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Abstract

We develop computational tools for the tree-level superpotential of
B-branes in Calabi–Yau orientifolds. Our method is based on a sys-
tematic implementation of the orientifold projection in the geometric
approach of Aspinwall and Katz. In the process, we lay down some
ground rules for orientifold projections in the derived category.
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1 Introduction

D-branes in Type IIB orientifolds are an important ingredient in constructions
of string vacua. A frequent problem arising in this context is the computation
of the tree-level superpotential for holomorphic D-brane configurations. This
is an important question for both realistic model building as well as dynam-
ical supersymmetry breaking.

Various computational methods for the tree-level superpotential have
been proposed in the literature. A geometric approach which identifies the
superpotential with a three-chain period of the holomorphic (3, 0)-form has
been investigated in [1–5]. A related method, based on two-dimensional
holomorphic Chern–Simons theory, has been developed in [6–9]. The tree-
level superpotential for fractional brane configurations at toric Calabi–Yau
singularities has been computed in [10–15]. Using exceptional collections,
one can also compute the superpotential for non-toric del Pezzo singularities
[16–19]. Perturbative disc computations for superpotential interactions have
been performed in [20–22]. Finally, a mathematical approach based on ver-
sal deformations has been developed in [23] and extended to matrix-valued
fields in [24].
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A systematic approach encompassing all these cases follows from the
algebraic structure of B-branes on Calabi–Yau manifolds. Adopting the
point of view that B-branes form a triangulated differential graded category
[25–30], the computation of the superpotential is equivalent to
the computation of a minimal A∞ structure for the D-brane category
[31–35].

This approach has been employed in the Landau–Ginzburg D-brane cate-
gory [36–38], and in the derived category of coherent sheaves [39, 40]. These
are two of the various phases that appear in the moduli space of a generic
N = 2 Type II compactification. In particular, Aspinwall and Katz [39]
developed a general computational approach for the superpotential, in which
the A∞ products are computed using a Čech cochain model for the off-shell
open string fields.

The purpose of the present paper is to apply a similar strategy for D-branes
wrapping holomorphic curves in Type II orientifolds. This requires a basic
understanding of the orientifold projection in the derived category, which is
the subject of Section 2. In Section 3, we propose a computational scheme
for the superpotential in orientifold models. This relies on a systematic
implementation of the orientifold projection in the calculation of the A∞
structure.

We show that the natural algebraic framework for deformation problems
in orientifold models relies on L∞ rather than A∞ structures. This observa-
tion leads to a simple prescription for the D-brane superpotential in the pres-
ence of an orientifold projection: one has to evaluate the superpotential of
the underlying unprojected theory on invariant on-shell field configurations.
This is the main conceptual result of the paper, and its proof necessitates
the introduction of a lengthy abstract machinery.

Applying our prescription in practice requires some extra work. The
difficulty stems from the fact that while the orientifold action is geometric on
the Calabi–Yau, it is not naturally geometric at the level of the derived cat-
egory. Therefore, knowing the superpotential in the original theory does not
trivially lead to the superpotential of the orientifolded theory. To illustrate
this point, we compute the superpotential in two different cases. Both will
involve D-branes wrapping rational curves, the difference will be in the way
these curves are obstructed to move in the ambient space.

The organization of the paper is as follows. Section 2 reviews the con-
struction of the categorical framework in which we wish to impose the ori-
entifold projection, as well as how to do the latter. Section 3 describes the
calculation of the D-brane superpotential in the presence of the projection.
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Finally, Section 4 offers concrete computations of the D-brane superpotential
for obstructed curves in Calabi–Yau orientifolds.

2 D-brane categories and orientifold projection

This section will be concerned with general aspects of topological B-branes
in the presence of an orientifold projection. Our goal is to find a natural
formulation for the orientifold projection in D-brane categories.

For concreteness, we will restrict ourselves to the category of topological
B-branes on a Calabi–Yau threefold X, but our techniques extend to higher
dimensions. In this case, the D-brane category is the derived category of
coherent sheaves on X [25, 27]. In fact, a systematic off-shell construction of
the D-brane category [28, 29] shows that the category in question is actually
larger than the derived category. In addition to complexes, one has to also
include twisted complexes as defined in [41]. We will show below that the
off-shell approach is the most convenient starting point for a systematic
understanding of the orientifold projection.

2.1 Review of D-brane categories

Let us begin with a brief review of the off-shell construction of D-brane
categories [28, 29, 41]. It should be noted at the offset that there are several
different models for the D-brane category, depending on the choice of a fine
resolution of the structure sheaf OX . In this section, we will work with
the Dolbeault resolution, which is closer to the original formulation of the
boundary topological B-model [42]. This model is very convenient for the
conceptual understanding of the orientifold projection, but it is unsuitable
for explicit computations. In Section 4, we will employ a Čech cochain model
for computational purposes, following the path pioneered in [39].

Given the threefold X, one first defines a differential graded category C
as follows

Ob(C) : holomorphic vector bundles (E, ∂E) on X

MorC
(
(E, ∂E), (F, ∂F )

)
=

(
⊕p A0,p

X (HomX(E, F )), ∂EF

)
,

where we have denoted by ∂EF the induced Dolbeault operator on HomX

(E, F )-valued (0, p) forms.1 The space of morphisms is a Z-graded differ-
ential complex. In order to simplify the notation we will denote the objects

1HomX(E, F ) is the sheaf Hom of E and F , viewed as sheaves.
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of C by E, the data of an integrable Dolbeault operator ∂E being implicitly
understood.

The composition of morphisms in C is defined by exterior multiplication
of bundle-valued differential forms. For any object E, composition of mor-
phisms determines an associative algebra structure on the endomorphism
space MorC(E, E). This product is compatible with the differential, there-
fore we obtain a differential graded associative algebra (DGA) structure on
MorC(E, E).

At the next step, we construct the shift completion C̃ of C, which is a
category of holomorphic vector bundles on X equipped with an integral
grading.

Ob(C̃) : pairs (E, n), with E an object of C and n ∈ Z

Mor
˜C((E, n), (F, m)) = MorC(E, F )[n − m].

The integer n is the boundary ghost number introduced in [27]. Note that
for a homogeneous element

f ∈ Mork
˜C((E, n), (F, m)),

we have

k = p + (m − n),

where p is the differential form degree of f . The degree k represents the
total ghost number of the field f with respect to the bulk-boundary BRST
operator. In the following, we will use the notations

|f | = k, c(f) = p, h(f) = m − n.

The composition of morphisms in C̃ differs from the composition of mor-
phisms in C by a sign, which will play an important role in our construction.
Given two homogeneous elements

f ∈ Mor
˜C((E, n), (E′, n′)) g ∈ Mor

˜C((E′, n′), (E′′, n′′)),

one defines the composition

(g ◦f)
˜C = (−1)h(g)c(f)(g ◦f)C . (2.1)

This choice of sign leads to the graded Leibniz rule

∂EE′′(g ◦f)
˜C =

(
∂E′E′′(g) ◦f

)
˜C + (−1)h(g) (

g ◦∂EE′(f)
)

˜C .
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Now we construct a pre-triangulated DG category Pre-Tr(C̃) of twisted
complexes as follows:

Ob
(
Pre-Tr(C̃)

)
:

finite collections of the form
{

(Ei, ni, qji)| qji ∈ Mor1
˜C((Ei, ni), (Ej , nj))

}

where the qji satisfy the Maurer–Cartan equation

∂EiEj (qji) +
∑

k(qjk ◦qki)˜C = 0.

MorPre-Tr(˜C)((Ei, ni, qji), (Fi, mi, rji)) =
(⊕

i,j

Mor
˜C((Ei, ni), (Fj , mj)), Q

)
,

where the differential Q is defined as

Q(f) = ∂EiFj (f) +
∑

k

(rkj ◦f)
˜C − (−1)|f |(f ◦qik)˜C ,

f ∈ Mor
˜C((Ei, ni), (Fj , mj)).

|f | is the degree of f in Mor
˜C((Ei, ni), (Fj , mj)) from above. For each object,

the index i takes finitely many values between 0 and some maximal value
which depends on the object. Note that Q2 = 0 because {qji}, {rji} sat-
isfy the Maurer–Cartan equation. Composition of morphisms in Pre-Tr(C̃)
reduces to composition of morphisms in C̃.

Finally, the triangulated D-brane category D has by definition the same
objects as Pre-Tr(C̃), while its morphisms are given by the zeroth cohomol-
ogy under Q of the morphisms of Pre-Tr(C̃):

Ob (D) = Ob
(
Pre-Tr(C̃)

)

MorD((Ei, ni, qji), (Fi, mi, rji))

= H0
(
Q,MorPre-Tr(˜C)((Ei, ni, qji), (Fi, mi, rji))

)
. (2.2)

The bounded derived category of coherent sheaves Db(X) is a full sub-
category of D. To see this, consider the objects of the form (Ei, ni, qji)
such that

ni = −i, qji �= 0 ⇔ j = i − 1. (2.3)

Since qji ∈ Mor1
˜C((Ei, ni), (Ej , nj)), the second condition in (2.3) implies

that their differential form degree must be 0. The Maurer–Cartan equa-
tion for such objects reduces to

∂EiEi−1qi−1,i = 0, (qi−1,i ◦qi,i+1)˜C = 0.
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Therefore the twisted complex (Ei, ni, qji) is in fact a complex of holomor-
phic vector bundles

· · · ��Ei+1
qi,i+1 ��Ei

qi−1,i ��Ei−1 �� · · · (2.4)

We will use the alternative notation

· · · ��Ei+1
di+1 ��Ei

di ��Ei−1 �� · · · (2.5)

for complexes of vector bundles, and also denote them by the corresponding
Gothic letter, here E.

