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Abstract 

We classify and construct all the smooth Kaluza-Klein reductions 
to ten dimensions of the M2- and M5-brane configurations which pre- 
serve some of the supersymmetry. In this way we obtain a wealth of new 
supersymmetric IIA backgrounds describing composite configurations 
of D-branes, NS-branes and flux/nullbranes; bound states of D2-branes 
and strings, D4-branes and NS5-branes, as well as some novel config- 
urations in which the quotient involves nowhere-vanishing transverse 
rotations to the brane twisted by a timelike or lightlike translation. 
Prom these results there also follow novel M-theory backgrounds lo- 
cally isometric to the M-branes, some of which are time-dependent and 
all of which are asymptotic to discrete quotients of eleven-dimensional 
Minkowski spacetime. We emphasise the universality of the formal- 
ism by briefly discussing analogous analyses in type IIA/IIB dual to 
the ones mentioned above. Some comments on the dual gauge theory 
description of some of our configurations are also included. 
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1    Introduction and conclusions 

New sectors in string theory have emerged by the embedding of the Melvin 
universe [1] into string theory [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. 
These are the so-called fluxbranes. Their supergravity description is in terms 
of the Kaluza-Klein reduction of eleven-dimensional Minkowski spacetime 
along the orbits of suitable one-parameter subgroups of the Poincare group. 

In our previous work [16] we investigated and classified all smooth Kaluza- 
Klein reductions of eleven-dimensional Minkowski spacetime by one-parameter 
subgroups of the Poincare group, paying special attention to those preserving 
some amount of supersymmetry. These give rise to a wealth of supersym- 
metric IIA backgrounds including fluxbranes, the then novel nullbranes and 
combinations thereof. This analysis teaches us that besides fluxbrane sec- 
tors, there are new supersymmetric sectors in string theory associated with 
nullbranes. We will summarise the results of [16] in Section 2.1, but let us 
comment here briefly on them. The constraint that the IIA background be 
smooth imposes constraints on the one-parameter subgroup F by which we 
reduce. In particular, it follows that F cannot be compact; in other words, it 
is not a circle subgroup as in the usual Kaluza-Klein reduction but is diffeo- 
morphic to the real line. Since Kaluza-Klein reduction is usually phrased in 
terms of circle subgroups, one can still do that here provided one performs 
the reduction by F in two steps. 

It will be convenient to generalise the discussion and consider not just 
the reduction of Minkowski spacetime but that of an arbitrary M-theory 
background M = (M, 5, F4) by a noncompact one-parameter Lie subgroup 
F of the symmetry group of M. The first step consists in performing a 
discrete quotient to obtain another M-theory background. To this effect one 
first chooses a co-compact discrete subgroup FQ C F (that is, a subgroup 
such that the quotient group F/FQ is compact, e.g., if F = R then FQ = Z) 
and performs the quotient by FQ. The resulting background M/FQ is a 
smooth supersymmetric M-theory background which is locally isometric to 
M: it consists of making identifications along the orbits of the Killing vector 
generating F at equal intervals in the parameter space. The choice of this 
interval implies a choice of scale relative to which the (possibly varying) size 
of the M-theory circle is measured. 

Having quotiented by FQ, it is the circle subgroup F/FQ which acts non- 
trivially on M/FQ. Its orbits are the M-theory circles, which may be of 
varying size. The second step in the reduction is then the standard Kaluza- 
Klein reduction of M/FQ by the circle subgroup F/FQ. 
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The advantage of performing the reduction along T in two steps, apart 
from placing the dimensional reduction squarely in the familiar context of 
circle reductions, is that the result of the first step is often interesting in its 
own right. 

In fact, in [16] we discovered a novel reduction of eleven-dimensional 
Minkowski spacetime: a generalised fluxbrane in type IIA which we dubbed 
a nullbrane, since the RR 2-form field strength is null and moreover the 
corresponding Killing vector £ has a component which is a null rotation. The 
subgroup F generated by this Killing vector is noncompact, parametrised by 
a real number t. The isomorphism R -> F is given explicitly by 11-» g(t) := 
exp££. This map is a group homomorphism: g{t)g{t') = g(t + £'), whence if 
we choose a scale i?, the elements FQ = {g{nR) | n e Z}, form a co-compact 
discrete subgroup isomorphic to Z. The quotient R1'10/ro of Minkowski 
spacetime by FQ is a smooth supersymmetric M-theory background, locally 
isometric to Minkowski spacetime. It is moreover time-dependent, since the 
null rotation involves time nontrivially. It has been dubbed the "nullbrane" 
in [17] because the circle reduction to IIA along the orbits of F/FQ gives 
rise to the nullbrane of [16]. We will call it here the "eleven-dimensional 
nullbrane" to avoid confusion. 

Similarly, there are "eleven-dimensional fluxbranes" which are obtained 
by performing a discrete quotient of R1,10 by FQ C F, where F is now such 
that R1'10/!" is a IIA fluxbrane. 

The above discussion holds in any number D+l of dimensions—in partic- 
ular in ten dimensions. Ten-dimensional fluxbranes, that is, R1,9/ro, allow a 
conformal field theory (CFT) [18, 19, 20, 21, 22, 23] description in terms of 
resolutions of the ordinary euclidean orbifolds. Analogously, ten-dimensional 
nullbranes resolve null (or parabolic) orbifolds [24, 25]. The geometry of 
these null orbifolds has been recently discussed in [26, 27]. It was further 
noticed in [27] that, by going to the light cone gauge such spacetimes allow 
an interpretation in terms of a Big Crunch phase connected to a Big Bang 
phase through a point where our spacetime manifold is non-Hausdorff. The 
nullbrane not only resolves the fixed points of the null orbifold and its non- 
Hausdorff nature, but it is also free of closed causal curves and it is stable 
against the formation of black holes when probed by particles at least at low 
energies and for a large enough number of spacetime dimensions [28, 29]. 
The geometry of the eleven-dimensional nullbrane is a metric product of a 
flat seven-dimensional euclidean space (which can be further compactified) 
and a four-dimensional locally minkowskian spacetime which can be viewed 
as the total space of a circle fibration over a 3-dimensional manifold, where 
the radius of the circle varies with time and reaches a minimum nonzero size 
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R, which is nothing but the scale in the previous discussion. These prop- 
erties seem to allow the use of string perturbation theory in these discrete 
quotients [17, 29], extending the original formulation for the null orbifold 
given in [27]. 

The existence of these backgrounds with cosmological interpretations 
motivates and suggests a natural mathematical problem, namely the classi- 
fication of smooth supersymmetric M-theory or type IIA/IIB backgrounds 
which are obtained by discrete quotients (often termed orbifolds even if the 
resulting quotient is smooth) of a given one. This is a much harder problem 
already for the case of Minkowski spacetime and it definitely does not follow 
from the results of [16]. Its solution would require classifying all the discrete 
subgroups FQ of the corresponding Poincare group which act freely and prop- 
erly discontinuously on Minkowski spacetime and which preserve some su- 
persymmetry. As discussed in [30, 31] supersymmetry in eleven dimensions 
requires that FQ be contained in the subgroup Spin(7) tx R9 of the Poincare 
group. The classification of smooth flat supersymmetric M-theory back- 
grounds would include, in particular, the classification of crystallographic 
subgroups of Spin(7) C SO(8): a hard problem in practice despite the exis- 
tence of a powerful algorithm. Some comments and partial results concerning 
smooth time-dependent backgrounds constructed in this way can be found 
in Section 7 of [17]. 

In this paper, as in [16], we will not emphasise the discrete quotients of 
the M-theory backgrounds, but it is worth remarking that from our results 
there follows a classification of those discrete quotients by (infinite) cyclic 
subgroups. As some of the subgroups we will exhibit act nontrivially in 
the time direction, some of the M-theory backgrounds resulting from the 
corresponding discrete identifications will be time-dependent. There has 
been much recent interest in this class of backgrounds, as evidenced by the 
recent work on spacelike branes [32, 33, 34, 35], Sen's proposal [36, 37] that 
dynamical rolling of the tachyon of open string field theory can lead to 
interesting cosmologies, double Wick rotations of stationary configurations 
[38, 39, 40, 41, 42], coset models [43, 44] and related orbifold constructions 
[45, 46, 47, 48, 49]. The time-dependent backgrounds implicit in our results 
hence add to the existing classes of examples of such backgrounds. It should 
be remarked that unlike the ones found in [16], these will not be flat, but 
they will be asymptotic to (R1,10/^, as corresponds to excitations of these 
new M-theory vacua. We will call them asymptotically locally flat spaces. 

