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Abstract

We define a physically reasonable mass for an asymptotically
Robertson–Walker manifold which is uniquely defined in the case of a
normalized representation.
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1 Introduction

For asymptotically flat Lorentzian 4-manifolds, the so-called ADM-mass is
defined by looking at a space-like slice M = {t = const}. If M is asymptoti-
cally flat and the scalar curvature of M of class L1(M), then the ADM-mass
is defined as a flux integral

mADM = lim
r→∞

1
16π

∫
∂Br(0)

(gii,j − gij,i)νj ; (1.1)

the limit is finite iff
∫
M |R| < ∞, cf. [1]. Schoen and Yau [6, 7] proved that

m ≥ 0 if R ≥ 0 with equality if and only if M is isometric to Euclidean
space.

If M is an exterior region with compact boundary consisting of minimal
surfaces, then the Penrose inequality states that

16πm2 ≥ |C|, (1.2)

where |C| is the area of any connected component of ∂M . The Penrose
inequality was proved by Huisken and Ilmanen [5].

For general Lorentzian manifolds, e.g., for cosmological spacetimes, there
is no notion of mass as far as we know. We shall define a physically reason-
able mass for asymptotically Robertson–Walker (ARW) spacetimes — see
Definition 1.1 — that satisfy the time-like convergence condition

R̄αβνανβ ≥ 0 ∀ 〈ν, ν〉 = −1. (1.3)

In [3], we introduced the notion of ARW spacetimes and proved some
convergence theorems for solutions to the inverse mean curvature flow
(IMCF) in these spacetimes.

Definition 1.1. A cosmological spacetime N , dimN = n + 1, is said to be
ARW with respect to the future, if a future end of N , N+, can be written as
a product N+ = [a, b) × S0, where S0 is a compact Riemannian space, and
there exists a future directed time function τ = x0 such that the metric in
N+ can be written as

ds̄2 = e2ψ̃{−dx02 + σij(x0, x)dxi dxj}, (1.4)

where S0 corresponds to x0 = a, ψ̃ is of the form

ψ̃(x0, x) = f(x0) + ψ(x0, x), (1.5)

and we assume that there exists a positive constant c0 and a smooth
Riemannian metric σ̄ij on S0 such that

lim
τ→b

eψ = c0 ∧ lim
τ→b

σij(τ, x) = σ̄ij(x), (1.6)
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and
lim
τ→b

f(τ) = −∞. (1.7)

Without loss of generality, we shall assume c0 = 1. Then N is ARW with
respect to the future, if the metric is close to the Robertson–Walker metric

ds̄2 = e2f{−dx02 + σ̄ij(x)dxi dxj} (1.8)

near the singularity τ = b. By close we mean that the derivatives of arbitrary
order with respect to space and time of the conformal metric e−2f ḡαβ in
(1.4) should converge to the corresponding derivatives of the conformal limit
metric in (1.8) when x0 tends to b. We emphasize that in our terminology
Robertson–Walker metric does not imply that (σ̄ij) is a metric of constant
curvature, it is only the spatial metric of a warped product.

We assume, furthermore, that f satisfies the following five conditions

−f ′ > 0, (1.9)

there exists ω ∈ R such that

n + ω − 2 > 0 ∧ lim
τ→b

|f ′|2e(n+ω−2)f = m > 0. (1.10)

Set γ̃ = 1
2(n + ω − 2), then there exists the limit

lim
τ→b

(f ′′ + γ̃|f ′|2) (1.11)

and
|Dm

τ (f ′′ + γ̃|f ′|2)| ≤ cm|f ′|m ∀m ≥ 1, (1.12)
as well as

|Dm
τ f | ≤ cm|f ′|m ∀m ≥ 1. (1.13)

We call N a normalized ARW spacetime, if∫
S0

√
det σ̄ij = |Sn|. (1.14)

Remark 1.2.

(i) If these assumptions are satisfied, then the range of τ is finite, hence, we
may — and shall — assume w.l.o.g. that b = 0, i.e.,

a < τ < 0. (1.15)

(ii) Any ARW spacetime can be normalized as one easily checks. Without a
normalization condition, the constant m in (1.10) would not be defined
uniquely as we shall see. It will later be identified with the mass of N .