One can easily check that the morphism space (2.2) between two twisted
complexes of the form (2.3) reduces to the hypercohomology group of the
local Hom complex Hom(E,F)

MorD((Ei, ni, qji), (Fi, mi, rji)) � H
0(X, Hom(E,F)). (2.6)

As explained in [30], this hypercohomology group is isomorphic to the derived
morphism space HomDb(X)(E,F). Assuming that X is smooth and projec-
tive, any derived object has a locally free resolution, hence Db(X) is a full
subcategory of D.

2.2 Orientifold projection

Now we consider orientifold projections from the D-brane category point of
view. A similar discussion of orientifold projections in matrix factorization
categories has been outlined in [43].

Consider a four-dimensional N = 1 IIB orientifold obtained from an N = 2
Calabi–Yau compactification by gauging a discrete symmetry of the form

(−1)εFLΩ σ

with ε = 0, 1. Employing common notation, Ω denotes world-sheet parity,
FL is the left-moving fermion number and σ : X → X is a holomorphic invo-
lution of X satisfying

σ∗ΩX = (−1)ε ΩX , (2.7)

where ΩX is the holomorphic (3, 0)-form of the Calabi–Yau. Depending on
the value of ε, there are two classes of models to consider [44]:

1. ε = 0: theories with O5/O9 orientifolds planes, in which the fixed-point
set of σ is either one or three complex dimensional;
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2. ε = 1: theories with O3/O7 planes, with σ leaving invariant zero or
two complex dimensional submanifolds of X.

Following the same logical steps as in the previous subsection, we should
first find the action of the orientifold projection on the category C, which is
the starting point of the construction. The action of parity on the K-theory
class of a D-brane has been determined in [45]. The world-sheet parity Ω
maps E to the dual vector bundle E∨. If Ω acts simultaneously with a holo-
morphic involution σ : X → X, the bundle E will be mapped to σ∗(E∨). If
the projection also involves a (−1)FL factor, a brane with Chan–Paton bun-
dle E should be mapped to an anti-brane with Chan–Paton bundle P (E).

Based on this data, we define the action of parity on C to be

P : E 	→ P (E) = σ∗(E∨)
P : f ∈ MorC(E, F ) 	→ σ∗(f∨) ∈ MorC(P (F ), P (E)). (2.8)

It is immediate that P satisfies the following compatibility condition with
respect to composition of morphisms in C:

P ((g ◦f)C) = (−1)c(f)c(g) (P (f) ◦P (g))C (2.9)

for any homogeneous elements f and g. It is also easy to check that P
preserves the differential graded structure, i.e.,

P (∂EF (f)) = ∂P (F )P (E)(P (f)). (2.10)

Equation (2.9) shows that P is not a functor in the usual sense. Since it is
compatible with the differential graded structure, it should be interpreted as
a functor of A∞ categories [46]. Note however that P is “almost a functor”:
it fails to satisfy the compatibility condition with composition of morphisms
only by a sign. For future reference, we will refer to A∞ functors satisfying
a graded compatibility condition of the form (2.9) as graded functors.

The category C does not contain enough information to make a distinction
between branes and anti-branes. In order to make this distinction, we have
to assign each bundle a grading, that is, we have to work in the category
C̃ rather than C. By convention, the objects (E, n) with n even are called
branes, while those with n odd are called anti-branes.

We will take the action of the orientifold projection on the objects of C̃
to be

P̃ : (E, n) 	→ (P (E), m − n) (2.11)
where we have introduced an integer shift m which is correlated with ε from
(2.7):

m ≡ ε mod 2. (2.12)
This allows us to treat both cases ε = 0 and ε = 1 in a unified framework.
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We define the action of P on a morphisms f ∈ Mor
˜C((E, n), (E′, n′)) as

the following graded dual:

P̃ (f) = −(−1)n′h(f)P (f), (2.13)

where P (f) was defined in (2.8).2 Note that the graded dual has been used
in a similar context in [43], where the orientifold projection is implemented
in matrix factorization categories.

With this definition, we have the following:

Proposition 2.1. P̃ is a graded functor on C̃ satisfying

P̃ ((g ◦f)
˜C) = −(−1)|f ||g|(P̃ (f) ◦ P̃ (g))

˜C (2.14)

for any homogeneous elements

f ∈ Mor
˜C((E, n), (E′, n′)), g ∈ Mor

˜C((E′, n′), (E′′, n′′)).

Proof. It is clear that P̃ is compatible with the differential graded structure
of C̃ since the latter is inherited from C.

Next we prove (2.14). First we have:

P̃ ((g ◦f)
˜C) = −(−1)n′′h(g ◦ f)P ((g ◦f)

˜C) by (2.13)

= −(−1)n′′h(g ◦ f)+h(g)c(f)P ((g ◦f)C) by (2.1)

= −(−1)n′′h(g ◦ f)+h(g)c(f)+c(f)c(g)(P (f) ◦P (g))C by (2.9)

On the other hand

(P̃ (f) ◦ P̃ (g))
˜C = (−1)n′h(f)+n′′h(g)(P (f) ◦P (g))

˜C by (2.13)

= (−1)n′h(f)+n′′h(g)(−1)h(P (f))c(P (g))(P (f) ◦P (g))C by (2.1)

But

h(g ◦f) = h(f) + h(g), h(P (f)) = h(f), c(P (g)) = c(g).

Now (2.14) follows from

n′′(h(f) + h(g)) − n′h(f) − n′′h(g) = (n′′ − n′)h(f) = h(g)h(f)

and
|f ||g| = (h(f) + c(f))(h(g) + c(g)). �

2There is no a priori justification for the particular sign we chose, but as we will see
shortly, it leads to a graded functor. A naive generalization of (2.8) ignoring this sign
would not yield a graded functor.
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The next step is to determine the action of P on the pre-triangulated
category Pre-Tr(C̃). We denote this action by P̂ . The action of P̂ on objects
is defined simply by

(Ei, ni, qji) 	→ (P (Ei), m − ni, P̃ (qji)). (2.15)

Using equations (2.10) and (2.14), it is straightforward to show that the
action of P̂ preserves the Maurer–Cartan equation, that is

∂EiEj (qji) +
∑

k

(qjk ◦qki)˜C = 0

⇒ ∂P (Ej)P (Ei)P̃ (qji) +
∑

k

(P̃ (qki) ◦ P̃ (qjk))˜C = 0,

since all qji have total degree 1. Therefore, this transformation is well defined
on objects. The action on morphisms is also straightforward

f ∈
⊕

i,j

Mor
˜C((Ei, ni), (Fj , mj))

	→ P̂ (f) = P̃ (f) ∈
⊕

i,j

Mor
˜C((P (Fj), m − mj), (P (Ei), m − ni)). (2.16)

Again, equations (2.10), (2.14) imply that this action preserves the differential

Q(f) = ∂EiFj (f) +
∑

k

(rkj ◦f)
˜C − (−1)|f |(f ◦qik)˜C

since {qji}, {rji} have degree 1. This means we have

P̂ (Q(f)) = ∂P (Fj)P (Ei)P̃ (f) +
∑

k

(P̃ (qik) ◦ P̃ (f))
˜C

− (−1)| ˜P (f)|(P̃ (f) ◦ P̃ (rkj))˜C . (2.17)

For future reference, let us record some explicit formulas for complexes of
vector bundles. A complex

E : · · · ��Ei+1
di+1 ��Ei

di ��Ei−1 �� · · ·

in which Ei has degree −i is mapped to the complex

P̂ (E) : · · · �� P (Ei−1)
˜P (di) �� P (Ei)

˜P (di+1) �� P (Ei+1) �� · · ·
(2.18)

where P̃ (di) is determined by (2.13)

P̃ (di) = (−1)i σ∗(d∨
i )
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and P (Ei) has degree i − m. Applying P̂ twice yields the complex

P̂ 2(E) : · · · �� Ei+1
˜P 2(di+1) �� Ei

˜P 2(di) �� Ei−1 �� · · · , (2.19)

where

P̃ 2(di) = (−1)m+1di.

Therefore P̂ 2 is not equal to the identity functor, but there is an isomorphism
of complexes J : P̂ 2(E) → E :

· · · �� Ei+1

Ji+1
��

˜P 2(di+1) �� Ei

˜P 2(di) ��

Ji

��

Ei−1

Ji−1
��

�� · · ·

· · · �� Ei+1
di+1 �� Ei

di �� Ei−1 �� · · ·
(2.20)

where
Ji = (−1)(m+1)iχ IdEi

and χ is a constant. Notice that J−1 : E → P̂ 2(E) and that P̂ 4 = IdDb(X)

implies that also J : P̂ 2(P̂ 2(E)) = E → P̂ 2(E). Requiring J and J−1 to be
equal constrains χ to be (−1)ω with ω = 0, 1. This sign cannot be fixed
using purely algebraic considerations, and we will show in Section 4 how it
encodes the difference between SO/Sp projections. In functorial language,
this means that there is an isomorphism of functors J : P̂ 2 → IdDb(X).

