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Abstract 

Let G be a compact Lie group. Using suitable normalization conven- 
tions, we show that the evaluation of G x G-symmetric spin networks is 
non-negative whenever the edges are labeled by representations of the 
form V ® V* where V is a representation of G, and the inter twiners 
are generalizations of the Barrett-Crane intertwiner. This includes in 
particular the relativistic spin networks with symmetry group Spm(4) 
or 50(4) on a large class of graphs, not restricted to the graph un- 
derlying the lOj-symbol. We also present a counterexample, using the 
finite group 53, to the stronger conjecture that all spin network evalua- 
tions are non-negative as long as they can be written using only group 
integrations and index contractions. This counterexample applies in 
particular to the product of five Gj-symbols which appears in the spin 
foam model of the Ss-symmetric .BF-theory on the two-complex dual 
to a triangulation of the sphere 53 using five tetrahedra. We show that 
this product is negative real for a particular assignment of representa- 
tions to the edges. 

e-print archive:   http://lanl.arXiv.org/abs/gr-qc/0211106 
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1    Introduction 

Spin networks were invented by Penrose as a tool to describe the quan- 
tum geometry of space-time [1], They feature as the kinematical states in 
non-perturbative Quantum Gravity [2] and play a central role in Spin Foam 
Models [3] of Quantum Gravity whose amplitudes are calculated by evalu- 
ating spin networks. 

A spin network is a graph whose edges are labeled by representations of 
a suitable symmetry group G and whose vertices are labeled by compatible 
intertwiners (G-morphisms). A spin network is evaluated by writing down 
tensors for the intertwiners at the vertices and by contracting their indices 
as prescribed by the edges. 

In the Barrett-Crane spin foam model [4] of Riemannian Quantum Grav- 
ity, the amplitudes of the path integral are defined in terms of a special type 
of spin networks. These are called the relativistic spin networks. Their sym- 
metry group is 5pm(4) = SU(2) x SU(2) or 50(4), their edges are labeled 
by balanced representations, i.e. representations of the form V ® V where V 
denotes a finite-dimensional irreducible representation of 517(2), and their 
vertices are labeled by a special intertwiner, known as the Barrett-Crane in- 
tertwiner. The four-simplex amplitude of the Barrett-Crane model is given 
by a particular relativistic spin network, the relativistic lOj-symbol, whose 
underlying graph is the complete graph of 5 vertices. 

In the course of the first explicit computations of relativistic lOj-symbols 
[5], it was observed that they always evaluate to non-negative real num- 
bers, up to some signs which cancel when one calculates the product of 
lOj-symbols over all four-simplices of a closed manifold [6]. 

In the present article, we generalize the result of [6] to relativistic spin 
networks on a large class of graphs1. While [6] has established the posi- 
tivity of the Barrett-Crane amplitudes for the case of lO.y-syinbols, i.e. for 
five-valent vertices and therefore for a model which is defined on the two- 
complex dual to a triangulation, our generalization extends this result to 
the Barrett-Crane model defined on generic two-complexes. In addition, we 
present a formulation in which unnecessary signs are avoided right from the 
beginning and which allows us to generalize the result to G x G-symmetric 
spin networks whose edges are labeled by representations of the form V® V* 
where V denotes a representation of G, and whose intertwiners are certain 
generalizations of the Barrett-Crane intertwiner. 

1Any subgraph of a complete graph. 
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The key idea of our proof is to use a canonical description for the inter- 
twiners in terms of their integral presentation. A main technical problem 
in the study of spin networks is that one needs good conventions in or- 
der to define the intertwiners, i.e. some Clebsch-Gordan coefficients, at the 
vertices. For a single intertwiner, however, there is no canonical definition 
known. Writing down Clebsch-Gordan coefficients rather requires the choice 
of bases for the representation spaces, and the resulting expressions do de- 
pend on these choices. 

A typical example is a three-valent vertex of an SU(2)-sp'm network 
whose edges are labeled by irreducible representations. Let Vj,T4, Vi where 
j, £;, £ = 0, 5,1,... denote the irreducible representations of dim Vj = 2j + 1. 
Then the dimension of the space of compatible intertwiners is 

dimUomsu^Vj ®Vk® V* C) = ^ otherwise. 

