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Abstract

Using only the Fukaya category and the monodromy around large com-
plex structure, we reconstruct the mirror map in the case of a symplectic
torus. This realizes an idea described by Paul Seidel.

1 Introduction

Paul Seidel had the following idea for recovering the mirror map purely from
the Fukaya category.1 Start with a symplectic Calabi-Yau X and its family
of complex structures, and assume it has a projective mirror manifold Y with
a family of symplectic structures, and that Kontsevich’s conjecture holds:
DFuk(X) ∼= D(Y ), where DFuk(X) is the Fukaya category of X (i.e., the
bounded derived category constructed from the Fukaya A∞ category) and
D(Y ) is the bounded derived category of coherent sheaves on Y . Then the
homogeneous coordinate ring on Y is given by

R =
∞⊕

k=0

Γ(OY (k)) =
∞⊕

k=0

HomDFuk(X)(ψ(O), ψ(O(k))),

e-print archive: http://lanl.arXiv.org/abs/math.SG/0506359
1The idea described was told in a private communication to the author. This may have

been implicit in the works of Fukaya and/or in the minds of others in the field, and has
recently been described by R. Thomas in [11].
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where ψ is the equivalence of categories. The term on the right can be
evaluated solely in DFuk(X), and thus the complex projective variety Y
can be recovered. The dependence of this construction on the symplectic
structure of X defines the mirror map.2

Let S ≡ ψ(O) be the object dual to the structure sheaf of Y, conjecturally
the Lagrangian section of the Lagrangian torus fibration (cf. [9]). We will
often equate a geometric Lagrangian submanifold with the object in DFuk
which it defines, including, if necessary, additional data such as grading
and local system. Recall [3] that on the complex structure moduli space
of X, monodromies act by symplectomorphisms, which define autoequiv-
alences of DFuk(X) (we use the same notation for a symplectomorphism
and the autoequivalence it induces) and that the monodromy ρ around
the large complex structure limit point is mirror to the autoequivalence
of D(Y ) defined by E → E ⊗ O(1). We define Lk by Lk ≡ ρkS. Note S = L0
and L ≡ L1 is dual to O(1). In fact, Lk = ψ(O(k)), so we wish to com-
pute

⊕
i HomDFuk(X)(S, Lk). To interpret this as a ring, we must identify

Hom(Lk, Lk+l) with Hom(S, Ll) (we hereafter drop the DFuk(X) subscript),
and to do so we use the symplectomorphism ρ−k.

In this note we will compute R in the case where X is a symplectic
two-torus and derive the mirror map.3 Without knowing the mirror map,
we can still say that Y is some elliptic curve and thus has a projective
embedding as a cubic curve. Then O(1) is a line bundle of degree three on
Y, so its mirror must have intersection three with S. Taking the base section
S to be the x-axis in the universal cover R

2, we have that L is a line of
slope three. So we put ρ = γ3, where γ is a minimal Dehn twist, and note
that ρ is maximally unipotent. For simplicity, we take S (and therefore L)
to have trivial local systems and to pass through lattice vectors, but our
results do not depend on this choice. The data of S and ρ now allows us to
calculate R.

2 Computation

We define X = R
2/Z

2 with ω = τdx ∧ dy, τ ∈ C, Im(τ) > 0. The category
constructed from Fukaya’s A∞ category in this case was described explic-
itly in [6–8], and we refer the reader to those papers for details. As dis-
cussed above, we have Lk = {(t, 3kt) mod Z

2: t ∈ R}, and we define its

2The case of Fano varieties is considered in [1].
3The result is guaranteed to be correct here, since Kontsevich’s conjecture has been

proven in this example [8].
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grading α = tan−1(k) ∈ [0, π/2). We define Xi = (i/3, 0) ∈ Hom(S, L), Yi =
(i/6, 0) ∈ Hom(S, L2), and Zi = (i/9, 0) ∈ Hom(S, L3), where i is taken mod
3, 6, and 9, respectively. In the sequel, when we write an equation like
X1X2 = . . . , the X2 is understood to live in Hom(L1, L2) through ρ.
Explicitly, ρ(x, y) = (x, y + 3x); indeed ρ∗ω = ω.

