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Abstract 

Boundary actions for three-dimensional quantum gravity in the dis- 
cretized formalism of Ponzano-Regge are studied with a view towards 
understanding the boundary degrees of freedom. These degrees of free- 
dom postulated in the holography hypothesis are supposed to be char- 
acteristic of quantum gravity theories. In particular it is expected that 
some of these degrees of freedom reside on black hole horizons. This 
paper is a study of these ideas in the context of a theory of quantum 
gravity that requires no additional structure such as supersymmetry 
or special gravitational backgrounds. Lorentzian as well as Euclidean 
regimes are examined. Some surprising relationships to Liouville the- 
ory and string theory in AdSs are found. 
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1    Introduction 

This article presents the calculation, using continuum and lattice methods, 
of boundary terms in 3-dimensional gravity. The gravity theory is presented 
in first order Palatini form, this being a particular example of the general 
class of BF models [1] as this is the most convenient presentation for deriving 
the discretization. We find a variety of boundary conditions, and discuss the 
significance of these for different types of boundaries in space-time. 

The bulk theory of three-dimensional gravity is well known to be a topo- 
logical field theory, however it is also well known that three-dimensional 
topological field theories can give rise to non- topological boundary degrees 
of freedom, the classic example being the CS theory giving rise to a WZW 
model on the boundary [2]. In the case of three dimensional gravity with 
cosmological constant, one can utilize a trick that relates the action to the 
difference of two CS actions, and then use the standard CS-WZW relation- 
ship, however the actual boundary conditions are a little more subtle. In 
three dimensions this is relevant to the AdSs space, or more generally to 
BTZ black hole solutions. 

In this paper we wish to understand in the context of discretization of 
quantum gravity the boundary degrees of freedom that correspond to black 
hole entropy. This paper is directed towards a longer study of boundary 
terms in gravity theories, ultimately in 3 + 1 dimensions, with the hope of 
understanding directly in a theory of quantum gravity, the possibile origin of 
holographic phenomena, and of the microscopic details of black hole entropy, 
in particular well out of the supersymmetric and extremal limits which have 
been very well studied in the framework of string theory. 

The actual type of discretization that we consider here is maybe at first 
sight a bit unusual. The approach is originally due to Ponzano and Regge 
[3] where they considered a simplicial decomposition of a three-manifold and 
the path-integral is then defined as a summation over the possible sets of 
lengths of the edges of the dual lattice. The alternative of course is to fix 
the size of the simplices and to form the path integral by summation over 
possible simplicial decompositions. For the major part of this paper, we will 
be discussing three dimensional models that have a topological invariance in 
the bulk and thus the fixed decomposition is somewhat innocuous but again 
the use of this simplicial decomposition also for the boundary where in gen- 
eral we believe there are physical degrees of freedom needs to be considered 
more cautiously. In addition we eventually need to extend our results to the 
realistic case of four-dimensional gravity where we do not even have topo- 
logical invariance in the bulk making things more intricate though hopefully 
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still manageable. 

We begin however, in the context of euclidean three-dimensional gravity 
where already we find some interesting results concerning the boundary the- 
ories. We will start off with a discussion of a discretization of the BF theory 
that corresponds to three-dimensional euclidean gravity in the framework 
of the Ponzano-Regge discretization, that is a discretization into tetrahedra 
with edges labelled by SO(3) spins, and each tetrahedron then weighted in 
the path integral (sum) by the corresponding 6j symbol. Prom this dis- 
cretization we can then derive a boundary action and will compare this to 
what we may expect from the corresponding BF theory. We in fact find that 
there are two simple types of boundary conditions, one leads to a topological 
boundary theory and the other to a dynamical boundary theory. In addition 
we discuss mixed boundary conditions which are relevant for the boundary 
at infinity in AdS^ for example. We discuss modifications to these boundary 
actions that arise when one replaces the group 50(3) with 50(2,1) which 
would correspond to gravity with lorentzian signature. We also discuss the 
regularization via quantum groups and find some interesting relationships 
to work on string theory and AdS^/CFT duality. 

Finally we make some suggestions for understanding black hole entropy 
in this context and we discuss briefly the extension of these methods to 
four-dimensional quantum gravity. 

2    Ponzano Regge from BF-theory 

We will now turn to a discretization of the BF representation of three- 
dimensional gravity and show how it leads to the Ponzano-Regge action. 
The BF action is a generic action for a certain class of topological field 
theories, [1]. For three-dimensional gravity it actually corresponds to the 
Palatini first order action. We will mostly use the BF variables which are 
related to the gravity variables via the dictionary; B = e is the dreibein and 
F = R = d(jj + ujAuj = dA + A2 is the curvature of the spin-connection 
LJ = A. 

The basic action for three-dimensional gravity in this first order formu- 
lation is then 

bgrav ftr(eAR), (1) 

where R is the curvature two form of a potential one-form w, and e is the 
dreibein. These fields transform under the action of an 50(3) gauge group. 
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The invariance of the action consists of a gauge transformation in CJ, W -> 
h~lu)h + h~1dh^ coupled with a local gauge rotation e —> h'~leh1 and an 
additional invariance only acting on the dreibein (reparametrization) under 
which 8e '= dx+fo;, x]- The parameters of these transformations are in SO (3) 
and it's Lie algebra respectively. The first transformation expresses the 
local lorentz invariance, and the second the diffeomorphism invariance. The 
theory as formulated is diffeomorphism invariant with no explicit appearance 
of the metric in the action and thus topological. The constraint that the 
metric is torsion free, de + u) A e = 0, in this first order form, arises from the 
UJ equation of motion. The total group of local symmetry is 750(3) [4]. 

We will proceed now to a discrete formulation of three-dimensional grav- 
ity. We will carry out the discretization as a means of studying the continuum 
theory, however we would like to point out that in [5] some arguments are 
given indicating that in three-dimensional gravity the space-time is neces- 
sarily discrete. Our study in fact also indicates another possibile method to 
prove that three-dimensional gravity is discrete. 