(1.1) 

The space of intertwiners is at most one-dimensional, but this still does not 
fix the intertwiner. Given any choice of normalization, there will still be 
signs appearing when one exchanges two of the three tensor factors. This 
can be seen most easily in the special case j = k = £ = 1 in which the one- 
dimensional trivial representation is contained in the totally antisymmetric 
subspace of Vi ® Vi ® Vi. The main difficulty of the positivity proof are these 
signs which one has to keep track of. The positivity proof that has been 
found for products of lOj-symbols [6] already indicates that it is necessary 
to consider pairs of these intertwiners, chosen carefully so that these signs 
cancel. 

The strategy of the present article is to concentrate on canonical objects 
which can be defined without any choices2. Already in the study of the 
duality transformation for non-Abelian lattice gauge theory [7,8], it was 
noticed that an important role is played by a canonically defined object, 
the intertwiner arising from the integration over the symmetry group G 
acting on a tensor product of representations, equation (2.10) below, which 
gives rise to pairs of intertwiners, called P^) in (2.13) below, whose relative 
normalization is canonically fixed. This leads automatically to the desired 
cancellation of signs. 

The evaluated spin networks whose positivity we wish to prove, take in 
general values in C and can be written as traces of suitable linear maps. At 
the technical level, the key idea of the proof is to defer the calculation of the 

2Robert Oeckl conjectured that one can produce a large class of positive spin networks 
following this idea. 
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traces to a later stage and to study the linear maps instead. In fact, many of 
these linear maps are actually positive, i.e. it is not only their trace that is 
positive, but rather the individual summands of the trace. By making these 
stronger conditions explicit in the calculations, we are able to construct 
an infinite family of positive linear maps by induction. Their traces will 
then provide the evaluated spin networks and establish their positivity. The 
proof is elementary and purely algebraic except for the input that orthogonal 
projectors are positive. 

Going beyond the study of relativistic spin networks, it is tempting to 
conjecture that all spin networks that can be written down using only group 
integrations and index contractions, are positive. We show by counterexam- 
ple that this stronger conjecture is not true. 

The present article is organized as follows. In Section 2, we review some 
properties of positive operators and of finite-dimensional representations of 
compact Lie groups. We also introduce a convenient diagrammatic language. 
We prove the positivity of relativistic spin networks in Section 3 and present 
counterexamples to the stronger conjecture in Section 4. Section 5 contains 
some concluding remarks. 

2    Mathematical background 

2.1    Positive linear operators 

Basic facts about positive linear maps can be found in many textbooks. 
We need only properties that hold in (possibly infinite-dimensional) Hilbert 
spaces and refer the reader to [9] for more details and for the proofs of the 
following results. 

Definition 2.1. Let H be a Hilbert space with scalar product (■,■). We 
denote the set of bounded linear operators on 7i by C(7i). An operator 
A E CiT-L) is called positive if (v,Av) > 0 for all v G Ti. In this case, we 
write A > 0. 

For any operator A E £(%), we have A^A > 0. Positive linear operators 
have the following properties. 

Lemma 2.2. Let H be a Hilbert space and A E C{H) be positive. 

1. A is self-adjoint, A = A\ 
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2. There exists a unique positive B G £(%) such that B2 = A, 

3. Any operator X G C(H) for which [A, X] = 0, also satisfies [B, X] = 0. 

In this article, we will construct our positive operators from orthogonal 
projectors. 

Definition 2.3. Let K be a Hilbert space. A linear operator P G C(H) is 
called a projector if P2 = P. A projector P is called orthogonal if P* = P. 

We can then construct positive operators as follows. 

Lemma 2.4. Let H^Hi^%2 be Hilbert spaces. 

