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Abstract

We derive a formula for D3-brane charge on a compact spacetime,
which includes torsion corrections to the tadpole cancellation condition.
We use this to classify D-branes and Ramond–Ramond fluxes in type
II string theory on RP 3 × RP 2k+1 × S6−2k with torsion H-flux and to
demonstrate the conjectured T -duality to S3 × S2k+1 × S6−2k with no
flux. When k = 1, H �= 0 and so the K-theory that classifies fluxes is
twisted. When k = 2, the square of the H-flux yields an S-dual Freed–
Witten anomaly, which is canceled by a D3-brane insertion that ruins the
dual K-theory flux classification. When k = 3, the cube of H is nontrivial
and so the D3 insertion may itself be inconsistent and the compactifica-
tion unphysical. Along the way we provide a physical interpretation for
the Atiyah–Hirzebruch spectral sequence in terms of the boundaries of
branes within branes.

1 Introduction

1.1 What is classified by twisted K-theory?

If we compactify type II string theory on a compact manifold the consistency
of the D-brane partition functions implies that the Ramond–Ramond (RR)
field strengths, which we write locally as Gp = dCp−1, are quantized. This
may lead us to believe that if we are not interested in changes by globally
defined connections Cp−1 then the Gp are classified by integral cohomology.

However several authors [1–3] have suggested that instead RR field
strengths are classified by twisted K-theory, which is a quotient of a subset
of integral cohomology. For example, all of the field strengths that are in
this subset satisfy

d3Gp = (Sq3 + H∪)Gp = 0, (1.1)
where Sq3 is an operator that takes torsion p-classes to torsion (p + 3)-
classes1 . In addition twisted K -theory identifies cohomology classes that
differ by an element in the image of d3, which is just another consequence
of forgetting the globally defined connections [5].

To see what is so special about the subset (1.1), we turn our attention
to the classical limit, type II supergravity. This means that we forget the

1We do not assume that the reader is familiar with the Steenrod squares Sqi. However
a crash course may be found in [4].
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quantization condition, so we are now looking at real cohomology and the
torsion is gone. In particular we can no longer see the Sq3 term. This theory
has RR potentials Cp−1, an Neveu-Schwarz (NS) 3-form H and a peculiar
gauge-invariance

Cp−1 −→ Cp−1 + dΛp−2 + H ∧ Λp−4, (1.2)

for any set of forms Λk. This means that there are two natural field
strengths [6]

Gp = dCp−1 and Fp = dCp−1 + H ∧ Cp−3, (1.3)

of which Gp is closed and Fp is gauge-invariant. As in QED, we introduce
charges as violations of the Bianchi identity

QD(8−p) = ddCp−1 = dFp − d(H ∧ Cp−3) = dFp + H ∧ Fp−2, (1.4)

where in the last step we have used the fact that H ∧ H vanishes classically,
although in the quantum theory it may have a torsion contribution. Note
that this notion of D-brane charge is not the notion of D-brane charge of,
for example, Ref. [7]. There the authors define D-brane charge to instead
be dF , and refer to dG as the charge contribution from local sources.

The classical limit of the condition (1.1) is H ∧ G = 0 but instead classical
supergravity yields

H ∧ Gp−2 = H ∧ Fp−2 = QD(8−p) − dFp. (1.5)

Thus twisted K -theory seems to classify only fluxes in the subset of config-
urations for which the right hand side of equation (1.5) vanishes. There are
many consistent string backgrounds that do not satisfy the condition (1.1),
these correspond to cohomology classes but not to K -theory classes. That
is, K -theory classifies only those configurations in which all of the branes
are sources for the gauge-invariant field strength Fp and not branes created
from H ∧ F , such as those constructed during Hanany–Witten transitions
[8]. This is not to say that the two types of branes have physically different
properties, but rather that the K -theory formalism treats them differently.
In particular, if our spacetime M is compact and has no boundary, as it
will be during most of this paper, then because Fp is gauge-invariant Stokes
theorem tells us that ∫

M
dFp =

∫
∂M

Fp = 0. (1.6)

Therefore in the compact case the right hand side of equation (1.5) vanishes
only when the D-brane charge vanishes, at least up to the torsion terms that
we have been neglecting. This leads us to the claim

Claim. On compact spacetimes fluxes can be classified by twisted K-theory
only if the total D-brane charge is torsion.
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We will see examples in which compact spacetimes may have torsion
D-brane charge which is non-vanishing after the torsion corrections that
we will describe momentarily. Twisted K -theory will not classify fluxes in
these cases.

While twisted K -cohomology classifies fluxes, twisted K -homology clas-
sifies the branes that source these fluxes. That is to say, it classifies the
dF -type branes. The H ∧ Fp type branes are quotiented away when passing
from homology to K -homology because these branes are created by changing
Fp and the K -classification of branes applies only when we forget about glob-
ally defined field strengths Fp, just as the K -classification of fluxes required
that we forget about globally defined connections Cp−1.

The analogous condition to (1.1) in the case of branes is obtained by
replacing the flux Gp with the charge dGp. It is just the condition that the
Freed–Witten anomaly [9] vanishes, or equivalently the condition that the
brane is not a baryon. We will use the word baryon [10] to mean a brane
on which other branes end, where the terminology came from the fact that
they correspond to baryonic vortices in the worldvolume gauge theories of
some probe branes.

Physical D-branes must satisfy yet another condition, which is not in
general satisfied by twisted K -theory classes, that the flux F that they
source is globally defined. In particular this means that there is no net
dF -type D-brane charge on a compact spacetime, and so the branes are not
classified by twisted K -theory. However the twisted K -theory of a compact
spacetime is still instructive for two reasons. First, while there is no net
charge there may still be D-branes. We will see that some properties of
D-branes, such as the lower brane charges that they carry and the possible
remnants when they annihilate, are described by (the extension problem
of) twisted K -theory even when the spacetime is compact. Secondly, often
there is a similar configuration that is non-compact, for example in the cases
k = 1 and k = 2 of the present paper there is an extra sphere that plays no
role and may be replaced by a non-compact manifold, in which case the
twisted K -homology classes described may yield honest D-branes.

1.2 Powers of H and the S-duality puzzle

The RR gauge transformations (1.2) that lead to the twisted K -theory
classification of RR fluxes and D-branes are not the only gauge transforma-
tions available in type II supergravities. For example, the type IIB action
is invariant under SL(2, R) S -duality transformations that mixes the RR 3
form G3 and the NS 3-form H and the S -duals of the gauge transformations
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(1.2) yield distinct gauge transformations. It has been conjectured [11–13]
that an SL(2, Z) subgroup is a symmetry of the full quantum theory. If
this is true then one may wish to define a twisted K -theory corresponding
to the image of equation (1.2) under each element of SL(2, Z). Such dual
K -classifications have been applied to stacks of D3-branes on an orientifold
3-plane in Ref. [14] and to the Klebanov–Strassler geometry [15] in Ref. [16].
While the {Tn} = Z ⊂ SL(2, Z) subgroup

G3 �→ G3 + nH, H �→ H, (1.7)

acts trivially on the gauge transformations and the K -theory classes, the
orbit of the SL(2, Z) actions on the gauge transformations still yields an
infinite number of different twisted K -theories all of which may simultane-
ously classify the flux and brane spectra of a given spacetime. That is to
say, a given configuration of fluxes of branes may, if it satisfies the criteria
given in the last subsection, correspond to an element of each member of
an infinite family of twisted K -theories [5]. We will refer to this family as
S -covariant K -theory.

Such a configuration must satisfy an infinite number of conditions that
are S -dual to (1.1). For example

(Sq3 + G3)H = 0, (Sq3 + G3)G5 = 0,

(Sq3 + G3 + H)G3 = H ∪ G3 = 0. (1.8)

Note that the Z ⊂ SL(2, Z) subgroup that acts trivially on the gauge trans-
formation also acts trivially on these constraints. Combining the first and
last conditions of equation (1.8) with that of equation (1.1) we find in par-
ticular that

G3 ∪ G3 = G3 ∪ H = H ∪ H = 0 (1.9)
for all fluxes in S -covariant K -theory.

Equation (1.9) is stronger than the condition that D3-brane charge van-
ishes. To find this condition, we begin with a compact manifold with
H = G3 = 0. For simplicity we assume that the fundamental group is pure
torsion so that the first cohomology group H1 is trivial and so the field
G1 is trivial and the dilaton is globally defined. The manifold is com-
pact and so there are no dG5 type D3-branes, and the vanishing G3 and H
insure that there are no Hanany–Witten type D3-branes. We cannot exclude
the possibility that there is brane charge that results entirely from gravita-
tional effects, which would be determined by the topology of the spacetime.
For example Green–Schwarz-like terms may correct the equations of motion
(1.5), such as the one-loop term in the IIA supergravity action calculated in
Ref. [17] which contributes to the fundamental string charge [18]. Note that
simply dualizing that contribution to obtain gravitational D-brane charge
fails as fluxes are inevitably produced by the duality, but an implicit formula
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obeyed by the gravitational charge appears in Ref. [19]. We let P denote
the 6-form dual to the gravitational D3-brane charge.

Now we may turn on any H and G3-flux by letting 5-branes sweep out the
dual cycles. First we turn on the H-flux with an NS5-brane. The NS5-brane
in IIB carries a U(1) gauge field under which fermions are charged that are in
the spin lift of the normal bundle. If H ∪ H is non-vanishing then this spin
lift does not exist and furthermore no shift of the U(1) gauge field can render
the partition function well-defined. This is the Freed–Witten anomaly [9]
and it can be canceled by including a D3-brane dual to H ∪ H which ends
on the NS5. Thus the NS5 sweeps out a cycle and vanishes, leaving behind
not only the desired H-flux, but also H ∪ H units of D3 charge. Now we
may turn on any G3-flux by sweeping a D5-brane through a dual cycle. The
D5-brane has a Freed–Witten anomaly G3 ∪ G3 resulting from its possible
failure to be spinc and a further anomaly G3 ∪ H resulting from the H flux
on its compact worldvolume. Again these anomalies are canceled by D3-
brane insertions. Thus we are able to create an arbitrary G3 and H-flux,
but in the process we automatically change the D3-brane charge (figure 1).

Figure 1: On the left the fluxes are turned off and the D3-brane charge P is
determined by the topology of the spacetime. As we move to the right, an
NS5 sweeps out the cycle dual to the 3-class h, and so to the right of the NS5
there is an NS flux H = h. The Freed–Witten anomaly of the NS5-brane
is canceled by inserting a D3 dual to hh, and so the D3 charge changes by
hh. Next we pass a D5-brane dual to g, whose Freed–Witten anomaly is
hg + gg. The anomaly requires that the D3 charge jump by hg + gg. At
every stage the D3 charge is P + HH + G3H + G3G3, and on the right G3
and H are arbitrary.
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Claim. Type IIB on a compact spacetime with torsion fundamental group
has D3 charge equal to H ∪ H + H ∪ G3 + G3 ∪ G3 + P .

This claim extends a result proven in Ref. [19] to more general back-
grounds, in particular to backgrounds with D-branes and to backgrounds
not dual to M -theory compactified on a 2-torus. Note that while H ∪ G3
is the familiar term from tadpole cancellation in the flux compactifications
literature, this claim suggests that the other three terms appear as torsion
corrections to the usual formula. This would kill most flux vacua. However,
it is possible that it would not change scales by enough orders of magnitude
to be detected by landscape considerations.

If the D3-brane itself wraps nontrivial G3 or H-flux then it also suf-
fers from a Freed–Witten anomaly, which must be canceled by inserting
F-strings or D-strings respectively. The string worldsheets are tubes with
one end wrapping the dual of the offending flux in the D3 worldvolume.
The spacetime is compact and so the string must have two ends. The other
end of the string must be on a second brane, where it will act as some kind
of source in the worldvolume gauge theory. This second brane is compact,
as the spacetime is compact, and so the charge needs to be canceled by
a worldvolume flux on the second brane. The compactness of spacetime
also means that the second brane cannot be a source brane, but rather is a
Hanany–Witten type brane.

If for example the string is an F-string then the other end may be on a
second brane, which is a D1 that wraps a cycle with G1 flux or else a D5
that wraps a cycle with a five-form flux. The second brane is not a source
brane, and so in particular the D5 must satisfy

QD5 = H ∪ G1. (1.10)

In either case we see that G1 needs to be nontrivial for this cancellation
to occur, and so the spacetime must have H1 �= 0 and so the fundamental
group must not be pure torsion. Thus if the fundamental group is torsion
then there is no candidate for the second brane and so the anomaly cannot
be canceled. Therefore the D3-charge cupped with G3 and H must vanish,
which leads to our final claim

Claim. Type IIB on a compact spacetime with torsion fundamental group is
consistent only if G3 ∪ G3 ∪ G3 + G3 ∪ P and H ∪ H ∪ H + H ∪ P vanish.