One of the original motivations leading us to consider a discrete space- 
time approach to quantum gravity is the following. We will throughout this 
paper take the view that black holes in quantum gravity behave like quan- 
tum mechanical objects, and that this leads to unitarity in quantum gravity 
via some type of holographic mechanism [6]. If one considers the black hole 
horizon to be a quantum object capable of storing and retransmitting in- 
formation, then one would imagine that this horizon follows a null or even 
time-like path in space-time and that the region inside the global horizon is 
not something that an outside observer can ever see or discuss. This is the 
view of black-hole complementarity developed to reconcile the apparent con- 
tradiction that unitary black hole evaporation implies that observers outside 
the black hole view the physics of the horizon in a very different way to freely 
falling observers who fall into the horizon of a large black hole [7]. As such 
one may view the formation of a black - hole as the expansion of a planckian 
bubble in space-time to become macroscopic. Inside such a bubble there is 
nothing. Thus it seems necessary to think of the microscopic structure of 
space-time to be a collection of bubbles. As such there is a discretization of 
space-time into units of size the Planck length. 

There are a variety of ways to approach the discretization of the BF 
theory in three-dimensions, although all constructions give the same final 
result. For other discussions of the approach that we present here see [8, 9]. 
The simplest approach to discretization is to formally carry out the path 
integral over the B-field, as it is simply a Lagrange mutiplier for the Einstein 
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Figure 1: A tetrahedron and the the part of the dual lattice that it intersects. 

equation. The result is, 

Z[M\= fvAY[8(eF^' ) (2) 

where x are the co-ordinates on the closed manifold M, and the delta func- 
tion is in the group manifold of 50(3). The delta function can be rewritten 
using the identity 

S(9h-1) = Y.XR(9)XR(h-1) (3) 
R 

where g,h e G and the sum is over all representations of the group G. Using 
this identity we can write, 

Z[M} = /^IIE^ + VXiieFW). (4) 

To make this expression tractable we now discretize the manifold M by di- 
viding it into tetrahedra. From this tetrahedral decomposition, we construct 
a dual discretization for which the vertices are at the centre of the tetrahedra 
[10], the edges pass between the centres of adjacent tetrahedra, and the faces 
are then bound by these edges and each dual face will be pierced by precisely 
one edge of the original tetrahedral decomposition. In Figure 1 we show the 
part of the dual lattice that will live inside one of the original tetrahedra. 

We now assign to every face of the dual lattice (that is every edge of 
the original lattice) a representation and to every edge of the dual lattice 
a group element as shown in Figure 2. The product of the group elements 
around a dual face is then the holonomy of that cycle and thus represents 
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Figure 2: An edge of the lattice showing the corresponding dual face 

a discretization of the curvature. Denoting the discretization of M as A we 
can finally write, 

Z[M, A] = Af f J] £ dUe(2je + l)xje (H U) (5) 
eGA   j, 

where Af is a normalisation factor.  In this expression, e is an edge of the 
tetrahedral decomposition A and e is the face dual to the edge e. 

To actually evaluate this expression we notice that the character can be 
written as a sum of products of the Wigner function DJ

mrn,{U) where U is 
the group element corresponding to an edge of the dual graph, 

x,(n^)=Enpw1(^)' (6) 
f=i mi 

where ran+i = ran. Then for each edge of the dual graph there will appear in 
the integral over the corresponding group elements three Wigner functions 
which can be evaluated immediately using, 

/ 
dUDill{U)D»ml(U)Dt,(U-') = { Jl   ^   ")[ -    -    -   )     (7) Jl    32    3z 

(For these and other angular momentum identities that we use below and 
for the definitions of the various symbols that we use, we recommend that 
the reader refer to the very complete monograph [11]). 
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Each tetrahedron thus will contribute two 3jm symbols for every face, 
thus eight 3jm symbols for every tetrahedron. Half of these are summed 
over angular momentum projections in pairs, one of the pair coming from 
each of two tetrahedron with a common face and the orthogonality of the 
3jm symbols ensures that this term becomes the identity. The remaining 
expression is such that summing over the projection quantum number of the 
angular momentum the four 3jm of a given tetrahedron gives a single 6j 
symbol using the identity, 

f h   k   h 1 ==^/_1)£*-£mi ( h    h     h   \ x 

I H   k   k )      ^ \ mi   m2    -rns ) 

h     k    k \ (   k     k    k \ (   k       h       k    \   ^ 
—mi   ms   me J \ —m§   ms   rn^ J \ —m±   —m2    —me 

The final result for a closed manifold M and simplicial decomposition A is 
(see [8] or [9] for more details), 

4       odK +c/\ K    H        H        H     ) 
(9) 

je   e€A teA 

This answer is the path sum proposed by Ponzano and Regge to be a 
discretization of three dimensional quantum gravity. In fact for a tetrahe- 
dron with edge lengths ^, the corresponding weight is the 6j symbol with 
angular momenta 3i=-li-\-\. In the semi-classical limit [3] (large angular mo- 
menta and vanishing Planck length such that the combination liip remains 
constant), a 6j symbol actually becomes the cosine of the Regge action for 
the tetrahedron as a direct discretization of three dimensional gravity (the 
cosine arises as the BF theory path integral sums indiscriminately over pos- 
itive, negative and degenerate values for £?). The Regge action is the direct 
discretization of the Einstein-Hilbert action [12]. 

4 l 

SReggt     =      ^2 ^hk + O^ ^10^ 

Ohk is the angle between the normals to adjoining faces and jhk is the length 
of the edge common to the two faces labeled by h and k. The extra factor 
of half between the edge length and corresponding angular momentum is for 
consistency in this semi-classical limit and we can intuitively justify it by 
noting that the length of the angular momentum vector for the representa- 
tion of spin j is actually y/j(j + 1) which becomes j + \ in the limit of large 
angular momentum. 
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2.1     Symmetry and normalization 

The above expression for the discretized path sum is not quite complete. We 
have ignored the fact that there could in principle be some normalization 
factor in front of the sum, and in fact one would hope that there is such 
a factor simply because the sum itself is divergent. One can simply choose 
a normalization factor to subtract the divergence, however it is interesting 
to see how the divergence arises. This was already analyzed in the original 
paper of Ponzano and Regge, and the reader should look there for the details. 
In short, one takes the Biedenharn-Elliot (BE) identity (Appendix A.), which 
relates a product of three 6j symbols summed over one angular momentum, 
to a product of two 6j symbols without summation. Geometrically this 
corresponds to taking three tetrahedra joined together along a common edge, 
and each with a face in common with two of the others. Removing the 
common edge (the sum in the BE identity) leaves one with two tetrahedra 
sharing one common face. Using the orthogonality of the 6j symbols, one 
can change this identity to one that relates a single tetrahedron to four 
tetrahedra formed by introducing an additional vertex at the centre of the 
original tetrahedron. The identity is in Appendix A for the interested reader. 
The important point is that there is an infinite factor 

R 

A(R)=  lim£(2j + l)2, (12) 

for every vertex of the simplicial decomposition. 

