (4, 0)),
((0, 2, 2; 0, 1, 1), (1, 1))};

• (0, 0, 0)(0, 0, 0)(1, 1, 1) � (54, 0)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 3, 0; 0, 0, 0), (4, 0)), ((3, 0, 1; 0, 0, 0), (4, 0)),
((0, 3, 1; 0, 0, 0), (4, 0)), ((1, 1, 2; 0, 0, 0), (6, 0)), ((1, 2, 1; 0, 0, 0), (6, 0)),
((2, 1, 1; 0, 0, 0), (6, 0)), ((2, 2, 0; 0, 0, 0), (5, 0)), ((2, 0, 2; 0, 0, 0), (5, 0)),
((0, 2, 2; 0, 0, 0), (5, 0)), ((1, 1, 2; 1, 1, 1), (2, 0)), ((1, 2, 1; 1, 1, 1), (2, 0)),
((2, 1, 1; 1, 1, 1), (2, 0))};

• (0, 0, 0)(0, 1, 0)(1, 0, 1) � (37, 0)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 3, 0; 0, 0, 0), (2, 0)),
((0, 1, 3; 0, 1, 0), (2, 0)), ((1, 1, 2; 0, 0, 0), (4, 0)), ((1, 1, 2; 1, 0, 1), (2, 0)),
((1, 2, 1; 0, 1, 0), (2, 0)), ((1, 2, 1; 1, 1, 1), (2, 0)), ((2, 1, 1; 0, 1, 0), (4, 0)),
((2, 1, 1; 1, 1, 1), (2, 0)), ((2, 2, 0; 0, 0, 0), (4, 0)), ((2, 0, 2; 0, 0, 0), (5, 0)),
((2, 0, 2; 1, 0, 1), (1, 0)), ((0, 2, 2; 0, 0, 0), (4, 0))};

• (0, 0, 0)(0, 1, 0)(1, 1, 1) � (42, 0)
{((0, 0, 0; 0, 0, 0), (3, 0)), ((1, 3, 0; 0, 0, 0), (2, 0)),
((1, 3, 0; 1, 1, 0), (4, 0)), ((3, 0, 1; 1, 0, 0), (4, 0)), ((0, 1, 3; 0, 1, 0), (4, 0)),
((1, 1, 2; 0, 0, 0), (4, 0)), ((1, 1, 2; 1, 1, 0), (6, 0)), ((1, 2, 1; 0, 1, 0), (2, 0)),
((1, 2, 1; 1, 0, 0), (6, 0)), ((2, 1, 1; 0, 1, 0), (6, 0)), ((2, 1, 1; 1, 0, 0), (2, 0)),
((2, 2, 0; 0, 0, 0), (5, 0)), ((2, 2, 0; 1, 1, 0), (1, 1)), ((2, 0, 2; 0, 0, 0), (6, 0)),
((0, 2, 2; 0, 0, 0), (6, 0))}.

4.4 Quotients of V6

For n = 6, we have a single orbifold. In order to further shorten the notation,
we will use S3 symmetry in (Z/6Z)3: we will write one element per S3 orbit
(the size of the orbit is is written between square brackets).

{((0, 0, 0; 0, 0, 0), (3, 0))[1], ((1, 5, 0; 0, 0, 0), (6, 0))[6],
((1, 4, 1; 0, 0, 0), (6, 0))[3], ((1, 3, 2; 0, 0, 0), (24, 0))[6],
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((2, 4, 0; 0, 0, 0), (24, 0))[6], ((2, 2, 2; 0, 0, 0), (5, 0))[1],
((3, 3, 0; 0, 0, 0), (12, 0))[3]}
(h11, h12) = (80, 0).

5 The fundamental group

We will compute π1 of our orbifolds using the fact that they are the quo-
tients of a simply connected space (C3).

Consider En × En × En/G as the quotient of C
3 by G̃, extension of G by

the lattice group Λn. Let F = {g ∈ G̃ : ∃x ∈ C
3 | g · x = x} and N(F ) the

group generated by F .

Theorem 5.1. The fundamental group of En × En × En/G is G̃/N(F ).

A proof can be found in [1] or a more heuristic argument is given in [3].

5.1 Orders 4 and 6

Proposition 5.2. Let G be a subgroup of the Vafa–Witten Group with n = 4
or 6 which surjects onto the multiplicative part. The closure N(F ) of F is
the whole of G̃.

Proof. We will generalize slightly the notation used up to now. We will
write g = (a1, a2, a3; τ1ti, τ2ti, τ3ti), where before we would have omitted the
ti. This permits us to write the elements of the lattice group Λ in the form
(0, 0, 0; α1 + β1ω, α2 + β2ω, α3 + β3ω). Let g be an element of G̃ − F , and
it is of the form (a1, a2, a3; v1, v2, v3), where, for at least one k, vk 	= 0 and
ak = 0.
The key is that G̃ always contains an element of the form h = (b1, b2, b3;
∗, ∗, ∗) such that ak + bk 	= 0 and bk 	= 0 for all k ∈ {1, 2, 3}.

5.1.1 Case 1

Only one of the ak = 0. We can assume without loss of generality that
k = 1. Pick ε, δ ∈ Z/i such that ε, δ 	= 0, δ 	= −ε, δ 	= a2 and δ 	= a2 − ε. For
n large enough (that is, n > 3), we see that there exists n2 − 5n + 6 > 0 such
possible pairs. Indeed, the previous conditions take away (in the right order)
n, n − 1, n − 1, n − 2 and n − 2 possibilities from the n2 possible pairs of
Z/n × Z/n. (see figure 2) Now, we just pick h = (ε, δ − a2, a2 − δ + ε; ∗, ∗, ∗).
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Figure 2: “Good pairs” of indices.

5.1.2 Case 2

All ak = 0. We can pick h to be (1, 1, n − 2; ∗, ∗, ∗). Since n > 3, n − 2 	= 0.
In both cases, h and h−1 · g belong to F , so from the trivial equality g =
h · (h−1 · g), we deduce that g ∈ N(F ). �

Corollary 5.3. Let G be a subgroup of the Vafa–Witten Group which
surjects onto the multiplicative part with n = 4 or 6, π1(X(G), x) is trivial.

5.2 Order 3

Proposition 5.4. All orbifolds obtained when n is 3 are simply connected,
except the quotient by III.4 whose fundamental group has order 3.

Proof. Let j = (0, 0, 0; v1, v2, v3) be a translation element in G̃. We can
decompose it as

j = (jg−2
2 g−1

1 )(g1g
2
2).

Both g1g
2
2 = (2, 2, 2; ∗, ∗, ∗) and jg−2

2 g−1
1 = (1, 1, 1; ∗, ∗, ∗) belong to F and

hence j belongs to F as well. The group of translations, T , in G̃ is a nor-
mal subgroup (as is the case in any Euclidean group), and so G/N(F ) ∼=
(G/T )/(N(F )/T ). Since G/T is generated by the classes of g1 and g2 and
g1g

2
2 ∈ F , the group G/N(F ) is a quotient of Z/3Z.

For all groups III.x, x different from 4, g1 is an element of F , so the funda-
mental group is trivial. For III.4, it is easy to see that only powers of g1g

2
2

lie in F and so the fundamental group is cyclic of order 3. �
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