The purpose of the present work is twofold. Firstly, it is natural to 
ask about which D-branes, NS-branes and other dynamical objects in string 
theory exist in flux/nullbrane sectors. This question has been partially ad- 
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dressed for the fluxbrane sector using CFT techniques [50, 51]. In the follow- 
ing, we shall adopt a low-energy effective closed string description to fully 
answer this point. In this way, we shall not only classify all the allowed 
supersymmetric configurations, but we shall find their explicit supergravity 
realisation at the same time. If one is interested in classifying compos- 
ite configurations of branes, waves, monopoles,... and flux/nullbranes, it is 
natural to consider the same configuration at strong coupling, where they 
should be described in terms of the uplifted known M-theory backgrounds 
satisfying certain nontrivial global identifications reminiscent of the twisted 
identifications associated with flux/nullbranes in flat spacetime. Thus, our 
classification problem of composite configurations in type IIA is equivalent 
to a classification of certain one-parameter subgroups F of the symmetry 
group of an M-brane background M. The Kaluza-Klein reduction M/T will 
then give rise to the desired composite configurations. This has already 
been shown for a particular configuration in [52] through a probe analysis 
of DO-branes in flux 5-brane (F5-brane) backgrounds. Similar ideas were 
also pointed out in the appendix of [23]. On the other hand, performing 
the reduction in steps: first quotienting by a discrete subgroup FQ C F and 
then quotienting the resulting M-theory background by the circle subgroup 
F/FQ, will give rise, after the first step, to new eleven-dimensional back- 
grounds M/FQ, some of which will be time-dependent and all of which will 
be asymptotic to R1,10/^. 

The second goal of this work is to make progress in the classification of 
supersymmetric M-theory and type IIA supergravity backgrounds. Due to 
the equivalence stated above, it is natural to make a thorough analysis of 
all smooth Kaluza-Klein reductions of a given fixed M-theory background 
M. It will turn out that for curved spacetimes, such as the ones describing 
M-branes, new reductions arise which were not taken into account in the 
past and are not possible in Minkowski spacetime. 

For example, it is possible to reduce along the orbits generated by Killing 
vectors involving time translations and rotations transverse to the brane, but 
which nevertheless are everywhere spacelike, so as to avoid the existence of 
manifest closed timelike curves.1 These novel reductions appear whenever 
the unit sphere transverse to the brane is odd-dimensional, because such 
spheres will admit nowhere-vanishing Killing vectors. This is the case for 
M2-branes or delocalised M5-branes, but it is certainly a much more general 
phenomenon, present in the delocalised M-wave [53] and in some intersecting 

Although such a restriction is perfectly legitimate from a physical point of view, one 
cannot discard the possibility of obtaining novel string backgrounds by reducing along the 
orbits of a freely-acting Killing vector £ after excising from the spacetime those regions 
where £ fails to be spacelike, with the usual completeness caveats. 
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brane backgrounds [54], for instance. 

A second example of novel reductions results whenever the brane is de- 
localised. In such cases one can consider Killing vectors involving linear 
combinations of a translation tangent to the worldvolume of the brane and 
a translation transverse to it. If both translations are spacelike, the type 
IIA configuration describes non-threshold bound states. If one of them is 
lightlike, the IIA observer no longer measures an asymptotically Minkowski 
spacetime, but a wave propagating at the speed of light. Whenever one of 
the translations is timelike, the physical interpretation remains unclear to 
us. 

It is a natural question to ask about the global causal structure of the 
spacetimes obtained by reducing along Killing vectors which act nontrivially 
on time. This question remains open for the former set of novel reductions 
discussed above, but we will show that for the latter set there are no closed 
causal curves whenever the Killing vector is everywhere spacelike, even if it 
contains timelike and light like translations. 

It should be clear that any of the techniques mentioned above also applies 
to any on-shell background in type IIA/IIB supergravity. In this context, our 
analysis must be understood as the classification of all inequivalent quotients 
(discrete or not) of such a given background by a one-parameter subgroup of 
symmetries. As will be discussed in the last section of this paper, both con- 
structions, the one obtained from M-theory through Kaluza-Klein reduction 
and the one directly constructed in type IIA are equivalent through a TST 
chain of dualities, T standing for T-duality and S for S-duality transforma- 
tions, respectively. 

In the context of the AdS/CFT correspondence [55], some of our config- 
urations (composites of D-branes and fluxbranes), when studied in certain 
decoupling limits, provide us with supergravity duals of the dipole theories 
introduced in [56, 57, 58, 59, 60]. Indeed, our configurations depend on some 
set of parameters (related to the charge of the fluxbranes) which can be held 
fixed in a Maldacena-type limit [61, 62]. They can thus be viewed as some 
sort of deformation parameters of the corresponding near horizon geometries 
of D-branes. Our analysis shows the existence of further supersymmetric 
configurations both in the flux- and nullbrane sectors. Indeed, the identifi- 
cations underlying dipole theories involve the R-symmetry group transverse 
to the brane. We point out the possibility of making identifications involv- 
ing transverse and longitudinal (either spacelike or lightlike) directions to 
the brane at the same time. Their dual gauge theory description involves 
supersymmetric Yang-Mills with the adjoint matrices satisfying twisted con- 
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ditions generalising the ones written before [56, 63]. Similar techniques were 
used also in [64]. 

We would like to emphasise the universality of the construction presented 
in this paper. Even though we shall restrict ourselves to M2 and M5-brane 
configurations in this work, it is clear that any supersymmetric configura- 
tion, with enough symmetry, of a D+l supergravity theory (ordinary or 
gauged) for which a consistent Kaluza-Klein truncation to a D-dimensional 
supergravity theory is known, would generate new D-dimensional configura- 
tions by using the same methods developed below. In particular, extensions 
to M-waves and MKK-monopoles [53], intersections of M-branes [54], su- 
persymmetric wrapped branes, antibranes, multicentred configurations or 
supergravity duals of non-commutative gauge theories, among others, are 
conceptually straightforward. It is particularly interesting to address these 
questions in supersymmetric backgrounds of the form AdSp x Sq both in M- 
theory and in type IIB. The BTZ black hole [65] construction out of AdSs 
[66] and the dual description of string theory in these backgrounds in terms of 
supersymmetric Yang-Mills theories opens many interesting questions both 
in the gravity and gauge theory sides. This is currently under investigation 
and some results will appear elsewhere [67, 68]. 

In what remains of this introductory section, we provide a self-contained 
and hopefully comprehensive description of the geometrical set-up underly- 
ing Kaluza-Klein reductions. It also fixes the notation and conventions used 
in the rest of the paper. Section 1.2 deals with an arbitrary bosonic back- 
ground having certain group of isometries, whereas in Section 1.3 we explain 
which is the criterion for preservation of supersymmetry. In this way, we 
are naturally led to introduce the notion of moduli space of supersymmetric 
Kaluza-Klein reductions. In Section 1.4, we present the argument that will 
allow us to determine this moduli for the M2- and M5-brane configurations 
in the body of the paper. Finally, Section 1.5 details the organisation of the 
rest of the paper and a brief summary of its results. 

1.1    Supersymmetric M-theory backgrounds 

The bosonic fields of eleven-dimensional supergravity [69, 70] are a lorentzian 
metric g and a closed four-form F4 defined on an eleven-dimensional spin 
manifold M. The bosonic equations of motion are a generalisation of the 
Einstein-Maxwell equations in four and five dimensions. They consist of a 
nonlinear Maxwell-type equation for F4: 

d*F4 = i.F4 A F4 , 
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and an Einstein-type equation for g whose explicit form need not concern 
us here, but which relates the Einstein tensor of g to the energy momentum 
tensor of F4—an algebraic tensor depending on g and quadratically on F4. 

By hypothesis M has a spin structure and hence a bundle of spinors, 
which is a (symplectic) real bundle of rank 32. The supersymmetry of the 
supergravity action (with fermions included) induces a covariant derivative 
operator 2) on spinors. It is defined as the supersymmetry variation of the 
gravitino \I>M restricted to the subspace of the configuration space where the 
gravitino vanishes. In other words, if e is a spinor, then 

We will not need the explicit expression of D; suffice it to say that it can be 
written in the form ©M = VM+^M? where V is the spin connection and QM 

is an endomorphism of the spinor bundle depending algebraically in g and 
linearly in F4. A nonzero spinor e which obeys 2)^e = 0 is called a Killing 
spinor, as they are the "square roots" of Killing vectors. A pair {g^F^) 
satisfying the field equations (with fermions set to zero) is called a (bosonic) 
background. A background is supersymmetric if it possesses Killing spinors. 
Since the Killing spinor equation is linear, the space of Killing spinors is a 
vector space, and since the equation is first order, its dimension is not bigger 
than the rank of the spinor bundle, here 32. A background (#, F4) is said to 
preserve a fraction v of the supersymmetry if the dimension of the space of 
Killing spinors is 32u. The space of backgrounds is stratified by the possible 
values {0, 5^, ^,..., 1} of ZA At the time of writing it is not known whether 
all strata are nonempty. 