Therefore we see that an infinite factor of this form must be added to 
the denominator of the path sum to regularize it, and that there is one such 
factor for every vertex in the triangulation. The actual normalization factor 
is then 

Ar = A(R)-Nv 

where Nv is the number of vertices in the discretization. 

In addition this discussion has shown us that the path sum is actually 
invariant under the two transformations derived from the BE identity. These 
two transformations are known as Pachner moves [13] and these are the dis- 
cretized version of diffeomorphisms. We have therefore learnt that the path 
sum thus defined (in particular with the regularization discussed) is diffeo- 
morphism invariant in discretized form just as the BF theory was before the 
discretization. 
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2.2    Regularization 

The full path sum is then, 

Z(M,A)= (13) 

gnm-* E n w.+1) IK-)5^^ {I 
where iVo is the number of vertices in A. In this form however it is still not 
very practical for calculating. There exists a different regularization that 
involves a q-deformation of so(3) due to Turaev and Viro [14]. 

Jt    h 
o4 n'S n6 

Jt    Jt 

The path sum is 

ZTV(M,A) = 

A^En^+^nH^-^ 
je=0e£A teA 

Jt     Jt     Jt 
Jt      Jt     Jt 

where 

A9 = 

[n]q = 

2k 

(q-q-1)2 

qn _ q-n 

q-q -1 

(14) 

(15) 

(16) 

The parameter of the quantum deformation is a root of unity q = e™lk 

and the sum is regularized as the representations of £/g(.so(3)) involve angular 
momenta only in the range 0... {k — l)/2 so the path sum now involves all 
finite sums and A(i?) has been replaced by A^ which is clearly finite. 

The semi-classical limit of the q—6j symbol indicates that the q-deformed 
path sum is related to quantum gravity in three dimensions with a positive 
cosmological constant. The limit must be carried out in a way that as the 
angular momentum become large, correspondingly also k must go to infinity. 
The limit is [15], 

f 31   h   h 1 
I k   k   k / 

1 

y/l2nV 
cos 

47r2 TT 
SRegge " -j^V + - (17) 

and we see in particular that the limit which makes contact with the semi- 
classical physics is the limit in which the cosmological constant goes to zero. 
Note that this cannot be derived directly from the action 

SA=  ftr(BF + AB3) (18) 
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by any simple generalization of the discretization carried out above, as the 
non-linearity in B does not allow us to easily integrate over B to get a simple 
expression involving the curvature F. It would be very interesting to find a 
derivation of the TV path sum from the discretization of the path integral 
for 5A. 

For simple manifolds this sum can actually be evaluated giving the 
Turaev-Viro invariants that are important for the understanding of the topol- 
ogy of three-manifolds. The restriction on angular momentum in the quan- 
tum group representations is the same as that which must be imposed on 
string states in AdS^. We will take another look at the q-deformed action 
and limits thereof after we have discussed the boundary discretization and 
will find that in the context of gravity in AdSs there may indeed be a deeper 
meaning to this regularization. 

It is also interesting to consider the relationship between this construc- 
tion of three-dimensional gravity using a quantum deformation and studies 
of quantum doubles of groups [16]. In this article one has a different type of 
quantum group that does not have a fixed deformation parameter. It is used 
for the discussion of multi-particle states in three-dimensional gravity. Each 
particle, creates a localized source of curvature, and in general the space is 
conical at infinity. It is amusing to notice that for the Chern-Simons descrip- 
tion of three-dimensional gravity, at zero cosmological constant one uses the 
group ISO(3) [4], but at non-zero cosmological constant, one finds instead 
the group 517(2) x SU(2) with the level of the Chern-Simons theory related 
to the curvature. Going to the multi-particle Fock space in three-dimensions 
means that we are allowing variable localized curvature depending upon the 
location and mass of the particle sources. We find that the group 750(3) is 
replaced by V(SU(2)) [16] but now with no additional parameter, indicating 
perhaps that all values of curvature are possibile depending on the number 
and mass of particles present. This relationship deserves to be studied in 
more detail as it indicates a possible second quantization that involves also 
the cosmological constant. 

3    Boundaries 

Let us consider the general variation of the BF action for a manifold with 
boundary, (other work on this subject can be found in the papers [17, 18,19]). 

SSBF =  f tr(5BF + SA(dB + AB + BA)) - [    tr(B8A) 
JM JdM 

(19) 
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We see then that the field equations are not effected by the presence of the 
boundary provided that the variation of A is zero on the boundary. The 
path integral in the presence of the boundary will then be a function of the 
boundary value of the spin connection. 

We have another choice, which corresponds to the BF theory with a 
boundary term 

S = SBF + /    tr{BA) (20) 
JdM 

The variation of S is now 

SS=       "equations of motion" + /     tr(5BA) (21) 
JM JdM 

and therefore the boundary condition must be that the variation of B is 
zero on the boundary, and the path integral will now be a function of the 
boundary metric. 

The first boundary condition of fixed spin connection on the boundary 
actually gives rise to a topological field theory on the manifold plus boundary. 
The second boundary condition is Dirichlet on the metric, and this does not 
give rise to a topologically invariant boundary action. 

In a study of asymptotic symmetries in three-dimensional gravity [20], 
it was shown that with appropriate boundary conditions one can also find a 
Liouville theory on the boundary at infinity of AdSs space. Such boundary 
conditions formulated in terms of the metric and connection are actually 
mixed boundary conditions, and we will give more details of how these work 
below. 

The continuum boundary action can be easily derived by following a 
construction similar to that used in [2] where the WZW-CS relationship was 
discussed in some detail. First we consider the boundary condition Su = 0 
for which there is no additional boundary term. To examine the boundary 
theory we will insert the solutions to the bulk equations and then examine 
the action of the gauge symmetries of the theory in the presence of the 
boundary. For the WZW-CS relationship the boundary degrees of freedom 
arise precisely because the bulk gauge symmetry is only a global symmetry 
on the boundary thus the breaking of the gauge symmetry by the presence 
of the boundary gives rise to new degrees of freedom. 