1. Any orthogonal projector P G C(H) is positive, 

2. If A G £(fti) is positive, so is A ® ln2: Hi ® % -> Ki ® %, where 
1^2 denotes the identity on %, 

3. li D\Hi®H2-±Hi® H2 is positive and the partial trace 
trn2{D): Hi -» Hi exists, then tr^2(D) > 0, 

4. If E, F G £(H) are both positive and [E, F] = 0, then EF is also 
positive. 

2.2    Representations of compact Lie groups 

In this paragraph, we introduce our notation for finite-dimensional repre- 
sentations of compact Lie groups. For more details, see, for example the 
textbook [10] or the introduction of [11]. 

Let G be a compact Lie group. We denote finite-dimensional complex 
vector spaces on which G is represented by Vp and by p: G —)• Aut Vp the 
corresponding group homomorphisms. For each representation p, the dual 
representation is denoted by p*, and the dual vector space of Vp by V*. The 
dual representation is given by p*: G H> Aut V^*, where 

P*(g):V;->V;,     r/^opGT1). (2.1) 

There exists a one-dimensional 'trivial' representation of G which is isomor- 
phic to C 

Since each finite-dimensional representation of G is equivalent to a uni- 
tary representation, we can choose G-invariant (sesquilinear) scalar products 
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(•; •) and orthonormal bases {e^}. We can then define a bijective antilinear 
map■*: Vp -> V* induced by the scalar product, 

*(v) :=(wi-+ (v\w)),        v€Vp, (2.2) 

and construct the dual bases {77^} by rf := *(eJ-). Identifying (K*)* = Vp, 
this yields {ej]ek) = ^(e^) = 5jk and furthermore induces a scalar product 
on V*, namely (^]r]k) - ^(e/), 1 < j,k < dimVp. 

The matrix elements of the representation matrices p(g) define complex 
valued functions, 

tg : G -+ C,        ^ tW(p) := r,^p(g)ek) = (p(y)) .„ (2.3) 

where p, 1 < j,k < dimFp. They are called representative functions of G 
and form a commutative and associative unital algebra over C, 

Caig(G9    :=    {tjk':      p finite-dimensional representation of G, 

l<j,k<dimVp}, (2.4) 

whose product is given by the matrix elements of the tensor product of 
representations, 

(^SM :=#£!(*), (2-5) 

where 1 < j,k < dimVp and 1 < e,m < dimVa. We find the following 
expressions involving the group unit e G G, 

t<fk(e) = tik, (2.6) 

products of group elements, 

dim Vp 

$i9-h)=  £$(<?)• 4^), (2-7) 
£=1 

and inverse group elements, 

^V1) = (Pig)-1)* - W))kj - iflia), (2-8) 

as well as, 

t^g'1) = vHpigr'ek) = (P*(9)vj)(ek) = (TAPW) = tfiHg),    (2.9) 

so that for unitary representations, the dual representation is just the con- 
jugate. The bar denotes complex conjugation. 
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2.3    Diagrammatics 

In the following, we introduce the basic object which contains pairs of in- 
tertwiners (or Clebsch-Gordan coefficients) which are together canonically 
defined. 

Definition 2.5. Let G be a compact Lie group and pi,... ,Pr be finite- 
dimensional irreducible representations of G. The Haar intertwiner is defined 
by 

T' G§Vpt-+&)VPi9        T:=J p1(g)®---®pr{g)dg, (2.10) pi ^ Yy vpf> 
'=1 fci 

and has the matrix elements, 

Tmlm2...mr]nin2...nr =   /   tm      (ff)^m2n2 {9) ' ' ' ^rnrnr \9) dg. (^-H) 
JG 

The following proposition shows how T gives rise to a pair of intertwiners 
P^\ It also introduces our normalizations in detail. 

Proposition 2.6. Let G be a compact Lie group and pi,... ,pr be finite- 
dimensional unitary representations of G such that their tensor product has 
the complete decomposition 

vpi 0 ■ • • ® vPr 9* vTl e • • • e vrk, (2.12) 

into irreducible components Tj of which precisely ri,... , r^, 0 < £ < fc, are 
isomorphic to the trivial representation. Let P^ : Vpi ® • • • (2) VPr -> V^-. C 
V^1 ® • • • ® Vrpr be the G-invariant orthogonal projectors associated with the 
above decomposition. Then 

l-mim2...mr',711712...Ur  " /^j     mim2'•'mr ^niu^...nr i (2.13) 

where 

^?n2...nr := (™(j); efe0 ® e^) ® • • • ® efc-)), (2.14) 

are the matrix elements of the projectors. Here {efq'} denotes an orthonor- 
mal basis of VPq and w^ a normalized vector spanning VT. C Vpi ® • • • ® VPr. 