We conclude this section with a brief summary of the above discussion
and a short remark on possible generalizations. To simplify notation, in the
rest of the paper we drop the decorations of the various P ’s. In other words,
both P̂ and P̃ will be denoted by P . Which P is meant will always be clear
from the context.

1. The orientifold projection in the derived category is a graded con-
travariant functor P : Db(X) → Db(X)op which acts on locally free
complexes as in equation (2.18). Note that this transformation is
closely related to the derived functor

Lσ∗ ◦R Hom(−,OX)[m].

The difference resides in the alternating signs (−1)i in the action of P
on differentials, according to (2.18). From now on, we will refer to P
as a graded derived functor.

2. There is an obvious generalization of this construction which has poten-
tial physical applications. One can further compose P with an auto-
equivalence A of the derived category so that the resulting graded
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functor P ◦A has its square isomorphic to the identity. This would
yield a new class of orientifold models, possibly without a direct geo-
metric interpretation. The physical implications of this construction
will be explored in a separate publication.

In the remaining part of this section, we will consider the case of D5-branes
wrapping holomorphic curves in more detail.

2.3 O5 models

In this case, we consider holomorphic involutions σ : X → X whose fixed-
point set consists of a finite collection of holomorphic curves in X. We will
be interested in D5-brane configurations supported on a smooth component
C � P

1 of the fixed locus, which are preserved by the orientifold projection.
We describe such a configuration by a one-term complex

i∗V , (2.21)

where V → C is the Chan–Paton vector bundle on C, and i : C ↪→ X is the
embedding of C into X.

Since C � P
1, by Grothendieck’s theorem, any holomorphic bundle V

decomposes in a direct sum of line bundles. Therefore, for the time being,
we take

V � OC(a) (2.22)

for some a ∈ Z. We will also make the simplifying assumption that V is the
restriction of a bundle V ′ on X to C, i.e.,

V = i∗V ′. (2.23)

This is easily satisfied if X is a complete intersection in a toric variety Z, in
which case V can be chosen to be the restriction of bundle on Z.

In order to write down the parity action on this D5-brane configuration,
we need a locally free resolution E for i∗V = i∗OC(a). Let

V : 0 �� Vn
dn �� Vn−1

dn−1 �� · · · d2 �� V1
d1 �� V0 �� 0 (2.24)
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be a locally free resolution of i∗OC
3 , where the degree of the term V(−k)

is (−k) for k = 0, . . . , n. Then the complex E

E : 0 �� Vn(a)
dn �� Vn−1(a)

dn−1 �� · · · d2 �� V1(a)
d1 �� V0(a) �� 0

(2.25)
is a locally free resolution of i∗OC(a).

The image of (2.25) under the orientifold projection is the complex P(E):

0 �� σ∗V∨
0 (−a)

−σ∗d∨
1 �� σ∗V∨

1 (−a)
σ∗d∨

2 �� · · ·

· · ·
(−1)n−1σ∗d∨

n−1 �� σ∗V∨
n−1(−a)

(−1)nσ∗d∨
n �� σ∗V∨

n (−a) �� 0.

(2.26)

The term σ∗V∨
k (−a) has degree k − m.

Lemma 2.2. The complex (2.26) is quasi-isomorphic to

i∗ (V ∨ ⊗ KC)[m − 2], (2.27)

where KC � OC(−2) is the canonical bundle of C.4

Proof. As noted below (2.18), (2.26) is isomorphic to σ∗(E∨)[m]. Since C
is pointwise fixed by σ, it suffices to show that the dual of the locally free
resolution (2.24) is quasi-isomorphic to i∗KC [−2]. The claim then follows
from the adjunction formula:

i∗V = i∗(V ⊗ OC) = i∗(i∗V ′ ⊗ OC) = V ′ ⊗ i∗OC (2.28)

and the simple fact that i∗(V ′∨) = V ∨.

Let us compute (i∗OC)∨ using the locally free resolution (2.24). The
cohomology in degree k of the complex

V
∨ : 0 → (V0)∨ → (V1)

∨ → · · · → (Vn)∨ → 0 (2.29)

is isomorphic to the local Ext sheaves Ext k
X(i∗OC ,OX). According to [47,

Chapter 5.3, page 690], these are trivial except for k = 2, in which case

Ext 2
X(OC ,OX) � i∗L,

for some line bundle L on C.

3We usually underlined the 0th position in a complex.
4We give an alternative derivation of this result in Appendix A.1. That proof is very

abstract and hides all the details behind the powerful machinery of Grothendieck duality.
On the other hand, we will be using the details of this lengthier derivation in our explicit
computations in Section 4.
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To determine L, it suffices to compute its degree on C, which is an easy
application of the Grothendieck–Riemann–Roch theorem. We have

i!(ch(L)Td(C)) = ch(i∗L)Td(X).

On the other hand, by construction

chm(i∗L) = chm(V∨) = (−1)mchm(V) = (−1)mchm(i∗OC).

Using these two equations, we find

deg(L) = −2 ⇒ L � KC .

This shows that V∨ has nontrivial cohomology i∗KC only in degree 2.

Now we establish that the complex (2.29) is quasi-isomorphic to i∗KC [−2]
by constructing such a map of complexes. Consider the restriction of the
complex (2.29) to C. Since all terms are locally free, we obtain a complex of
holomorphic bundles on C whose cohomology is isomorphic to KC in degree
2 and trivial in all other degrees. Note that the kernel K of the map

V2
∨|C → V3

∨|C

is a torsion-free sheaf on C, therefore it must be locally free. Hence K is a
subbundle of V2

∨|C . Since C � P
1, by Grothendieck’s theorem both V2

∨|C
and K are isomorphic to direct sums of line bundles. This implies that K is
in fact a direct summand of V2

∨|C . In particular, there is a surjective map

ρ : V2
∨|C → K.

Since H2(V∨|C) = KC , we also have a surjective map τ : K → KC . By con-
struction, then τ ◦ρ : V∨|C → KC [−2] is a quasi-isomorphism. Extending
this quasi-isomorphism by zero outside C, we obtain a quasi-isomorphism
V∨ → i∗KC [−2], which proves the lemma. �

Let us now discuss parity invariant D-brane configurations. Given the
parity action (2.27) one can obviously construct such configurations by tak-
ing direct sums of the form

i∗V ⊕ i∗(V ∨ ⊗ KC)[m − 2] (2.30)

with V an arbitrary Chan–Paton bundle. Note that in this case we have
two stacks of D5-branes in the covering space, which are interchanged under
the orientifold projection.

However, on physical grounds, we should also be able to construct a single
stack of D5-branes wrapping C which is preserved by the orientifold action.
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This is possible only if

m = 2 and V � V ∨ ⊗ KC . (2.31)

The first condition in (2.31) fixes the value of m for this class of models.
The second condition constrains the Chan–Paton bundle V to

V = OC(−1).

Let us now consider rank N Chan–Paton bundles V . We will focus on
invariant D5-brane configurations given by

V = OC(−1)⊕N .

In this case, the orientifold image P (i∗V ) = i∗(V ∨ ⊗ KC) is isomorphic to
i∗V , and the choice of an isomorphism corresponds to the choice of a section

M ∈ HomC(V, V ∨ ⊗ KC) � MN (C). (2.32)

where MN (C) is the space of N × N complex matrices. We have

HomC(V, V ∨ ⊗ KC) � H0(C, S2(V ∨) ⊗ KC) ⊕ H0(C,Λ2(V ∨) ⊗ KC)
� M+

N (C) ⊕ M−
N (C),

where M±
N (C) denotes the space of symmetric and anti-symmetric N × N

matrices, respectively. The choice of this isomorphism (up to conjugation)
encodes the difference between SO and Sp projections. For any value of N ,
we can choose the isomorphism to be

M = IN ∈ M+
N (C), (2.33)

obtaining SO(N) gauge group. If N is even, we also have the option of
choosing the anti-symmetric matrix

M = i

[
0 IN/2

−IN/2 0

]
∈ M−

N (C) (2.34)

obtaining Sp(N/2) gauge group. This is a slightly more abstract reformula-
tion of [48]. We will explain how the SO/Sp projections are encoded in the
derived formalism in Sections 3 and 4.

2.4 O3/O7 models

In this case, we have ε = 1, and the fixed-point set of the holomorphic involu-
tion can have both zero and two-dimensional components. We will consider
the magnetized D5-brane configurations introduced in [49]. Suppose

i : C ↪→ X, i′ : C ′ ↪→ X

is a pair of smooth rational curves mapped isomorphically into each other
by the holomorphic involution. The brane configuration consists of a stack
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of D5-branes wrapping C, which is related by the orientifold projection to
a stack of anti-D5-branes wrapping C ′. We describe the stack of D5-branes
wrapping C by a one-term complex i∗V , with V a bundle on C.

In order to find the action of the orientifold group on the stack of D5-
branes wrapping C, we pick a locally free resolution E for i∗V . Once again,
the orientifold image is obtained by applying the graded derived functor P
to E.

Applying Proposition A.1, we have

Lemma 2.3. P (E) is quasi-isomorphic to the one-term complex

i′∗(σ
∗(V ∨) ⊗ KC′)[m − 2]. (2.35)

It follows that a D5-brane configuration preserved by the orientifold pro-
jection is a direct sum

i∗V ⊕ i′∗(σ
∗(V ∨) ⊗ KC′)[m − 2]. (2.36)

The value of m can be determined from physical arguments by analogy
with the previous case. We have to impose the condition that the orientifold
projection preserves a D3-brane supported on a fixed point p ∈ X as well as
a D7-brane supported on a pointwise-fixed surface S ⊂ X.