The bulk equations of motion are solved by 

A = -dUU-\ (22) 
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B = UdVU'1. (23) 

Substituting these solutions into the action we find of course that it vanishes 
identically as R = 0. The gauge variation of the action is identically zero 
for the local lorentz invariance, but the diffeomorphism transformation has 
in principle an additional boundary term equal to 

5diffI= [    tr(xR) (24) 
JdM 

which we see also vanishes as R = 0 from the equations of motion (mod- 
ulo some topological issues regarding the extension of a flat connection to 
a boundary of given topology). This boundary action is that of an obvi- 
ously topological two-dimensional field theory in agreement with the proof 
by Ooguri and Sasakura [18] that with the 8UJ = 0 boundary condition the 
path sum is a topological invariant not just of the bulk but of the bulk plus 
boundary theory. 

For the 5e = 0 boundary condition we must add to this result the bound- 
ary term Jtr(euj). The boundary condition now seems to indicate that the 
boundary metric is important in the path sum, in fact the path sum will 
now be a function of the boundary triangulation. Again the solutions to the 
bulk equations will be inserted into the action, the bulk again giving zero 
contribution but the boundary now gives a non zero contribution equal to 

5 = - /    tr{dVU-ldU). (25) 
JdM 

Furthermore the gauge transformations now give rise to non-trivial boundary 
terms, 

SgaugeS=  [    tr(AdB) (26) 
JdM 

SdiffS=-2[   tr(xA2) (27) 

We can see from these variations that the symmetry of the boundary theory 
is significantly smaller than that of the bulk theory. In fact we must have A 
constant for the gauge transformation to vanish and also x = 0. Therefore 
the boundary theory has no diffeomporphism invariance, and is invariant 
only under global lorentz transformations. 

Finally we can consider the boundary conditions used in [20] which are 
related to three dimensional gravity with cosmological constant. To do this 



Martin O'Loughlin 807 

we make a small deviation into the Chern-Simons representation of three- 
dimensional gravity with cosmological constant. Our action is then, 

SBF = /  tr(BF + AB3) (28) 
JM 

We make the change of variables, 

A± = \(By/^K±A) (29) 

and we then find that SBF becomes the difference of two Chern-Simons 
theories plus an additional boundary term. 

SBF = —== / (CS[A+] - CS[A-]) + —1= f    tr(A+A-) 
y—oA JM \/—6A JdM 

(30) 

We see here that the level of the Chern-Simons theory is inversely propor- 
tional to the square root of the cosmological constant, and also that if we 
started with a BF action with no boundary term, then after the change 
of variables we have a boundary term that is of a mixed form, rather than 
of the form tr(AB). This is due to the fact that using the variables A^ 
we can consider boundary conditions that would be mixed boundary condi- 
tions when expressed in terms of the variables A and B. Indeed, if we add 
\ J tr(AB) to the BF action then following the construction of [2] one finds 
that in the Chern-Simons variables the action factorizes into two pieces that 
represent a pair of chiral WZW theories. 

The boundary conditions now imply restrictions on a combination of the 
metric and connection. It is precisely this setup that was shown to arise for 
the boundary at infinity of AdSs in the work of Brown and Henneaux and 
afterwards Coussaert, Henneaux and van Driel [20]. The boundary theory is 
actually a Liouville theory. Note that to discuss this case in the discretized 
framework we really need to use the quantum group representations as it 
is only then that ones sees a cosmological constant in the semi-classical 
limit. The discretized boundary theory will turn out to be very similar to a 
discretization of Liouville theory. We will show how this relationship arises 
in more detail once we have set up the formalism for the quantum discrete 
boundaries. One may already worry here that we are trying to construct 
some triangulation of Liouville theory in the strongly coupled phase and 
it is well known that for Euclidean surfaces such theories have very non- 
continuum like phases. A discussion of these problems and arguments for 
better behaviour in the lorentzian case are in [21]. 
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Figure 3: A pair of boundary triangles and their tetrahedra. Dotted lines are 
the dual lattice. Bold dotted lines highlight a dual face cut by the boundary. 

3.1     Quantum discrete boundaries 

From the bulk calculation of the discretized path sum, we saw that for every 
face of the simplicial decomposition, there are two 3jm symbols. Indeed if 
we consider a single tetrahedron as a discretization of the three-dimensional 
ball then it has a weight, 

(_;n£i=i.7i+(*2+*3+*i+A:3+li+*3) f jl    32    h  1  f jl     h       js   \ x /31x 
1 34   35   36 )  \ h    -h    -is ) 

3i 
-A* 

35 36 

k2 
34, 

-h 
32      36 34 

7712 

35 
777,3 mi 

Joining now an additional tetrahedron to one of the faces of this tetrahe- 
dron, we get another decomposition of the three-ball. On the internal face 
there is now a %jm symbol coming from each of the tetrahedra, but we must 
now sum over the angular momentum projections assigned to the internal 
faces (now identified of course). Using the orthogonality identity for a pair 
of 3jra symbols 

E 3i     32     33 
mi     1712     77-13 

3i      32     33 
mi    m2    ms 

= 1 (32) 

we see that the internal 3jm symbols vanish and we are left in the path sum 
with a 6j symbol for every bulk tetrahedron, and a 3jm symbol for every 
boundary face. In general the integral that gave rise to this pair of 3jm 
symbols was along the link of the dual lattice that passes from the centre of 
one tetrahedra to the centre of an adjacent one piercing one and only one 
face. In the presence of a boundary only half of this integral is carried out, 
from the centre of the tetrahedron to the face and this integral gives rise 
to a 3jm symbol for the bulk 6j symbol and additional single 3jm symbol 
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for the boundary face. The new feature that has given rise to the boundary 
weights for the boundary faces is that now we do not have an entire dual 
face, but rather the dual face is cut in half by the presence of the boundary 
as shown in figure 3. 

We therefore need to also consider the group elements that live on the 
edge of the dual face that is exposed by the boundary. For the bulk path- 
sum described in the previous section the connection was integrated away. 
Now due to the exposed dual faces, we have a boundary dependence on 
the connection that we may or may not integrate over depending upon the 
boundary conditions chosen. In figure 4 we have labelled one such edge from 
X to Y with its weight Drnn(U). For the boundary conditions that corre- 
spond to the action with no boundary term, that is the 5A = 0 conditions, 
we are instructed to keep the connection fixed on the boundary, and thus we 
must not integrate over the boundary values of U. We thus find a network 
with trivalent vertices, each vertex is weighted by a 3jm symbol, and the 
vertices are tied together by the matrix elements of the corresponding group 
elements. The one and two tetrahedra path sums above easily generalize 
by gluing faces of tetrahedra together and using the orthogonality condi- 
tion giving one the general expression for a simplicial decomposition with 
boundary. 