Equation (2.13) shows how the canonical object T is decomposed into 
pairs of intertwiners P^\  In the Ponzano-Regge model, for example, the 
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Figure 1: The basic diagrams in order to describe representations 
and morphisms of G. Refer to Section 2.3 for detailed explana- 
tions. 

symmetry group is G = SU(2), and the assignment of 6,7-symbols to the 
tetrahedra can be obtained as a special case of the dual formulation of non- 
Abelian lattice gauge theory [7,8,12]. For each triangle we have a Haar 
intertwiner T: Vj ® Vk ® Vi -> Fj ® T^ ® V^. The projectors P^ in (2.13) are 
then SU(2) intertwiners as in (1.1) and belong to two different 6j-symbols 
associated with the two tetrahedra attached to the triangle. 

In order to perform calculations involving the Haar intertwiner, there 
exists a convenient diagrammatic language which can be understood as a 
specialization of the Reshetikhin-Turaev ribbon diagrams [13] to represen- 
tations of compact Lie groups. 

Figure 1 shows the basic diagrams. These are read from top to bottom. 
We draw directed lines which are labeled with finite-dimensional unitary rep- 
resentations p of G. If the arrow points down, the line denotes the identity 
map of Vp, Figure 1(a). If the arrow points up as in (b), it refers to the iden- 
tity map of the dual representation V*. Placing symbols next to each other 
corresponds to the tensor product, placing symbols below each other denotes 
the composition of maps. The diagrams (c) and (d) show co-evaluation and 
evaluation, 

dim Vn 

coevp: © -> Vp ® V*,        If-)-   ]P Vj ® rf, 
3=1 

evp: V* ® Vp -> C,        a®wt-> a(w). 

(2.15) 

(2.16) 
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(a) (b) 

Figure 2: The gauge fixing relation, Proposition 2.7(5). 

Two tensor factors are swapped by the map ippia: Vp(^Va —> Va®Vp^ v®w i-> 
w®vm diagram (e). The Haar intertwiner (2.11) is shown in (f). The trivial 
representation is invisible in these diagrams. Note that for representations 
of groups, as opposed to quantum groups or super groups, our diagrams do 
not involve any framing nor any non-trivial braiding. Any diagram that can 
be written down using only the symbols of Figure 1, is G-covariant, i.e. rep- 
resents a G-morphism. The Haar intertwiner satisfies special properties [12] 
which are summarized by the following proposition. 

Proposition 2.7. Let G be a compact Lie group and T denote the Haar 
intertwiner (2.10) for finite-dimensional unitary representations of G. 

1. T is a G-morphism, 

2. T2 = T, 

3. Tt = T, 

4. If $ is a G-morphism, then $ o T = T o $, 

5. T satisfies the gauge fixing relation, i.e. in any diagram in which we 
can draw a closed loop (the dashed line in Figure 2(a)) which intersects 
only the boxes of Haar intertwiners, but no representation lines, then 
we may replace one of the Haar intertwiners by the identity morphism 
(Figure 2(b)). The step of going from (b) to (a) is called inverse gauge 
fixing. 

Definition 2.8. Let pi,... , Pk be finite-dimensional unitary representations 
of G. A diagram which represents a morphism $: Vp1 ® • • • ® VPk -» Vpl ® 
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Figure 3: The anchor of the induction proof, see Lemma 3.1. 

"' ® Vpk •> is caUed positive if $ is a positive linear operator for any choice 
of finite-dimensional unitary representations for the pi,... ,Pfc and for the 
internal lines of the diagram. 

If we talk about positive diagrams, we can obviously omit the arrows 
from the diagrams because the above definition states a condition on all 
representations including in particular the dual ones. Our basic example of 
a positive diagram is the Haar intertwiner, Figure 1(f), or any partial trace 
of it. 