A D3-brane supported at p ∈ X is described by a one-term complex Op,X ,
where Op,X is a skyscraper sheaf supported at p. Again, using Proposi-
tion A.1, one shows that P (V) is quasi-isomorphic to Op,X [m − 3]. There-
fore, the D3-brane is preserved if and only if m = 3.

If the model also includes a codimension 1 pointwise-fixed locus S ⊂ X,
then we have an extra condition. Let V be the Chan–Paton bundle on S.
We describe the invariant D7-brane wrapping S by L � i∗(V )[k] for some
integer k, where i : S → X is the embedding.

Since S is codimension 1 in X, Proposition A.1 tells us that

P (L) � i∗(V ∨ ⊗ KS)[m − k − 1]. (2.37)

Therefore, invariance under P requires

2k = m − 1, V ⊗ V � KS . (2.38)

Since we have found m = 3 above, it follows that k = 1. Furthermore, V
has to be a square root of KS . In particular, this implies that KS must be
even or, in other words, that S must be spin. This is in agreement with the
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Freed–Witten anomaly cancellation condition [50]. If S is not spin, one has
to turn on a half-integral B-field in order to cancel anomalies.

Returning to the magnetized D5-brane configuration, note that an inter-
esting situation from the physical point of view is the case when the curves
C and C ′ coincide. Then C is preserved by the holomorphic involution, but
not pointwise fixed as in the previous subsection. We will discuss examples
of such configurations in Section 4. In the next section we will focus on
general aspects of the superpotential in orientifold models.

3 The superpotential

The framework of D-brane categories offers a systematic approach to the
computation of the tree-level superpotential. In the absence of the orien-
tifold projection, the tree-level D-brane superpotential is encoded in the A∞
structure of the D-brane category [31–35].

Given an object of the D-brane category D, the space of off-shell open
string states is its space of endomorphisms in the pre-triangulated category
Pre-Tr(C̃). This carries the structure of a Z-graded differential cochain com-
plex. In this section, we will continue to work with Dolbeault cochains and
also specialize our discussion to locally free complexes E of the form (2.5).
Then the space of off-shell open string states is given by

MorPre-Tr(˜C)(E,E) =
⊕

p

A0,p(HomX(E,E)),

where
Homq

X(E,E) =
⊕

i

HomX(Ei, Ei−q).

Composition of morphisms defines a natural superalgebra structure on
this endomorphism space [51], and the differential Q satisfies the graded
Leibniz rule. We will denote the resulting DGA by C(E,E).

The computation of the superpotential is equivalent to the construction of
an A∞ minimal model for the DGA C(E,E). Since this formalism has been
explained in detail in the physics literature [33, 39], we will not provide
a comprehensive review here. Rather we will recall some basic elements
needed for our construction.

In order to extend this computational framework to orientifold models,
we have to find an off-shell cochain model equipped with an orientifold
projection and a compatible differential algebraic structure. We made a
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first step in this direction in the previous section by giving a categorical
formulation of the orientifold projection. In Section 3.1, we will refine this
construction, obtaining the desired cochain model.

Having constructed a suitable cochain model, the computation of the
superpotential follows the same pattern as in the absence of the orientifold
projection. A notable distinction resides in the occurrence of L∞ instead of
A∞ structures, since the latter are not compatible with the involution. The
final result obtained in section 3.2 is that the orientifold superpotential can
be obtained by evaluating the superpotential of the underlying unprojected
theory on invariant field configurations.

3.1 Cochain model and orientifold projection

Suppose E is a locally free complex on X and that it is left invariant by the
parity functor. This means that E and P (E) are isomorphic in the derived
category, and we choose such an isomorphism

ψ : E → P (E). (3.1)

Although in general ψ is not a map of complexes, it can be chosen so in most
practical situations, including all cases studied in this paper. Therefore, we
will assume from now on that ψ is a quasi-isomorphism of complexes:

· · · �� Em−i+1
dm−i+1 ��

ψm−i+1
��

Em−i
dm−i ��

ψm−i

��

Em−i−1

ψm−i−1
��

�� · · ·

· · · �� P (Ei−1)
P (di) �� P (Ei)

P (di+1) �� P (Ei+1) �� · · ·

(3.2)

We have written (3.2) so that the terms in the same column have the same
degree since ψ is a degree zero morphism. The degrees of the three columns
from left to right are i − m − 1, i − m and i − m + 1. For future reference,
note that the quasi-isomorphism ψ induces a quasi-isomorphism of cochain
complexes

ψ∗ : C(P (E),E) → C(P (E), P (E)), f 	→ ψ ◦f. (3.3)

The problem we are facing in the construction of a viable cochain model
resides in the absence of a natural orientifold projection on the cochain space
C(E,E). P maps C(E,E) to C(P (E), P (E)), which is not identical to C(E,E).
How can we find a natural orientifold projection on a given off-shell cochain
model?
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Since E and P (E) are quasi-isomorphic, one can equally well adopt the
morphism space

C(P (E),E) = MorPre-Tr(˜C)(P (E),E)

as an off-shell cochain model. As opposed to C(E,E), this morphism space
has a natural induced involution defined by the composition

C(P (E),E) P �� C(P (E), P 2(E))
J∗ �� C(P (E),E) , (3.4)

where J is the isomorphism in (2.20). Therefore, we will do our superpoten-
tial computation in the cochain model C(P (E),E), as opposed to C(E,E),
which is used in [39].

This seems to lead us to another puzzle, since a priori there is no natural
associative algebra structure on C(P (E),E). One can however define one
using the quasi-isomorphism (3.1). Given

fp
q,k ∈ A0,p(HomX(P (Ek), Em−k−q)), gr

s,l ∈ A0,r(HomX(P (El), Em−l−s)),

we define

gr
s,l �ψ fp

q,k =
{

(−1)spgr
s,l · ψm−k−q · fp

q,k for l = k + q,
0 otherwise,

(3.5)

where · denotes exterior multiplication of bundle-valued differential forms.

With this definition, the map (3.3) becomes a quasi-isomorphism of DGAs.
The sign (−1)sp in (3.5) is determined by the sign rule (2.1) for composition
of morphisms in C̃. This construction has the virtue that it makes both
the algebra structure and the orientifold projection manifest. Note that the
differential Q satisfies the graded Leibniz rule with respect to the product
�ψ because ψ is a Q-closed element of C(P (E),E) of degree zero.

Next we check two compatibility conditions between the involution (3.4)
and the DGA structure.

Lemma 3.1. For any cochain f ∈ C(P (E),E),

J∗P (Q(f)) = Q(J∗P (f)). (3.6)
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Proof. Using equation (2.18), the explicit expression for the differential Q
acting on a homogeneous element fp

q,k as above is

Q(fp
q,k) = ∂P (Ek)Em−k−q

(fp
q,k) + (dm−k−q ◦fp

q,k)˜C − (−1)p+q(fp
q,k ◦P (dk))˜C .

According to equation (2.17), we have

P (Q(fp
q,k)) = ∂P (Em−k−q)P 2(Ek)(P (fp

q,k)) + (P 2(dk) ◦P (fp
q,k))˜C

− (−1)|P (f)|(P (fp
q,k) ◦P (dm−k−q))˜C . (3.7)

The commutative diagram (2.20) shows that

J ◦P 2(dk) = dk ◦J.

Then, equation (3.7) yields

J∗P (Q(fp
q,k)) = ∂P (Em−k−q)Ek

(J∗P (fp
q,k)) + (dk ◦J∗P (fp

q,k))˜C

− (−1)|f |(J∗P (fp
q,k) ◦P (dm−k−q))˜C ,

which proves (3.6). �

Lemma 3.2. For any two elements f, g ∈ C(P (E),E),

J∗P (g �ψ f) = −(−1)|f ||g|J∗P (f) �ψ J∗P (g). (3.8)

Proof. Written in terms of homogeneous elements, (3.8) reads

J∗P (gr
s,l �ψ fp

q,k) = −(−1)(r+s)(p+q)J∗P (fp
q,k) �ψ J∗P (gr

s,l) (3.9)

where l = k + q. Using equations (2.13), (3.5) and the definition of (2.20)
of J , we compute

J∗P (gr
s,l �ψ fp

q,k) = (−1)(m−s−l)(m+1)+ω(−1)(s+q)(m−s−l)+1(−1)sp

σ∗(gr
s,l · ψm−k−q · fp

q,k)
∨

= (−1)(m−s−l)(m+1)+ω(−1)(s+q)(m−s−l)+1(−1)sp(−1)rp

σ∗(fp
q,k)

∨ · σ∗(ψ∨
m−k−q) · σ∗(gr

s,l)
∨

= (−1)(m−s−l)(m+1)+ω(−1)(s+q)(m−s−l)+1(−1)sp(−1)rp

(−1)(m−k−q)(m+1)+ω(−1)q(q+k−m)+1(−1)(m−s−l)(m+1)+ω

(−1)s(s+l−m)+1

J∗P (fp
q,k) · σ∗(ψ∨

m−k−q) · J∗P (gr
s,l),

− (−1)(r+s)(p+q)J∗P (fp
q,k) �ψ J∗P (gr

s,l)

= −(−1)(r+s)(p+q)(−1)qrJ∗P (fp
q,k) · ψl · J∗P (gr

s,l).
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These expressions are in agreement with equation (3.9) if and only if ψ
satisfies a symmetry condition of the form

J∗P (ψm−l) = −ψl ⇐⇒ σ∗(ψm−l)∨ = (−1)(m+1)l+ωψl. (3.10)

�

We saw in the last proof that compatibility of the orientifold projection
with the algebraic structure imposes condition (3.10) on ψ. From now on,
we assume this condition to be satisfied. Although we do not know a general
existence result for a quasi-isomorphism satisfying (3.10), we will show that
such a choice is possible in all the examples considered in this paper. We
will also see that symmetry of ψ, which is determined by ω = 0, 1 in (3.10),
determines whether the orientifold projection is of type SO or Sp.