(iii) In view of the assumptions on f , the mean curvature of the coordinate
slices Mτ = {x0 = τ} tends to ∞, if τ goes to zero.
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(iv) Similarly, one can define N to be ARW with respect to the past. In this
case, the singularity would lie in the past, correspond to τ = 0, and the
mean curvature of the coordinate slices would tend to −∞.

Our main result is as follows.

Theorem 1.3. Let N be a (n + 1)-dimensional normalized ARW spacetime
with respect to the future that satisfies the time-like convergence condition.
Then the future mass m of N is defined by

1
2n(n − 1)|Sn|m = lim

∫
M

Gαβνανβeωfeψ, (1.16)

where Gαβ is the Einstein tensor, ω the constant that appears in the defi-
nition of ARW spaces, and the closed space-like hypersurfaces M converge
to the future singularity such that, if they are written as graphs over S0,
M = graph u, Du vanishes when the singularity is approached.

For normalized ARW spaces, the mass is defined independently of the time
function x0, f , ψ, and ω.

2 Notations and definitions

The main objective of this section is to state the equations of Gauß, Codazzi,
and Weingarten for space-like hypersurfaces M in a (n+1)-dimensional
Lorentzian manifold N . Geometric quantities in N will be denoted by
(ḡαβ), (R̄αβγδ), etc. and those in M by (gij), (Rijkl), etc. Greek indices
range from 0 to n and Latin from 1 to n; the summation convention is
always used. Generic coordinate systems in N resp. M will be denoted by
(xα) resp. (ξi). Covariant differentiation will simply be indicated by indices;
only in the case of possible ambiguity, they will be preceded by a semicolon,
i.e., for a function u in N , (uα) will be the gradient and (uαβ) the Hessian,
but, e.g., the covariant derivative of the curvature tensor will be abbreviated
by R̄αβγδ;ε. We also point out that

R̄αβγδ;i = R̄αβγδ;εx
ε
i (2.1)

with obvious generalizations to other quantities.

Let M be a space-like hypersurface, i.e., the induced metric is Riemannian,
with a differentiable normal ν which is time-like.
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In local coordinates, (xα) and (ξi), the geometric quantities of the space-
like hypersurface M are connected through the following equations

xα
ij = hijν

α (2.2)

the so-called Gauß formula. Here, and also in the sequel, a covariant deriv-
ative is always a full tensor, i.e.,

xα
ij = xα

,ij − Γ k
ijx

α
k + Γ̄α

βγxβ
i xγ

j . (2.3)

The comma indicates ordinary partial derivatives.

In this implicit definition, the second fundamental form (hij) is taken with
respect to ν.

The second equation is the Weingarten equation

να
i = hk

i x
α
k , (2.4)

where we remember that να
i is a full tensor.

Finally, we have the Codazzi equation

hij;k − hik;j = R̄αβγδν
αxβ

i xγ
j xδ

k (2.5)

and the Gauß equation

Rijkl = −{hikhjl − hilhjk} + R̄αβγδx
α
i xβ

j xγ
kxδ

l . (2.6)

Now, let us assume that N is a globally hyperbolic Lorentzian manifold
with a compact Cauchy surface. N is then a topological product I × S0,
where I is an open interval, S0 is a compact Riemannian manifold, and
there exists a Gaussian coordinate system (xα), such that the metric in N
has the form

ds̄2
N = e2ψ{−dx02 + σij(x0, x)dxi dxj}, (2.7)

where σij is a Riemannian metric, ψ a function on N , and x an abbreviation
for the space-like components (xi). We also assume that the coordinate
system is future oriented, i.e., the time coordinate x0 increases on future
directed curves. Hence, the contravariant time-like vector (ξα)=(1, 0, . . . , 0)
is future directed as is its covariant version (ξα) = e2ψ(−1, 0, . . . , 0).
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Let M = graphu|S0
be a space-like hypersurface

M = { (x0, x) : x0 = u(x), x ∈ S0 }, (2.8)

then the induced metric has the form

gij = e2ψ{−uiuj + σij} (2.9)

where σij is evaluated at (u, x), and its inverse (gij) = (gij)−1 can be
expressed as

gij = e−2ψ

{
σij +

ui

v

uj

v

}
, (2.10)

where (σij) = (σij)−1 and

ui = σijuj

v2 = 1 − σijuiuj ≡ 1 − |Du|2.
(2.11)

Hence, graphu is space-like if and only if |Du| < 1.