Z(.M,d.M,A,dA) = 

^EIK^ + DIIH^^I   !   I}x (33) 
{je}e€A teA ^   Jt     Jt     Jt    ' 

EnH|E™'(4 1 i.) n 3UTO 
{m)}fedA \       f f f  / eedA 

In this expression the normalization factor is the usual one mentioned 
above and A is the dual lattice. The summation is over the angular mo- 
menta assigned to edges in the bulk and the boundary, and over the angular 
momentum projections assigned to each triangular face of the boundary. For 
the situation where the group representations summed over are those of the 
quantum group this is precisely the bulk plus boundary action derived by 
Ooguri and Sasakura [18], where they show that the Hilbert space of the 
TV theory is equivalent to that of a pair of Chern-Simons theories for which 
the boundary state is described by Wilson lines joined by trivalent vertices 
with an identical structure to that derived above. We would also like to 
note that this path sum (for all boundary group elements U equal to the 
identity element) is the same as that derived in [23].   In contrast to our 
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Figure 4: Boundary discretization arising from the boundary of bulk tetra- 
hedra and the dual lattice (trivalent graph). 

present approach, in that paper the boundary action was derived purely on 
the grounds of topological invariance. 

The boundary term fdMtr(BA) required for the 6B — 0 boundary con- 
ditions when discretized becomes, 

exp( f    tr(BA)) = Xj(U) = £ D^U) 
JdM „ 

(34) 

where B refers to the boundary value of B. In this expression the dreibein 
B is replaced by its discretized representation that being the length of the 
corresponding edge of the boundary of the original lattice, and the connec- 
tion is represented by U which is the gauge field assigned to the link of the 
boundary of the dual lattice that is dual to the edge where B resides. The 
partition function is in this case a function only of B. We must multiply 
the path sum derived above for the 8A = 0 boundary conditions by this 
additional term, remove the sum over the boundary values of the spins jf, 
and integrate over U to derive the final path sum for Dirichlet boundary 
conditions in the metric. The integral of importance is that over U and is 

/ 
dUDLtiWD^iU) 'VjkUmnVm'n (35) 

2k + 1 

Inserting this into the path sum gives the final result for fixed metric bound- 
ary conditions, 

Z(M, dM, A, dA) = 

{jeEA'}eGA' 

E IIH*2, 
{mi} fedA 

teA 

ml 

Jt 
Jt 

ft 
Jt 

ie2 it 
-ml 
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where A7 signifies the lattice without boundary components. The sum is 
now only over the angular momentum in the interior edges. The integral 
over U on the boundary has now fixed the angular momentum projections 
to be associated to edges of the boundary triangulations, rather than with 
faces as for 8A = 0. Thus we see that the action is quite similar to that 
for the 5A = 0 boundary conditions except that now the boundary values of 
the angular momenta are fixed corresponding to the fixed boundary metric. 
Note that in this path sum the factors of (2j + 1) are absent for edges 
that lie in the boundary due to the restriction in the product over edges 
to A' = A — <9A. These factors are important in the angular momentum 
identities that one uses to prove topological invariance, thus indicating that 
for this choice of boundary conditions there is no topological invariance on 
the boundary agreeing with our continuum analysis. 

In the path integral for a fixed boundary metric, one would expect that in 
the quantum gravity there would be a need to sum over all possible boundary 
configurations that give a discretization of the continuum boundary metric. 
A construction of such a type will be seen to be necessary for a calcula- 
tion of black hole entropy in this discretized setup. In general before fixing 
boundary conditions we have the expression for 6A = 0 without summation 
over angular momenta and without the integral over the boundary gauge 
connection. We need to understand what boundary conditions will allow 
calculations relevant to black hole physics, and also what representations of 
the (quantum) group one must include in this summation. The representa- 
tions and boundary conditions will be discussed in the final section when we 
consider the construction for lorentzian metrics. Furthermore, we need to 
know how to implement the boundary conditions that give Liouville theory 
in our path sum construction. 

3.2    Two-dimensional discrete path sums 

We want to show a point of contact between our calculations and discrete 
TFT's in two dimensions. For 8A = 0 everything is topological and there 
is an easy way to get a two dimensional TFT from this theory. In R3 take 
a thickened wall and remove the bulk tetrahedra using the various Pachner 
moves in the bulk and on the boundary. The final result will be just two 
dimensional, but in some sense a double layer as the two faces will both 
carry their own 3jm symbols. The two dimensional action that one finds by 



812 Boundary actions in Ponzano-Regge discretization 

this procedure is, 

5   5   -Is )    f J,   1   Js, ) x (36) 
mi   mi    ~rnf )     \ ^V   m//   "~"77l// 

n^]ne(c/e)^e/)ne/(c/e) 

This is indeed a two-dimensional TFT, invariant under two-dimensional 
pachner moves and similar actions have been studied in a collection of works 
[22, 23]. 

For bB — 0 we cannot actually remove all the bulk tetrahedra, as the 
removal process that one uses for the totally topological situation of bA — 0 
relies heavily on the topological invariance of the boundary theory and in 
particular on the elementary shelling operations. We can however take a 
limit that is inspired by the bulk boundary correspondence of the AdS/CFT 
conjecture [24]. To do this we imagine that we take a semi-classical limit of 
the bulk action leaving the boundary angular momentum fixed. The relevant 
limit of the bulk 6,?' symbols that have a face edge or vertex on the boundary 
were already studied in the original article of Ponzano and Regge. The 
interesting thing that we find is that the boundary answer depends crucially 
on the asymptotic properties of the manifold. This sort of behaviour is 
maybe not a surprise as it is precisely such a dependence in the AdS/CFT 
correspondence that accounts for the simplicity of the near horizon limit 
in the AdS case. For asymptotically flat spaces however the action is not 
expected to be similar to the CFT as it will live on a null surface rather 
than on a time-like surface and the asymptotic group of symmetries will be 
smaller. 