3    Positivity of relativistic spin network 
evaluations 

3.1     Positivity proof 

In this section, we generate an infinite family of positive diagrams by induc- 
tion. The anchor of the induction is the following lemma. 

Lemma 3.1. The diagram in Figure 3(e) is positive. 

Proof. We start with the diagrams in Figure 3(a) and (b). Diagram (a) 
is positive as a partial trace of the Haar intertwiner. Since it denotes a 
representation morphism, it commutes with the Haar intertwiner (b) by 
Proposition 2.7(4).  Lemma 2.4(4) then implies the positivity of (c).  From 
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Figure 4: Theorem 3.2 establishes that this diagram is positive. 
It consists of k Haar intertwiners with k + 1 lines each. For each 
such Haar intertwiner, one line is an external one and one is 
a closed loop. Additionally, for each pair of Haar intertwiners, 
there is one loop linking the two. 

there we obtain (d) by a sequence of inverse gauge fixing and gauge fixing 
along the dashed line in (c). Finally, (e) is positive as a partial trace of (d). 

□ 

We wish to generalize this result to the diagram that generalizes Fig- 
ure 3(e) to k Haar intertwiners and which is shown in Figure 4. This diagram 
consists of k Haar intertwiners with k + 1 lines each. For each such Haar in- 
tertwiner, one line is an external one and one is a closed loop. Additionally, 
for each pair of Haar intertwiners, there is one loop linking the two. 

Theorem 3.2. The diagram of Figure 4 is positive for any number k of 
Haar intertwiners. 

Proof. We assume that the theorem is true for k — 1 (for k — 1 = 2, this was 
proved in Lemma 3.1). In order to keep the drawings simple, Figure 5 shows 
the case k = 3. The argument is, of course, independent of k. 

The diagram in Figure 5(a) is positive by assumption. Note that we 
are allowed to replace single lines by double lines in any positive diagram 
because positivity holds for any assignment of representations, in particular 
for tensor products. Diagram (a) denotes a morphism so that it commutes 
with the Haar intertwiner with four or more lines. Therefore diagram (b) is 
positive by Lemma 2.4(4). We obtain (c) by inverse gauge fixing and gauge 



838 Positivity of relativistic spin network evaluations 

r\ ry 

KJ7 

C\ 

\J7 \J 

Liiin 

frylkrM 

\^7 

z?3roih 

^TTKTllJ 

(a) (b) (c) 

Figure 5: Diagrams used in the proof of Theorem 3.2. 

fixing along the dashed line in (b).  The proposition follows by exchanging 
tensor factors and taking partial traces. □ 

3.2    Relativistic spin network evaluations 

We have shown in Theorem 3.2 that the diagram of Figure 4 is positive. Now 
we choose the trivial representation for all external lines and for the little 
loops that are attached only to one Haar intertwiner, and obtain positive 
diagrams such as that in Figure 6(a) which was drawn for k — 4. If we 
view each pair of lines that belong to the same loop as a representation 
F<g>F*, these diagrams have the structure of the complete graph of & vertices, 
Figure 6(b). The spin network of Figure 6(a) is a relativistic spin network 
in the following sense. 

Definition 3.3. Let G be a compact Lie group. A relativistic spin network 
with symmetry G x G is a spin network whose edges are labeled with rep- 
resentations of the form V ® V* of G x G where V denotes a representation 
of G, and whose vertices are labeled by the intertwiner of Figure 6(c), given 
by one integration over G. 

Remark 3.4.       1. The relativistic spin networks used in the model of 
Barrett-Crane [4] form a special case of Definition 3.3 for G = 317(2), 



Hendryk Pfeiffer 839 

(c) 

Figure 6: The structure of the positive diagrams (a) generated 
by Theorem 3.2 is that of a complete graph (b) where the rep- 
resentations are of the form V <8> V* and the intertwiner is given 
by a group integration (c). 

using Spin(4) = SU{2) x 5(7(2). For SU(2), the balanced repre- 
sentations V ® V are isomorphic to our representations V ® V*, and 
Figure 6(c) is precisely the presentation [14] of the Barrett-Crane in- 
tertwiner as an integral over SU(2) = S'3. 