The covariant form of a normal vector of a graph looks like

(να) = ±v−1eψ(1,−ui). (2.12)

and the contravariant version is

(να) = ∓v−1e−ψ(1, ui). (2.13)

Thus, we have

Remark 2.1. Let M be space-like graph in a future oriented coordinate
system. Then the contravariant future directed normal vector has the form

(να) = v−1e−ψ(1, ui) (2.14)

and the past directed
(να) = −v−1e−ψ(1, ui). (2.15)

In the Gauß formula (2.2), we are free to choose the future or past directed
normal, but we stipulate that we always use the past directed normal for
reasons that we have explained in [2, Section 2].

Look at the component α = 0 in (2.2) and obtain in view of (2.15)

e−ψv−1hij = −uij − Γ̄ 0
00uiuj − Γ̄ 0

0jui − Γ̄ 0
0iuj − Γ̄ 0

ij . (2.16)

Here, the covariant derivatives are taken with respect to the induced metric
of M , and

−Γ̄ 0
ij = e−ψh̄ij , (2.17)

where (h̄ij) is the second fundamental form of the hypersurfaces {x0 =const}.



THE MASS OF A LORENTZIAN MANIFOLD 39

An easy calculation shows

h̄ije−ψ = −1
2 σ̇ij − ψ̇σij , (2.18)

where the dot indicates differentiation with respect to x0.

3 Proof of Theorem 1.3

Let N be a normalized ARW spacetime and assume that the metric is given
by (1.4) such that the future end is described by

a ≤ x0 < 0. (3.1)

W.l.o.g. we also suppose

lim
x0→0

ψ(x0, x) = 0. (3.2)

Let (g̃αβ) be the conformal metric

g̃αβdxα dxβ = −(dx0)2 + σij(x0, x)dxi dxj (3.3)

and distinguish the geometric quantities with respect to this metric by a
tilde, i.e., R̃αβγδ is the Riemannian curvature tensor, etc. Then we have

R̄αβ = R̃αβ − (n − 1)[ψ̃αβ − ψ̃αψ̃β] − g̃αβ [∆ψ̃ + (n − 1)‖Dψ̃‖2], (3.4)

and

R̄ = e−2ψ̃[R̃ − 2n∆ψ̃ − n(n − 1)‖Dψ̃‖2], (3.5)

where the covariant derivatives of ψ̃ are taken with respect to the metric
(g̃αβ).

The Einstein tensor in N is defined by

Gαβ = R̄αβ − 1
2R̄ḡαβ (3.6)

It is divergent free, i.e.,

Gα
β;α = 0. (3.7)

Let (ηα) = eψ̃(−1, 0, . . . , 0) be the covariant vector field that represents
the future directed normal of the slices {x0 = const} and let Ω ⊂ N be an
open subset bounded by two space-like hypersurfaces M1 and M2, where
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M2 should lie in the future of M1. Applying Gauß’ divergence theorem, we
obtain

0 =
∫

Ω
Gαβ

;αηβeωfeψ

= −
∫

Ω
Gαβηβ;αeωfeψ −

∫
Ω

Gαβηβ[ωfα + ψα]eωfeψ

−
(∫

M1

Gαβναηβeωfeψ +
∫

M2

Gαβναηβeωfeψ

)
,

(3.8)

where the normals ν of the hypersurfaces Mi are supposed to point outward
of Ω, i.e., in the case of M1, ν is past directed, and in the case of M2, ν
is future directed. Note the minus sign in front of the boundary integrals,
which is due to the sign of 〈ν, ν〉 = −1.

The covariant derivatives of (ηα), (ηα;β), satisfy

η0;β = 0, ηi;0 = Γ̄ 0
i0e

ψ̃ = ψ,ieψ̃, (3.9)

where ψ,i = ∂ψ/∂xi, and

ηi;j = Γ̄ 0
ije

ψ̃ = −h̄ij , (3.10)

where (h̄ij) is the second fundamental form of the slices {x0 = const}.