The limits of 6J symbols in which only some of the angular momentum 
are taken to be large are of two basic types. The first involves removing 
one vertex to infinity, and thus the three edges connected to that vertex 
become large, while the three vertices that form the remaining face stay 
fixed, this face then is a triangle of the boundary configuration. The result 
is thus the Sjm symbol of the remaining face, where the pairwise differences 
between the large angular momenta make the m quantum numbers in this 
Sjra symbol and we thus find an answer similar to that which we derived 
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from the BF theory, a pair of 3jm symbols on the boundary. The answer is, 

f    jl        j2        i3    \ 
R™OO\J

4
 + R  j5 + R  f + Rj 

M-D^^^^-^,..^, /:? /:,..) (37) 

The other possibility corresponds to holding the length of one edge fixed, 
this representing a tetrahedra that has only an edge in contact with the 
boundary. In this case one still can do one of two things with the remaining 
angular momenta. One can take the angular momentum on the unique edge 
that does not touch our chosen edge to also be fixed, and the other four go 
to infinity. Or one can take all five to be large. This is where the dependence 
on the large scale asymptotics of the space have an effect. If for instance in 
the euclidean case we are considering a boundary that is a sphere in i?3, then 
clearly we must take the limit where all five other angular momenta become 
large. On the other hand, if the boundary is a plane in i?3 then one need 
take only four angular momenta to infinity, the other two corresponding to 
opposite edges of the tetrahedra remain fixed. The expressions for these 
limits contain additional dependence on parameters of the limiting process 
and can be found in appendix B. 

The expressions for the path sums in these limits are relatively compli- 
cated. It is interesting to note that the answer for this "near-boundary" 
limit, is basically the two-dimensional double 3jm symbol action derived 
above for purely topological boundary conditions, however, with some addi- 
tional structure depending upon the asymptotic behaviour of the space-time. 
In the next section for null surfaces in Lorentzian manifolds we will find that 
the semi-classical limit leads to an hypothesis that simplifies the boundary 
discretization considerably. 

4    Lorentzian manifolds, Liouville theory and string 
theory on AdSs 

If we replace the SO(3) of the euclidean construction with S,0(2,1) then the 
representation theory becomes somewhat more complicated, and all limits 
of the corresponding angular momentum coupling coefficients in the various 
representations have not been fully studied. However, the original large 
angular momentum limit of Ponzano and Regge has also been carried out 
for the discrete series of representations in the non-compact case [25], The 
result is basically the same as for the compact group apart from the fact 
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that the angles are now hyperbolic given by the boost required to take the 
normal to a face into the normal of an adjoining face. In the limit of large 
angular momentum we have 

ij}   h   h \~-=L=c0B4>ezp 
I 34   J5   JG )       J12TV\V\ 

/ Jhk®hk 
h<k 

(38) 

In this expression, ©^ is the angle between the faces h and fc, 

@hk = cosh~1(nh.nk) 

and n is the unit normal to the corresponding face. Thus as one face becomes 
null, the corresponding normal will also become null, and the angle that this 
face makes with the three neighbouring faces becomes infinite. The exponen- 
tial in the weight for the tetrahedron implies that the corresponding angular 
momentum must be zero or that two of the sides of the triangle are of equal 
length and the corresponding angles are of opposite sign. Therefore the only 
configurations that can contribute have equilateral triangles and isosceles 
triangles where the short edge has length 1/2 corresponding to zero angular 
momentum. The equilateral triangles must have all zero angular momentum 
labels and thus have all sides of length 1/2. So in a path sum involving all 
discretizations with a given boundary metric the path sum is dominated by 
discretizations with boundary triangles that have all lengths equal to 1/2. 
This is modified then by collective structures built from isosceles triangles. 
It is clear that the configurations involving isosceles triangles must be collec- 
tive, as the presence of an isosceles triangle, implies also that neighbouring 
triangles are isosceles, and so on, until the structure closes again. An exam- 
ple of such a collective structure is shown in figure 5. These structures are 
reminiscent of macroscopic loop operators in the matrix models of dynamical 
triangulations [26]. 

We should note here that we have been a bit incautious regarding the 
order of limits. We took large j and then interpreted the expression for small 
j. There is indirect evidence that the result is sensible and we will discuss 
our reasoning below. The precise calculation that one needs to do is to take 
the null boundary limit of the quantum 6j symbol in a similar way to the 
original limits studied by Ponzano and Regge. 

Thus we get a picture of horizon states in discretized quantum gravity 
and this is a positive step towards a micrpscopic understanding of black hole 
entropy. In 't Hooft's discussions of horizon states [27] one finds similarly 
a special role for the low angular momenta, / = 0, ±| when the horizon at 
fixed Rindler time is represented as a collection of discretized line segments 
labelled by angular momenta of 50(2,1).  Also in the Ashtekhar approach 
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Figure 5: An example of part of a horizon configuration showing an isosceles 
"excitation". 

to quantum gravity, the entropy calculations indicate that entropy is derived 
from contributions only from the lowest spin states on the horizon [28] and 
similarly in the paper [29]. 

It is interesting to reflect upon the meaning of the boundary action. If 
we assume that the semi-classical limit of the Clebsch-Gordon coefficients 
for Uq(sl(2)) for the discrete representations are an analytic continuation of 
those for Uq(so(3)) then we should find a negative cosmological constant. 
For the situation of 2 + 1 gravity in a space of constant negative curva- 
ture, one finds as mentioned above that the boundary theory is a Liouville 
theory. Furthermore from recent work on Liouville theory [30, 31, 32] it 
is known that the representations of the Virasoro algebra that arise in the 
N-point functions, involve the quantum group Uq(sl(2,R)). In the string 
theory picture of AdS^/CFT duality [33] the mass cut-off on angular mo- 
mentum representations is also the same as that which arises in the dis- 
crete representations of Uq(sl(2,R)). Beginning as we did from the PRTV 
(Ponzano-Regge-Turaev-Viro) construction, it appears that we have arrived 
at almost the same conclusion. Note though that in the PRTV construction, 
after changing to a Lorentzian space-time signature it is not necessary that 
the representations are identical to those used for the Euclidean geometries. 
Maybe one should sum(integrate) over the continuous representations that 
arise in the Liouville approach for the boundary at infinity. On the other 
hand, for the null boundary at a global horizon, it is not so clear how to 
proceed, however some interesting insight will come from a comparison of 
our boundary action and string theory on AdSs [34]. If we had the Clebsch- 
Gordon coefficients for the discrete series of Uq(sl(2)) we could also explicitly 
calculate the weight of a "macroscopic loop" configuration and make a direct 
comparison with the macroscopic loop wavefunctions calculated for example 
in [26]. The Clebsch-Gordon coefficients are known for the continuous series 
[32] and for these one should be able to directly compute the null boundary 
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limit. 