Granting such a quasi-isomorphism, it follows that the cochain space
C(P (E), E) satisfies all the conditions required for the computation of the
superpotential, which is the subject of the next subsection.

3.2 The superpotential

In the absence of an orientifold projection, the computation of the super-
potential can be summarized as follows [34]. Suppose we are searching for
formal deformations of the differential Q of the form

Qdef = Q + f1(φ) + f2(φ) + f3(φ) + . . . (3.11)

where
f1(φ) = φ

is a cochain of degree 1, which represents an infinitesimal deformation of
Q. The terms fk(φ), for k ≥ 2, are homogeneous polynomials of degree k
in φ corresponding to higher order deformations. We want to impose the
integrability condition

(Qdef)2 = 0 (3.12)

order by order in φ. In doing so, one encounters certain obstructions, which
are systematically encoded in a minimal A∞ model of the DGA C(P (E),E).
The superpotential is essentially a primitive function for the obstructions
and exists under certain cyclicity conditions.

In the orientifold model we have to solve a similar deformation prob-
lem, except that now the deformations of Q have to be invariant under
the orientifold action. We will explain below that this is equivalent to the
construction of a minimal L∞ model.
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Let us first consider the integrability conditions (3.12) in more detail in
the absence of orientifolding. Suppose we are given an associative Z-graded
DGA (C, Q, ·), and let H denote the cohomology of Q. In order to construct
an A∞ structure on H, we need the following data.

(i) A Z-graded linear subspace H ⊂ C isomorphic to the cohomology of
Q. In other words, H is spanned in each degree by representatives of
the cohomology classes of Q.

(ii) A linear map η : C → C[−1] mapping H to itself such that

Π = I − [Q, η] (3.13)

is a projector Π: C → H, where [ , ] is the graded commutator.
Moreover, we assume that the following conditions are satisfied

η|H = 0, η2 = 0. (3.14)

Using the data (i), (ii) one can develop a recursive approach to obstructions
in the deformation theory of Q [34]. The integrability condition (3.12) yields

∞∑

n=1

[Q(fn(φ)) + Bn−1(φ)] = 0, (3.15)

where

B0 = 0,

Bn−1 = φfn−1(φ) + fn−1(φ)φ +
∑

k+l=n
k,l≥2

fk(φ)fl(φ), n ≥ 2.

Using equation (3.13), we can rewrite equation (3.15) as
∞∑

n=1

[Q(fn(φ)) + ([Q, η] + Π)Bn−1(φ)] = 0. (3.16)

We claim that the integrability condition (3.15) can be solved recursively
[34] provided that

∞∑

n=1

Π(Bn−1) = 0. (3.17)

To prove this claim, note that if condition (3.17) is satisfied, equation (3.16)
becomes

∞∑

n=1

(Q(fn(φ)) + [Q, η]Bn−1(φ)) = 0. (3.18)

This equation can be solved by setting recursively

fn(φ) = −η(Bn−1(φ)). (3.19)



D-BRANE SUPERPOTENTIALS 493

One can show that this is a solution to (3.19) by proving inductively that

Q(Bn(φ)) = 0.

In conclusion, the obstructions to the integrability condition (3.15) are
encoded in the formal series

∞∑

n=2

Π

⎛

⎜
⎜
⎝φfn−1(φ) + fn−1(φ)φ +

∑

k+l=n
k,l≥2

fk(φ)fl(φ)

⎞

⎟
⎟
⎠ (3.20)

where the fn(φ), n ≥ 1, are determined recursively by (3.19).

The algebraic structure emerging from this construction is a minimal A∞
structure for the DGA (C, Q) [52, 53]. Merkulov [53] constructs an A∞
structure by defining the linear maps

λn : C⊗n → C[2 − n], n ≥ 2

recursively

λn(c1, . . . , cn) = (−1)n−1(ηλn−1(c1, . . . , cn−1)) · cn

− (−1)n|c1|c1 · ηλn−1(c2, . . . , cn)

−
∑

k+l=n
k,l≥2

(−1)r[ηλk(c1, . . . , ck)] · [ηλl(ck+1, . . . , cn)], (3.21)

where |c| denotes the degree of an element c ∈ C, and

r = k + 1 + (l − 1)(|c1| + · · · + |ck|).

Now define the linear maps

mn : H⊗n → H[2 − n], n ≥ 1

by

m1 = η

mn = Πλn. (3.22)

The products (3.22) define an A∞ structure on H � H. If conditions (3.14)
are satisfied, this A∞ structure is a minimal model for the DGA (C, Q, ·).
The products mn, n ≥ 2 agree up to sign with the obstructions Π(Bn) found
above.
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The products mn determine the local equations of the D-brane moduli
space, which in physics language are called F-term equations. If

φ =
dim(H)∑

i=1

φiui

is an arbitrary cohomology element written in terms of some generators {ui},
the F-term equations are

∞∑

n=2

(−1)n(n+1)/2
mn(φ⊗n) = 0. (3.23)

If the products are cyclic, these equations admit a primitive

W =
∞∑

n=2

(−1)n(n+1)/2

n + 1
〈φ,mn(φ⊗n)〉, (3.24)

where

〈 , 〉 : C → C

is a bilinear form on C compatible with the DGA structure. The cyclicity
property reads

〈c1,mn(c2, . . . , cn+1)〉 = (−1)n|c2|+1〈c2,mn(c3, . . . , cn+1, c1)〉.

Let us now examine the above deformation problem in the presence of an
orientifold projection. Suppose we have an involution τ : C → C such that
the following conditions are satisfied:

τ(Q(f)) = Q(τ(f)),

τ(fg) = −(−1)|f ||g|τ(g)τ(f). (3.25)

As explained below equation (3.12), in this case we would like to study
deformations

Qdef = Q + f1(φ) + f2(φ) + · · ·

of Q such that

τ(fn(φ)) = fn(φ) (3.26)

for all n ≥ 1.

In order to set this problem in the proper algebraic context, note that the
DG algebra C decomposes into a direct sum of τ -invariant and anti-invariant
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parts
C � C+ ⊕ C−. (3.27)

There is a similar decomposition

H = H+ ⊕ H− (3.28)

for the Q-cohomology.

Conditions (3.25) imply that Q preserves C±, but the associative algebra
product is not compatible with the decomposition (3.27). There is however
another algebraic structure which is preserved by τ , namely the graded
commutator

[f, g] = fg − (−1)|f ||g| gf. (3.29)

This follows immediately from the second equation in (3.25). The graded
commutator (3.29) defines a differential graded Lie algebra structure on C.
By restriction, it also defines a DG Lie algebra structure on the invariant
part C+. In this context, our problem reduces to the deformation theory of
the restriction Q+ = Q|C+ as a differential operator on C+.

Fortunately, this problem can be treated by analogy with the previous
case, except that we have to replace A∞ structures by L∞ structures, see,
for example [33, 34, 54]. In particular, the obstructions to the deformations
of Q+ can be systematically encoded in a minimal L∞ model, and one can
similarly define a superpotential if certain cyclicity conditions are satisfied.

Note that any associative DG algebra can be naturally endowed with
a DG Lie algebra structure using the graded commutator (3.29). In this
case, the A∞ and the L∞ approach to the deformation of Q are equivalent
[33] and they yield the same superpotential. However, the L∞ approach is
compatible with the involution, while the A∞ approach is not.

To summarize this discussion, we have a DG Lie algebra on C which
induces a DG Lie algebra of Q. The construction of a minimal L∞ model for
C requires the same data (i), (ii) as in the case of a minimal A∞ model and
yields the same F-term equations and the same superpotential. In order to
determine the F-term equations and superpotential for the invariant part C+,
we need again a set of data (i), (ii) as described above (3.13). This data can
be naturally obtained by restriction from C, provided that the propagator η
in equation (3.13) can be chosen compatible with the involution τ , i.e.,

τ(η(f)) = η(τ(f)).

This condition is easily satisfied in geometric situations, hence we will assume
that this is the case from now on. Then the propagator η+ : C+ → C+[−1] is
obtained by restricting η to the invariant part η+ = η|C+ . Given this data,
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we construct a minimal L∞ model for the DGL algebra C+, which yields
F-term equations and, if the cyclicity condition is satisfied, a superpotential
W+.