Hence we deduce from (3.8)
∫

M1

Gαβναηβeωfeψ +
∫

M2

Gαβναηβeωfeψ

=
∫

Ω
Gij h̄ijeωfeψ +

∫
Ω

G00[ωf ′ + ψ′]eωfeψ̃eψ

=
∫

Ω
n(n − 1)[f ′′ + γ̃|f ′|2]f ′e(ω−3)f

+
∫

Ω
c e(ω−3)f ,

(3.11)

where the symbol c represents terms that can be estimated by

|c| ≤ c0(1 + |f ′| + ε|f ′|2) and lim
x0→0

ε = 0. (3.12)

To derive the second equality in (3.11) we used the relations (3.3), (3.4) as
well as the assumption that the metrics σij(τ, ·) converge in C∞ to σ̄ij .
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The volume element in Ω is of the form

e(n+1)fe(n+1)ψ
√

det(σij) dx dx0. (3.13)

Thus the right-hand side of (3.11) vanishes if the hypersurfaces Mi approach
the singularity, in view of (1.10) and (1.11).

Now, in (3.11) let us choose the hypersurfaces Mi to be slices {x0 =
const}, then the left-hand side is equal to

∫
M2

Gαβνανβeωfeψ −
∫

M1

Gαβνανβeωfeψ (3.14)

and we conclude that

lim
τ→0

∫
Mτ

Gαβνανβeωfeψ (3.15)

exists, where Mτ = {x0 = τ}, and the limit is equal to

1
2n(n − 1) lim

τ→0
|f ′|2e(n+ω−2)f

∫
S0

√
det(σ̄ij) = 1

2n(n − 1)m|Sn|. (3.16)

From the above considerations, we immediately deduce that the preceding
limit is equal to

lim
∫

Mk

Gαβνανβeωfeψ, (3.17)

where Mk = graph uk are arbitrary space-like hypersurfaces, written as
graphs over S0, such that

lim uk = 0 and lim|Duk| = 0. (3.18)

Hence, we may use the leaves M(t) of an IMCF

ẋ = −H−1ν (3.19)

with initial hypersurface M0, H |M0
> 0, to define the mass, since the flow

hypersurfaces M(t) run straight into the singularity and satisfy

|u|m ≤ cme−γt ∀m ∈ N, (3.20)

where γ = 1
n γ̃, cf. [3, Lemma 7.1].
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Using the Gauß equation

R = −[H2 − |A|2] + 2Gαβνανβ, (3.21)

we can rewrite∫
M

Gαβνανβeωfeψ = n−1
2n

∫
M

H2eωfeψ

+ 1
2

∫
M

(
R − [|A|2 − 1

nH2]
)
eωfeψ

(3.22)

to conclude that

lim
∫

M
Gαβνανβeωfeψ = lim n−1

2n

∫
M

H2eωfeψ (3.23)

for those hypersurfaces for which the second integral on the right-hand side
of (3.22) tends to zero if the singularity is approached.

This is the case for the coordinate slices {x0 = const} as well as for the
leaves of an IMCF.

Lemma 3.1. Let M(t) be a solution of the evolution equation (3.19), then

lim
t→∞

∫
M(t)

(
R − [|A|2 − 1

nH2]
)
eωfeψ = 0. (3.24)

Proof.

(i) Let us first estimate the scalar curvature. We have

ḡαβ = e2ψ̃ g̃αβ , (3.25)

where (g̃αβ) is the metric in (3.3). Denote by h̃ij , g̃ij , etc. the geometric
quantities of hypersurfaces when the metric of the ambient space is (g̃αβ),
then

eψ̃hj
i = h̃j

i + ψ̃αν̃αδj
i , (3.26)

gij = e2ψ̃ g̃ij = e2ψ̃(−uiuj + σij(u, x)dxi dxj), (3.27)

and

R = e−2ψ̃(R̃ − 2(n − 1)∆ψ̃ − (n − 1)(n − 2)‖Dψ̃‖2), (3.28)

where the covariant derivatives of ψ̃(u, x) are taken with respect to g̃ij .
Now, R̃ is bounded and the covariant derivatives of ψ̃ are bounded as