In this paper we will test these claims by considering three examples of
type IIB string theory backgrounds, RP 3 × RP 2k+1 × S6−2k with torsion
H flux, which have H �= 0, H ∪ H �= 0 and H ∪ H ∪ H �= 0 for k = 1, 2
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and 3, respectively. These backgrounds are particularly simple to under-
stand because [20], as we will show in Section 4, they are T -dual to S3 ×
S2k+1 × S6−2k with no fluxes at all. The example k = 2 is not spin, and
so the definition of string theory on this space is not obvious, although one
might guess that the H flux provides some kind of generalized spinc struc-
ture. This is the case after dimensionally reducing on a two-torus, the two
2-forms resulting from the dimensional reduction of H are the curvatures of
the two dual circle bundles whose total space is spin. As in Ref. [21], the
T -duality to S3 × S5 × S2 with no flux may imply that the string theory is
well defined and even supersymmetric via “supersymmetry without super-
symmetry”. However [20], as in [21], the dual spheres are smaller than the
string scale and so it is not clear that they provide a definition. Instead it
may be necessary to define this background as an orientifold. In this case
some fields will be valued in Z2 twisted cohomology [10,22].

We will describe the D3-brane insertions in Section 5 and then in Section 6
we will use the T -duality prescription of Refs. [23, 24] to follow these and
other D-branes through the T -dualities. This allows us to compare the above
conjectures about Freed–Witten anomalies on projective spaces to the better
understood physics of the compactification on a product of spheres, where
the absence of torsion and of fluxes means that none of these anomalies are
present.

A central role is played by the twisted K -theory classification of branes.
In Section 3 we will use the Atiyah–Hirzebruch spectral sequence (AHSS)
to compute the twisted K -theories of each space and demonstrate that
as expected T -duality shifts the dimension by one. This map on twisted
K -theory will then allow us to confirm that we have correctly T -dualized
each of the branes. Many of these computations are new and we hope that
they will be of independent interest.

Along the way we will run into a number of interesting phenomena. For
example in Section 2 we will, following the suggestion of Ref. [25], identify
the lower brane charges carried by D-branes with the solution to the K -
theory extension problem. In particular we will see an example in which a
lower half-brane charge is carried when the normal bundle is spin and the
B-field is trivial, which is possible because of a factor of two that appears
in the spectral sequence. In Section 4 we will find an example in which
the differential d5 acts nontrivially, and we will see that its action agrees
with the conjectured form of d5 in Ref. [26]. We will also find, in Section 6,
a composite Freed–Witten anomaly that creates a topologically nontrivial
charge from a topologically trivial flux (although the deformation to the
trivial flux does not respect a free circle action) and a gauge-dependent
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Figure 2: This is a summary of the main compactifications that appear in
this note and the dualities and transformations that relate them.

flux. We will use this anomaly to partially extend the Diaconescu–Moore–
Witten (DMW) [4] anomaly W7 = 0 to the non-spin case. In the appendix
we summarize the relevant properties of projective spaces (figure 2).

2 Warm up: type IIB on RP 7 × S3 without flux

In this section we will classify RR fluxes and branes in type IIB string
theory on RP 7 × S3 with no NS flux. The relation between branes of various
dimensions that will be crucial in the main argument of this note may already
be seen in this simpler example. We begin by using the AHSS and Künneth
theorem to review the relevant untwisted K -theories. Then we interpret
these groups physically in terms of fluxes and also in terms of branes carrying
the charges of lower-dimensional branes.

2.1 Calculating untwisted K-groups

In Ref. [27] Atiyah and Hirzebruch showed that the associated graded K -
theory of a space X, Gr(K(X)), which is related to K -theory by an extension
problem, may be calculated from the cohomology of X by taking a series
of subsets and quotients. In this example, unlike the examples that we
will encounter later, this process is trivial and Gr(K(X)) is in fact just the
original integral cohomology, or more precisely the sum of either the even
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or the odd cohomology. The relevant homology and cohomology groups are

H0(S3) = H3(S3) = H0(RP 7) = H7(RP 7) = Z,

H1(RP 7) = H3(RP 7) = H5(RP 7) = Z2,

H0(S3) = H3(S3) = H0(RP 7) = H7(RP 7) = Z,

H2(RP 7) = H4(RP 7) = H6(RP 7) = Z2, (2.1)

and so the associated graded K -groups are

Gr(K0(S3)) = Gr(K1(S3)) = Gr(K0(S3)) = Gr(K1(S3)) = Z,

Gr(K0(RP 7)) = Z, Gr(K1(RP 7)) = Z ⊕ Z
3
2,

Gr(K0(RP 7)) = Z ⊕ Z
3
2 Gr(K1(RP 7)) = Z. (2.2)

To obtain the actual K -groups we need to solve a series of extension
problems. The ones that will be nontrivial are described by the short exact
sequences

H1(RP 7) = Z2 → F2 → H3(RP 7) = Z2, F2 → F3 → H5(RP 7) = Z2,

H6(RP 7) = Z2 → F 2 → H4(RP 7) = Z2, F 2 → F 1 → H2(RP 7) = Z2.
(2.3)

The solutions to these extension problems are not unique, and so we will
state the answers which are derived in, for example, Ref. [28] and then
explain the underlying physics. The solution is

F2 = F 2 = Z4, F3 = F 1 = Z8, (2.4)

and so the three Z2 torsion groups in each Gr(K) assemble into a single Z8
in the actual K -groups

K0(S3) = K1(S3) = K0(S3) = K1(S3) = Z,

K0(RP 7) = Z, K1(RP 7) = Z ⊕ Z8,

K0(RP 7) = Z ⊕ Z8, K1(RP 7) = Z. (2.5)

This means that if we interpret the generator x of H2(RP 7) = Z2 as the
generator of the Z8 ⊂ K0(RP 7) then in K -theory instead of being order
2, x is order 8. Thus while 2x ∈ H2(RP 7) = Z2 is the trivial element in
cohomology, as an element of K -theory it is nontrivial and corresponds to
the generator y of H4(RP 7) = Z2, while 3x in K -theory corresponds to x + y
in cohomology.

So far this is just what one would find by associating the elements of H2k

with the Chern classes ck of the corresponding K -class and defining addition
to be the direct sum of the corresponding bundles. However this naive



FLUX COMPACTIFICATIONS 355

association fails for 4x, which corresponds to the generator z of H6(RP 7) =
Z2 in the spectral sequence. This cannot be the third Chern class because2

c3 = c1 ∪ c2 + sq2c2 mod 2, (2.6)

and so when c1 = c2 = 0 the third class c3 must be even and thus trivial in
H6(RP 7) = Z2. We will argue that the class z corresponds not to c3 but to
ch3 = c3/2 which is odd. Ordinarily, the Chern characters are only elements
of rational cohomology and thus do not see torsion classes, which would
mean that ch3 ordinarily would miss the Z2. However, we claim that in
the cases in which Chern characters compute charges in string theory they
do admit a lift to integral cohomology (with normalization defined by the
AHSS) and so are sensitive to torsion. Here this is a result of the evenness
of c3, but in general it will reflect that fact that they may be expressed as
the images of products of Steenrod squares and Steenrod powers.

Similarly, the Z8 subgroup of K1(RP 7) is generated by the generator x of
H5(RP 7) = Z2, which is order 2 in homology and order 8 in K -homology.
2x generates H3(RP 7) = Z2 while 4x generates H1(RP 7) = Z2, where again
we will see a crucial factor of two.

We may now combine the K -theories of the sphere and projective space
to find the K -theory of the product using the Künneth formula. The result
is just the tensor product of the original K -theories because the K -theory
of the sphere has no torsion and so the Tor term in the Künneth formula is
trivial

K0(RP 7 × S3) = (K0(RP 7) ⊗ K0(S3)) ⊕ (K1(RP 7) ⊗ K1(S3)) = Z
2 ⊕ Z8,

K1(RP 7 × S3) = (K0(RP 7) ⊗ K1(S3)) ⊕ (K1(RP 7) ⊗ K0(S3)) = Z
2 ⊕ Z8,

K0(RP 7 × S3) = (K0(RP 7) ⊗ K0(S3)) ⊕ (K1(RP 7) ⊗ K1(S3)) = Z
2 ⊕ Z8,

K1(RP 7 × S3) = (K0(RP 7) ⊗ K1(S3)) ⊕ (K1(RP 7) ⊗ K0(S3)) = Z
2 ⊕ Z8.

(2.7)

The extension problem now means that, for example, the generator

x ∈ H5(RP 7 × S3) = H2(RP 7) ⊗ H3(S3) = Z2, (2.8)

is order two in cohomology but order eight in K -theory. So for example 2x
is the generator of H4(RP 7) ⊗ H3(S3).

The untwisted K -theories of other RP 2k+1’s are obtained identically,
except that there are k factors of Z2 and so Z8 is replaced by Z2k .

2We will denote by sqk the Steenrod square in cohomology with Z2 coefficients, and by
Sq2k+1 the lift of sq2k+1 to integer coefficients.
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2.2 Branes and fluxes on RP 7 × S3

In type IIA string theory D-branes are classified by K1 while RR field
strengths are classified by K0, both of which in our case are Z

2 ⊕ Z8.
Thus all branes and fluxes are generated by three elementary ones, the
generators of the respective K -groups, one of which is order eight. For
example the fluxes are generated by G0, which is the Romans’ mass [29],
G10, which again is the Romans’ mass (in the dual sense), and finally
G2 ∈ H2(RP 7) ⊗ H0(S3) which is torsion. The Romans’ mass may appear
twice because K-theory does not really classify fluxes in string theory, which
cannot all be simultaneously quantized, but rather on a toy model of string
theory in which the self-duality condition

Gp = ∗G10−p (2.9)

is not imposed. This omission is crucial as the Hodge star varies continuously
with the metric and so is incompatible with the simultaneous quantization
of the Chern characters that is inherent in the K -theory classification. In
the physical string theory [30] only half of the fluxes may be quantized at a
time, but on a compact space one needs to check that the partition function
is invariant under the choice of which half is quantized, as in the case in the
chiral scalar 2-dimensional field theory. Thus one should expect K -theory
to double-count the simultaneously observable degrees of freedom.

G2 is the Chern class of the M -theory circle which is fibered over RP 7 ×
S3. While there are only two possible fibrations of the M -theory circle,
corresponding to the two elements of H2, as an element of K -theory if we
add together the two nontrivial M -theory bundles we find that while the
M -theory bundle becomes trivial, we now have a unit of G4-flux. Sim-
ilarly adding together two units of G4-flux we find a unit of G6. For a
global version of the reduction of M -theory to type IIA leading to twisted
K -theory, see [31].

Although adding fluxes may seem a bit abstract if not ill-defined, we
may find the same result by physically adding two D-branes that source
the corresponding fluxes. The D-branes are classified by K1 = Z

2 ⊕ Z8 and
so again there are three generators. There is a D2-brane that wraps the
S3, a D6-brane that wraps the RP 7, and finally there is a torsion D4-brane
that wraps the submanifold RP 5 ⊂ RP 7. While a homology classification of
D-branes would tell us that by deforming the configuration two D4-branes
can annihilate to nothing, as they are each Z2 charged, in fact after the
annihilation a D2-brane remains that wraps RP 3 ⊂ RP 7. Similarly two
D2-branes may annihilate to leave a D0-brane wrapping the circle RP 1.
However if two D0-branes annihilate, nothing remains. Thus we say that
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the D4-branes each carry half of a unit of D2-brane charge while the D2-
branes each carry half a unit of D0-brane charge. Note that while the
element 1 corresponds to a D4-brane with half a unit of D2 charge, the unit
7 corresponds to a D4-brane with negative half a unit of D2-charge, and
so the two D4-branes corresponding to 1 and 7 may annihilate to a state
that contains no D2-branes. However there is no such confusion if we choose
orientation conventions (the SUSYs that will be preserved by branes) and
write all states in terms of branes and not antibranes, so that 7 is written
as a D4-brane plus a D2-brane plus a D0.

This explains the meaning of two units of G2-flux combining to form a unit
of G4-flux. We may consider a D6-brane wrapping RP 5 × S3 that sources
the G2 flux. There is no space in RP 7 × S3 for such a D6-brane and in fact it
has one too many dimensions, however we are free to add another dimension
v that is parameterized by deformations [2, 32]. In fact, one such choice
of dimension that appears naturally in applications is the Renormalization
Group (RG) flow [16]. That is to say that a G2-flux measured at one energy
scale (a dimensional reduction of M -theory defined by some characteristic
distance) may differ from the G2-flux measured at another scale, and this
difference corresponds to a dynamical process3 in which a D6-brane has
nucleated, swept out a linking 8-cycle, and collapsed out of existence. In
the Klebanov–Strassler cascade [15], for example, the relation between the
brane position and energy scale is a consequence of the RG flow of the
coupling constant of the worldvolume effective gauge theory.

Thus the 10-dimensional cross-section at one value of v enjoys a nontrivial
G2-flux generating H2(RP 7), but as one moves in the v direction one passes
a D6-brane (corresponding to 1 ∈ Z8), wrapping RP 5 × S3, and the G2-flux
turns off. One may pass a second D6-brane and the flux turns back on.
If this second D6-brane corresponds to the element 1 ⊂ Z8, and not the
element 7 ⊂ Z8 then the sum of these two D6-branes carries a unit of D4-
brane charge. This means that as we pass both of these branes G4 jumps
by a unit. This is the meaning of the fact that two units of G2-flux add to
a unit of G4-flux, and also the source of the caveat that we need to be sure
that our nontrivial G2’s both lift to the same element in K -theory.