The representation theory of non-compact quantum groups is still very 
much under development, see [35, 32]. Also a discussion on the relationship 
between strings in AdSs and quantum groups can be found in [36]. There are 
representations of Uq(sl(2)) that are discrete, and agree basically with the 
discrete ones for the compact group, and give a cut-off in the path sum, see 
also [35] for a few more details on these. The other representations are those 
that arise from the quantum group representation of the Virasoro algebra of 
the Liouville eft at c > 1. These are similar to the continuous representations 
of 5/(2, R). 

We can already make some speculative remarks derived from studies 
of string theory and continuum gravity in AdSs [33]. One can study the 
various physical excitations in this space-time both from the perspective of 
the space-time and that of the string theory. In the space-time picture, one 
finds a c > 1 Liouville theory, and indeed if one considers a non-critical string 
theory with target equal to AdSs then again one will find the world-sheet 
theory also to be Liouville with c > 1. The states that arise are classified 
by quantum group representations [30, 31, 32]. However the representations 
that arise are not those that we are using in the Turaev-Viro path sum. This 
strongly suggests that an extension of the PRTV (Ponzano-Regge-Turaev- 
Viro) construction to include the representations of Uq(sl(2)) that arise in 
the Liouville theory corresponds to extending the quantum gravity path sum, 
to a string field theory path sum (albeit with a fixed topology for the target 
manifold). Liouville theory at c = 1 also appears in the context of AdSs 
compactifications although in this case the theory appears as a consequence 
of SU(2) group factors in the internal space [37]. It would be interesting 
to find connections between this structure and the Liouville theory that is 
naturally present for AdSs string compactifications. 

The Liouville theory on the boundary cylinder at infinity for gravity in 
AdSs has a central charge 

c=l + 6(6 + l/&)2 (39) 

where b E R or |6| = 1 and the correlation functions of this theory are 
constructed from the Clebsch-Gordon coefficients of the quantum group 
Uq(sl(2)) where 

q = e^7rb2\ (40) 

The cosmological constant of the AdSs space is proportional to b4. In turn, 
the cosmological constant that arises in PRTV is proportional to 1/&2, where 
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the deformation for the Turaev-Viro quantum group is given by, 

q = eft\ (41) 

Clearly b2 ~ 1/k and thus the groups that arise in the two approaches are 
indeed identical deformations of sl(2). Thus the group and deformation pa- 
rameter agree in a manner which supports the conjecture that the quantum 
group that arises in the Regge calculus is the same as that of the Liouville 
theory on the boundary. However, the representations that arise in the Li- 
ouville theory have angular momentum in ^ + z7^, while those in PRTV are 
identical to those that arose for Uq(so(3)) with angular momentum running 
from 0 to ^i. Of course once we changed from Euclidean to Lorentzian 
discretizations, the question already arose as to which representations one 
should sum over and now we see that the answer to this question may have 
deeper significance. 

Actually one can make the relationship between our discrete boundary 
action involving the quantum group and the perturbation theory of the Li- 
ouville theory on the cylinder more concrete in a very geometrical manner 
by examining the perturbative expansion of the Liouville theory on a cylin- 
der (corresponding to the boundary of AdSs). Write the path integral with 
sources and charges for all Liouville vertex operators in selected representa- 
tions. Use bootstrap to argue that all vertices can be reduced to cubic and 
recall that the cubic vertex for the Liouville theory is given precisely by the 
Clebsch-Gordon coefficient of the quantum group Uq(sl(2)) [32]. Further- 
more the propogator of the perturbative expansion of the Liouville theory 
is the Wigner coefficient Drnn of the corresponding representations. Such 
Feynman diagrams correspond precisely to the dual lattice with weights as 
derived in the previous section and as shown in Figure 3. Geometrically all 
genus zero amplitudes correspond to one of our quantum group boundary 
terms in structure but with a sum over representations different from those 
used by Turaev-Viro. 

If one considers the dual lattice to the boundary triangulation, one finds 
a trivalent graph that lives on the boundary of the manifold, being one of 
the Feynman diagrams discussed above. At any given time-slicing this will 
look like a collection of particles with mass given by their spin, and as this 
gas evolves there are interactions coming from the trivalent graph. Thus one 
can make a proposal for calculating the entropy using a system of particles 
making a gas. The XXZ spin chain is a possible starting point for such a 
calculation. This model is a chain of spins the solution to which involves 
the quantum group Uq(sl(2)) and which is related to Liouville theory for 
c = 1 and c > 25 and also possibly for all c > 1 [38]. Within this framework 
we should be able to formulate the explicit calculation that is necessary to 
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Figure 6: Two time slices of the boundary gas 

calculate the entropy of the boundary theory and thus black hole entropy. 
The Feynman diagrams of the boundary action describe the time-evolution 
of the gas (Figure 6). For a null boundary the gas will be non-relativistic 
whereas for a time-like boundary the gas will be relativistic. In the case of 
a null boundary these representations will become more restricted and the 
three point interaction implies that during the evolution of the gas one has 
both creation and annihilation of particles. This may even imply some sort 
of dissipation in the null case. Other works arguing for dissipative behaviour 
for a theory describing a black hole horizon have appeared in [39, 40]. From 
a deeper understanding of this gas one should be able to directly calculate 
the entropy and thus the black hole horizon entropy. 