well, cf. [3, Section 6], hence∫
M

|R|eωfeψ ≤ c

∫
S0

e(n+ω−2)fe(n+1)ψ
√

det(σij) → 0. (3.29)
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(ii) To estimate the second fundamental form, we use (3.26) to obtain

e2ψ̃(|A|2 − 1
nH2) = |Ã|2 − 1

nH̃2 (3.30)

and thus∫
M

(|A|2 − 1
nH2)eωfeψ

=
∫

S0

(|Ã|2 − 1
nH̃2)e(n+ω−2)fe(n−1)ψ

√
det(σij) → 0.

(3.31)

�

The final part of Theorem 1.3 is proved in the next section.

4 Uniqueness of the mass

The mass of a normalized ARW space does not depend on the particular
time function. For a proof of this claim, we shall once again employ the
leaves of an IMCF.

Let x̃0 be a second time function that provides a normalized representa-
tion of N as an ARW space

ds̄2 = e2(f̃+ψ̃)(−(dx̃0)2 + σ̃ijdxi dxj) (4.1)

such that

lim|f̃ ′|2e(n+ω̃−2)f̃ = m̃ > 0. (4.2)

Let M(t) be a solution of the evolution problem (3.19) which are written
as M(t) = graph u in the original coordinate system and as M(t) = graph ũ
in the new system. In both cases, we may assume that the hypersurfaces
are graphs over S0, since it is unnecessary that S0 is a level hypersurface for
a time function. The estimates (3.20) are satisfied by u as well as ũ.

There are many invariants that could be used to compare f and f̃ . Let us
consider Gαβνανβ evaluated at M(t). Arguing as in the preceding section,
we deduce

1 = lim
t→∞

|f ′|2e(n+ω−2)f

|f̃ ′|2e(n+ω−2)f̃

e(n+ω̃)f̃

e(n+ω)f , (4.3)

where the arguments of f, f ′ resp. f̃ , f̃ ′ are u resp. ũ.
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Hence we conclude

lim
e(n+ω̃)f̃

e(n+ω)f =
m̃

m
, (4.4)

in view of (1.10) and (4.2).

Now we observe that
d

dt
f(u) = f ′u̇ =

ṽf ′

H̃ − nṽf ′ + ψαν̃α
, (4.5)

where H̃ is the mean curvature with respect to the conformal metric in (3.3)
and ṽ = v−1. Hence we obtain

lim
t→∞

d

dt
f(u) = − 1

n . (4.6)

The same result is of course valid for (d/dt)f̃(ũ), where one should note
the ambiguous usage of the tilde.

Combining (4.4), (4.6), and de L’Hospital’s rule, we infer that ω = ω̃.

To prove

lim
∫

M(t)
Gαβνανβeωfeψ = lim

∫
M(t)

Gαβνανβeωf̃eψ̃ (4.7)

it suffices to show that m = m̃, or equivalently,

lim
ef̃

ef
= 1. (4.8)

Since ω = ω̃, relation (4.4) implies

lim
ef̃

ef
= c = const. (4.9)

Let (ξi) be local coordinates for M(t) and x = x(ξ) be a local embedding,
then

gij = 〈xi, xj〉 (4.10)
is the induced metric. Let

g̃ij = e−2(f+ψ)gij (4.11)

be the conformal metric, then∫
S0

√
det(g̃ij) =

∫
S0

v
√

det(σij(u, x), (4.12)

where
v2 = 1 − |Du|2 = 1 − σijuiuj (4.13)
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and hence

lim
∫

S0

v
√

det(σij(u, x)) = |Sn| (4.14)

due to our normalization assumption.

On the other hand, if we express the right-hand side of (4.11) with respect
to the second coordinate system, then we obtain

|Sn| = lim
∫

S0

en(f̃+ψ̃)e−n(f+ψ)v
√

det(σ̃ij(ũ, x)) = cn|Sn|, (4.15)

hence c = 1.