Theorem 3.3. The superpotential W+ obtained by constructing the minimal
L∞ model for the DGL C+ is equal to the restriction of the superpotential
W corresponding to C evaluated on τ -invariant field configurations:

W+ = W |H+ . (3.30)

In the remaining part of this section, we will give a formal argument for
this claim. According to [54], the data (i), (ii) above equation (3.13) also
determine an L∞ structure on H as follows. First we construct a series of
linear maps

ρn : C⊗n → C[2 − n], n ≥ 2
by anti-symmetrizing (in the graded sense) the maps (3.21). That is, the
recursion relation becomes

ρn(c1, . . . , cn) =
∑

σ∈Sh(n−1,1)

(−1)n−1+|σ|e(σ)

× [ηρn−1(cσ(1), . . . , cσ(n−1)), cσ(n)]

−
∑

σ∈Sh(1,n)

(−1)n|c1|+|σ|e(σ)[c1, ηρn−1(cσ(2)]

−
∑

k+l=n
k,l≥2

∑

σ∈Sh(k,n)

(−1)r+|σ|e(σ)[ηρk(cσ(1), . . . , cσ(k)),

× ηρl(cσ(k+1), . . . , cσ(n))], (3.31)

where Sh(k, n) is the set of all permutations σ ∈ Sn such that

σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(n)

and |σ| is the signature of a permutation σ ∈ Sn. The symbol e(σ) denotes
the Koszul sign defined by

cσ(1) ∧ · · · ∧ cσ(n) = (−1)|σ|e(σ)c1 ∧ · · · ∧ cn.

Then we define the L∞ products

ln : H⊗n → H
by

l1 = η, ln = Πρn. (3.32)
One can show that these products satisfy a series of higher Jacobi identities
analogous to the defining associativity conditions of A∞ structures. If the
conditions (3.14) are also satisfied, the resulting L∞ structure is a minimal
model for the DGL algebra C.
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Finally, note that the A∞ products (3.22) and the L∞ products (3.32)
are related by

ln(c1, . . . , cn) =
∑

σ∈Sn

(−1)|σ|e(σ)mn(cσ(1), . . . , cσ(n)). (3.33)

In particular, one can rewrite the F-term equations (3.23) and the superpo-
tential (3.24) in terms of L∞ products [33, 34].

The construction of the minimal L∞ model of the invariant part C+ is
analogous. Since we are working under assumption that the propagator η+

is the restriction of η to C+, it is clear that the linear maps ρ+
n (c1, . . . , cn) are

also equal to the restriction ρn|(C+)n . The same will be true for the products
l+n , i.e.,

l
+
n = ln|(H+)n .

Therefore, the F-term equations and the superpotential in the orientifold
model can be obtained indeed by restriction to the invariant part.

Now that we have the general machinery at hand, we can turn to concrete
examples of superpotential computations.

4 Computations for obstructed curves

In this section, we perform detailed computations of the superpotential for
D-branes wrapping holomorphic curves in Calabi–Yau orientifolds.

So far we have relied on the Dolbeault cochain model, which serves as a
good conceptual framework for our constructions. However, a Čech cochain
model is clearly preferred for computational purposes [39]. The simple pre-
scription found above for the orientifold superpotential allows us to switch
from the Dolbeault to the Čech model with little effort. Using the same defi-
nition for the action of the orientifold projection P on locally free complexes
E, we will adopt a cochain model of the form

C(P (E),E) = Č(U,HomX(P (E),E)), (4.1)

where U is a fine open cover of X. The differential Q is given by

Q(f) = δ(f) + (−1)c(f)
d(f), (4.2)

where δ is the Čech differential, d is the differential of the local Hom complex
and c(f) is the Čech degree of f .

In order to obtain a well-defined involution on the complex (4.1), we have
to choose the open cover U so that the holomorphic involution σ : X → X
maps any open set U ∈ U isomorphically to another open set Us(α) ∈ U,
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where s is an involution on the set of indices {α}. Moreover, the holo-
morphic involution should also be compatible with intersections. That is,
if Uα, Uβ ∈ U are mapped to Us(α), Us(β) ∈ U, then Uαβ should be mapped
isomorphically to Us(α)s(β). Analogous properties should hold for arbitrary
multiple intersections. Granting such a choice of a fine open cover, we
have a natural involution J∗P acting on the cochain complex (4.1), defined
as in (3.4).

According to the prescription derived in the previous section, the orien-
tifold superpotential can be obtained by applying the computational scheme
of [39] to invariant Q-cohomology representatives. Since the computation
depends only on the infinitesimal neighborhood of the curve, it suffices to
consider local Calabi–Yau models as in [39]. We will consider two repre-
sentative cases, namely obstructed (0,−2) curves and local conifolds, i.e.,
(−1,−1) curves.

4.1 Obstructed (0,−2) curves in O5 models

In this case, the local Calabi–Yau X can be covered by two coordinate
patches (x, y1, y2), (w, z1, z2) with transition functions

w = x−1,

z1 = x2y1 + xyn
2 ,

z2 = y2.

(4.3)

The (0,−2) curve is given by the equations

C : y1 = y2 = 0 resp. z1 = z2 = 0 (4.4)

in the two patches. The holomorphic involution acts as

(x, y1, y2) 	→ (x,−y1,−y2),

(w, z1, z2) 	→ (w,−z1,−z2).
(4.5)

This is compatible with the transition functions if and only if n is odd. We
will assume that this is the case from now on. Using (2.31), the Chan–Paton
bundles

VN = OC(−1)⊕N (4.6)

define invariant D-brane configurations under the orientifold projection.

The on-shell open string states are in one-to-one correspondence with
elements of the global Ext group Ext1(i∗VN , i∗VN ). Given two bundles V, W
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supported on a curve i : C ↪→ X, there is a spectral sequence [31]

Ep,q
2 = Hp(C, V ∨ ⊗ W ⊗ ΛqNC/X) =⇒ Extp+q

X (i∗V, i∗W ) (4.7)

which degenerates at E2. This yields

Ext1(i∗OC(−1), i∗OC(−1)) � H0(C, NC/X) = C,

since NC/X � OC ⊕ OC(−2). Therefore, a D5-brane with multiplicity N =
1 has a single normal deformation. For higher multiplicity, the normal defor-
mations will be parameterized by an (N × N) complex matrix.

In order to apply the computational algorithm developed in Section 3,
we have to find a locally free resolution E of i∗OC(−1) and an explicit
generator of

Ext1(i∗OC(−1), i∗OC(−1)) � Ext1(P (E),E)

in the cochain space Č(U,Hom(P (E),E)). We take E to be the locally free
resolution from [39] multiplied by OC(−1), i.e.,

0 �� O(−1)

( y2
−1
x

)

��

O(−1)
⊕
O
⊕
O

( 1 y2 0
−x 0 y2

−yn−1
2 −s −y1

)

��

O
⊕
O
⊕

O(−1)

( s y1 y2 ) �� O(−1).
(4.8)

The quasi-isomorphism ψ : E → P (E) is given by

O(−1)
⊕

O⊕2

( 1 y2 0
−x 0 y2

−yn−1
2 −s −y1

)

��

( 0 x 1 )

��

O⊕2

⊕
O(−1)

( s y1 y2 ) ��

⎛

⎝

0 yn−1
2 −x

−yn−1
2 0 −1
x 1 0

⎞

⎠

��

O(−1)

(

0
x
1

)

��

O(1)

( s
y1
y2

)

��
O⊕2

⊕
O(1)

(

1 −x −yn−1
2

−y2 0 s
0 −y2 y1

)

��
O(1)
⊕

O⊕2

(4.9)
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Note that ψ satisfies the symmetry condition (3.10) with ω = 0, which in
this case reduces to

σ∗(ψ2−l)∨ = (−1)lψl. (4.10)

We are searching for a generator c ∈ Č(U,Hom(P (E),E)) of the form
c = c1,0 + c0,1 for two homogenous elements

cp,1−p ∈ Čp(U,Hom1−p(P (E),E)), p = 0, 1.

The cocycle condition Q(c) = 0 is equivalent to

dc0,1 = δc1,0 = 0,

Q(c0,1 + c1,0) = δc0,1 − dc1,0 = 0. (4.11)

A solution to these equations is given by

O(1) ��

(

x−1

0
0

)

01

��

O⊕2

⊕
O(1)

��

(

0 0 0
0 0 0
0 0 −x−1yn−2

2

)

01

��

O(1)
⊕

O⊕2

( x−1 0 0 )01

��O(−1)
⊕

O⊕2
��

O⊕2

⊕
O(−1)

�� O(−1)

c1,0 :=

O(1) ��

( 0
−1
0

)

0
+

(

1
0
0

)

1

��

O⊕2

⊕
O(1)

( 0 1 0 )0+( −1 0 0 )1

��O⊕2

⊕
O(−1)

�� O(−1)

c0,1 :=

(4.12)

These satisfy the symmetry conditions

J∗P (cp,1−p) = −(−1)ωcp,1−p, p = 0, 1, (4.13)
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For multiplicity N > 1, we have the locally free resolution EN = E ⊗ C
N .

The quasi-isomorphism ψN : EN → P (EN ) is of the form ψN = ψ ⊗ M , where
M ∈ MN (C) is an N × N complex matrix. Note that ψN induces the iso-
morphism (2.32) in cohomology. Moreover, we have

σ∗(ψN,m−l)∨ = (−1)l+ωψN,l.

Referring back to (4.10), we see that this last equation constrains the
matrix M :

ω =

{
0, if M = M tr,

1, if M = −M tr.
(4.14)

The first case corresponds to an SO(N) gauge group, while the second case
corresponds to Sp(N/2) (N even). This confirms the correlation between
the symmetry of ψN and the SO/Sp projection, as we alluded to after (3.10).