2. Observe that the choice of V ® V* instead of the isomorphic V ® V 
has eliminated a number of signs as we have already observed in [15]. 
There we have also shown that the choice V ® V* is the canonical 
one compatible with the integral presentation of the Barrett-Crane 
intertwiner. 

3. Balanced representations of Spin(4) factor through the covering map 
Spin (4) —» 50(4) and therefore form representations of 50(4). 

Reisenberger [16] has proved that the space of Barrett-Crane intertwin- 
ers for any given valence of the vertex is one-dimensional. The particular 
prefactor can depend on the conventions used. For our definition using the 
integral presentation of the Barrett-Crane intertwiner and balanced repre- 
sentations of the form V ® V*, the relativistic spin networks evaluate to 
non-negative numbers.   If one uses, however, Kauffman's conventions [17] 
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[2]     [I"] 

0 
(12), (13), (23) 
(123), (132) 

i+l 

1       2 1 
1       0      -1 
1    -1 1 

Table 1: The character table of the finite group 53. The rows are labeled by 
its conjugacy classes and the columns by the finite-dimensional irreducible 
representations. 

for SU(2) spin networks, there is an additional overall sign which depends 
on the representations. This is the sign [6] that cancels only if one multiplies 
all spin networks associated to the four-simplices of a closed manifold. This 
sign is not essential to the spin network evaluation, but rather an artifact of 
conventions which are unnatural in the present context. 

Theorem 3.2 has shown that relativistic spin networks on the complete 
graph of k vertices evaluate to non-negative numbers. This result can be 
specialized to any subgraph of the complete graph by choosing the trivial 
representation for all edges that are missing compared to the complete graph. 
We have therefore proved 

Corollary 3.5. Let G be a compact Lie group. Any relativistic spin net- 
work with symmetry G x G on any subgraph of a complete graph evaluates 
to a non-negative real number. 

The positivity of relativistic spin network evaluations proved so far im- 
plies that the individual summands of the partition function of the Barrett- 
Crane model on a generic two-complex are non-negative because these sum- 
mands are products of various amplitudes each of which is calculated by 
evaluating relativistic spin networks. This result can be extended to prove 
the absence of destructive interference in the Riemannian Barrett-Crane 
model on any two-complex, using Corollary 1 of [6]. 

4    Counterexamples to the stronger conjecture 

Given the result of Section 3, it is tempting to conjecture that the use of 
the Haar intertwiner is the magical ingredient that renders all these spin 
networks non-negative. However, the stronger conjecture that all diagrams 
are positive if they are composed only from the building blocks shown in 
Figure 1, is not true. 
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Figure 7: These diagrams are not positive. 

As a first counterexample we consider the diagram in Figure 7(a). The 
compact Lie group G is the finite group 53 (with the discrete topology). 
Its character table is given in Table 1. Let [2] denote the two-dimensional 
representation of Ss and [1~] the one-dimensional parity representation. If 
we choose pi = P2 = Ps = [2] and p4 = [!"], a direct calculation shows that 
Figure 7(a) evaluates to 

1 

w 
£  x[2\fg)x[2Hfh)x[%h)x^h) = -1 (4.1) 

f,g,heS3 

The stronger conjecture is therefore false, at least as long as we do not 
restrict the class of allowed Lie groups or the class of diagrams. 

The diagrams studied in Section 3 are obviously special in the sense 
that they are related to relativistic spin networks. Is the counterexample 
presented above maybe too pathologic? It is instructive to re-arrange the 
positive diagrams of Section 3. For k = 4, we have Figure 6(a) which can be 
drawn as Figure 8. This is the diagram which appears in the study of lattice 
gauge theory on the two-complex dual to a triangulation of the sphere S3 by 
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Figure 8: The diagram appearing in lattice gauge theory on the 
two-complex dual to a triangulation of the sphere S3 by two 
tetrahedra. 

two tetrahedra. One of the tetrahedra is located at the center of the diagram, 
the other one at infinity. In the language of [12], the diagram is the circuit 
diagram in the two-complex dual to the cellular decomposition defined by 
the triangulation. The diagram for general k is the circuit diagram for the 
triangulation of Sk~l by two (k — l)-simplices. 