2.3 Solving the extension problem with physics

We have argued that the physical interpretation of the nontrivial solution
of the extension problem is that the D4-brane wrapping RP 5 ⊂ RP 7 carries

3Here “time” refers to the RG direction, so for example the process may occur as the
system relaxes. More generally K -classes appear to correspond to universality classes in
the worldvolume theories.
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half a unit of D2 charge, while the D2 wrapping RP 3 carries half a unit of
D0 charge. It should be possible to understand these charges, and thus the
solution to the extension problem, in terms of the worldvolume physics of
the corresponding branes. For example, finding the D2 charge in the D4-
brane is routine. The D4-brane worldvolume theory contains fermions that
are charged under the worldvolume U (1) gauge field and also are valued in
the spinor representation of the normal bundle. The S3 part of the normal
bundle is trivial, however the normal bundle N of RP 5 ⊂ RP 7 is not spin.
This means that there is an obstruction to lifting the normal bundle to a spin
bundle, and so the consistency of the fermion partition function demands
that the U(1) bundle enjoy an obstruction that cancels that of the normal
bundle. That is to say, the quantization of the U(1) gauge field is shifted

F ∈ Z +
1
2
. (2.10)

We may now use the D4-brane worldvolume coupling

S ⊃
∫

RP 5
F ∪ C3 =

1
2

∫
RP 3

C3, (2.11)

to conclude that the D4-brane carries half a unit of D2 charge.

In general the obstruction to being spin is the second Stiefel–Whitney
class w2, and so F is shifted by w2(N), yielding w2(N) units of Dp-brane
charge inside of a D(p + 2)-brane, although we will soon see that the nor-
malization is very subtle. We may calculate this obstruction directly from
the cohomology of RP 7. If we say that a2 is the generator of H2(RP 7) = Z2,
so that a4 and a6 generate H4 and H6, respectively, then the D4-brane is
the Poincaré dual (PD) of a2. To calculate the D2-brane charge correspond-
ing to a D4-brane PD(a2) we need to calculate w2 of the normal bundle
of PD(a2), which gives the worldvolume field strength, and then push that
forward onto the whole space so that we get the divisor of the corresponding
U(1) gauge bundle (the codimension two subset of our D4 that corresponds
to the F -flux), which is our potential D2-brane. This operation is done by
the cohomology operation sq2, and so we may argue that the D2-charge is
given by

PD(D2) ?= sq2a2 = a4. (2.12)
This is nonzero and so we see the D2-brane charge, however we have not
been careful about the normalization. In fact the extension problem told us
that the D4 should carry only half of a D2-brane.

This argument applied to the D0-brane charge in the D2-brane fails. The
problem is that the D2-brane wraps RP 3 ⊂ RP 7 whose normal bundle is
the sum of the normal bundles of RP 3 ⊂ RP 5 and RP 5 ⊂ RP 7. While
neither summand is spin, the w2’s of the summands cancel and so the normal



FLUX COMPACTIFICATIONS 359

bundle of the D2-brane is spin. It then seems as though the D2-brane should
carry integral D0-charge. In terms of the sq2 construction we see the same
unfortunate cancellation

PD(D0) ?= sq2sq2a2 = sq2a4 = (sq2a2)a2 + a2(sq2a2) = a6 + a6 = 2a6 = 0,
(2.13)

where the last equality comes from the fact that a6 generates the Z2 torsion
group H6(RP 7). The two a6’s that cancel are the two w2’s of the normal
bundle summands. However the overall normalization of the worldvolume
Dp charge from the Wess–Zumino terms of the worldvolume action is a
Chern character and so lives in rational cohomology and has no natural
normalization4 until we attempt to apply Dirac quantization. That is, the
lift of the charge to an integral class and so the normalization of the charge
should be derivable from the physics, and vice versa.

We know from the solution to the extension problem that the correct
normalization yields the nontrivial D0 charge a6 inside of our D2-brane or
D4-brane. This is one half of the value found in equation (2.13). To see that
this half is canonically defined we will need to include it before we make
the transition from integral to rational cohomology, that is in the Steenrod
square expression

PD(D0) =
1
2

sq2 sq2 a2. (2.14)

This is the same factor of 1/2 that appeared in the formula for d5 in Ref. [26].
As in that case, the division by two may be defined by rewriting the expres-
sion in terms of the Steenrod5 cube P 1, which cubes 2-cocyles modulo 3

PD(D0) = P 1PD(D4) = P 1a2 = a6. (2.15)

This agrees with the interpretation of branes that are not closed under the
AHSS differentials d2k+1 as baryons. For example if b is PD to a Dp-brane
and

d3b = Sq3 b = β sq2 b = c �= 0, (2.16)

then the Dp-brane carries the charge of a half D(p − 2)-brane wrapped about
PD(sq2 b). However PD(sq2 b) does not lift to integral homology because it
is not in the kernel of β and so the half D(p − 2)-brane, being oriented, has a
boundary (PD(c)) inside the worldvolume. This means that the half-brane
must continue past this boundary into the bulk (wrapping PD(c)) and so
the Dp-brane is a baryon.

4It may be interesting to see how the inclusion of the
√

Â term changes this situation.
5Acting on 3-torsion P 1 is the usual cube, which yields the Milnor primitive term

Q1 = βP 1 in d5. However acting on 2-torsion we define it to be a secondary operation
that only acts on the cohomology of d3.



360 PETER BOUWKNEGT ET AL.

The extra factor of 2 allows us to extend this story to d5 if

d5b = βP 1b = c �= 0. (2.17)

Generalizing equation (2.15) the Dp-brane dual to b carries P 1b units of
D(p − 4) charge. The units are smaller by a factor of two than those obtained
by iterating the d3 argument twice, but even this quarter D(p − 4)-brane has
no boundary when c �= 0 and so continues into the bulk, creating a baryon.
The fact that Dp-branes not closed under d5 yield Dp-D(p − 4) baryons was
first noted in Ref. [33]. It should be possible to extend this reasoning to all
of the differentials, such as the yet higher Steenrod powers that are relevant
for string theory on RP 9 × S1. Including a B-field in this argument may
lead to the construction of the twisted differentials as the Bockstein of the
corresponding lower brane charges, which may be decomposed into B terms
and the lower-dimensional brane charges of the untwisted case following the
strategy of Ref. [34].

3 Computing the twisted K-theories of RP 3 × RP 7

We are ultimately interested in the twisted K -theories of RP 3 × RP 2k+1 ×
S6−2k (k = 1, 2, 3). However, all of these may be obtained from the those of
RP 3 × RP 7 by removing 3 − k of the Z2’s and using the Künneth formula
to include the extra sphere. Thus in this section we will only compute the
twisted K-theory of RP 3 × RP 7 and we will state the results for the other
cases.

3.1 Computing the cohomology of RP 3 × RP 7

The real projective space RPn is the quotient of the n-sphere Sn by the
antipodal map. The cohomology ring with Z2 coefficients is just a polyno-
mial ring over Z2

H∗(RPn; Z2) = Z2[a]/(an+1), (3.1)

where a is the 1-dimensional cocycle. Intuitively, ak is supported on the
RP k ⊂ RPn. The Z homology and cohomology are only slightly more com-
plicated. Again they are generated by the RP k subsets, but with the bound-
ary map

∂ : C2k −→ C2k−1 : a2k �−→ 2a2k−1, (3.2)

acting on the generator a2k of the 2k-chains, intuitively the subset RP 2k.
Dualizing, one obtains the coboundary map on the (2k − 1)-cochains

∂† : C2k−1 −→ C2k : a2k−1 �−→ 2a2k. (3.3)
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Thus the even cycles and odd cocycles are zero, while the odd cycles and even
cocycles are boundaries and coboundaries if they are multiples of two. If n
is odd, as it will be in this example, then the top (and as always the bottom)
dimensional chain and cochain are in the kernel and never the image of the
differential, and so the top dimensional homology and cohomology is Z.

We have then found, for the cases n = 3 and n = 7, that the nontrivial
classes are

H0(RP 3) = H0(RP 7) = H3(RP 3) = H7(RP 7) = Z,

H1(RP 3) = H1(RP 7) = H3(RP 7) = H5(RP 7) = Z2,

H0(RP 3) = H0(RP 7) = H3(RP 3) = H7(RP 7) = Z,

H2(RP 3) = H2(RP 7) = H4(RP 7) = H6(RP 7) = Z2. (3.4)

Our Z2 cohomology ring generator a is not a cocycle now that we are using
Z coefficients because it has coboundary ∂†a = 2a2 �= 0. However we may
still evaluate each term in the cohomology ring modulo two and so identify
it with a subring of the Z2 cohomology. This allows us to write the Z

cohomology generator of Hk in terms of the Z2 generator a, basically Hk is
generated by ak. Since we know how to multiply the Z2 generators (3.1) we
can then guess how to multiply the Z generators.

We let a and b be the generators of H1(RP 3, Z2) and H1(RP 7, Z2), respec-
tively. Although a and b themselves do not lift to integral classes, we will
write the generators of the integral classes as powers of a and b. Then we
may encode the ring structure in the following definition, where 〈x〉 is the
additive group generated by x

H0(RP 3) = 〈1〉, H2(RP 3) = 〈a2〉, H3(RP 3) = 〈a3〉, (3.5)

H0(RP 7) = 〈1〉, H2(RP 7) = 〈b2〉, H4(RP 7) = 〈b4〉,
H6(RP 7) = 〈b6〉, H7(RP 7) = 〈b7〉.

We ultimately want the cohomology of the product. To find this, we will
first evaluate the homology of the product using the Künneth formula

Hn(RP 3 × RP 7) =
⊕

i

(
Hi(RP 3) ⊗ Hn−i(RP 7)

) ⊕

×
(⊕

i

Tor(Hi(RP 3), Hn−i−1(RP 7))

)
, (3.6)

where the only nontrivial Tor term will be

Tor(Z2, Z2) = Z2. (3.7)
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The Tor terms contribute a Z2 to H3, H5 and H7, the rest of the homology
groups are just given by crossing homology classes of the components. In
all we find

H∗(RP 3 × RP 7) = (Z, Z2
2, Z2, Z ⊕ Z

2
2, Z

2
2, Z

2
2, Z

2
2, Z ⊕ Z2, Z

2
2, 0, Z). (3.8)

The universal coefficient theorem says that the cohomology groups are iso-
morphic to the homology groups but with the torsion parts moved up one
dimension

H∗(RP 3 × RP 7) = (Z, 0, Z2
2, Z ⊕ Z2, Z

2
2, Z

2
2, Z

2
2, Z ⊕ Z

2
2, Z2, Z

2
2, Z). (3.9)

We are not interested in just the additive structure of H∗, but also the
multiplicative structure. As in the case of H∗(RP 7) above, we can learn
the multiplicative structure by writing the generators of H∗(RP 3 × RP 7) in
terms of the Z2 cohomology rings of the constituent real projective spaces.
In most cases this will be made easier by the fact that the classes in the
product cohomology are just products of the Z classes of the constituent
cohomologies given in equation (3.1). The exceptions are the three classes
H3, H5 and H7 in which the Tor term contributed an extra Z2 to the
homology. These cohomology classes will correspondingly contain an extra
Z2 factor that is not a product of two cohomology classes of the components,
but can be expressed as the Bockstein of a product of two Z2 cohomology
classes a and b2j+1 of the constituent RPn’s (table 1).

3.2 The untwisted K-theory of RP 3 × RP 7

We will compute the (untwisted) K -theory of RP 3 × RP 7 using the AHSS.
In fact only the first differential of this sequence

d3 = Sq3 (3.10)

will be nontrivial. Sq3 is the third Steenrod square. It can be decomposed as

Sq3 = β sq2, (3.11)

where β is the Bockstein map which lifts torsion p-cocycles to the (p + 1)st
integral cohomology. The Bockstein map on Z2 classes has the following

Table 1: The cohomology groups and their generators are summarized.

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Z 0 Z
2
2 Z ⊕ Z2 Z

2
2 Z

2
2 Z

2
2 Z ⊕ Z

2
2 Z2 Z

2
2 Z

1 a2 a3 b4 a3b2 b6 b7, a3b4 a2b6 a3b6 a3b7

b2 ab2 + a2b a2b2 ab4 + a2b3 a2b4 ab6 + a2b5 a2b7
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physical interpretation. Branes in type II string theory are necessarily ori-
ented. Therefore if a half brane is wrapped on a nonorientable (p + 1)-chain
Zp+1 then it must fail to close6 on the p-cycle ∂Zp+1 which, due to the
nonorientability of Zp+1, is divisible by two. This means that, in addition
to wrapping Zp+1, it necessarily extends away from Zp+1 making a cylinder
whose cross-sections are each ∂Zp+1. The Bockstein is dual to the half of
∂Zp+1 that is wrapped by the cylindrical brane, and so the Bockstein map
takes a half-brane to the cross-section of the tube of whole-brane that must
be inserted to make it consistent (oriented). The half-brane itself will, in
this case, result from the sq2 term.