Another consideration that we have not addressed directly but that has 
already arisen a few times in our discussions, and also one that is intimately 
related to the calculation of the entropy is the following. Without a bound- 
ary, it was clear that the prescription of Ponzano and Regge to hold fixed the 
simplicial decomposition was already sufficient due to the topological nature 
of the theory. Now in the presence of a boundary it is possible that one 
really needs to sum over the boundary triangulations. The bulk theory is 
topological and is insensitive to how one describes the sum in detail, however 
we expect some dynamics on the boundary. This indicates the possibility 
of extending the path-sum to dynamical triangulations. This sounds like 
trouble as such triangulations give rise to the matrix model of Liouville and 
for c > 1 these models are badly behaved with very rough surfaces domi- 
nating the path sum. However, discretizations for lorentzian manifolds have 
been studied in [21] where the authors have shown that when the simplicial 
decompositions are restricted by the requirement of a causal structure, the 
phases of the dynamical triangulations are well behaved involving smoother 
surfaces than in the Euclidean setup. The Haussdorf dimension in particular 
remaining dn — 2 rather than becoming fractal and equal to 4 as it does in 
the Euclidean case. Indeed, our work also implies that there is another possi- 
bly interesting type of dynamical triangulation, where the "causal" structure 
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is that implied by the constraint that the surface be not Lorentzian, but null. 
It would be interesting to study in the context of [21] null dynamical trian- 
gulations, the results of which investigation would certainly shed light on 
the dynamics of black hole horizons in quantum gravity. 

4.1    3 + 1 dimensions 

For 3 + 1 dimensions we now have some intuition for how to approach the 
discretization. The simplices will be labelled by 50(3,1) representations. 
We can write the boundary path sum including boundaries following more 
or less the same philosophy as above. In this case from the beginning it 
seems that we probably need to consider dynamical triangulations as oth- 
erwise we will end up with a topological bulk theory rather than a theory 
containing also gravitational dynamics. Various versions of discretizations of 
four-dimensional Lorentzian manifolds have been studied as for example in 
[41, 42]. Furthermore the semi-classical limit of the 15 j symbols that arise 
in these bulk path-sums, has been studied in [43] with results agreeing with 
the Regge discretization once more. We expect for null boundaries also in 
3 + 1 dimensions that some restrictions will be placed on the representations 
arising and that one will probably again find some sort of three-dimensional 
dynamical triangulation describing the behaviour of the horizon. From the 
work in [44] it has been shown that also for three-dimensional lorentzian 
dynamical triangulations, the branched polymer and crumpled phases, can 
not be reached leaving hope that such a system will have a nicely behaved 
continuum phase transition. It would be interesting to also look at three 
dimensional null dynamical triangulations to see if the causality restrictions 
on triangulations introduce some regulator of the geometries. The way to 
proceed is we believe clear. One must determine the representations that 
are important for the theory that is being investigated, and then one must 
look at various limits of the j -symbols. 

Appendices 

A    Angular momentum identities 

The Biedenharn-Elliot identity relates the 6j symbols associated to two dif- 
ferent ways of combining nine angular momenta. The sum on the right 
hand side is replaced by a product on the left. Geometrically this identity 
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is represented by the diagram shown. 

f J7   js    h 1   f h   k    39 1 _ /42N 

I 35   h    fa J  I k   k   k / 
y^(_l)(£i*+x)/ Ji   ^   X U ^3   J4   X\/^   ie   Xl 
V I  ^3     ^4     ^7   1   I   ^5     ^6     ^8   J   I   ^2     ^     J9   J 

Using the orthogonality for a pair of 6j symbols this identity can be 
rearranged as discussed in the text, up to an infinite multiplicative factor. 
The regularized version of this identity as first given in Ponzano and Regge 

[3], is 

\j}   h   j3)= limAOR)-1  E     11   Wi + l)* 

f ii   h   h 1 f ie   is   ii  1 f i. 
1 ir  is  39 J 1 is  i9  iio /1 i 

(43) 
J7—jioi=7—10 

J4     J2     J6   1   f   k     k    fa 
k    J10    37   J  \  J10    37    k 

Another useful identity for understanding the relationship between bulk 
and boundary transformations is, 

3i     h     k   \ (     33       34     35 

7713 

E(_l)i3-m3 I    31      32      33    \ I      33        34      35    \ /44x 
\ mi    m2   ms ) \ —ms   7714   m^   I 

4^ \ mi    m5    m J \ -m   m^    m2 J \ k   3i    k J 

The geometrical meaning of the left side is simply a pair of adjoining bound- 
ary faces. The right hand side involves the gluing of two faces of an additional 
tetrahedron to the original pair of faces resulting in a new pair of boundary 
triangles. This results in a 2 *-> 2 Pachner transformation in two-dimensions. 
Using the orthogonality of the Sjra symbols one can rewrite this equation 
to give the algebraic representation of the 3^1 transformation. 

B    Limits of 67 symbols 

Here are the 2 + 2 and 2 + 1 + 1 limits of Ponzano-Regge.  We will use the 
following labelling for the tetrahedron (Figure 7). For the 2+2 limit, we shift 
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Figure 7: Some limits of tetrahedra 

b, c, e, f by R and take R to be much larger than all of a... f. In the figure 
this limit corresponds to keeping the segments [1,2] and [3,4] of fixed length 
while all other edge lengths go to infinity. We can consider a = length[l,2] 
to be the edge of the tetrahedron that lies in the boundary. 

The answer is then, 

(a     b + R     C + R   1 /_1xa+d+min(6+e,c+/) 
\ d   e + R   f + Rj~{     ' 

"(a - b + c)!(a - e + /)!(<* - e + c)\(d - b + /)!! *sign(c+/-6-e) 

.(a + b - c)!(o + e - /)!(<* + e - c)!(d + &-/)!. 
(2R)-\b+e-c-f\-l 

\b- 7|l 
[1 + 0(R-2)} (45) 

For the 2 + 1 + 1 limit, we take e = b + 5 and /. = c + 5l', where now 
d, 5,6' are all large, though small with respect to a, 6, c. This corresponds 
to keeping only the segment d of fixed length and all other edges to infinity. 
The one edge of small size is then d and in the text this is the edge that lies 
in the boundary of the manifold, all other edges in this case being internal. 
The final answer is, 

( a       b c      1 
\ d   b + S   c + S' ) 

(-1) a+b+c+8+5' 

[12nV} 
1     X -cos(t- -TT), (46) 

where 

t = n-(a + b + c + S + S, - -W 
4 

(47) 
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and O is the Regge action for the tetrahedron. 

In this limit, the dependence on the asymptotic structure of the space en- 
ters as the angle that remains in the final expression is the angle between the 
edges [2,3] and [1,3] or equivalently between [1,4] and [2,4]. These angles 
enter the expression for the limit through the Regge action. If for instance 
the boundary is on a sphere of finite volume, then as one takes this limit a 
tetrahedron with one edge stuck on the sphere boundary, these angles will 
go to infinity. If the boundary is planar in flat space then the angles will go 
to zero and we go back to the 2 + 2 result. 
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