1.2    The geometry of Kaluza-Klein reductions 

Ten-dimensional type IIA supergravity can be defined as the Kaluza-Klein 
reduction of eleven-dimensional supergravity along a spacelike direction [71, 
72, 73]. This means that if the Kaluza-Klein reduction of an M-theory 
background exists, it is automatically a type IIA background and moreover 
every IIA background arises in this way (at least locally). Of course, not 
every M-theory background can be reduced, as this requires the existence of 
a symmetry. 

By an (infinitesimal) symmetry of a background (g, F4) we mean a vector 
field £ on M such that 

• £ is Killing: H^g = 0; and 
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• f preserves F4: £;f F4 = 0—equivalently d^F4 = 0, since F4 is closed. 

Now suppose that an infinitesimal symmetry £ integrates to an action 
of a one-dimensional group T (either R or 51) obeying the following two 
properties: 

1. the action is free; and 

2. the norm of £ never vanishes. 

The first property involves two separate conditions: one infinitesimal, that 
the vector field £ never vanishes; and one of a more global nature, that every 
point in M should have trivial stabiliser. This guarantees that the space 
iV = M/T of F-orbits is a smooth manifold. The second property means 
that N inherits a metric: lorentzian if £ is spacelike or riemannian if it is 
timelike. As in [16], we will concentrate solely on the case of a spacelike f. 

The condition that £ does not vanish is a necessary condition for the 
smoothness of the quotient. In many of the examples we will consider in 
this paper, £ will tend to zero as we approach the horizon. Such a zero need 
not have geometric meaning, as the coordinate system in which our ansatze 
are written are singular in the horizon. One way to determine whether or 
not this zero of the vector field yields a singularity in the quotient would 
be to extend the solution beyond the horizon, as the brane ansatze we will 
write down only cover the spacetime exterior to the brane. In order to 
keep this paper down to a reasonable length, we will choose to ignore these 
potential singularities and take the conservative approach that our solutions 
only describe the spacetime exterior to the brane, even though the physics of 
these potential singularities in the throats of the different branes and their 
resolutions, if any, are very interesting questions for future research. 

Since it plays an important role in our approach, we now describe in 
some detail the geometric underpinning of the Kaluza-Klein ansatz. We 
think of the original spacetime M as the total space of a principal F-bundle 
TT : M ->• N = M/F, where TT is the map taking a point in M to the F- 
orbit on which it lies. At every point p in M, the tangent space TpM of 
M at p decomposes into two orthogonal subspaces: TpM = VP@ 3ip, where 
the vertical subspace Vp = ker TT* consists of those vectors tangent to the 
F-orbit through p, and the horizontal subspace Jip = Vp is its orthogonal 
complement relative to the metric g. The resulting decomposition is indeed 
a direct sum by virtue of the nowhere-vanishing of the norm of f, whose 
value at p spans Vp for all p. The derivative map TT* sets up an isomorphism 
between TpM and TqN, where n(p) = q. There is a unique metric on N for 
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which this isomorphism is also an isometry and it is defined as follows. We 
choose a point p in the fibre above q. Then if X, Y £ TqN, we define their 
inner product2 h'(X,Y) = g^X^Y), where X,Y € Oip obeying n+X = X 
and ir+Y = Y are the horizontal lifts of X and Y, respectively. This does 
not actually depend on the choice of p because F acts by isometrics. 

The horizontal sub-bundle Oi gives rise to a connection one-form a on M 
such that Ji = kera and such that a(£) = 1, where £ is the Killing vector 
generating the F-action. Relative to a local trivialisation, and letting z be a 
coordinate along the F-orbits, we can write a = dz + A, where A is a locally- 
defined one-form on N. In terms of this data (and omitting pullbacks by TT) 

the metric g on M can be written as 

g^h' + e^idz + A)2 , 

where e2^/3 is the norm of the Killing vector £, which in this trivialisation 
is given by £ = dz. The function $ : N —> R is the dilaton. To make contact 
with the metric which appears in the effective action of the type IIA string, 
it is convenient to conformally rescale the metric on TV by a function of the 
dilaton. Doing this we finally arrive at the familiar string-frame Kaluza-Klein 
ansatz for the dimensional reduction of eleven-dimensional supergravity to 
type IIA supergravity: 

g = e-2*'sh + eA*'3(dz + A)2. (1.1) 

The four-form F4 also reduces and gives rise to two forms on N: the 
NSNS three-form H3 and the RR four-form H4. To see how this comes 
about, let us first decompose F4 as follows 

F4 = G4 - a A Gs , 

where a is the connection one-form defined above. The curvature two-form 
da is both horizontal, so that i^da = 0 and invariant, so that L^da = 0. (In 
this case, invariance follows from horizontality since da is closed.) To prove 
horizontality, we first observe that a = ^/\\^\\2, where £b is the one-form 
defined by ^{X) = g{€,X) for all vectors field X on M, is invariant3. This 
means that i^da + di^a — 0, but since a(£) = 1 and hence constant, this is 
precisely horizontality of da. 

Forms which are both horizontal and invariant are called basic, since 
they are pull-backs of forms on the base iV. The curvature two-form da is 
the pull-back of the RR two-form field-strength H2 = dA.  Let us remark 

The reason for the prime in the notation will become obvious below. 
3This is equivalent to the physical statement that the photon carries no charge. 
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in passing that in coordinates adapted to £, so that £ = <9Z, a form is basic 
if and only if it has no dz component (horizontality) and does not depend 
explicitly on z (invariance). 

We now claim that both G4 and G3 are basic. It is clear from the above 
expression that G3 = -1%F4, so that it is manifestly horizontal. Invariance of 
F4 means that G3 is closed, whence it is basic. It is therefore the pull-back of 
a three-form on N: the NSNS three-form field-strength H3 = cLE^. Finally, 
we observe that G4 is also basic. It is manifestly horizontal, and invariance 
follows by a simple calculation 

£f G4 = tfef G4 + if dG^ 

= i£(—da AG3) 

= 0, 

where we have used that G3, G4 and da are horizontal. This means that G4 
is the pull-back of a four-form on N. It is convenient to write that four-form 
as H4 — H3 A A, where IZ4 is the RR four-form field-strength. 

In the local trivialisation used above, we can rewrite the above decom- 
position of F4 in a more familiar form (omitting pullbacks) 

FA = HA-dzAH3 . (1.2) 

In summary, if (M, g, F4) is an M-theory background admitting a free F- 
action (F = R or F = S1) with spacelike orbits, then (N = M/F, h, $, H2 = 
dA, #3, #4) is a type IIA background. Conversely any IIA background 
(iV, /i, $, H2,H3, H4) can be lifted locally to an M-theory background (M, #, F4) 
possessing a spacelike symmetry in such a way that the Kaluza-Klein reduc- 
tion of (M, g, JP4) along that symmetry reproduces the IIA background we 
started out with. 

Some of the backgrounds we will be studying admit a simpler description 
in terms of the dual seven-form F7 = •i^. The Kaluza-Klein reduction of 
F7 is very similar to that of F4. We start by decomposing F7 as 

F7 = G7 + a A G6 , 

where G7 and GQ are horizontal. This means that GQ = i£Fj. We claim that 
Ge and G7 are also invariant, whence basic. To see this we compute their 
Lie derivative with respect to £: 

L^Ge = LftFr = i^F7 = 0 , 
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since F? is invariant. Similarly, using that G7 = F? — a A Ge, we calculate 

L^G7 = Lf:(F7 - a A G6) = -L$a A Ge = 0 , 

where we have used that a is invariant. In summary, since they are basic, 
GQ and G7 are pullbacks of forms on the base. In adapted coordinates where 
£ = dz and a = dz + A, we can write (omitting pullbacks) 

Fi = H7 + dzAHQ, (1.3) 

where iJe pulls back to GQ and H? pulls back to GV — A A G^. 

It is possible to trace the Hodge-dual across the reduction and to relate 
Hj and HQ to H4 and H3 and the fields to which the eleven-dimensional 
metric reduces. One finds 

H6 = *io (#4 + A A F3) 

i?7 = A A *io#4 + *IO*A« (A A #3) - e"OT *io H3 
2*. „        a-4) 

where •10 is the ten-dimensional Hodge star operator relative to the metric 
h and A$ is the vector field dual to the RR one-form A. 

One can also invert the above relation and express H3 and H4 in terms 
of HQ and if7. With the same notation as above, the result is the following 

H3 = e2**1o(H7-AAH6) 

H4 = *io#6 - e2*A A •IO-HV + e2* Mo IA* (
A

 
A
 He) , 

which we record here for future reference. 