As a first step we will compute Sq3 on all of the generators of our coho-
mology ring. Recall that all of the generators but three are products of
integer classes of the cohomology of the individual RPn’s. These integer
classes are either zero classes or top classes, which are annihilated by sq2,
or else products of even integral classes. If they are products of degree two
integral classes then we may iteratively use the Cartan rule for Steenrod
square two

sq2(ab) = (sq2a)b + (Sq1a)(Sq1b) + a(sq2b), (3.12)

and the fact that Sq1 = β annihilates integral classes, to write sq2 on each
class as an integral class times sq2 of an integral 2-class. sq2 acts on any
2-class by squaring it, and so it yields another integral class. Thus all of
our generators except for possibly the three special ones will be mapped to
integral classes (Z2 classes with integral lifts) by sq2.

The Bockstein map annihilates Z2 classes that lift to integral classes of
the same dimension. Thus Sq3 will annihilate all of our generators, except
for possibly the three special ones. One of the special generators, ab6 + a2b5,
is degree 7 and so Sq3 of it will be degree 10. The image of Sq3 is always
mod 2 torsion, but H10(RP 3 × RP 7) does not contain any torsion, thus Sq3

will annihilate this generator as well. We then only need to evaluate Sq3 on
the other two special generators.

We may evaluate Sq3 on the first special generator by using the fact that
Sq3 squares three classes. Thus

Sq3(ab2 + a2b) = (ab2 + a2b)(ab2 + a2b) = a2b4 + a4b2 = a2b4. (3.13)

The second term vanishes because a4 = 0. To evaluate Sq3 on the second
generator we will also use the Cartan rule for Sq3 and the fact that all of

6Intuitively, the orientation of the brane may be defined everywhere except for a Dirac
string, and that Dirac string is the insertion.
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the Steenrod squares annihilate powers of a except for Sq1a = a2.

Sq3(ab4 + a2b3) = Sq3(ab4) + Sq3(a2b3) = (Sq1a)sq2b4 + aSq3b4 + a2Sq3b3

= (a2)[(sq2b2)b2 + b2(sq2b2)] + aβ[(sq2b2)b2

+ b2(sq2b2)] + a2b6

= a2[2b6] + aβ[2b6] + a2b6 = 0 + 0 + a2b6 = a2b6. (3.14)

We may now use the AHSS to compute the associated graded part of
the untwisted K -theory of RP 3 × RP 7. It is just given by the cohomology
of Sq3

Gr(K0) =
Ker(Sq3) : Heven −→ Hodd

Im(Sq3) : Hodd −→ Heven =
Z

2 ⊕ Z
7
2

Z
2
2

= Z
2 ⊕ Z

5
2,

Gr(K1) =
Ker(Sq3) : Hodd −→ Heven

Im(Sq3) : Heven −→ Hodd =
Z

2 ⊕ Z
5
2

0
= Z

2 ⊕ Z
5
2. (3.15)

To calculate the K -theory ring from the associated graded K -group one
needs to solve an extension problem, which in this case allows each Z to
eat either zero or some Z2’s and allows the Z2’s to combine into Z2j ’s. We
may alternatively find the K -theory by T -dualizing the configuration to
S2 × CP 3 × T 2 with H-flux, explicitly constructing the bundles on CP 3,
and noting that two vortices make an instanton while two instantons make
a codimension 6 instanton, which corresponds to the assembly of the three
corresponding Z2’s into a Z8.

Instead, in the spirit of Ref. [28], we will solve for the untwisted K -theory
of RP 3 × RP 7 by using the Künneth formula for K -homology

0 −→ K∗(A) ⊗ K∗(B) −→ K∗(A × B) −→ Tor(K∗(A), K∗(B)) −→ 0
(3.16)

as well as the untwisted K -homologies of the constituents

K0(RP 3) = Z, K1(RP 3) = Z ⊕ Z2,

K0(RP 7) = Z, K1(RP 7) = Z ⊕ Z8. (3.17)

Using the fact that Z2 ⊗ Z8 = Z2 and that Tor(x, y) vanishes unless both x
and y contain torsion components we find that

K0(RP 3 × RP 7) =
(
K0(RP 3) ⊗ K0(RP 7)

)
⊕

(
K1(RP 3) ⊗ K1(RP 7)

)
(3.18)

⊕ Tor(K0(RP 3), K1(RP 7)) ⊕ Tor(K1(RP 3), K0(RP 7))

=
(
Z ⊗ Z

)
⊕

(
(Z ⊕ Z2) ⊗ (Z ⊕ Z8)

)
⊕ 0 ⊕ 0

= Z
2 ⊕ Z8 ⊕ Z

2
2. (3.19)
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while Tor(Z2, Z8) = Z2 yields

K1(RP 3 × RP 7) =
(
K0(RP 3) ⊗ K1(RP 7)

)
⊕

(
K1(RP 3) ⊗ K0(RP 7)

)
⊕ Tor(K0(RP 3), K0(RP 7)) ⊕ Tor(K1(RP 3), K1(RP 7))

=
(
Z ⊗ (Z ⊕ Z8)

)
⊕

(
(Z ⊕ Z2) ⊗ Z

)
⊕ 0 ⊕ Tor(Z2, Z8)

= Z
2 ⊕ Z8 ⊕ Z

2
2. (3.20)

The universal coefficient theorem then yields the desired K -cohomology
groups

K0(RP 3 × RP 7) = Z
2 ⊕ Z8 ⊕ Z

2
2, K1(RP 3 × RP 7) = Z

2 ⊕ Z8 ⊕ Z
2
2.

(3.21)
These K -theory classes yield flux backgrounds or brane configurations for
type IIA or IIB string theory. In IIB string theory the K1 classes describe
possible RR fields in the absence of an NS flux, and if we S -dualize a config-
uration in which the G3-flux valued in Z ⊂ H3(RP 3 × RP 7) is nonzero then
we find another configuration which corresponds to a class in the K -theory
twisted by the original G3.

The K -homology groups are also both Z
2 ⊕ Z8 ⊕ Z

2
2. In type IIB the

Z’s are generated by the D(−1) and the D9. The Z8 is generated by a
D7 wrapping RP 3 × RP 5. Similarly to the case of Section 2, the element
2 ∈ Z8 corresponds to a D5 wrapping RP 3 × RP 3 and 4 to a D3 wrapping
RP 3 × RP 1. The Z2 generators are the D7 wrapping RP 1 × RP 7 and the D5
wrapping RP 1 × RP 5. One might be tempted to think that the D5 wrapping
RP 1 × RP 5 would be Z8 charged like its cousin that wraps RP 3 × RP 5.
Above we have seen that the Z2 charge results from the fact that Z2 ⊗ Z8 =
Z2. Physically this is a consequence of the instability of the element 2,
which is the D3 wrapping RP 1 × RP 3. The D3 may split into two D5’s
which each wrap RP 1 × RP 5 and carry a half unit of D3 charge. These two
D5’s each wrap the circle RP 1 ⊂ RP 3 and they may connect so as to wrap
the circle RP 1 ⊂ RP 3 twice. However twice this circle is the boundary of
a RP 2 ⊂ RP 3, that is ∂RP 2 = 2RP 1. Thus the doubly-wrapped D5 may
decay by sweeping out RP 2. This entire process is mathematically just the
distributive property of the tensor product

(1 ∈ Z2) ⊗ (2 ∈ Z8) = (2 ∈ Z2) ⊗ (1 ∈ Z8) = 0 ⊗ (1 ∈ Z8) = 0. (3.22)

We summarize the wrappings and the corresponding brane charges as ele-
ments of Z ⊕ Z ⊕ Z8 ⊕ Z2 ⊕ Z2 in the following table, where the top row is
the element of K0 and the bottom row is the subset of RP 3 × RP 7 wrapped
(table 2).

Again one may replace RP 7 by RP 2k+1 by replacing the Z8’s by Z2k ’s, as
there will be only k Z2’s. The terms with bj>2k+1 are no longer present as



366 PETER BOUWKNEGT ET AL.

Table 2: Some K -homology classes and the corresponding wrapped cycles.

(1, 04) (0, 1, 03) (02, 1, 02) (02, 2, 02) (02, 4, 02) (03, 1, 0) (04, 1)
a point RP 3×RP 7

RP 3×RP 5
RP 3×RP 3

RP 3×RP 1
RP 1×RP 7

RP 1×RP 5

they do not fit in RP 2k+1. Crossing the spacetime by an even-dimensional
sphere just corresponds to doubling the K -groups K �→ K ⊕ K.

3.3 The twisted K-theory

We are interested in configurations that do not correspond to S -covariant
classes. To construct such a configuration we turn on an H-flux valued in
the Z2 part of H3(RP 3 × RP 2k+1 × S6−2k), that is

H = ab2 + ba2. (3.23)

If k > 1 (so that b4 �= 0) this will not yield an S -covariant configuration
because, as we have just seen in equation (3.13),

Sq3H = a2b4 �= 0. (3.24)

However a twisted K -theory exists with every possible twist in H3 with
Z coefficients and so it does make sense to calculate the twisted K -theory
KH(RP 3 × RP 7), so long as we remember that fluxes valued in this group
will lead to anomalies that need to be canceled. If k = 3 then

H ∪ H ∪ H = a3b6 �= 0, (3.25)

which, as was argued in the introduction, implies that unless H ∪ P =
H ∪ H ∪ H the anomaly cannot be canceled and so the k = 3 case will be
unphysical. We have not been able to calculate P , however if indeed P does
contain a a2b4 term and so render the k = 3 case consistent then the D3-
brane dual to a2b4 will not appear in the twisted case but instead will appear
in the untwisted case. T-dualizing the untwisted case, as we will see in the
next section, we arrive at a spacetime with no torsion and so the T -dual
of this gravitational D3-brane should be a D-string produced by a Freed–
Witten anomaly of the fluxes. One might hope to compute P by examining
the Freed–Witten anomalies of these dual fluxes, but the result is heavily
dependent on factors of two that we have so far been unable to determine.
A D-string analogue of our proposed formula for D3-brane charge would
be helpful.
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The associated graded twisted K -theory is in this case just the cohomol-
ogy with respect to the differential

d3 = Sq3 + H, (3.26)

and so we need to calculate the cup product of H with all of our cohomology
generators. Like Sq3, H∪ will lead to a torsion class three degrees higher
and so H will automatically annihilate all of the classes of degree seven and
above. Similarly H will annihilate any term containing a3, as a3 is already
of the maximum degree in H∗(RP 3). The products with H are computed
using multiplication in the respective Z2 rings and then lifting the results to
integral cohomology. We find

H ∪ 1 = ab2 + a2b, H ∪ a2 = a3b2, H ∪ b2 = ab4 + a2b3,

H ∪ (ab2 + a2b) = a2b4, H ∪ a2b2 = a3b4, H ∪ b4 = ab6 + a2b5,

H ∪ (ab4 + a2b3) = a2b6 H ∪ a2b4 = a3b6 H ∪ b6 = a2b7. (3.27)

Note that while Sq3 and H are both nontrivial on the special 3 and 5 cocycles
H and H ∪ b2, d3 annihilates them both. However they are both in the image
of d3 and so they will be quotiented out of the final answer.

We may now assemble the above results to find the associated graded
twisted K -theory.

Gr(K0
H) =

Ker(d3) : Heven −→ Hodd

Im(d3) : Hodd −→ Heven =
〈2, a2b6, a3b7〉

0
= Z

2 ⊕ Z2

Gr(K1
H) =

Ker(d3) : Hodd −→ Heven

Im(d3) : Heven −→ Hodd

=
〈a3, b7, ab2 + a2b, ab4 + a2b3, a3b2, a3b4, ab6 + a2b5, a3b6, a2b7〉

〈ab2 + a2b, ab4 + a2b3, a3b2, a3b4, ab6 + a2b5, a3b6, a2b7〉

=
Z

2 ⊕ Z
7
2

Z
7
2

= Z
2. (3.28)

Gr(K1
H) has no torsion and so the extension problem for K1

H is trivial
and we may conclude that

K1
H(RP 3 × RP 7) = Z

2. (3.29)

However to find K0
H we need to solve the extension problem

Z
2 f−→ K0

H(RP 3 × RP 7)
g−→ Z2. (3.30)

This admits two possible solutions. If the first map, f , were multiplication
by one then the sequence would split and K0

H would be Z
2 ⊕ Z2. If on the

other hand f were multiplication by two on one Z then K0
H would be Z

2.
A very similar extension problem occurs in the computation of the twisted
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K -theory of RP 2k+1 × S1. There it has been shown by T -duality [23] that
the map is indeed multiplication by two. We will argue in the next section
that the configuration RP 3 × RP 7 with H -flux (3.23) is T -dual to S3 × S7

with no H -flux, for which the two K -theory groups are both Z
2. Thus

the fact that T -duality is an isomorphism of twisted K -theory [23, 35] will
allow us to conclude that this time, as in the case of RP 2k+1 × S1, f is
multiplication by two and so

K0
H(RP 3 × RP 7) = Z

2. (3.31)

In Section 6, when we explicitly T -dualize the brane dual to the Z2 cycle
a2b6, we will give a physical interpretation of the fact that f is degree two.