5 A variant of the Penrose inequality

Let Mτ = {x0 = τ} be coordinate slices and suppose that the integrals
∫

Mτ

Gαβνανβeωfeψ (5.1)

would increase monotonically with respect to τ , then

lim
τ→0

∫
Mτ

Gαβνανβeωfeψ ≥
∫

Mτ̄

Gαβνανβeωfeψ. (5.2)

If Mτ̄ would be totally geodesic, then
∫

Mτ̄

Gαβνανβeωfeψ = 1
2

∫
Mτ̄

Reωfeψ (5.3)

To prove the monotonicity of the integrals in (5.1), let us look at the
relation (3.11). The monotonicity of the integrals is equivalent to the non-
negativity of the right-hand side of (3.11). This will be the case for highly
symmetrical spacetimes, as we shall see in the next section. For general ARW
spacetimes however, non-negativity of the right-hand side of (3.11) could
only be derived under the assumptions ω = 0, ψ = 0, and, furthermore, that
the slices Mτ are convex, i.e., h̄ij ≥ 0, and the spatial part of the Einstein
tensor positive semi-definite, i.e., Gij ≥ 0.

Notice that f ′ is always negative and that, under physical assumptions,
G00 ≥ 0 and also that the signs of the spatial part (Gij) and of ω are the
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same, as can be derived from the Einstein equations

Gαβ = κTαβ , (5.4)

if the stress energy tensor is supposed to be asymptotically that of a perfect
fluid with an equation of state

p = ω
nρ. (5.5)

6 An example

Let N̂ be the S-AdS(n+2) spacetime with metric

dŝ2 = −h dt2 + h−1 dr2 + r2σij dxi dxj , (6.1)

where
h = 1 − 2

n(n + 1)
Λr2 − mr−(n−1) (6.2)

with constants Λ ≤ 0 and m > 0; (σij) is the metric of Sn.

In r = 0, there is a black hole singularity, the event horizon is in r =
r0, such that h(r0) = 0, and the black hole region is given by {h < 0} =
{0 < r < r0}.

In the black hole region, t is a spatial coordinate and r the time coordinate.
Set

h̃ = −h (6.3)
and consider in the black hole region, the brane

N = {t = const, 0 < r < r0}. (6.4)

The induced metric (ḡαβ) is

ds̄2 = −h̃−1 dr2 + r2σij dxi dxj

= r2(−r−2h̃−1 dr2 + σij dxi dxj).
(6.5)

Define
f = log r (6.6)

and x0 by
dx0 = −r−1h̃−1/2 dr, (6.7)

i.e.,

x0 = −
∫ r

0
s−1h̃−1/2 ds. (6.8)

x0 is then a future directed time function and the (induced) singularity
lies in x0 = 0.
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In these coordinates, the metric has the form

ds̄2 = e2f (−(dx0)2 + σij dxi dxj). (6.9)

Let a prime denote differentiation with respect to x0 and a dot with
respect to r, then

f ′ = r−1 dr

dx0 = −h̃1/2 (6.10)

and

f ′′ = 1
2r

˙̃
h = −1

2m(n − 1)r−(n−1) +
2

n(n + 1)
Λ. (6.11)

Set ω = 1 so that

γ̃ = 1
2(n + ω − 2) = 1

2(n − 1), (6.12)

then
f ′′ + γ̃|f ′|2 = 1

nΛr2 − 1
2(n − 1) (6.13)

and

|f ′|2e2γ̃f = |f ′|2r(n−1) = h̃r(n−1) = m +
2

n(n + 1)
Λr(n+1) − r(n−1). (6.14)

Let Mr be the coordinate slices {x0 = const}, then the past directed nor-
mal is ν = (να) = e−f (−1, . . . , 0),

Gαβνανβe2f = 1
2n(n − 1)|f ′|2 + 1

2n(n − 1) = 1
2n(n − 1)(h̃ + 1), (6.15)

and ∫
Mr

Gαβνανβef = 1
2n(n − 1)

∫
Sn

(h̃ + 1)r(n−1), (6.16)

hence

lim
r→0

∫
Mr

Gαβνανβef = 1
2n(n − 1)|Sn|m. (6.17)

The convergence is monotone increasing in x0.

Note that the value ω = 1 corresponds to a radiation dominated universe
if the stress energy tensor is asymptotically equal to that of a perfect fluid
and the equation of state is

p = ω
nρ. (6.18)
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