1.3    Supersymmetric Kaluza-Klein reductions 

Closely tied to the symmetries of a supergravity background are its super- 
symmetries, which manifest themselves through Killing spinors. In this sec- 
tion we review what happens to supersymmetry under Kaluza-Klein reduc- 
tion. 

Every Killing vector £ acts naturally on a spinor e via the spinorial Lie 
derivative introduced by Lichnerowicz (see, e.g. [74] and more recently [75] 
for applications closer to the present context) and defined by 

Jl(e = Vf£ + ±d£b • e , 

where V is the spin connection and where • means the Clifford action of 
forms on spinors. Choosing a local frame, we can write 

V = v?£ + iva6ra6£ 
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The spinorial Lie derivative enjoys many of the properties that we expect 
of a Lie derivative; in particular, it is a derivation 

W0 = (£/)e + /V> (1-6) 
for any function /. Furthermore one can show that for any vector field X, 

[%Vx] = V[e,x], 

and if in addition f preserves F4, then 

This implies that the Lie derivative along £ of a Killing spinor is again 
a Killing spinor, and hence the space of Killing spinors becomes a linear 
representation of the group T generated by £. 

It follows from the definition of type IIA supergravity as the Kaluza- 
Klein reduction of eleven-dimensional supergravity, that the supersymme- 
tries of the IIA background are precisely the F-invariant Killing spinors of 
the M-theory background. Notice that the condition L^e = 0 for e a Killing 
spinor is actually an algebraic condition, since L^ — Df is a zeroth order 
operator. This is nothing but the condition which arises from the supersym- 
metry variation of the IIA dilatino fields. Thus if an M-theory background 
admits a Kaluza-Klein reduction along the orbits of a group F such that 
there are F-invariant Killing spinors, the resulting IIA background will be 
supersymmetric. We will call this a supersymmetric Kaluza-Klein reduc- 
tion. The IIA background will preserve a fraction is of the supersymmetry, 
where 32u is the dimension of the space of F-invariant Killing spinors of the 
corresponding M-theory background. 

Given a supersymmetric M-theory background (M,^, F4) with symme- 
tries, the problem of finding supersymmetric Kaluza-Klein reductions can 
be phrased in the following terms. Let G be the Lie group of symmetries 
of the background and let £j denote its Lie algebra, consisting of infinitesi- 
mal symmetries, namely those Killing vectors on M which also preserve F4. 
Let T be the subset of Q corresponding to those spacelike Killing vectors 
which integrate to a free group action preserving some Killing spinors. The 
subset 7 parametrises the supersymmetric Kaluza-Klein reductions of the 
background (M, g, F4); however not all points in 7 correspond to physically 
distinct reductions. Indeed, the action of G on M induces the adjoint action 
on g, and this action preserves the subset 7. Two points in 7 which are 
G-related, correspond to two physically indistinguishable supersymmetric 
reductions, as they are related by a change of variables corresponding to a 
symmetry.   The space T is also preserved by rescaling the Killing vectors. 
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Indeed, notice that if £ G T, then R£ £ 7 for every nonzero real number 
R E Rx. Although the scale R has physical meaning—for example, it is 
related to the radius of the M-theory circle in the standard Kaluza-Klein 
reduction—it is natural, from a mathematical perspective at least, to iden- 
tify collinear elements in T and define the moduli space M of supersymmetric 
Kaluza-Klein reductions as the set of orbits of the action of G x Rx on T; 
in other words, as the set of equivalence classes [X] where X G T, where 
X ~ RgXg'1 for all g G G and R G 1RX. The number of Killing spinors left 
invariant by X and by RgXg"1 is clearly the same, whence the space M is 
stratified by the value of z/, the fraction of the supersymmetry preserved by 
the IIA background, which will be a further fraction of that preserved by the 
M-theory background from which we reduce. In [16] we determined M for 
the flat eleven-dimensional M-theory vacuum and in this paper we determine 
M for the M2 and M5-brane solutions by mapping the problem essentially 
(but not quite) to the flat case, albeit with a restricted symmetry group. A 
similar method also allows us to determine M for the purely gravitational 
M-wave and Kaluza-Klein monopole [53]. 

We should remark that the failure of the problem to map precisely to the 
flat case, far from being a problem, is actually responsible for the existence 
of novel reductions by vector fields which would have Killing horizons in flat 
space but which are spacelike relative to the brane metric. 

1.4    Classifying supersymmetric brane reductions 

The classification problem of supersymmetric reductions has two parts. One 
is the classification proper: determining the moduli space M of the given 
background. Then given M, a second part of the problem is to perform 
the reduction explicitly. Although one can address this problem for an ar- 
bitrary supersymmetric background, in practice only the most symmetric 
backgrounds admit an explicit solution. 

Since Killing spinors square to Killing vectors, one way to generate back- 
grounds with sufficient symmetry is to look for backgrounds preserving a 
large fraction of the supersymmetry. In [16] we considered the case of flat 
space. Due to the high degree of symmetry present in the flat background, 
we were able to employ group-theoretical methods to solve the first part 
of the problem and classify all the supersymmetric (generalised) fluxbranes. 
We were then able to write down explicit formulae for the resulting IIA 
backgrounds. 

In the present paper we extend these results to the M2 and M5-brane 
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half-BPS backgrounds. These brane-like solutions we consider in this pa- 
per are asymptotically flat and crucial to our approach is that they inherit 
isometries and supersymmetries from the asymptotic geometry. Indeed, both 
Killing vectors and Killing spinors are determined uniquely by their asymp- 
totic values. Moreover, as the following simple argument will show, this 
correspondence is equivariant with respect to the action of the Killing vec- 
tors on the Killing spinors, reducing the problem in essence to the flat space 
case, albeit with a restricted Poincare group. 

Consider for simplicity a typical electric p-brane solution in d dimensions: 

g = e2Ads2(El*) + e2Bds2(Ed-*-1) 
, (1.7) 

F4 = dvolfE1*) A dC , 

where A, B, C are functions of the radial distance r in the transverse space 
£d~p-i approaching 0 as r —>► 00. (In the magnetic ansatz we would replace 
F4 with •F4.) The asymptotic geometry is therefore flat and invariant under 
ISO(l,d— 1), whereas the brane solution is only invariant under a subgroup 
G = ISO(l,p) x SO(d—p— 1). The Killing spinors for such a background are 
of the form 

where D is another function of the transverse radius approaching 0 at infinity 
and where the asymptotic value Soo is a (covariantly) constant spinor in flat 
space subject to a condition of the form 

dvoKE1*) ■ Soo = Soo . (1.8) 

We claim that the action of G on the Killing spinors is induced by the action 
of Spin(l,p) x Spin(d!—p—1) on the asymptotic spinors SOQ. Indeed, consider 
the action of a Killing vector £ in the Lie algebra g of G on a Killing spinor 
e = eD6oo' Since D is constant along the orbits of £, 

£{£ = e   &£Soo , 

where we have used the derivation property (1.6) of the Lie derivative. On 
the other hand, since £ also preserves i^, the Lie derivative of a Killing 
spinor is again a Killing spinor, whence 

fye = eD£f
00 , 

for some constant spinor e'^. Comparing the two expressions we see that 

£$£00 — ^oo ' 
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which is manifestly independent of r. We can therefore compute it in the 
asymptotic limit r -> oc where the spacetime is flat; but in flat space, the 
action of £f on spinors coincides with the restriction to g of the spinor 
representation of Spin(l, 10). In other words, translations act trivially and 
a Lorentz transformation £ £ g of the form £ = \MN

XM^N acts as 

Voo = \><MN^MNeoo , (1-9) 

where EMN are the spin generators in the Clifford algebra. Notice that since 
dvol(E1,p) is G-invariant, the action of G on spinors restricts to the subspace 
defined by (1.8). 

Essentially the same argument works for delocalised branes, where the 
functions A, B and C entering the solution are invariant under translations 
in the transverse space. This will allow us to also use the methods of [16] in 
order to study the supersymmetric reductions of delocalised brane solutions. 
There are however two fundamental differences between flat space and the 
brane backgrounds. One is the obvious fact that the brane metric is not 
flat and hence the norm of vector fields will differ. We will see that there 
exist Killing vector fields which in flat space would have a Killing horizon 
but which in the spacetime exterior to the brane are everywhere spacelike 
(except perhaps at the brane horizon). The second difference is reflected 
in the fact that the symmetries of the brane are a proper subgroup of the 
symmetries of the flat asymptotic geometry. 