The torsion has all been killed and so the twisted K-groups are
k-independent. However note that all K-groups double to Z

4 when we cross
our RP 3 × RP 2k+1 with a sphere.

4 T -duality

4.1 The untwisted case: CP 1 × CP 3 × T 2

As a warm up for the more difficult T -duality to come, we dualize the k = 3
example of RP 3 × RP 7 with no H-flux. Both RP 3 and RP 7 admit free
circle actions and in particular are circle bundles over the complex projective
spaces CP 1 and CP 3 respectively

S1 −−−−→ RP 2j+1

π̂

⏐⏐�
CP j

(4.1)

The nontrivial cohomology classes and generators of the base spaces are

H0(CP 1) = H0(CP 3) = Z = 〈1〉, H2(CP 1) = Z = 〈α〉,
H2(CP 3) = Z = 〈β〉, H4(CP 3) = Z = 〈β2〉, H6(CP 3) = Z = 〈β3〉,

(4.2)

and the Chern classes of the two bundles are

c1 = 2α and c1 = 2β. (4.3)

We may now use the prescription of Ref. [23] to T -dualize both circle
fibers. According to that prescription T -duality exchanges the integrals
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of the H-fluxes over the circle fibers with the Chern classes. The original
H-flux vanishes and so the dual Chern classes vanish

ĉ1 = 0. (4.4)

The dual spacetime M̂ then consists of the product of two trivial circle
bundles over the original base

M̂ = CP 1 × CP 3 × S1
α × S1

β. (4.5)

The dual H-flux is just the sum of two H-fluxes that integrate to the Chern
classes

Ĥ = 2α ∪ θα + 2β ∪ θβ, (4.6)

where θα and θβ generate H1(S1, Z) of the dual circles.

We will now compute the twisted K -theory of M̂ which, as we have per-
formed an even number of T -dualities, must agree with the untwisted K -
theory of the original space given in equation (3.21). The cohomology of M̂
follows from the Künneth theorem, where the Tor terms all vanish as there
is no torsion (table 3). The fact that the cohomology contains no torsion
also implies that Sq3 annihilates everything. The cup product with H acts
as follows

1 H−→ 2αθα + 2βθβ, θα
H−→ −2βθαθβ, α

H−→ 2αβθβ,

αθα
H−→ −2αβθαθβ,

β
H−→ 2αβθα + 2β2θβ, βθα

H−→ −2β2θαθβ, αβ
H−→ 2αβ2θβ,

αβθα
H−→ −2αβ2θαθβ,

β2 H−→ 2αβ2θα + 2β3θβ, β2θα
H−→ −2β3θαθβ, αβ2 H−→ 2αβ3θβ,

αβ2θα
H−→ −2αβ3θαθβ,

β3 H−→ 2αβ3θα, θβ
H−→ 2αθαθβ, βθβ

H−→ 2αβθαθβ,

β2θβ
H−→ 2αβ2θαθβ, β3θβ

H−→ 2αβ3θαθβ,

αθβ, αβθβ, αβ2θβ, αβ3θβ, αθα + βθβ, αβθα + β2θβ, αβ2θα + β3θβ,

αβ3θα, β3θα
H−→ 0,

αβ3, θαθβ, βθαθβ, β2θαθβ, β3θαθβ, αθαθβ, αβθαθβ, αβ2θαθβ, αβ3θαθβ
H−→ 0.
(4.7)

The first approximation to Ki, which we will call Ei
1, is the even or odd

part of the quotient of the kernel of d3 = H∪ by the image of d3 = H∪.
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Table 3: The cohomology groups of M̂ and their generators are summarized.

H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

Z Z
2

Z
3

Z
4

Z
4

Z
4

Z
4

Z
4

Z
3

Z
2

Z

1 θα α αθα αθαθβ αβθα αβθαθβ αβ2θα αβ2θαθβ αβ3θα αβ3θαθβ

θβ β αθβ αβ αβθβ αβ2 αβ2θβ αβ3 αβ3θβ

θαθβ βθα βθαθβ β2θα β2θαθβ β3θα β3θαθβ

βθβ β2 β2θβ β3 β3θβ

Inspecting the above action of H we see that

E0
1 = E1

1 = Z
2 × Z

7
2. (4.8)

These have bigger torsion subgroups, each with 128 elements, than the T -
dual K-classes, which each had only 32. While the extension problem could
in principle resolve this discrepancy, we will argue that instead the extra
classes are removed by the higher AHSS differential d5. These will remove
precisely the same elements that were removed, in the derivation of the
T -dual K-theory using the Künneth theorem, by the fact that

Z8 ⊗ Z2 = Tor(Z8, Z2) = Z2, (4.9)

which is smaller than the original Z8 by a factor of 4 [28].

To find the action of d5 we will use the dual description of these coho-
mology classes in terms of D-branes. The product of two T -dualities is an
isomorphism of twisted K-theory and furthermore the extension problem is
the same as before, yielding the same pattern of fractional brane charges
inside of higher dimensional branes. In particular, the branes wrapping the
CP 2 ⊂ CP 3 each carry half a unit of charge of a brane wrapping CP 1 ⊂ CP 3

while those wrapping CP 1 ⊂ CP 3 each carry half a unit of charge of a brane
at a point in the CP 3 directions. The first of these facts follows from the
fact that the normal bundle of CP 2 ⊂ CP 3 is not spin, and the second
follows from this argument with the same factor of 2 that we saw in the
K-theory of RP 7. In terms of the Steenrod algebra these two relations are
consequences of

sq2β = β2, P 1β = β3, (4.10)
where again P 1 acting on 2-torsion is a secondary operation that cubes
2-classes. In fact the RP 7 case is just a pullback of this one using the
projection map π: RP 7 −→ CP 3 of equation (4.1).

Consider for example the D5-brane dual to αθα + βθβ. This brane consists
of two components, one wrapping CP 3 × S1

β and the other wrapping CP 1 ×
CP 2 × S1

α, where the extra dimension again comes from the fact that dual
branes live in the space augmented by an extra deformation direction. Both
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of these components contain H-flux, but the orientations disagree and the
total integral of H cancels

∫
CP 3×S1

β

H = −
∫

CP 1×CP 2×S1
α

H = 2
∫

CP 2
. (4.11)

Here the integral denotes the homology–cohomology pairing over the inte-
gers, and the terms are to be interpreted as operators that act on cohomology
over the integers.

The H-flux on each component is nonvanishing, and so each component
requires a D3-brane insertion to cancel the corresponding Freed–Witten
anomaly, or equivalently, as a sink for the worldvolume magnetic flux sourced
by the H-flux. The cancellation (4.11) means that the same number of D3-
branes are emitted from one D5 as are absorbed by the other and so this is
not a D5-D3 baryon, reflecting the fact that aθα + bθβ is d3-closed. As there
are two units of H-flux, two D3-branes connect the pair of D5’s. To sink the
magnetic flux sourced by H, the intersection of the pair of D3’s and each
D5 component needs to be PD to the H-flux restricted to the components
worldvolume. This means that each D3 wraps CP 2 ⊂ CP 3 × S1

β in the first
component and CP 2 ⊂ CP 1 × CP 2 × S1

α in the second. It is a critical test
of the consistency of this picture that the topology of the tube of D3-brane
is the same at both endpoints (figure 3).

As the normal bundle of CP 2 ⊂ CP 3 is not spin, the D5 component wrap-
ping CP 1 × CP 2 × S1

α must contain a half unit of charge of a D3-brane
wrapped on CP 1 × CP 1 × S1

α, which is dual to w2 of its normal bundle.
Similarly the D3-brane tube wraps CP 2 ⊂ CP 3 times an interval and so it
must contain a half unit of D1 charge on CP 1 ⊂ CP 3 times the interval. On
the other hand the second component CP 3 × S1

β, which has a trivial normal
bundle, apparently supports no D3 charge. Thus the D1-charge inside of
the D3-brane cannot end on the second component, and must instead con-
tinue off to infinity. There are two D3 tubes each carrying half a unit of D1
charge, and so there is a total of 1 unit of D1 charge escaping. Our entire
configuration is then a D1–D5 baryon. While each D3 carried half-integral
D1 charge, the D1-charge escaping needed to be integral to satisfy the Dirac
quantization condition. The fact that it indeed is integral corresponds to
the existence of the division by two in the definition of P 1.

As in Refs. [26, 33] a Dp-D(p − 4) baryon implies that d5 of the dual of
the Dp brane is the dual of its intersection with the D(p − 4) brane. In our
case this reads

d5(αθα + βθβ) = αβ2θαθβ. (4.12)
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Figure 3: Two D5 components have worldvolume H-fluxes that cancel,
meaning that one absorbs the D3’s sourced by the other. Thus the combi-
nation is d3 closed, but it is not d5 closed. This means that the pair of D5’s
requires a D1 insertion, whose cross-sections are dual to d5 of the cocycle
dual to the D5 pair. D(p + 4)-Dp baryons are always dual to cycles related
by d5.

Notice that this agrees with the formula for d5 conjectured in Ref. [26]

d5(αθα + βθβ) =
(

sq2 H

2

)
(αθα + βθβ) = (sq2(αθα + βθβ))(αθα + βθβ)

= β2θβ(αθα + βθβ) = αβ2θαθβ. (4.13)

As always we may interpret the two factors of the differential as the two
steps connecting the D1 and the D5. First the H takes the D5-brane to
the two D3 tubes, then the sq2/2 calculates the D1 charge of each tube.
This is the same factor of 2 that came into the two step brane within brane
embedding in the solution of the extension problem for RP 7. Perhaps when
there are n steps of embedding there is always a factor of (n!) that counts
the orderings of the embeddings.

This story proceeds analogously if we multiply our class by a factor of β,
so that each brane that wrapped CP j ⊂ CP 3 now wraps CP j−1 ⊂ CP 3. We
then find

d5(αβθα + β2θβ) =
(

sq2 H

2

)
(αβθα + β2θβ)

= β2θβ(αβθα + β2θβ) = αβ3θαθβ, (4.14)

which again is in agreement with Ref. [26].
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Restricting to the kernel of d5 now kills two of the seven factors of Z2, and
another two factors are killed when we quotient by the image. In all we lose
two Z2’s from each associated graded K-group and thus the quotient of the
kernel of d5 by its image is the same associated graded K-group found for
its T -dual in equation (3.15). The extension problems proceed identically,
and so the twisted K-theory of M̂ agrees with the untwisted K-theory of its
T -dual RP 3 × RP 7. Note that here the secondary operation, d5, is T -dual to
the primary operation d3. Secondary operations are notoriously difficult to
calculate, but this example suggests the possibility that in some classes they
may be calculable as primary operations on an auxiliary space. For example
one may try to find a recursive relation satisfied by Massey products.

4.2 The twisted case: S3 × S2k+1 × S6−2k

RP 2k+1 is a circle bundle over CP k with Chern class equal to two. Thus
RP 3 × RP 2k+1 × S6−2k is a 2-torus bundle over CP 1 × CP k × S6−2k. We
claim that T-dualizing two particular generators of this torus, in the presence
of the above torsion H-flux (equation (3.23)), yields IIB string theory on
S3 × S2k+1 × S6−2k with no H-flux. We will ignore the spheres S6−2k which
support neither the H-flux nor the curvature of the circle bundles.

We begin by T -dualizing the circle S1
a fiber in RP 3

S1
a −−−−→ RP 3 × RP 2k+1

π

⏐⏐�
CP 1 × RP 2k+1

(4.15)

which has Chern class 2α, where α is the generator of H2(CP 1) = Z. The
circle S1

a is trivially fibered over the RP 2k+1, but the RP 2k+1 is included in
this diagram because the T -dual circle Ŝ1

a will be nontrivially fibered over
it. As always the T -dual fibration is defined by setting the first Chern class
equal to the pushforward of the original H-flux

F̂ = π!H = π!(ab2 + a2b) =
∫

S1
a

H. (4.16)

The pushforward is just the integral of a differential form representative of
H (which by an abuse of notation we have also called H above) over the fiber
S1

a. Although this three-form is exact, it is the derivative of a two-class that
does not satisfy the quantization condition (it is half-integral) and so this
integral will give a two-form on S2 × RP 2k+1 which is again the derivative
of a form that does not satisfy the quantization condition. There are many
differential form representatives of H that differ by exact forms that are
derivatives of forms that do satisfy the quantization condition, for example
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three times the representative chosen. However we will see that the answer
is a Z2 cohomology class and so is unaffected by the addition of even classes.

While we could construct an explicit representative and do the integral,
an easier approach is to evaluate the pushforward by equating it with the
homology–cohomology pairing with Z2 coefficients.7 Then the pushforward
is just the pairing with the generator 〈a| of H1(RP 3; Z2), which is our fiber.
We then lift our result back to the integral cohomology of the base CP 1 ×
RP 2k+1 × S6−2k. Thus

F̂ = π!(ab2 + a2b) = 〈a|ab2 + a2b〉 = 〈a|ab2〉 + 〈a|a2b〉 = b2 + 2ab = b2,
(4.17)

where 2ab vanishes because a is Z2-valued. The vanishing of this term was
necessary because ab does not lift to an integral class in H2(RP 3 × RP 2k+1).
b2 is the nontrivial class in H2(RP 2k+1) = Z2 and so our dual circle Ŝ1

a is
nontrivially fibered over RP 2k+1 and is trivially fibered over the CP 1 ×
S6−2k

Ŝ1
a −−−−→ CP 1 × S2k+1 × Ŝ1

d × S6−2k

π̂

⏐⏐�
CP 1 × RP 2k+1 × S6−2k.