The infinitesimal deformations of the D-brane are now parameterized by
a matrix-valued field

φ = C(c1,0 + c0,1),

where C ∈ MN (C) is the N × N Chan–Paton matrix. Taking (4.13) into
account, invariance under the orientifold projection yields the following con-
dition on C

C = −(−1)ωCtr. (4.15)

For ω = 1, this condition does not look like the usual one defining the Lie
algebra of Sp(N/2) because we are working in a non-usual basis of fields,
namely C(P (EN ),EN ). By composing with the quasi-isomorphism ψN , we
find the Chan–Paton matrix in C(P (EN ), P (EN )) to be MC. By perform-
ing a change of basis in the space of Chan–Paton indices, we can choose
M to be

M =

{
IN , if ω = 0,

i
(

IN/2
−IN/2

)
, if ω = 1,

and so the Chan–Paton matrices satisfy the well-known conditions [48]

(MC)tr = −(MC), for ω = 0,

(MC)tr = −M(MC)M, for ω = 1.

The superpotential is determined by the A∞ products (3.22) evaluated on
φ. According to Theorem 3.3, the final result is obtained by the superpoten-
tial of the underlying unprojected theory evaluated on invariant field config-
urations. Therefore, the computations are identical in both cases (ω = 0, 1)
and the superpotential is essentially determined by the A∞ products of a
single D-brane with multiplicity N = 1.
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Proceeding by analogy with [39], let us define the cocycles

ap ∈ Č1(U,Hom0(P (E),E)), bp ∈ Č1(U,Hom1(P (E),E))

as follows

O(1) ��

(0)01

��

O⊕2

⊕
O(1)

��

(

0 0 0
0 0 0
0 0 −x−1yp

2

)

01

��

O(1)
⊕

O⊕2

(0)01

��O(−1)
⊕

O⊕2
��

O⊕2

⊕
O(−1)

�� O(−1)

ap :=

(4.16)

O(1) ��

(

0
0

x−1yp
2

)

01

��

O⊕2

⊕
O(1)

( 0 0 −x−1yp
2 )01

��O⊕2

⊕
O(−1)

�� O(−1)

bp :=

One shows by direct computation that they satisfy the relations

bp = Q(ap−1),

bp = c �ψ ap + ap �ψ c. (4.17)

Moreover, we have

c �ψ c = bn−2,

bp �ψ bp = 0, (4.18)

for any p. Therefore, the computation of the A∞ products is identical to [39].
We find only one non-trivial product

mn(c, . . . , c) = −(−1)n(n−1)/2b0. (4.19)
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If we further compose with c, we obtain

O(1)

(−x−1)01
��

O(−1)

b0 �ψ c :=

which is a generator of Ext3(i∗OC(−1), i∗OC(−1)). Therefore, we obtain a
superpotential of the form

W =
(−1)n

n + 1
Cn+1

where C satisfies the invariance condition (4.15).

4.2 Local conifold O3/O7 models

In this case, the local Calabi–Yau threefold X is isomorphic to the crepant
resolution of a conifold singularity, i.e., the total space of O(−1) ⊕ O(−1) →
P

1. X can be covered with two coordinate patches (x, y1, y2), (w, z1, z2) with
transition functions

w = x−1,

z1 = xy1,

z2 = xy2.

(4.20)

The (−1,−1) curve C is given by

x = y1 = y2 = 0, w = z1 = z2 = 0 (4.21)

and the holomorphic involution takes

(x, y1, y2) 	→ (−x,−y1,−y2),

(w, z1, z2) 	→ (−w, z1, z2). (4.22)

In this case, we have an O3 plane at

x = y1 = y2 = 0

and a noncompact O7 plane at w = 0. The invariant D5-brane configura-
tions are of the form E⊕N

n , where

En = i∗OC(−1 + n) ⊕ i∗(σ∗OC(−1 − n))[1], n ≥ 1. (4.23)

We have a global Koszul resolution of the structure sheaf OC

0 �� O(2)

( −y2
y1

)

�� O(1)⊕2 ( y1 y2 ) �� O �� 0. (4.24)
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Therefore, the locally free resolution of En is a complex En of the form

σ∗O(1 − n)

( 0
y1
y2

)

��
O(1 + n)

⊕
σ∗O(−n)⊕2

( −y2 0 0
y1 0 0
0 y2 −y1

)

��
O(n)⊕2

⊕
σ∗O(−1 − n)

( y1 y2 0 ) �� O(−1 + n)

(4.25)

in which the last term to the right has degree 0, and the last term to the
left has degree −3. The quasi-isomorphism ψ : En → P (En) is given by

σ∗O(1 − n)

( 0
y1
y2

)

��

1

��

O(1 + n)
⊕

σ∗O(−n)⊕2

( −y2 0 0
y1 0 0
0 y2 −y1

)

��

(

1
1

1

)

��

O(n)⊕2

⊕
σ∗O(−1 − n)

( y1 y2 0 ) ��

(

1
1

1

)

��

O(−1 + n)

1

��
σ∗O(1 − n)

( y1
y2
0

)

��
σ∗O(−n)⊕2

⊕
O(1 + n)

(

y2 −y1 0
0 0 −y2
0 0 y1

)

��
σ∗O(−1 − n)

⊕
O(n)⊕2

( 0 y1 y2 ) �� O(−1 + n)

(4.26)

and satisfies σ∗(ψ3−l)∨ = ψl, that is, the symmetry condition (3.10) with
ω = 0. The on-shell open string states Ext1X(En,En) are computed by the
spectral sequence (4.7):

Ext1X(OC(−1 + n),OC(−1 + n)) = 0,

Ext1X(σ∗OC(−1 − n)[1], σ∗OC(−1 − n)[1]) = 0,

Ext1X(OC(−1 + n), σ∗OC(−1 − n)[1]) = C
4n,

Ext1X(σ∗OC(−1 − n)[1],OC(−1 + n)) = C
2n+1,

(4.27)

where in the last two lines we have used the condition n ≥ 1.

To compute the superpotential, we work with the cochain model Č(U,Hom
(P (En),En)). The direct sum of the above Ext groups represents the degree
1 cohomology of this complex with respect to the differential (4.2). The first
step is to find explicit representatives for all degree 1 cohomology classes with
well-defined transformation properties under the orientifold projection. We
list all generators below on a case by case basis.

a) Ext1(σ∗OC(−1 − n)[1],OC(−1 + n))
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We have 2n + 1 generators ai ∈ Č0(U,Hom1(P(En),En), i = 0, . . . , 2n,
given by

ai := xia, (4.28)

where

σ∗O(1 − n) ��

(

1
0
0

)

��

σ∗O(−n)⊕2

⊕
O(1 + n)

��

( 0 1 0
−1 0 0
0 0 0

)

��

σ∗O(−1 − n)
⊕

O(n)⊕2

( 1 0 0 )

��O(1 + n)
⊕

σ∗O(−n)⊕2
��

O(n)⊕2

⊕
σ∗O(−1 − n)

�� O(−1 + n)

a :=

(4.29)
Note that we have written down the expressions of the generators only in
the U0 patch.5 The transformation properties under the orientifold projec-
tion are

J∗P (ai) = −(−1)i+ωai, 0 ≤ i ≤ 2n. (4.30)

b) Ext1(OC(−1 + n), σ∗OC(−1 − n)[1])

We have 4n generators bi, ci ∈ Č1(U,Hom0(P (Fn),Fn), i = 1, . . . , 2n,
given by

bi := x−ib, ci := x−ic, (4.31)

where

σ∗O(−n)⊕2

⊕
O(1 + n)

��

( 0 0 0
0 0 −1
0 0 0

)

01

��

σ∗O(−1 − n)
⊕

O(n)⊕2

(

0 0 0
0 0 0
0 1 0

)

01

��
O(1 + n)

⊕
σ∗O(−n)⊕2

��
O(n)⊕2

⊕
σ∗O(−1 − n)

b :=

(4.32)

5The expressions in the U1 patch can be obtained using the transition functions (4.20)
since the ai are Čech closed. They will not be needed in the computation.
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σ∗O(−n)⊕2

⊕
O(1 + n)

��

( 0 0 0
0 0 0
0 0 −1

)

01

��

σ∗O(−1 − n)
⊕

O(n)⊕2

(

0 0 0
0 0 0
0 0 1

)

01

��
O(1 + n)

⊕
σ∗O(−n)⊕2

��
O(n)⊕2

⊕
σ∗O(−1 − n)

c :=

(4.33)

The action of the orientifold projection is

J∗P (bi) = (−1)i+ωbi, J∗P (ci) = (−1)i+ωci. (4.34)

For multiplicity N ≥ 1, we work as in the last subsection, taking the locally
free resolution En,N = En ⊗ C

N , together with the quasi-isomorphism ψN :
En,N → P (En,N ); ψN = ψ ⊗ M . Again, M is a symmetric matrix for ω = 0
and antisymmetric for ω = 1. A general invariant degree 1 cocycle φ will be
a linear combination

φ =
2n∑

i=0

Aiai +
2n∑

i=1

(Bibi + Cici), (4.35)

where Ai, Bi, Ci are N × N matrices satisfying

(Ai)tr = −(−1)i+ωAi, (Bi)tr = (−1)i+ωBi, (Ci)tr = (−1)i+ωCi. (4.36)

In the following, we will let the indices i, j, k, . . . run from 0 to 2n with the
convention B0 = C0 = 0.