These very differences make this problem more interesting than the flat 
space problem. The existence of spacelike Killing vectors which would have 
Killing horizons in flat space underlies some of the novel reductions described 
in this paper. Similarly, in flat space any two (spacelike, say) translations are 
equivalent under conjugation. This means that we can choose coordinates 
so that any translation is along one of the coordinates. In contrast, for a 
(delocalised) brane solution, the symmetry is not large enough to conjugate 
a translation tangent to the brane into a translation perpendicular to the 
brane. This means that we can consider translations aSy + bd± where d\\ 
and d±_ are the components tangent and perpendicular to the brane, respec- 
tively. The Kaluza-Klein reduction along such translations gives a "pencil" 
of supersymmetric reductions interpolating smoothly between the extremes 
a = 0 and 6 = 0. 

1.5    Contents and summary of results 

Let us now outline the results and the organisation of the paper. 
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Section 2 starts with a brief review of the results of [16], and continues 
with the main theoretical results which will be applied in the remainder of 
the paper to study the set of M-theory backgrounds obtained by reducing 
the M2- and M5-brane configurations along the orbits of a one-parameter 
subgroup of their isometry groups. We discuss the action of Killing vectors on 
Killing spinors and two equivalent methods which can be used to determine 
the loci of supersymmetric reductions. We also derive general formulae for 
the type IIA fields within the ansatze considered in this paper, which are 
applied in later sections when we study specific configurations. 

Section 3 applies the technology developed in Section 2 to the M2-brane 
both for the localised solution in Section 3.1 and for the solution which 
has been delocalised along one transverse direction in Section 3.2. As a 
consequence of our analysis, we find composite configurations of strings, 
D2-branes and bound states of strings and D2-branes with both fluxbranes 
and nullbranes. The allowed supersymmetric configurations are summarised 
in Tables 3, 5, 6. In addition to these configurations, we find new back- 
grounds obtained through reductions involving timelike and lightlike trans- 
lations. When the M2-branes are localised, one can use a linear combination 
of a timelike translation and a nowhere-vanishing transverse rotation to the 
brane. This is case (A) in Section 3.1. If the M2-branes are delocalised, one 
can reduce by the action of Killing vectors involving a linear combination 
of the delocalised direction and a timelike or lightlike direction along the 
brane. This is case (B) in Section 3.2. In Section 3.2.3 we prove that in this 
case there are no closed causal curves in the quotient manifold. 

Section 4 does for the M5-brane what Section 3 did for the M2-brane. 
Composite configurations of D4-branes, NS5-branes and bound states D4- 
NS5 with both fluxbranes and nullbranes are found and classified. The re- 
sults concerning supersymmetric configurations are summarised in Tables 8, 
10 and 11. As in the M2-brane reductions, we find new backgrounds under 
the same circumstances as stated above, but this time both occur for the 
delocalised M5-brane: both cases (A) and (B) in Section 4.2 include novel 
reductions. In Section 4.2.3 we prove that for some of these reductions, the 
quotient manifold has no closed causal curves. 

Section 5 argues why our technology can be straightforwardly applied 
to many other configurations directly in type IIA/IIB. The duality relation 
among the configurations obtained in this way and the ones discussed exten- 
sively in this paper is explained. We end up with some remarks concerning 
the gauge theory dual description of some our backgrounds in the context 
of the AdS/CFT correspondence. 
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Some facts about the decomposition of the spinors representation of 
Spin(l,10) under certain subgroups, needed to determine the amount of 
supersymmetry preserved by the backgrounds described in the body of the 
paper, are discussed in Appendix A. 

2    Kaluza-Klein reductions of brane solutions 

In this section we describe some general features of the problem and of 
the method used in this paper to solve it. The problem of determining 
the admissible supersymmetric Kaluza-Klein reductions can be essentially 
mapped to a problem in flat space but with a restricted group of isometrics. 
We will outline our method to classify the supersymmetric Kaluza-Klein 
reductions of these backgrounds and we will then derive general expressions 
for the IIA fields obtained by Kaluza-Klein reduction. The results of this 
section will be used repeatedly in the rest of the paper. In order to ease 
comparison with the flat case and to make this paper self-contained, we will 
start the section with a brief review of the flat case. 

2.1    Brief review of fiat reductions 

In [16] we classified those Kaluza-Klein reductions of the eleven-dimensional 
vacuum of M-theory which give rise to smooth ten-dimensional geometries 
and determined which of those were supersymmetric. Let us rephrase this 
problem in a way that will facilitate the comparison with the problems 
treated in this paper. Let P = ISO(l, 10) be the eleven-dimensional Poincare 
group and let p be the its Lie algebra. We will identify p with the Lie alge- 
bra of Killing vectors in Minkowski space. We denote T C p the subset of p 
consisting of Killing vectors £ which obey the following properties: 

1. £ is everywhere spacelike; and 

2. £ preserves some nonzero (covariantly) constant spinor. 

The subset T is preserved by the adjoint action of P on p, which is the action 
induced on p by the geometric action of P on Minkowski space. Similarly, 
T is preserved by rescalings £ i-» s£ for any nonzero real s G 1RX. In [16], we 
determined the moduli space M = 7/(P x IRX). There are two families of 
solutions with three parameters each: 

€ = dz + 0iRi2 + #2^34 + #3^56 + #4^78 5 
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and 

£ = dz + N+1 + 0ii?34 + ^2^56 + 03^78 , 

with Oi + 02 + 03 + 04 = 0 and 0f
1 + 02 + 0f

3 = 0. The notation is that z is 
the tenth spacelike direction, Rij is the generator of infinitesimal rotations 
in the (ij)-plane, and iV+i the generator of an infinitesimal null rotation 
in the ith. direction, where the light-cone coordinates are given by x^1 = 
(x9 ±x0)/V2. The former family gives rise to fluxbranes, whereas the latter 
gives rise to nullbranes and solutions interpolating between nullbranes and 
fluxbranes. The resulting IIA objects are summarised in Table 1 together 
with the fraction v of the supersymmetry of the vacuum which the solution 
preserves and the spinor isotropy subalgebra to which the Killing vector 
belongs. The notation Fp and N stands for a flux p-brane and a nullbrane, 
respectively; and the objects labelled Fp/N interpolate between them. In 
these cases, the fraction of the supersymmetry displayed in the table is the 
one at generic points in the moduli space: there are lower-dimensional loci 
where supersymmetry is enhanced. 

V Object Subalgebra 
1 
2 F5 BU(2) 
1 
2 N R 
1 
4 F3 *u(3) 
1 
4 Fl *P(2) 
1 
4 F5/N J6u(2) x R 
1 
8 Fl su(4) 
1 
8 F3/N 5u(3) x R 

Table 1: Supersymmetric IIA fluxbranes and nullbranes 

Now let G C P be a subgroup of the Poincare group and g C p be 
the corresponding Lie subalgebra. The subspace 7 fl Q is now preserved by 
scaling and by conjugation by G, and this prompts us to define the moduli 
space M{G) = (7ng)/(G x R*). The problem of determining M(G) is a 
restriction of the flat space problem, obtained by restricting the Poincare 
group to G. As we will see presently, the problem of determining the pos- 
sible physically distinct supersymmetric Kaluza-Klein reductions of many 
brane-like solutions, reduces morally to determining M(G) where G is the 
symmetry group of the brane-like solution. We say 'morally' because there 
will be a small subtlety in that we will have to enlarge the space T fl g to 
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include Killing vectors in g which are spacelike relative to the brane metric 
and which may vanish at the horizon. These vector fields will not belong 
to 7 but to some larger subspace of the Poincare algebra which will depend 
on the particular brane solution (e.g., on the charge) and not simply on the 
symmetry group. It is precisely this fact which prevents us from claiming 
that the problem of determining the possible supersymmetric Kaluza-Klein 
reductions of M-branes reduces precisely to the flat case; although it does so 
to a large extent. 

2.2    Methodology 

Let us recall our aims and outline the method we have followed to achieve 
them. 

Given a subgroup G C ISO(l, 10) of symmetries of an M-theory back- 
ground (M, g, F4) of type (1.7), we would like 

1. to classify the one-dimensional (connected) subgroups T C G acting 
freely on M with spacelike orbits and leaving invariant some nonzero 
Killing spinor; and 

2. for every such subgroup, to write down explicitly the reduced IIA back- 
ground. 

In the following section we will address (2) by giving general formulas for 
the IIA fields, but let us first restate (1) using the observations made above. 

Let g be the Lie algebra of G, which we identify with the Killing vec- 
tors generating its action on M. As a first step we will determine those 
vectors ^ G g which are spacelike (at least outside the brane horizon). This 
in effect results in the classification of reductions which are not necessarily 
supersymmetric or even smooth. Doing so requires a careful yet elementary 
analysis of the norm of a Killing vector relative to the brane metric. A per- 
haps surprising result born out of this analysis is the existence of everywhere 
spacelike Killing vectors which on flat space would not have this property. 