(4.18)

Here we have used the fact that the unique nontrivial Ŝ1
a bundle over RP 2k+1

is topologically just S2k+1 × Ŝ1
d .

The relationship between the two circles Ŝ1
a and Ŝ1

d will be crucial later
and so we will describe it. The Ŝ1

d action may be seen in the Ŝ1
a bundle

picture as the diagonal action of Ŝ1
a and the free circle action whose orbits

are each RP 1 ∈ RP 2k+1. This diagonal action is free and has a space of
orbits S2k+1 instead of the original RP 2k+1. Each orbit of Ŝ1

a is twice as
long as an orbit of Ŝ1

d , because after circumnavigating one Ŝ1
d orbit (which

would take it back to where it started) the Ŝ1
a ∝ Ŝ1

d + RP 1 orbit has also
traveled around the lift of the noncontractible loop RP 1, and so it is on the
opposite side of sphere.8 Thus the Ŝ1

a orbit only closes after the second
loop. An Ŝ1

a orbit then consists of two Ŝ1
d orbits plus two trips around RP 1.

The RP 1 generates H1(RP 2k+1) = Z2 and so two trips around the RP 1 may
be deformed into none. We could have predicted in advance that, except for
the factor of 2, our two loops would be homotopic because the fundamental
group of S2k+1 × S1 is one-dimensional (figure 4).

7Alternatively the pushforward of H may be calculated by using the exactness of the
Gysin sequence for this circle bundle.

8This is the reason that antipodal points on the sphere are identified in the space of
Ŝ1

a orbits.
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Figure 4: The space S2k+1 × Ŝ1
d admits two different free circle actions. One

circle action simply goes around the Ŝ1
d and so has a space of orbits S2k+1.

The other has the same action plus the free circle action on the S2k+1, so by
the time it has gone around Ŝ1

d once it is on the other side of S2k+1. This
orbit, called Ŝ1

a, therefore does not close until it has gone around Ŝ1
d twice,

when it has returned to its starting point on the sphere. At a given point
on Ŝ1

d the orbit Ŝ1
a intersects two antipodal points on the S2k+1, and so the

space of Ŝ1
a orbits is the space of pairs of antipodal points, RP 2k+1.

The dual H-flux, Ĥ, is determined from the curvature of the original S1
a

bundle, which had a Chern class of 2 times the generator α of H2(CP 1) = Z,
via the condition [23]

2α = F = π̂!Ĥ =
∫

̂S1
a

Ĥ, (4.19)

and the fact that the parts of H and Ĥ in the cohomology of the base
CP 1 × RP 2k+1 must agree. The original H did not contain any terms in the
cohomology of the base, and so neither will the dual Ĥ. Thus Ĥ is simply

Ĥ = 2α ∪ θa, (4.20)

where θa generates H1(Ŝ1
a) = Z.

This is the answer, but to use the formalism of Ref. [23] to perform the
next T -duality we will rewrite Ĥ in terms of Ŝ1

d , whose first cohomology
generator will be named θd. As Ŝ1

a is homotopic to twice Ŝ1
d the cohomology

generator θd must be cohomologous to twice the generator θa. This factor
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of two is necessary to preserve the homology–cohomology pairing, or equiv-
alently the fact that the cohomology classes need to integrate to one over
their corresponding cycles.

Note that while as a cohomology class

[θd] ∼ 2[θa], (4.21)

it is in fact crucial, even to the topology of the space of orbits of the circle
action, that they differ by the single unit free circle action on the S2k+1, or
equivalently by two units of the generator of H1(RP 7).

Summarizing, the first T -duality has left us with CP 1 × S2k+1 × Ŝ1
d ×

S6−2k with an NS-flux

Ĥ = 2α ∪ θa = α ∪ θd + αdφ ∼ α ∪ θd, (4.22)

where dφ is the cohomologically trivial unit generator of the free circle action
on the S2k+1. The last equality is an equality of the cohomology classes that
follows from the cohomological triviality of dφ, but we will return to the dφ
term later. Note that while shifting H by an exact form dB does not change
its topology, it does change the gauge-invariant Wilson loops

∫
B and so may

have an effect on the physics. We have in effect changed the background that
we are considering. We will claim that in the case k = 3 a consistent and a
potentially inconsistent compactification are related by such an exact shift.

The second T -duality is much easier. We now want to T -dualize the
circle Ŝ1

d , and so we will have T -dualized all of our original T 2 bundle over
CP 1 × CP k, but in a nonorthogonal basis. If we T -dualized about Ŝ1

a we
would return to where we started. Despite the fact that Ŝ1

a is homotopic to a
multiple of Ŝ1

d on the total space, it yields a topologically inequivalent circle
bundle 9 and we will see that it leads to a topologically inequivalent T -dual.
However, as the T -duals with respect to Ŝ1

a and Ŝ1
d are related to each other

by two T -dualities they will necessarily have isomorphic K-theories twisted
with respect to their corresponding H-fluxes.

The circle Ŝ1
d is trivially fibered over the base CP 1 × S2k+1 × S6−2k with

an H-flux that contains no component entirely on the base, thus the dual

H-flux is trivial. The fibration of the dual ̂̂
S1 over CP 1 × S2k+1 × S6−2k is

9For example the spaces of orbits, S2k+1 and RP 2k+1, are not homeomorphic.
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described by the Chern class

̂̂
F =

∫
̂S1

d

Ĥ =
∫

̂S1
d

α ∪ θd = α, (4.23)

which is the generator of H2(CP 1) = Z. This identifies the dual bundle
as the Hopf fibration over our 2-sphere, whose total space is the 3-sphere.

The curvature ̂̂
F contains no component on the (2k + 1)-sphere, and so our

resulting spacetime is topologically a Cartesian product of spheres

̂̂
S1 −−−−→ S3 × S2k+1 × S6−2k

ˆ̂π

⏐⏐�
CP 1 × S2k+1 × S6−2k

(4.24)

with no H-flux. As there is no H-flux the resulting twisted K-theory is just
the untwisted K-theory of S3 × S2k+1 × S6−2k which is isomorphic to its
integral cohomology, as there is no torsion

K0(S3 × S2k+1 × S6−2k) = K1(S3 × S2k+1 × S6−2k) = Z
2 ⊕ Z

2 = Z
4.

(4.25)

Note the crucial role played by the factor of two difference in the two
circles Ŝ1

a and Ŝ1
d . Had the corresponding 1-cycles not had a relative factor

of two difference in their normalization then there would have been two units
of Ĥ and so two units of ̂̂

F yielding RP 3 × S2k+1 × S6−2k which would have

K0(RP 3 × S2k+1 × S6−2k) = Z
4 ⊕ Z

2
2. (4.26)

We would not have been able to eliminate this possibility using the AHSS
computation of the original twisted K-theory as it would correspond to the
other solution of the extension problem (3.30). Thus the first map f of the
extension seems to be multiplication by two because, like in the case of the
computation of the twisted K-theory of bundles over a single RPn, the T -
dual orbit (Ŝ1

a) is twice as long as the shortest orbit (Ŝ1
d). This new shortest

element is not in the image of f , which only arrives at multiples of Ŝ1
a. Thus

we may think of the short element Ŝ1
d as the nontrivial element in the image

of g, 1 ∈ Z2. The extension would have split, yielding the other result for
the twisted K-theory of RP 3 × RP 2k+1 × S6−2k if instead there had been no
relation between the loops Ŝ1

a and Ŝ1
d and they had formed separate classes

in K1, which is T -dual to K0(RP 3 × RP 2k+1 × S6−2k).
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5 D3-brane insertion on RP 1 × RP 2k−3 × S6−2k

5.1 The S-dual configuration with torsion G3

While the twisted K-theories of all of the spaces above are well-defined,
RP 3 × RP 2k+1 × S6−2k configurations with torsion H-flux

H = ab2 + ba2, (5.1)

do not correspond to S-covariant K-theory classes when k > 1 because

Sq3H = H ∪ H = a2b4 �= 0. (5.2)

For example if the other fluxes G2j+1 all vanish then, if we implement
S-duality by simply interchanging the integral classes G3 and H, we find
that now the S-dual fields are

H̃ = 0, G̃3 = ab2 + a2b, (5.3)

and so there is a Freed–Witten anomaly

d3G̃3 = (Sq3 + H̃∪)G̃3 = Sq3G̃3 = a2b4. (5.4)

This is to be expected, compact flux configurations in the presence of branes
do not correspond to K-theory classes because the fluxes are not closed under
the AHSS differentials. In this case the unit of D3 charge

QD3 = d3G̃3 = a2b4 = 1 ∈ H6(RP 3 × RP 2k+1 × S6−2k) = Z
2
2, (5.5)

is dual to the nontrivial element of the Z2-valued homology cycle

H4(RP 1 × RP 2k−3 × S6−2k). (5.6)

In short, this S-dual story is a typical application of the Freed–Witten anom-
aly. In addition there may be additional D-branes required to cancel tadpoles
of a purely gravitational origin, such as the D3-brane dual to P .

However if k = 3 then

G̃3 ∪ G̃3 ∪ G̃3 = a3b6 �= 0, (5.7)

and so the D3-brane, which is PD to G̃3 ∪ G̃3, itself supports G̃3-flux equal
to the torsion generator ab2 of H3(RP 1 × RP 3) = Z ⊕ Z2, where we have
dropped the unimportant S0 factor. This is S-dual to a D3-brane that
supports torsion H-flux, which leads to a Freed–Witten anomaly that forces
the D3-brane to source a single D-string that wraps the dual RP 1 ⊂ RP 3.
In this case the D3-brane worldvolume action term

SD3 ⊃
∫

C2 ∧ ∗F, (5.8)

implies that a D3-brane supporting a unit of G̃3-flux has a unit of electric
charge on its worldvolume gauge theory.
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The D3-brane is compact and so the total charge must be canceled, which
requires the insertion of a fundamental string, whose endpoint on a D-brane
is an electric charge. The fundamental string, like its S-dual, wraps RP 1

and extends away from the D3-brane. However our total spacetime is com-
pact and so this F -string must have two ends. Yet there is no obvious
candidate for another brane on which this string may end without creating
another anomaly, since there are no nontrivial K-classes corresponding to
the potential wrappings of the required 1 or 5-brane baryons. Thus the con-
figuration is apparently inconsistent once we take into account the S-dual
Freed–Witten anomalies, although we cannot rule out the possibility that
some more complicated anomaly allows this F -string to be absorbed. For
example if P contains a term a2b4 then there will be a gravitational D3
wrapping the same cycle as the D3-brane above, which will cancel its D3-
brane charge or equivalently supply a second endpoint for the string and so
restore the consistency of the configuration.

5.2 Torsion H

In the story of interest, however, it is not G3 whose square is nontrivial
but rather H. This means that we need to replace equation (5.4) with
the S-dual Freed–Witten anomaly. This is the Freed–Witten anomaly as
derived for the worldvolume of an NS5-brane instead of a D5-brane. The
usual derivation of the anomaly relies upon the use of the worldsheet of a
perturbative string which can not obviously be made Bogomol’nyi-Prasad-
Sommerfield (BPS). An application of S-duality to that argument may force
us to go to a region of moduli space where the strong coupling effects render
such perturbative strings unavailable, although in the large volume limit this
calculation should nonetheless be reliable [20]. And so rather than trying
to S-dualize the argument of Freed and Witten, we will instead define the
action of S-duality on torsion elements of integral cohomology by extending
its action upon the elements of real cohomology dB and dCk. That is, we
will say that S-duality exchanges the integral classes H and G3. We will
then conjecture that IIB string theory is S-duality covariant and search for
inconsistencies.

When k > 1 our configuration with torsion H �= 0 and G = 0 corresponds
to a twisted K-theory class in K1

H but not to a class in the untwisted
K-theory K1

H̃=G3=0
with torsion G̃3 = H due to the anomaly (5.4). In

particular our configuration has a Freed–Witten anomaly which is S-dual
to equation (5.4)

QD3 = dG5 = d3H = H ∪ H = a2b4, (5.9)
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leading again to a D3-brane supported on RP 1 × RP 2k−3 × S6−2k. Again we
are not considering the possible gravitational correction P to QD3.
D3-branes are invariant under S-duality, and according to our conjecture
Z2-charged D3-branes are invariant too. Thus we have found that the
brane that cures this anomaly is just the S-dual of the brane that cured the
S-dual anomaly above, which is not surprising as our formula for D3 charge
is S-duality invariant.