Let us compute the products XiXj . The Fukaya category for this exam-
ple was discussed in [4, 8]. The basic computation is X0X1. The minimal
triangle (holomorphic map) appearing in the product connects the points
X0 = (0, 0), ρ(X1) = X1 = (1/3, 1), and Y1 = (1/6, 0) and has symplectic
area (1/2)(1/6)(1)τ. Multiples and translates of this triangle are relevant to
other products. Multiples by 6n have the same endpoints and contribute to
the same product, with area (1/2)(n + 1/6)(6n + 1)τ. The coefficient of Y1
in X0X1 is thus A1 ≡

∑
n exp[iπ6τ(n + 1/6)2] = θ[1/6, 0](6τ, 0).4 Defining

Ak := θ[k/6, 0](6τ, 0), k ∈ Z/6Z, and noting Ak = A6−k, we get the following
relations:

XiXj =
1∑

k=0

Ai−j+3kYi+j+3k. (2.1)

The right hand side of this equation makes sense with i, j defined mod 3.
Commutativity is easily shown to follow from the relations among the Ak.

Next we compute YiXj . Starting with Y1X1, the minimal triangle has
vertices Y1 = (1/6, 0), ρ2(X1) = X1 = (1/3, 1), and Z2 = (2/9, 0), with area
(1/2)(1/18)(1)τ. Odd multiples (with left endpoint fixed) and translates of
this triangle are relevant to YiXj with i odd; even multiples and translates
to i even. Multiples by 18n have the same endpoints. Therefore Y1X1 =
B1Z2 + B7Z5 + B13Z8, where Bk =

∑
n exp[iπ18τ(n + k/18)2] = θ[k/18, 0]

(18τ, 0). Note Bk = B18−k and k is defined mod 18. As an example of another
product, the third multiple of the minimal triangle has endpoints Y1 =
(1/6, 0), X2 = (2/3, 3), Z3 = (1/3, 0), thus Y1X2 = B3Z3 + · · · Collecting
results, we find

YiXj =
2∑

k=0

B2j−i+6kZi+j+3k. (2.2)

3 Commutativity and associativity

Associativity in the (derived or cohomological) Fukaya category follows from
general grounds, and in the case of the torus amounts to an equality obtained
from expressing the area of a non-convex quadrangle by splitting it into

4We recall the definition θ[a, b](τ, z) =
∑

n∈Z
exp[iπτ(n + a)2 + 2πi(n + a)(z + b)].
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triangles in two different ways. (This was noted, for example, in Section 2
of [6].) It also amounts to relations among the Ak and Bk, which we describe
presently.

As for commutativity, this follows from the existence of a robust family of
anti-symplectomorphisms.5 For example, in considering the products X0Yk,
one must count (among other things) triangles with vertices X0, ρ(Yk), and
Zk arranged in clockwise orientation and with sides of appropriate slope.
Now consider the map ϕ:

(x, y) �−→
(

1
2
x − 7

18
y +

1
9
k,−2y

)
.

We note ϕ(X0) = Zk, ϕ(ρ(Yk)) = X0 = ρ2(X0), and ϕ(Zk) = Yk. Further,
since ϕ is an anti-symplectomorphism, i.e., ϕ∗ω = −ω, it preserves areas
and reverses the orientation and thus changes the order in which the ver-
tices appear on the outside of the triangle. Thus Yk, ρ

2(X0), Zk are oriented
clockwise in the image triangle, which has the same area as the original.
This proves commutativity among products X0Yk. Translations of ϕ suffice
for proving commutativity for XjYk. Products XiXj were already seen to
be commutative, and this is all that we will require for our purposes. In
short, commutativity follows from anti-symplectomorphisms mapping ver-
tices (X, ρnY, Z) to (Z, ρmX, Y ) in holomorphic triangles. It is not clear
(to the author) why commutativity should hold in a general symplectic
manifold.

We now return to an explicit description of the associativity constraint.
We will make use of the following identity, which follows from the addition
formula II.6.4 of [5]:

θ
[a

n
, 0

]
(nτ, 0) θ

[
b

nk
, 0

]
(nkτ, 0) =

k∑

ε=0

θ

[
b − ka + knε

k(k + 1)n
, 0

]
(k(k + 1)nτ, 0) θ

×
[
a + b + knε

(k + 1)n
, 0

]
((k + 1)nτ, 0).

(3.1)

When n = 6 and k = 3 this gives us formulas for AaBb. Defining Cc =
θ[c/24, 0](24τ) and Dd = θ[d/72, 0](72τ), we have

AaBb =
3∑

ε=0

Ca+b+18εDb−3a+18ε. (3.2)

5An example of a noncommutative coordinate ring appears in [10].
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This formula suffices for proving some of the equivalences necessary for show-
ing associativity. Others follow from further application of equation (3.1).