Having determined the everywhere spacelike Killing vectors we must en- 
sure that the action they generate is free: being spacelike means that they 
never vanish, whence the action is locally free. To ensure that every point 
has trivial stabiliser is equivalent to demanding the presence of the transla- 
tion component in the Killing vector. Since we are interested in the moduli 
space M of smooth supersymmetric Kaluza-Klein reductions, we are free to 
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conjugate by the action of G; that is, to choose appropriate coordinates by 
performing a symmetry transformation. 

Finally we must impose that £ preserve some nonzero Killing spinor in 
the background. The same argument as in Section 1.4 shows that the action 
of £ on spinors coincides with the action of 9 on the spinor representation 
of Spin(l, 10). This reduces the problem of finding supersymmetric Kaluza- 
Klein reductions of solutions of the type (1.7) to a flat space problem with a 
restricted Poincare group. Furthermore, we must ensure that the invariant 
spinors satisfy equation (1.8). Since translations act trivially on spinors, only 
the Lorentz component of £ is constrained. In all cases, this component is 
either a rotation or a commuting linear combination of a rotation and a null 
rotation, and as we will now outline, supersymmetry will only constrain the 
rotation. Two methods can be used to determine the supersymmetric loci: 
a representation-theoretical method based on the weight decomposition of 
various spinorial representations, and a direct computational method based 
on the Clifford algebra. Since both have their merits, we will describe them 
both. 

2.2.1     Representation-theoretical method 

Let S be the unique half-spin representation of the eleven-dimensional spin 
group. (In Appendix A this representation will be denoted Sn to emphasise 
its eleven-dimensional origin.) The Clifford algebra can act on S in one of 
two inequivalent ways, but as mentioned above we will assume that a choice 
has been made once and for all. (This choice is dictated by the supersymme- 
try transformation laws, equivalently by the Killing spinor equation.) The 
Killing spinors of the background are in one-to-one correspondence with a 
linear subspace So of S determined by some G-equivariant equations of the 
form (1.8). Equivariance simply means that the action of G, and hence that 
of £, restricts to SQ. We would like to determine for which f are there f- 
invariant spinors in SQ. AS mentioned in the previous paragraph, only the 
Lorentz component A acts nontrivially on spinors, and in all the cases we 
will consider this will be of the form A = u + p, where the null rotation 
u and the rotation p commute. Since v is nilpotent and p semisimple, A 
annihilates a spinor if and only if it is annihilated by both u and p sepa- 
rately (cf., the argument in [16, Section 2.2]). Since u and p commute, the 
subspace of p-invariant spinors in So is preserved by v. Now, without loss 
of generality, v acts on spinors as a multiple of T+Ti, say, and both 1+ and 
r_ commute with p. Because r+r_ + r__r+ is proportional to the identity, 
the subspace of p-invariant spinors in So is even-dimensional and breaks up 
into two equidimensional subspaces consisting of spinors annihilated by 1 + 



724 SUPERSYMMETRIC KALUZA-KLEIN REDUCTIONS 

(hence by v) and by r_. Therefore only p is constrained by the existence 
of invariant spinors and the presence of the null rotation is only reflected 
in a further halving of the fraction of supersymmetry which the reduction 
preserves. 

Let us now discuss the constraints on p arising out of the existence of 
p-invariant spinors in SQ. The rotation p belongs to the maximal compact 
subalgebra t of Q and hence in some fixed Cartan subalgebra f) of t. Up 
to isomorphism, the action of \) on So is completely specified by giving the 
weights together with their multiplicities. Weights are linear functional on 
f) hence the existence of p-invariant spinors is equivalent to there being some 
weight p, which annihilates p. The rotation p defines a point in fj with co- 
ordinates 0 = (0i,..., flg) and the condition that a weight p annihilates p 
translates into a homogeneous linear equation on 6. The solutions of this 
equation will define a hyperplane in t). Doing this for all the weights4 we 
obtain a family of hyperplanes defining the locus of supersymmetric reduc- 
tions. The bigger the number of these hyperplanes a rotation p belongs to, 
the more supersymmetry will the reduction preserve. 

It is then a simple matter to determine the weight decomposition of S^ 
for each of the M-theory backgrounds discussed in this paper and determine 
the locus of supersymmetry reductions for each one. The necessary group 
theory is outlined in Appendix A. 

2.2.2    Direct method 

Alternatively one can obtain the same result by directly solving the algebraic 
equation (1.9). The most general form of the latter, that is going to be used 
in this paper, can be written as 

[a?+ + ]rAy;Uoo = 0, (2.1) 

where ?+ and 3\ are commuting linear transformations on spinors obeying 
?2

+ == 0 and y2 = _! for an ^5 

The above equation defines two linear transformations N = ay+ and 

4Due to the freedom to conjugate by G, we need only consider one weight in each Weyl 
orbit. 

5Notice that when one considers such an expression, the freedom under conjugation by 
the isometry group has already been taken into account, as explained in more detail for 
the different configurations studied in this paper. In particular, one can think of 3*+ = F+i 
and 3\ = rtll+i. 
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N being nilpotent and S semisimple. Using the same argument of [16, 
Section 2.2], the original equation decomposes into 

iV^oo = 0       and       Se^ = 0 . (2.2) 

The first equation breaks one half of the supersymmetry, and it is asso- 
ciated with null rotations. Let us now discuss the solutions to the second 
equation in (2.2). By squaring it, one derives the further constraint 

\ 

Ki<3 J 

where Qy = 9^ ay = 2(3^ and X = - ^^1 (A)2- Notice that the Qy 
are also a commuting family of linear transformations. 

Assuming that the parameter /% do not satisfy any relations, the general 
solution to the above equation is given by 

i<j 

for some signs rji. This is easily shown by induction on the number of pairs 
m = (2) determining the number of matrices Qy. Indeed, for m = 1 (equiv- 
alently, n = 2) it is trivial to prove that X = rjuau and QnSoo = Vn^oo 
is the solution. Assuming, our result is true for a given m, we shall now 
show the result also holds for m + 1. Indeed, the starting equation can be 
decomposed as 

(  ( z2 Q!(0QW ) + a(m+l)Q(m+l) ) eoo = ^(m+l)^oo • 

By assumption, it can just be rewritten as 

a(?7W-l)Q(ra+l)£oo = (K(m+1) — ^(m)) ^oo , 

which is solved by 

Q(m+i)£oo = 77(m+i)£oo ,     and 

^(m+l) = K(m) + riim+lWm+l) ■ 
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Thus we obtain the full solution for m + 1. 

It is important to stress that not all conditions on the asymptotic Killing 
spinors are independent. Indeed, there are only n — 1 independent conditions 

since it is trivial to show that r^y = —rjij^ij' for ^ 2 < j ^ / < n. Inserting 
these relations into the solution for the eigenvalue 3C, and solving for /32-, 
one derives the constraint on the parameters determining the infinitesimal 
isometry: 

With all this information, it is straightforward to show that the original 
second equation in (2.2) is satisfied. 

As emphasised before, it is not claimed that the above solution is the most 
general one. Indeed, whenever the coefficients /% satisfy certain relations 
among them, there may be an enhancement of supersymmetry. It is actually 
very simple to argue when such a phenomena is going to happen. Indeed, 
whenever we have a linear combination of matrices annihilating a vector, 
the annihilation still holds if a subset of the matrices already annihilate the 
vector by themselves. Thus, there are as many solutions as different ways of 
decomposing the original linear combination compatible with the existence 
of a solution. Instead of developing the general theory for arbitrary n, we 
shall just state the results needed in the bulk of this paper. For our purposes, 
n < 5 (since there are ten spacelike directions). It is obvious that n = 1 
breaks supersymmetry completely. For n = 2, the unique solution is the one 
specified by (2.2). It corresponds to ansu(2) subalgebra. For n = 3, equation 
(2.2) is still the general solution, since all the decompositions into different 
subsets break supersymmetry. This case corresponds to the 5u(3) subalgebra. 
For n = 4, there is the generic solution given in (2.2), corresponding to 
5u(4), but there is also the possibility of decomposing n = ni + n2 = 2 + 2, 
which corresponds to the su(2) x su(2) subalgebra. This case arises when 
A = %/?2 and /?3 = 774^4. Finally, for n = 5, there is the standard su(5) 
subalgebra solution (2.2), but also the BU(2) X 5U(3) one. The latter takes 
place whenever fa = 7/2^2 and /% = 774/34 + 775/35. It is understood that 
depending on the isometry group of the background under consideration, 
given a decomposition n = Y^i ^u there might be more than one inequivalent 
configuration associated with it. 
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2.3    Explicit formulas for the Kaluza-Klein reduction 

We now give a general formula for the Kaluza-Klein reduction of the met- 
ric and the four-form. This is facilitated by going to adapted coordinates 
where the Killing vector £ is simply a translation. As in [16] we will exhibit 
£ as a "dressed" translation, which yields at once the required change of 
coordinates. 