As another check we can see what happens to the system when the H-flux
is turned on or off. An H-flux can be turned on or off by passing an NS5-
brane that sources it. For example in Ref. [33, 36] where twisted K-theory
classified fluxes at moments in time, an NS5-brane that sweeps out a 6-cycle
during some interval of time will change the H-flux on the dual cycle. If
the cycle contains G3 or if its normal bundle is not spinc then the NS5-
brane worldvolume will have an anomaly that is canceled by a D3-brane
insertion, making a baryon [10] configuration in which an NS5-brane sweeps
out a cycle and a D3-brane ends on the NS5-brane and continues toward an
infinity in the time direction. Thus the initial and final conditions differ by
a unit of H-flux and also possibly some D3-brane charge which is equal to
the anomaly on the NS5-brane worldvolume and is approximated by equa-
tion (5.9). In fact such instantons interpolate between brane configurations
that are homologically distinct but represent the same twisted K-homology
classes in the S-dual twisted K-homology KG3 .

In our case there is no time direction. We have used all 10 directions to
construct RP 3 × RP 2k+1 × S6−2k. However we are not using K-theory to
find the conserved charges on a timeslice. Rather we are using K-theory
to classify configurations on all of spacetime, as in Ref. [2]. In that paper,
rather than transforming between different cohomological representatives
of the same K-class on different timeslices via instantons that act over an
interval of time, the author uses Sen’s construction [37] to transform between
cohomological representatives of the same K-class on the whole of spacetime
via instantons that act over an interval in a deformation direction that is not
one of the 10 dimensions of the spacetime. The deformation direction in this
case corresponds to the RG flow of the string field theory undergoing tachyon
condensation. Similarly the relation between different representatives of the
same class of the S-dual twisted K-theory of the deformed conifold was seen
to be an RG flow, the Klebanov–Strassler cascade, in Ref. [16]. In short, the
RG flow means that we can introduce an extra non-physical deformation
dimension in which we may place Maldacena-Moore-Seiberg (MMS) instan-
tons that transform between distinct cohomology representatives of the same
twisted K-theory class. The K-classes may then be identified with the uni-
versality classes of the theory whose flow we have used. The deformation
direction appeared similarly in Ref. [32].
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Now we may toggle the H-flux by wrapping an NS5-brane around the
oriented Z2-valued cycle of H7(RP 3 × RP 2k+1 × S6−2k) that came from the
Tor term in the Künneth formula. This cycle is the PD of ab2 + ba2, which is
just the dual of ab2, RP 2 × RP 2k−1 × S6−2k, glued to the dual of a2b, RP 1 ×
RP 2k × S6−2k, along their common RP 1 × RP 2k−1 × S6−2k, which is cut in
each component to make the components orientable. Note that the NS5-
brane spans 7 dimensions, instead of the usual 6, in fact all branes extend in
one extra dimension now that we have included the deformation direction.
However the NS5-brane does not extend in the deformation direction, which
is the reason that as we pass the NS5-brane in the deformation direction the
H-flux changes, toggling the Z2 ⊂ H3(RP 3 × RP 2k+1 × S6−2k) on or off.

When k > 1 H ∪ H �= 0 implies that this NS5-brane is anomalous. This is
the reason that the flux that it sources suffers from a Freed–Witten anomaly.
The NS5-brane wraps a cycle whose normal bundle is not spinc, and so it
may only be rendered consistent if it also sources a Z2 charged D3-brane.
This 5-dimensional D3-brane ends with codimension 3 on the NS5-brane
and continues to plus or minus infinity in the deformation direction. Thus
the D3-brane charge, which itself is Z2 valued, is toggled at the same time
as the H-flux is toggled. When H vanishes the D3 charge needs to vanish
(more generally it is equal to P ) because D3 is a source for dC4 which is
gauge invariant in the absence of H-flux and so the integral of ddC4, the total
D3-brane charge, must vanish over the boundaryless RP 3 × RP 2k−3 × S6−2k

by Stokes’ theorem. If the D3-charge is zero when H is zero and the D3-
charge changes when H changes then the D3-charge must be 1 ∈ Z2 ⊂ H4
when H is 1 ∈ Z2 ⊂ H3. In conclusion we have again used the S-dual Freed–
Witten anomaly, this time on the worldvolume of the NS5-brane, and again
we have found the same result, that our configuration with H flux has a
unit of D3-brane charge wrapped on RP 1 × RP 2k−3 × S6−2k.

6 T -dualizing to D2

6.1 The T -duality

We have found that Z2-valued D3-branes, one of which may be inconsistent,
are required for anomaly cancellation in the cases k = 2 and k = 3. These
branes cannot be removed without also removing the H-flux. However the
T -duals, in particular the fluxless product of spheres, have no Freed–Witten
anomalies and so the above restriction appears to have disappeared. This
means that during the course of T -dualizing the D3-branes need to disap-
pear. In this section we provide a proposal for how the brane charge might
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change. Notice that if P = a2b4 then the branes are simply canceled by the
gravitational branes before any dualities.

In the case k = 3 the D3-brane is a baryon which sources a D-string as it
wraps nontrivial H-flux. Its T -dual is therefore a kind of baryon as well, as
the D-string dualizes to a D2-brane that ends on our dual D2. The twisted
K-theory classification does not include D-brane-D-brane baryons [36] and
so this brane does not dualize to a class in twisted K-theory. We do not need
to use the claim that the compactification is inconsistent in this argument.
However the fact that the baryon has a brane of the same dimension ending
it suggests the seriousness of the topological obstruction confronting it. In
fact it wraps a hemisphere that has a boundary, and so the D2-brane ending
on it is the brane continuing out from that boundary.

The case k = 2 is more interesting. Although RP 5 is not spin, the T -
duality to S3 × S5 × S2 without fluxes ensures that the spectrum of the full
string theory is supersymmetric, as in Ref. [21]. As noted in the introduc-
tion, since the dual spheres are small the T -duality does not prove that
string theory can be defined on this non-spin space.10 If it cannot then
we need to consider the RP 5 to be an orientifold. This would change the
classification of fluxes. For example, if we replace the S2 by a T 2 then the
desired orientifolding may be achieved with an O3-plane that wraps the RP 3

and a circle in the torus. In this case the three and seven-dimensional field
strengths will be classified by Z2-twisted cohomology [10, 22] and in partic-
ular will be Z2-valued. The five class, under which our D3 is charged, will
still be classified by integral cohomology. However it is no longer clear that
our H-flux is coclosed. We will not consider this case further.

While we cannot prove that the twisted k = 2 string theory exists, we
can still study the charges and duality transformations that the D3-brane
will have if it indeed does exist. The D3-brane wraps RP 1 × RP 1 × S2 ⊂
RP 3 × RP 5 × S2. Recall that we constructed H = ab2 + a2b, by taking the
Bockstein of a two-class ab. Thus we identify the 2-class ab with the B-field
and use the homology–cohomology pairing to write

∫
RP 1×RP 1

B ∼ 1. (6.1)

The integral of the B-field over a 2-cycle of a Dp-brane measures the world-
volume D(p − 2)-charge, and so already we see that this D3-brane carries
D1-brane charge. This is a consequence of the extension problem, in which

10The same applies the example of Ref. [21] and so we are optimistic that, using the
H flux, it can be defined.
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the corresponding

Z2 = H2(RP 3) ⊗ H4(RP 5) ⊂ H6(RP 3 × RP 5), (6.2)

was absorbed by

Z = H3(RP 3) ⊗ H5(RP 5) = H8(RP 3 × RP 5), (6.3)

via the extension

H8(RP 3 × RP 5) = Z −→ Z −→ Z2 ⊂ H6(RP 3 × RP 5). (6.4)

In terms of cohomology classes the extension problem set

2a2b4 = a3b5, (6.5)

which, after Poincaré dualizing, means that our D3-brane carries half a unit
of charge of D1-brane wrapped around the S2. Thus we see that while our
D3-brane appears to be torsion, even multiples of the D3 do not decay into
nothing, but rather they leave D-strings that wrap the 2-sphere. This sets
the normalization of the B-flux in equation (6.1) to one half.

If P = a2b4 then there will be a second D3 wrapping the same cycle, and
so the two D3’s will annihilate. The nature of the gravitational anomaly that
the D3 cancels will determine its worldvolume D1 charge, which will be half-
integral. Depending on the D1 charges carried by the D3-branes, which are
in principle determined entirely by the anomalies of the configuration, there
will be some integral number of D1-branes remaining after the annihilation.

Although the T -dual has no torsion homology, we may still see the exten-
sion problem in action in the dual picture. We have seen (6.1) that the
D3-brane wraps a torus RP 1

a × RP 1
b that supports a half unit of NS B-flux,

while its worldvolume U(1) gauge field strength F is quantized. B + F is
gauge-invariant and we may formally construct a pseudo-bundle that has
Chern class B + F . The connection of this bundle A may be integrated over
RP 1

a at various values of φb ∈ RP 1
b to yield a Wilson loop

f(φb) =
∫

RP 1
a×φb

A. (6.6)

As B + F is half-integral, the Wilson loop is not single valued, but rather
it shifts by π each time one encircles RP 1

b

f(φb + 2π) = f(φb) + π. (6.7)

The D3-brane wraps the RP 1
a which is T -dualized, and so it is dual to a

D2-brane that is localized at a point φ̂a on the dual circle Ŝ1
a. This point is
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determined by the Wilson loop

φ̂a(φb) = f(φb), (6.8)

and so each time one encircles RP 1
b , the brane goes half way around Ŝ1

a.
This is just the construction of Ŝ1

d , which is half of Ŝ1
a plus RP 1

b , and so the
dual D2-brane wraps S2 times the Ŝ1

d , which is the generator

Ŝ1
d = 1 ∈ H1(S2 × S5 × S1). (6.9)

Meanwhile the dual of the D1-brane that wrapped the S2 is a D2-brane that
wraps S2 × Ŝ1

a. This is because it did not wrap the original circle RP 1
a so it

must wrap the dual circle Ŝ1
a. However Ŝ1

a corresponds to the element

Ŝ1
a = 2 ∈ H1(S2 × S5 × S1), (6.10)

and so, as indicated by the extension problem, the D1-brane (which gener-
ated Z) dualizes to twice the D3-brane (which generated Z2). If P = a2b4

then the D2 will wrap Ŝ1
a an integer number of times, or equivalently it will

wrap Ŝ1
d an even number of times.

6.2 The D2 disappears when a global B-field is included

It seems a bit strange that the D2-brane disappears when a global B-field is
included. After T -dualizing in the case k = 2 we have found that the K-class
corresponding to D1-branes on the S2 is odd. No such restriction exists on
the product of spheres S2 × S5 × S1 × S2 with no fluxes that appears after
T -dualizing Ŝ1

d , and so as a consistency check we will investigate how this
condition might disappear. In the process we find a new variant of the
Freed–Witten anomaly.

After the first T -duality the H-flux is

H = 2α ∪ θa, (6.11)

where θa = dφa generates H1(Ŝ1
a) = Z. To perform the second T -duality,

along Ŝ1
d , we claim that we need to11 decompose H into a part along and

transverse to Ŝ1
d . That is, we wish to write H in terms of θd instead of

θa. This is no problem topologically, as 2θa is cohomologous to θd, and

11Otherwise we might expect to find something in the metric and the B-field of the
dual product of circles S3 × S5 × S2 that produces D1 charge on the S2, such as a twisted
version of an S-dual of the 1-loop effect in Ref. [17]. If no such effect exists then this
would suggest that P = a2b4.
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for the twisted K-theory automorphism only the cohomology class of H is
important [23,35]. In particular we may rewrite H as

H ′ = α ∪ θd. (6.12)

However geometrically H and H ′ differ by an exact form B

∆H = H − H ′ = α ∪ (2θa − θd) = d((2φa − φd)α) = dB. (6.13)

Ŝ1
a is twice as long as Ŝ1

d , and so the function 2φa − φd is a stepfunction which
is zero the first time around Ŝ1

d and then 2π the second. While ∆H is exact
and so topologically trivial, we will see that it enters an anomaly multiplied
by a gauge-dependent term and the product is topologically nontrivial.

To see this we perform a 9–11 flip (this is the same as T -dualizing the
S-dual description of Section 5.1 in which G̃3 �= 0 and H̃ = 0) so that Ŝ1

a

is the M -theory circle. Now our IIA spacetime is CP 1 × RP 5 × S1
m × S2

where S1
m is the former M -theory circle. The new H is roughly

H = 2α ∪ θm. (6.14)

However the M -theory lift of ∆H, which is ∆G4, is not independent of the
M -theory coordinate φa. On the contrary since it is the derivative of the
step function it is a Dirac delta function at φa = 0 and φa = π, with opposite
signs at the two values.