For example, one wants to show that (X2
0 )X1 = X0(X0X1). This amounts

to (A0Y0 + A3Y3)X1 = X0(A1Y1 + A2Y4). Using commutativity and the
products (2.1), then equating coefficients on Zk, gives the conditions

A0B2 + A3B7 = A1B1 + A2B8,

A0B8 + A3B1 = A1B5 + A2B4,

A0B4 + A3B5 = A1B7 + A2B2.

The first and third relations follow immediately from equation (3.2). The
second equation is most easily seen by rewriting the right hand side as
A−1B5 +A−2B−4. Proceeding in this manner, one can prove well-definedness
of XiXjXk.

Again, associativity follows from quadrilateral dissection, or on general
grounds for the Fukaya category, and our philosophy here should be to think
of these identities as following from the associativity constraints. In either
case, we will use the explicit expressions derived here.

4 Relations

One finds that the number of degree two polynomials in the three variables
Xi equals exactly the number of Yk, and in fact since A0A1 − A2A3 	= 0 one
finds that the Yk can be written in terms of products XiXj , and vice versa,
so there are no relations in R at this degree. At the next level, we have ten
independent polynomials and nine Zk, so we expect a single relation. Let
us search for this relation.

Let

{X3
0 , X3

1 , X3
2 , X2

0X1, X
2
1X2, X

2
2X0, X

2
0X2, X

2
1X0, X

2
2X1, X0X1X2}

be a basis, with eI the I-th entry, I = 0 · · · 9. Using the product, we can write
eI =

∑
k Mk

IZk. A relation a has the form
∑

I aIe
I = 0, or

∑
k(

∑
I(Mk

IaI))
Zk = 0. Since the Zk are linearly independent generators of Hom(S, L3) we
have, in matrix form M · a = 0, or a ∈ Ker(M). M is a 9 × 10 matrix, so
the kernel should be one-dimensional, and we can take aI = c(−1)Idet(MI),
where MI is M with the I-th column removed and c 	= 0 is any constant.
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Using the products found in Section 2, one finds

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p q q 0 0 0 0 0 0 u
0 0 0 r t s 0 0 0 0
0 0 0 0 0 0 t r s 0
q p q 0 0 0 0 0 0 v
0 0 0 s r t 0 0 0 0
0 0 0 0 0 0 s t r 0
q q p 0 0 0 0 0 0 v
0 0 0 t s r 0 0 0 0
0 0 0 0 0 0 r s t 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

p = A0B0 + A3B9 r = A0B2 + A3B7 u = A2B0 + A1B9
q = A0B6 + A3B3 s = A0B8 + A3B1 v = A2B6 + A1B3

t = A0B4 + A3B5.

Up to a common multiple, one finds a ∼ ((p + q)u − 2qv, pv − qu, pv − qu,
0, 0, 0, 0, 0, 0, 2q2 − pq − p2). In fact, u = v, which follows from associativity,
or equivalently the relation (3.1), so we can remove the common (non-zero)
factor of p − q and take

a = (u, u, u, 0, 0, 0, 0, 0, 0,−2q − p).

If there are no other relations in the ring R, then this single relation
defines a cubic curve in the Hesse family as

a0X
3
0 + a1X

3
1 + a2X

3
2 + a9X0X1X2 = 0.

The modular invariant is easily calculated in terms of z = −(1/3)a9
(a0a1a2)−1/3 = ((2q + p)/3u). Explicitly,

j(τ) = −27z3(z3 + 8)3(1 − z3)−3. (4.1)

This equation, which should define the j-function of the mirror curve, is
written in terms of the symplectic parameter τ on the torus. It therefore
defines the mirror map, which in this example is known to send the sym-
plectic parameter τ to the modular parameter τ in the upper halfplane. So
equation (4.1) amounts to an identity in terms of the variable τ, or more
conveniently for us, x = e−iπτ/18, and it remains to verify this relation.6

6We ignore the possibility of further relations in R. This assumption is justified using
the mirror equivalence but would be difficult to show working purely from the Fukaya
side.
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The following identities follow directly from the definitions:

Ak = x3k2
+

∞∑

n=1

x3(6n+k)2 + x3(6n−k)2 ,

Bk = xk2
+

∞∑

n=1

x(18n+k)2 + x(18n−k)2 .

Recall that the j-invariant has the expansion

j(x) = x−36 + 744 + 196884x36 + 21493760x72 + 864299970x108 + · · ·

These coefficients and more can be corroborated order by order in the series
expansion of the right hand side of equation (4.1). A more general proof
may be found in [2]. Of course, this had to be true, by the equivalence of
categories already proved in [8], but our intent was to find this result work-
ing only from the Fukaya category.7 We find the computation a pleasant
realization of Seidel’s idea.
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