2.3.1    Kaluza-Klein reduction of the metric 

In this section we give a general formula for the Kaluza-Klein reduction 
of the metric. Let us assume that the eleven-dimensional metric in the 
coordinate system (z, y), where the Killing vector being used in the reduction 
is £ = dz + a, can be written as 6 

9 = £ VM^ds^V) + V\y){dz)2 . (2.4) 
i 

Ansatz (2.4) includes the backgrounds discussed in this paper. Furthermore, 
a is an affine transformation of the Cartesian coordinates (y). It is important 
to stress that in later applications, a will always be a linear combination of 
commuting infinitesimal transformations commuting with dz. 

It is useful to introduce some set of projectors P^ satisfying, for all i, 

d52(Ei) = (dy)*Pit/dy , 

where 77 stands for the ten-dimensional Minkowski metric. As in [16], the 
description of the explicit geometry obtained through the reduction along 
the orbits of the Killing vectors is obtained by working in coordinates (2, x) 
adapted to the Killing vector, £. = dz. The explicit change of coordinates 
is obtained by noticing that £ is simply a dressed version of its translation 
component 

£ = UdzU~l    where    U = exp(—za) . 

Thus, defining 

x = Uy , (2.5) 

6In the bulk of the paper, we shall also deal with configurations in which the z coordinate 
is also either a timelike or a lightlike coordinate. It is straightforward to extend the 
formalism developed below to these cases. 
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it follows that £ x = 0, so that a? are good coordinates for the space of orbits. 
Since a is a linear combination of infinitesimal Lorentz transformations and 
translations, its action on y can be defined by 

ay = By + C, (2.6) 

where B is, generically, a 10 x 10 constant matrix, whereas C is a constant 
10-vector taking care of the inhomogeneous part of the infinitesimal trans- 
formation generated by a. Thus, x(z,y) = e~zB(y + B~1C) — B~lC, so 
that 

dy = ezB[dx + (Bx + C)dz] . 

We can now rewrite the metric (2.4) in the adapted coordinate system 
(z, a?), obtaining 

g = K{dz + A)2 -KA2 + Y^ Vi{y)^{x){dx)t?ir]dx , 
i 

where 

A = V^{x) + JVi(y)a'(«)(J3a: + C)*Pirj(J3aj + C) 

A = A"1 ^ V;(y)a'(x)(Baj + C)*P<»7cto . 
(2.7) 

Using the Kaluza-Klein ansatz (1.1) we can read off the dilaton $ = 
| log A and the IIA metric 

g = A1/2 lYlViiyY^x^dxYVwdx - AA2 \ , (2.8) 

whereas the RR 1-form is given by (2.7). 

2.3.2     Kaluza—Klein reduction of the four-form and its dual 

We now give a general formula for the Kaluza-Klein reduction of the four- 
form i<4 and its dual. In the (2, y) coordinates we can write the four-form 
F± uniquely as 

FA{z,y) = K{z,y)-dzA L{z,y) , (2.9) 
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where K and L are a four-form and three-form, respectively, without dz 
components. Let us change coordinates to (z,x). By the results of Sec- 
tion 1.2 we know that the resulting expression for F4 is given by equation 
(1.2), where the forms H4 and H3 are basic. This means that in the adapted 
coordinate system (z, x) they do not depend explicitly on z nor do they have 
any component in dz. We can exploit this fact in order to give an explicit 
expression for H3 and H^ in terms of the forms K and L in (2.9). The idea 
is simple: we perform the explicit change of coordinates in (2.9) and write 
the result in the form (1.2). To simplify the calculation we set z = 0, since 
we know a priori that the resulting forms do not depend on z. We find that 

K(z,y(z,x))\z=0 = K(0,x) + dzAIBX+CK(0,X) , 

and similarly for L, where we have used that at z = 0, y(0, x) = cc. Inserting 
this into (2.9) and comparing with (1.2) we find 

H4{x) = K{0, x)        and       H3{x) = L(0, x) - IBX+CK(0, X) .     (2.10) 

The same method also works mutatis mutandis for the seven-form F7 
dual to F4, and indeed for any invariant p-form. In some backgrounds it is 
more convenient to work with Fj and use the above method to determine 
the forms H? and HQ in (1.3), from which we can then recover the forms H3 
and #4 using the duality relations (1.5). 

3    Kaluza-Klein reductions of the M2-brane 

In this section we classify the set of M-theory backgrounds obtained by 
modding out the M2-brane background by a one-parameter subgroup of its 
isometry group and study the smooth supersymmetric Kaluza-Klein reduc- 
tions along the orbits of the Killing vectors generating such subgroups. We 
shall first consider the standard M2-brane configuration in section 3.1. Af- 
terwards, we shall discuss the M2-brane delocalised along one transverse 
direction in section 3.2. 

3.1     Supersymmetric reductions of the M2-brane 

The M-theory membrane [76] is described by a metric of the type (1.7) with 
two factors, 

9 = V-^ds^E1'2) + vWd82(Es) , (3.1) 
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where V = 1 + \Q\/r6 with \Q\ some positive constant and r the radial 
distance in the transverse E8. The 4-form is given by 

F4 = dvolfE1'2) A dV'1 , (3.2) 

up to a constant of proportionality. The Killing spinors are of the form 

e = V-^eoo , (3.3) 

where SOQ is a constant spinor satisfying 

dvolfE1'2) • ^oo = ^oo . (3.4) 

The symmetry group is 

G = ISO(l, 2) x SO(8) C ISO(l, 10) , (3.5) 

with Lie algebra 

fl= (R1'2 xso(l,2)) X5a(8) , (3.6) 

whence any Killing vector £ can be decomposed as 

f = T|| + A||+/9±, (3.7) 

where, mnemonically, r, A and p denote a translation, a Lorentz transforma- 
tion and a rotation, respectively, and where the subscripts || and J_ refer to 
vector fields tangent and perpendicular to the brane worldvolume, respec- 
tively. We will often omit these subscripts if doing so does not result in 
ambiguity. 

3.1.1    Freely-acting spacelike isometries 

The geometrical action of G on the coordinates induces an action on the 
Killing spinors which translates into conjugation by G on the Lie algebra g. 
Using this freedom, we may bring A into a normal form. Nontrivial Lorentz 
transformations in $0 (1,2) come in three flavours depending on the type 
of vector in E1,2 that they leave invariant. Therefore either A = 0 or, via 
a Lorentz transformation in the worldvolume of the membrane, it can be 
brought to one of the following three normal forms: 

1. A fixes a timelike vector: 

A = ORn       9^0 , (3.8) 
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2. A fixes a spacelike vector: 

\ = (3Bo2       /MO, (3.9) 

3. A fixes a null vector: 

A = iV+2 , (3.10) 

where Rn is the generator of infinitesimal rotations in the (12)-plane, iV+2 
is the generator of infinitesimal null rotation in the x2 direction with light- 
cone coordinates x^ = (x1 ± a;0)/\/2, and where B02 is the generator of 
infinitesimal boosts along the x2 direction. 

We can now use the freedom to change origin in the worldvolume of the 
brane—equivalently, to conjugate by the translation subgroup in ISO(l, 2)— 
in order to bring r to a normal form. If A = 0, r does not change; but in the 
other normal forms we can bring r to the following: (1) r oc do, (2) r oc di, 
and (3) r oc cL. It is easy to see that in case (2) there are points outside the 
brane horizon where £ is timelike, hence this case is ruled out. It is also easy 
to see that in case (3) we must have r = 0 for precisely the same reasons. 
This narrows down the possibilities to three cases: 

(a) £ = r + p_L, with r so far unconstrained; 

(b) £ = r + p|| + /9_L, with r timelike and orthogonal to p\\; and 

(c) £ = z/|| + p_L, with z/y a null rotation. 

In the above expressions p± is an infinitesimal rotation in 50 (8) and hence 
can be brought to a normal form 

P± = 01^34 + 02^56 + 03^78 + 04R9^ . (3.11) 

We must distinguish between two cases: either one or more of the 0s vanish 
or none does. If some 6s vanish, only case (a) above gives rise to a spacelike 
£ and in that case we must take r to be spacelike. If none of the 9s vanish, 
we have more possibilities: case (c) can occur, and so can cases (a) and (b) 
provided that ||T||

2
 is not too negative. To understand this, let us compute 

the norm of £ in these cases. 