The multiplication table of the above generators with respect to the pro-
duct (3.5) is

ai �ψ aj = bi �ψ bj = ci �ψ cj = 0,

bi �ψ cj = ci �ψ bj = 0.
(4.37)

The remaining products are all Q-exact:

ai �ψ bj = Q(f2(ai, bj)),

bi �ψ aj = Q(f2(bi, aj)),
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as required in (3.15). Let us show a sample computation.

σ∗O(1 − n) ��

x−i+j

( 0
−1
0

)

01

��

σ∗O(−n)⊕2

⊕
O(1 + n)

x−i+j

(

0 0 0
0 0 0
0 1 0

)

01

��
O(1 + n)

⊕
σ∗O(−n)⊕2

��
O(n)⊕2

⊕
σ∗O(−1 − n)

bi � aj =

(4.38)

For j ≥ i,

σ∗O(1 − n) ��

x−i+j

( 0
−1
0

)

0

��

σ∗O(−n)⊕2

⊕
O(1 + n)

x−i+j

(

0 0 0
0 0 0
0 1 0

)

0

��
O(1 + n)

⊕
σ∗O(−n)⊕2

��
O(n)⊕2

⊕
σ∗O(−1 − n)

f2(bi, aj) =

(4.39)

For j < i,

σ∗O(1 − n) ��

(−1)x−i+j+1
(

0
1
0

)

1

��

σ∗O(−n)⊕2

⊕
O(1 + n)

(−1)x−i+j+1
( 0 0 0

0 0 0
0 −1 0

)

1

��
O(1 + n)

⊕
σ∗O(−n)⊕2

��
O(n)⊕2

⊕
σ∗O(−1 − n)

f2(bi, aj) =

(4.40)



508 DUILIU-EMANUEL DIACONESCU ET AL.

σ∗O(−n)⊕2

⊕
O(1 + n)

��

xi−j

( 0 0 0
0 0 −1
0 0 0

)

01

��

σ∗O(−1 − n)
⊕

O(n)⊕2

xi−j( 0 −1 0 )01

��O(n)⊕2

⊕
σ∗O(−1 − n)

�� O(−1 + n)

ai � bj =

(4.41)

For i ≥ j,

σ∗O(−n)⊕2

⊕
O(1 + n)

��

xi−j

( 0 0 0
0 0 −1
0 0 0

)

0

��

σ∗O(−1 − n)
⊕

O(n)⊕2

xi−j( 0 −1 0 )0

��O(n)⊕2

⊕
σ∗O(−1 − n)

�� O(−1 + n)

f2(ai, bj) =

(4.42)

For i < j,

σ∗O(−n)⊕2

⊕
O(1 + n)

��

xi−j+1
(

0 0 0
0 0 1
0 0 0

)

1

��

σ∗O(−1 − n)
⊕

O(n)⊕2

xi−j+1( 0 1 0 )1

��O(n)⊕2

⊕
σ∗O(−1 − n)

�� O(−1 + n)

f2(ai, bj) =

(4.43)

Since all pairwise products of generators are Q-exact, it follows that the
obstruction Π(B1(φ)) = Π(φ � φ) vanishes. Moreover, the second order defor-
mation f2(φ) is given by

f2(φ) =
∑

i,j

(
AiBjf2(ai, bj) + BiAjf2(bi, aj) + AiCjf2(ai, cj) + CiAjf2(ci, aj)

)
.

(4.44)
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Following the recursive algorithm discussed in Section 3, we compute the
next obstruction Π(φ � f2(φ) + f2(φ) � φ). For this, we have to compute
products of the form

αi � f2(αj , αk), f2(αj , αk) � αi.

Again we present a sample computation in detail. For i ≥ j,

σ∗O(1 − n) ��

xi−j+k

( 0
−1
0

)

0

��

σ∗O(−n)⊕2

⊕
O(1 + n)

xi−j+k( 0 −1 0 )0

��O(n)⊕2

⊕
σ∗O(−1 − n)

�� O(−1 + n)

−ak � f2(bj , ai) =

(4.45)

and, for i < j,

σ∗O(1 − n) ��

(−1)n+1xi−j+k−2n+1
(

0
1
0

)

1

��

σ∗O(−n)⊕2

⊕
O(1 + n)

(−1)n+2xi−j+k−2n+1( 0 1 0 )1

��O(n)⊕2

⊕
σ∗O(−1 − n)

�� O(−1 + n)

−ak � f2(bj , ai) =

(4.46)
For k ≥ j,

σ∗O(1 − n) ��

xi−j+k

(

0
1
0

)

0

��

σ∗O(−n)⊕2

⊕
O(1 + n)

xi−j+k( 0 1 0 )0

��O(n)⊕2

⊕
σ∗O(−1 − n)

�� O(−1 + n)

−f2(ak, bj) � ai =

(4.47)
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and, for k < j,

σ∗O(1 − n) ��

(−1)n−1xi−j+k+1−2n

( 0
−1
0

)

1

��

σ∗O(−n)⊕2

⊕
O(1 + n)

(−1)nxi−j+k+1−2n( 0 −1 0 )1

��O(n)⊕2

⊕
σ∗O(−1 − n)

�� O(−1 + n)

−f2(ak, bj) � ai =

(4.48)

Then the third order products are the following. For k < j ≤ i,

σ∗O(1 − n) ��

xi−j+k

( 0
−1
0

)

��

σ∗O(−n)⊕2

⊕
O(1 + n)

xi−j+k( 0 −1 0 )

��O(n)⊕2

⊕
σ∗O(−1 − n)

�� O(−1 + n)

m3(ak, bj , ai) =

(4.49)

and, for i < j ≤ k,

σ∗O(1 − n) ��

xi−j+k

(

0
1
0

)

��

σ∗O(−n)⊕2

⊕
O(1 + n)

xi−j+k( 0 1 0 )

��O(n)⊕2

⊕
σ∗O(−1 − n)

�� O(−1 + n)

m3(ak, bj , ai) =

(4.50)

According to [39], the corresponding terms in the superpotential can be
obtained by taking products of the form m2(m3(αi, αj , αk), αl), which take
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values in Ext3(En, En). For k < j ≤ i and i − j + k − l = −1, we have

σ∗O(−n)⊕2

⊕
O(1 + n)

xi−j+k−l( 0 0 1 )01

��
O(−1 + n)

m2(m3(ak, bj , ai), cl) =

(4.51)

The expression obtained in the right hand side of equation (4.51) is a gen-
erator for

Ext3(σ∗OC(−1 − n)[1], σ∗OC(−1 − n)[1]) = C. (4.52)

For i < j ≤ k and i − j + k − l = −1,

σ∗O(−n)⊕2

⊕
O(1 + n)

xi−j+k−l( 0 0 −1 )01

��
O(−1 + n)

m2(m3(ak, bj , ai), cl) =

(4.53)

Note that the expression in the right hand side of (4.53) is the same gen-
erator of (4.52) multiplied by (−1). The first product (4.51) gives rise to
superpotential terms of the form

Tr(C lAkBjAi)

with
(i + k) − (j + l) = −1, k < j ≤ i.

The second product (4.53) gives rise to terms in the superpotential of the
form

−Tr(C lAkBjAi)

with
(i + k) − (j + l) = −1, i < j ≤ k.

If we consider the case n = 1 for simplicity, the superpotential interactions
resulting from these two products are

W = Tr(C1A0B1A1 − C1A1B1A0 + C2A0B1A2 − C2A2B1A0

+ C1A0B2A2 − C1A2B2A0 + C2A1B2A2 − C2A2B2A1). (4.54)
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A An alternative derivation

In this appendix, we give an alternative derivation of Lemma 2.2. This
approach relies on one of the most powerful results in algebraic geome-
try, namely the Grothendieck duality. Let us start by recalling the latter.
Consider f : X → Y to be a proper morphism of smooth varieties.6 Choose
F ∈ Db(X) and G ∈ Db(Y ) to be objects in the corresponding bounded
derived categories. Then one has the following isomorphism (see, e.g.,
III.11.1 of [55]):

Rf∗R HomX(F , f !G) ∼= R HomY (Rf∗F ,G). (A.1)

Now it is true that f ! in general is a complicated functor, in particular it
is not the total derived functor of a classical functor, i.e., a functor between
the category of coherent sheaves, but in our context it will have a very simple
form.

The original problem that lead to Lemma 2.2 was to determine the derived
dual, a.k.a, the Verdier dual, of a torsion sheaf. Let i : E → X be the
embedding of a codimension d subvariety E into a smooth variety X, and
let V be a vector bundle on E. We want to determine R HomX(i∗V, OX).
Using (A.1), we have

R HomX(i∗V, OX) ∼= i∗R HomE(V, i!OX), (A.2)

where we used the fact that the higher direct images of i vanish. Further-
more, since V is locally free, we have that

R HomE(V, i!OX) = R HomE(OE , V ∨ ⊗ i!OX) = V ∨ ⊗ i!OX , (A.3)

where V ∨ is the dual of V on E, rather than on X. On the other hand, for
an embedding

i!OX = KE/X [−d] , (A.4)

where KE/X is the relative canonical bundle. Now if we assume that the
ambient space X is a Calabi–Yau variety, then KE/X = KE . We can sum-
marize this

Proposition A.1. For the embedding i : E → X of a codimension d subva-
riety E in a smooth Calabi–Yau variety X, and a vector bundle V on E, we
have that

R HomX(i∗V, OX) ∼= i∗ (V ∨ ⊗ KE) [−d]. (A.5)

6The Grothendieck duality applies to more general schemes than varieties, but we limit
ourselves to the cases considered in this paper.
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