Is it maybe true that the circuit diagrams of all triangulations or of all 
cellular decompositions of S^1 have a positive evaluation? The answer is 
again negative as our second counterexample shows. 

Consider the diagram in Figure 8. Subdivide the central tetrahedron 
into four tetrahedra (1 <-> 4 Pachner move) and draw the circuit diagram 
for this finer triangulation. By gauge fixing and substituting the trivial 
representation for some lines, we arrive at the diagram of Figure 7(b). This 
diagram evaluates to a negative number for some choice of representations 
which implies that the diagram of the refined triangulation of S3 is negative 
for some labeling. 

In order to see this, consider Figure 7(b) and gauge fix again, removing 
the Haar intertwiner marked by a V. For any assignment of irreducible 
representations to the lines, a number of Haar intertwiners are trivial and 
can be explicitly evaluated. We remove two of them, marked by '-' from the 
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diagram. The resulting diagram can be computed by hand for G = 83. We 
choose all representations to be [2] except for the line indicated in Figure 7(b) 
with is labeled by [1~]. The calculation is completely analogous to our first 
counterexample, and the diagram evaluates to —1/8. 

We have therefore shown that the stronger conjecture fails even if one 
restricts the class of diagrams to circuit diagrams of triangulations of the 
sphere S3. 

5    Discussion 

First we point out a general difficulty with the definition of the Barrett- 
Crane model. Its vertex amplitude is found by geometrical conditions to be 
the 'relativistic lOj-symbol', defined by the requirement that its representa- 
tions are balanced and that its intertwiners are Barrett-Crane intertwiners. 
This intertwiner is a priori only specified up to a complex factor. It would 
obviously be a disaster if, as a consequence, the full lOj-symbol contains an 
arbitrary complex factor. The standard strategy to avoid such an ambiguity 
is to fix the conventions for all intertwiners throughout the representation 
category of SU(2) in a systematic way, for example, as in [17]. The remaining 
ambiguity is then still a representation dependent sign. 

The construction presented here is, on the contrary, completely canonical. 
There are no arbitrary signs and we are in addition rewarded by a special 
property, namely the positivity of any single relativistic spin network. It 
should be pointed out that the Lorentzian versions of the relativistic spin 
networks were defined in terms of their integral presentation right in the 
beginning [18]. This definition is canonical, and there are no similar sign 
ambiguities there. 

We observe that the framework developed in the present article extends 
to non-compact Lie groups G provided their representations are unitary and 
that one can show the existence of all relevant traces. The Lorentzian version 
of relativistic spin networks [18], however, has a different structure and is 
not covered by our result. 

What are possible application of our positivity result? The Riemannian, 
i.e. Spm(4)- or S'0(4)-symmetric, Barrett-Crane model can be defined on 
any two-complex, not just on a two-complex dual to a triangulation [3], lead- 
ing to relativistic spin networks on general graphs as the vertex amplitudes 
rather than just lOj-symbols. Our result provides a canonical definition of 
these spin networks and establishes the positivity of each single diagram. As 
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a consequence, one can show the absence of destructive interference follow- 
ing [6]. This result supports the conjecture that the Barrett-Crane model 
does not define any unitary evolution operator, but rather some projector 
for which the spin network basis is very special and gives rise to only positive 
(or only negative) matrix elements. 

In contrast to the Barrett-Crane model, lattice gauge theory and lattice 
sigma models are meant to be models of Statistical Mechanics with positive 
weights that admit a probability interpretation. For non-Abelian lattice 
gauge theory, our counterexample shows that the strong-weak dual spin foam 
model [7,8,12] does not in general have positive amplitudes. In order to apply 
Monte Carlo techniques, one therefore needs a special treatment of the signs. 
The situation for the spin network models strong-weak dual to lattice sigma 
models [11] is much better. Both the G x G-symmetric lattice chiral model 
and the S'O(4)-symmetric lattice non-linear sigma model, also called the 3- 
vector model, have dual descriptions in terms of relativistic spin networks 
so that we have non-negative amplitudes in these cases. 
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