Now there is also G2-flux

G2 = b2. (6.15)

We recall, from the extension problem for the K-theory of RP 2k+1, that
G2-flux carries half a unit of G4-flux. That is to say

2G4 = sq2 G2 = G2 ∪ G2 = b4. (6.16)

Now we use the Freed–Witten anomaly

PD(D2) = ddC5 = ∆H ∪ G4 = α ∪ θm ∪ b4, (6.17)

to conclude that the shift in H by an exact form yields a half D2-brane
wrapping RP 1 × S2 at φa = 0 and an anti half D2 at φa = π, the two points
where H is nonzero. As H3(RP 1 × S2) = Z2 there is no topological differ-
ence between a D2 and an anti-D2 wrapped on this cycle but the orientation
may mean that they carry opposite F-string charges, which are Z-valued.
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The D2-brane worldvolume coupling

SD2 ⊃
∫

C1 ∪ B, (6.18)

combined with

1 = G2 = dC1, (6.19)

implies that half D2-branes each carry half-integral charge of F -string
wrapped around S2. As always, this F -string is an M2-brane and wraps
the M -theory circle, Ŝ1

a. However the relative signs of these two half-strings
depend on a lift of their Z2 classes that we have not determined and perhaps
it cannot be determined without finding additional consistency conditions
satisfied by the strings, although it seems plausible that the lifts of a brane
and antibrane cancel, suggesting P = a2b4. Thus the total F -string charge
changes by an amount that depends on their unknown lift. Now doing a
9–11 flip back we find that each F -string becomes a D2-brane that wraps
S2 × Ŝ1

d , which as required is the T -dual of the D3-brane insertion in IIB.
If we can calculate the above lift then we will be able to compute change in
D-brane charge, which will in turn allow us to compute P .

Thus we have learned that the addition of an exact form to H can poten-
tially, due to an S-dual composite Freed–Witten anomaly, toggle the D2-
brane charge that is produced by our T -duality. As this addition of the
exact form is apparently necessary between the two T -dualities if we wish
to use the T -duality prescription of [23, 24], we find that the charge of our
D3 insertion may be canceled before we arrive at S3 × S5 × S2 with no flux.
We feel that this result, despite our inability to compute the lifts, teaches
us about the limitations of the K-theory program. The K-theory classifica-
tion relies heavily on forgetting the Wilson loops. But here we see that the
Wilson loops may be able to affect the D-brane charges.

It may seem as though we have only replaced one problem with an equiv-
alent problem. After T -dualizing from RP 3 × RP 7 × S2 we found that the
original D-brane insertion implied that the brane charge is, up to gravi-
tational corrections, an odd element of the Z = K1(CP 1 × S5 × S1

d × S2).
This did not seem to agree with the physics of the final spacetime S3 ×
S5 × S2, but we found that before doing the second T -duality we need to
include a globally defined B-field that can change our K1 class by one unit
in Z. Now the K-homology class is even instead of odd, and so we may
ask again how this restriction arises from the viewpoint of the product of
spheres. The answer, as was explained in the introduction, is that because
our spacetime is compact the only allowed K-homology class for D-brane
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wrappings is zero12 , which is even and so there is no contradiction. To
get branes filling out the entire twisted K-homology we may, for example,
replace the 2-sphere with a noncompact space. In this case the K-class
of the product of spheres may be either odd or even. Correspondingly, the
original product of projective spaces may now have a dF type D3-brane that
wraps RP 1 × RP 1 ⊂ RP 3 × RP 5 and cancels the D3 charge but preserves
the consistency of the configuration. Thus in the noncompact case there
may be any net D3 charge in the initial configuration and so the K-class
may be odd or even in the T -dual configuration, while in the compact case
the original D3-charge is 1 corresponding to a final K-class which is 0. In
both cases we have then seen that the allowed charges before and after the
T -duality can agree, as they must.

6.3 A correction to the W7 anomaly

The anomaly used in this argument may be summarized as

PD(F − String) = ddB6 = H ∪ G2 ∪ G2 ∪ C1. (6.20)

At an intermediate step, to construct the D2-brane, we used a simpler
anomaly

PD(D2) = ddC5 = H ∪ G2 ∪ G2. (6.21)
This appears to be an extra term in the DMW anomaly [4]

W7 = 0. (6.22)

Equation (6.22) is a special case of the Freed–Witten anomaly

PD(D2) = ddC5 = (Sq3 + H∪)G4, (6.23)

because when H vanishes and there are no D2-branes the flux quantization
condition on spin manifolds

G4 = w4 mod 2, (6.24)

yields the DMW anomaly

W7 = Sq3(w4) = Sq3G4 = 0. (6.25)

The flux quantization condition (6.24) has been demonstrated on spin man-
ifolds, and the current spacetime is not spin. For non-spin manifolds coun-
terexamples are known [21,23]. In this case in fact it holds because

w4(RP 5) =
(

6
4

)
mod 2 = 1, (6.26)

12More precisely we argued that it is the class for which there are only Hanany–Witten
type brane charges. Thus the allowed class is odd before we change the B-field, 0 after,
and 0 on the final S3 × S5 × S2.
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and G4 is nontrivial as G2 produces a half unit of G4-flux via G2 ∪ G2. Thus
the applicable quantization condition in this non-spin case may include a
contribution

G2 ∪ G2 mod 2, (6.27)

which (since Sq3G2 = 0) leads to a contribution to the D2 charge of H ∪
G2 ∪ G2. Combining these contributions suggests that the mod 2 part of
the D2-charge may need a correction. For example when the M -theory
manifold is spin then G2 = w2 mod 2 and so one may expect an H ∪ w2 ∪ w2
contribution.

7 Open questions

Perhaps the most surprising feature of the above examples is the appearance
of extra factors of one half in the normalization of some D-brane charges.
Even in the case of RP 7 × S3 this one half meant that a D-brane wrapping
RP 3, which has a spin normal bundle and no B-flux, contains half a unit
of RP 1-wrapping D-brane charge. This RP 1 brane corresponds to a bundle
with all vanishing Chern classes, but the corresponding term in the spectral
sequence was nontrivial. Perhaps one may reconstruct the nontrivial spectral
sequence element by combining the Chern class and the

√
Â terms of the D-

brane effective action in such a way as to preserve this torsion. After all the
worldvolume action of the brane does presumably contain the information
about lower dimensional brane charges. The other possibility is that the
factor of one half is always present, in which case one needs to learn how to
make this division by two canonical.

Another puzzling fact is the inclusion of the half D2-brane charge in the
Z-valued K-theory. The spacetime is compact and so the integral of dG6
must be zero and so the D2 charge is precisely determined by the Freed–
Witten type terms. The D2 charge is T -dual to the Z2 valued D3 charge and
so is odd, but different odd values are related by dG6 charged D2 branes,
and so only one odd value is consistent. One may then ask what determines
this value, that is, what does the nontrivial element of Z2 lift to once the
Z2 is included in Z by the extension problem. This is the same as choosing
the integral part of B. One may ask whether this choice is merely a choice
of gauge, or an observable. But if it is observable then conceivably it corre-
sponds to a choice on the original product of projective spaces, where there
is not obviously any Z-valued ambiguity. Even multiples of D2’s are dual to
D1’s in the original picture, and so it is reasonable to conjecture that the
number of pairs of D2’s is determined by whatever consistency condition
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determines the D1 charge. Again it would be useful to find a formula for
D1 charge like the formula that we propose for D3 charge.

In [38] it was shown that the DMW anomaly, given by W7, is absent if
the partition function is defined in (complex oriented) elliptic cohomology.
The study was done for the partition function of the fields in the absence of
branes, in the same spirit as DMW. In the current paper we chose to include
D-branes in the analysis and that has led us to propose a modification of
the W7 condition due to the presence of D2-branes. It would be interesting
to see how the corresponding discussion in [38] would be extended.

One main question is to what extent S-duality is compatible with (twisted)
K-theory. In [39] this was studied starting from the conjecture in [4], proven
in [19], that in the absence of D3-brane charge

H ∪ H + G3 ∪ H + G3 ∪ G3 + P = 0. (7.1)

In this context, it was shown in [39] that the H ∪ H term causes an affine
twisting, but subsequently that it is inconsistent in the framework of any
K(Z, 2)-twisting. Further, the P term was also shown to cause affine twist-
ing implying that in order to have S-duality in type IIB in ten dimensions,
twistings by H must be accompanied by some higher-dimensional nontrivial
twisting. Such higher twistings, as pointed out in [39], as well as the P
term, in fact correspond to constructing a Postnikov tower of a classifying
space. In [39], it was proposed that this space should correspond to a gen-
eralized cohomology theory, which was conjectured to be a form of elliptic
cohomology. It is, however, alternately possible to construct this Postnikov
tower directly, identifying all the homotopy groups (such as P and higher
twistings), and the Postnikov invariants between them, which correspond
to equations such as (7.1). More on this will appear in the future. How-
ever, it is also evident from that work that in looking at the problem from
a higher-dimensional perspective, e.g. in twelve dimensions, one seems to
inevitably need elliptic cohomology. (Some aspects of elliptic cohomology
in 12 dimensions has been discussed recently in [40].)

There are a number of directions for future research. For example this
approach may be used to try to construct the Atiyah–Hirzebruch differentials
in general. While S-dual anomalies require that we restrict attention to 10-
dimensions, we found a term in d5 in the untwisted case where the S-dual
effects were not important. In fact it seems as though there is a consistent
truncation of the formalism in which the S-dual gauge transformations and
S-dual Freed–Witten anomalies are ignored, so that one may consider more
dimensions and thus use the worldvolume D-brane charges to construct the
higher differentials. This truncation appears automatically in the context of
conformal field theories and so this approach corresponds to the fact that
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we may consider conformal field theories with targets of dimension greater
than ten describing open strings whose possible boundary conditions will be
classified by the desired K-classes.

If we go beyond this approximation then string theory provides modifi-
cations of K-theory which still have not been identified. For example the
inclusion of S-duality seems to lead to an infinite family of K-theories that
are related by a set of SL(2, Z) transformations. The full supergravity also
has the relations

Gp = ∗G10−p, (7.2)

where the Hodge dual ∗ is generally irrational and so generically at most
half of the RR field strengths are integral at a time. An analogy with other
systems, such as the chiral scalar in 2 dimensions, suggests that this means
we need to quantize K-theory such that only half of the Chern characters
are defined at a time. Proposals for these two variations of K-theory will
appear elsewhere.
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Appendix

The real projective space RPn is the quotient space of the sphere Sn under
the action of Z2 generated by antipodal maps x �→ −x. In particular, RP 1 is
just the circle S1. Since each hemisphere in Sn is disjoint from its antipodal
image, the Z2 action is a covering space action. Since Sn is simply connected
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for n ≥ 2, the covering Sn → RPn gives the fundamental group π1(RPn) =
Z2 for n ≥ 2. The generator of this group is any loop obtained by projecting
a path in Sn connecting two antipodal points. As a consequence, one has
the first homology group H1(RPn) = Z2.

Let L = Sn × R/Z2 be the real classifying line bundle over RPn and let
x = w1(L) generate H1(RPn; Z2) = Z2. The tangent bundle of RPn is

T (RPn) ⊕ 1 = (n + 1)L.

The Stiefel–Whitney classes are given as follows. Let(
n
i

)
2

=
n!

i!(n − i)!
mod 2,

be the binomial coefficient reduced modulo 2 (since we are dealing with the
Steenrod algebra). Then the formula for the Stiefel–Whitney classes for
RPn is

wi(RPn) =
(

n + 1
i

)
2
xi.

Of interest are the first and the second Stiefel–Whitney classes, which
characterize whether the manifold is orientable and spin, respectively. So
for i = 1, 2, we have

w1(RPn) = (n + 1)x,

w2(RPn) =
1
2
n(n + 1)x2,

keeping in mind that the coefficients are taken modulo two. In order for the
manifold to be orientable, w1 has to vanish, which implies that n must be
odd, as it is always in this note. Next, the spin condition is that both w1
and w2 vanish. This implies that n = 4k + 3. In particular, RP 3 and RP 7,
which we use, are spin manifolds. In this case one can calculate the first
cohomology with Z2 coefficients, H1(RP 4k+3, Z2), to be Z2, which implies
that there are two inequivalent spin structures on RP 3 and RP 7. Of course
we also know that RP 1 = S1 which is spin and also has two spin structures
(Ramond and Neveu–Schwarz). What about RP 4k+1? Again, inspecting the
formulae, one notices that in this case w1 vanishes but w2 is the reduction
of an integral class. This is the spinc condition. In particular, in this paper
we used the fact that RP 5 is spinc.

In the text we are interested in products of projective spaces. Note that
the product of two orientable manifolds is also orientable, the product of
two spin manifolds is also spin, and the product of two spinc manifolds is
also spinc.
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One can also see that, besides the question of spin, there are other differ-
ences between RP 5 and RPn for n = 1, 3, 7. One can see such a difference
in the context of (complex) K-theory. As above, if LC is the correspond-
ing complex line bundle, then one has (T (RPn) ⊕ 1) ⊗ C = 2k · LC, where
n = 2k − 1. The reduced K-theory K̃(RPn) is a cyclic group of order 2k−1

which is generated by x = [LC] − 1. Thus the bundle T (RPn) ⊕ 1 is triv-
ial if 2k−1 divides 2k. This implies that k = 1, 2, 4 or equivalently that
n = 1, 3, 7. Therefore we have the important result that RP 1, RP 3 and
RP 7 are parallelizable, the same way that their double covers S1, S3 and S7

are. This result can also be deduced from the quaternion and octonion mul-
tiplication. An important consequence of this is that all their characteristic
classes are zero.
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