Consider a Killing vector of the form £ = T+py+pj^ where r is orthogonal 
to p|| and where we allow py to be zero. In this way we can discuss cases 
(a) and (b) simultaneously. The norm of this vector field relative to the 
membrane metric is given by 

IICII2 = ^-2/3(||T|^ + ||pll||^)+y1/3||/0x||2o) 



732 SUPERSYMMETRIC KALUZA-KLEIN REDUCTIONS 

where || • ||oo is the norm relative to the flat metric. The tangent vector 
p_L at a point a distance r > 0 away from the membrane is tangent to the 
transverse sphere of radius r through that point. This means that the norm 
at that point is given by 

\\p±\\lo=r2\Mh 

where || • ||s is the norm relative to the round metric on the sphere of unit 
radius. Since the sphere is compact, ||P_L||S acquires a maximum and a 
minimum, whence 

m 2„2 r2 < Wpdl < MV , (3.12) 

for some non-negative real numbers m < M. In fact, it is easy to see that 
for /9j_ given in (3.11), these numbers are given by 

m2 = min0?        and        M2 = max#? . 
i i 

It should be stressed that both inequalities in (3.12) are sharp, since there 
are directions (i.e., points in the sphere) where the inequalities are saturated. 
The lower bound m is positive if and only if p^ does not leave any directions 
invariant. This is possible for the M2-brane since the transverse sphere 
is odd-dimensional, for on an even-dimensional sphere every (continuous) 
vector field has a zero (in fact, two) and hence m = 0 in those cases. The 
norm of £ is then bounded below by 

ll£ll2 > ^2/3||r||^ + v-^Wpuf + yvsr3ro2, 

and again this inequality is sharp. The rotation pu has a zero at the 'origin' 
of the membrane worldvolume. We can thus simplify the above bound even 
further: 

lia2>^-2/3IMlL + ^1/3r2m2, 

which is still sharp. The right-hand side of the above equation is a function 
of r and it will attain a minimum at a critical radius ro, which is zero if 
IMI^o ^ 0 and positive if HrH^ < 0. Indeed, the lower bound for the norm 
of £ is given by the function 

m^V-^Ml + V^m2, 
whose derivative is given by 

/'(r) = F-5/3 2M^|r||2o+mv(1 + ^ 
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This function has a critical point at r = 0 and at the positive root ro of the 
equation 

Vlry.-Mlr l|2 

m 

should such a root exist. For HTH^ > 0, no such root exists and the minimum 
of / is at r = 0, whereas for HTH^ < 0, the minimum is at TQ. In any case 
we have the bound 

||^||2>F-2/3(ro)||T||^ + y1/3(ro)ro2m2) 

which is still sharp. The right-hand side is positive for all 

IMI2^ > -|m
2(2|Q|)1/3 . (3.13) 

This means that we can allow for r to be timelike (but not too much) and 
still obtain a spacelike Killing vector. If pj_ fixes some directions, so that 
m = 0, we see that r must be spacelike. 

In summary, the following Killing vectors in g are spacelike: 

(A) £ = T|| + p|| + p_L, with pj_ without fixed directions and r obeying 
a constraint on the norm: HTH^ > —/i2, where /i can be read from 
equation (3.13), and where we can also allow for p|| = 0 in this case; 

(B) £ = T|| + pj_, with pj_ fixing some directions and r spacelike; 

(C) £ = i/|| + p_L, with p± without fixed directions. 

It is clear that in cases (A) (with r ^ 0) and (B), £ integrates to a free 
action of a subgroup R C G, since £ contains a translation. The absence of 
translations in case (C) makes it different from (A) and (B). Even though 
the action is locally free (for r > 0), one can prove that there are points 
with nontrivial stabilisers, so that the action is not free and the quotient 
is therefore singular. Consider, for example, the point P with coordinates 
x± = x2 = x3 = • ■ • = x9 = 0 and x^ = 1. The orbit of this point under the 
action generated by the Killing vector £ = ^|| + pj., with p^ given by (3.11) 
with all 6s different from zero, is x± = x2 = x3 = • • • xs = 0, x9(t) = cos 04* 
and ^(t) = sin04£. As a result, the point P is mapped to itself by those 
points t = 27rn/04, for any n G Z. This defines a subgroup isomorphic to Z 
in the R subgroup generated by f. Reducing by £ would therefore result in 
singularities outside the horizon and so we discard it and with it case (C). A 
very similar argument would allow us to discard case (A) with r = 0. This 
leaves us with two possibilities for a freely-acting spacelike vector field: case 
(A) with r y£ 0 and case (B). 
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3.1.2    Moduli space of smooth reductions 

Let us now identify more precisely the moduli space of smooth reductions in 
each of these cases. 

In case (A) we must distinguish between two cases, depending on whether 
or not p|| vanishes. If py 7^ 0, then by changing the origin we can put r = a<9o, 
where 0 < a2 < p2, with p given in (3.13). In summary, £ can be written in 
the following form 

£ = ado + O1R12 + 02i?34 + 03^56 + ^4^78 + 05^ , (3.14) 

where none of the 9s vanish and 0 < |a| < p. The moduli space is ob- 
tained from this space by projectivising and by some discrete identifications 
coming from the action of the Weyl group. Its dimension is therefore five- 
dimensional, and we will see below that supersymmetry will select a four- 
dimensional locus. 

If p|| = 0, the causal character of the translation is not fixed, although 
the norm constraint (3.13) is still in force. We must distinguish between 
three cases, depending on whether r is timelike, spacelike or null. If r is 
timelike we can choose coordinates such that r = ado with 0 < |a| < p. 
Similarly, if r is spacelike, it can be arranged that r = adi with a ^ 0 but 
otherwise unconstrained. In either case we have a four-dimensional moduli 
space. Finally if r is null, coordinates can be chosen where r = d+ (no 
free parameter!) whence the moduli space is three-dimensional. In all cases, 
supersymmetry will select a codimension-one locus. 

Finally, in case (B) we can arrange for r = adi and hence 

£ = adx + 02#34 + O3R56 + O4R78 , (3.15) 

where a 7^ 0 is not otherwise constrained. The moduli space in this case 
is only three-dimensional, with supersymmetry selecting a two-dimensional 
locus. 

3.1.3     Supersymmetry 

Now we impose the condition that the reduction preserves supersymmetry. 
As explained in Section 2.2, supersymmetry only constrains the rotation 
component of the Killing vector £ to lie in the isotropy of some spinor sat- 
isfying (3.4). In all the cases above, the rotation component of £ takes the 
general form 

p = 01R12 + 92RM + esR56 + 04#78 + 05#9b , (3.16) 
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with perhaps some of the 9s vanishing. We find it convenient to treat the 
general case first, which will give some relations between the 9s and then 
impose any further conditions. 

As discussed in Appendix A, the condition that p annihilates a Killing 
spinor is equivalent to p being annihilated by some weight in the subspace 5o 
of the half-spin representation defined by (3.4). These weights are given in 
equation (A.2) with the negative sign, according to our conventions. There- 
fore a weight will annihilate p if and only if the 9i belong to the union of the 
following eight hyperplanes 

5 

y^ mOi = 0       where /if = 1 with /Z2 ■ • ■ Ms = ~1- (3-l7) 
i=l 

Notice that if p is annihilated by /i it is also annihilated by —/x which is also 
a weight in the representation SQ: this explains why there are only eight 
hyperplanes in the above family. If p belongs to one and only one such 
hyperplane the amount of supersymmetry preserved by such a reduction is 
u = y^. This corresponds to p belonging to an su(5) subalgebra of 5o(l, 10).7 

There is enhancement of supersymmetry if p belongs to the intersection 
of two or more hyperplanes in (3.17). Assuming that none of the 9s are 
zero, we can only have simple intersections between two hyperplanes, e.g., 
04 = 05 and 9i + 92 + 9% = 0. This corresponds to a p which belongs to an 
su(2) x su(3) subalgebra. In this case there are four weights which annihilate 
p and hence the fraction of the supersymmetry preserved by the reduction 
is enhanced to v = |. 

If p|| = 0 then 91 = 0, and if the remaining 9s do not vanish, the super- 
symmetric locus is given by the intersection of the hyperplane #i = 0 with 
the hyperplanes in (3.17). This is a family of four hyperplanes in the 9i = 0 
subspace, given by the equations 

5 

)] p>i9i = 0        where pf = 1 and p2 • * * Ps = —1. 
i=2 

A generic p in one of these hyperplanes is annihilated by four weights, hence 
the reduction preserves a fraction u = | of the supersymmetry, correspond- 
ing to p in an su(4) subalgebra. There is again supersymmetry enhancement 

7More precisely, the phrase "p belongs to an 5u(5) subalgebra" is to be interpreted 
as meaning that p belongs to the intersection of an su(5) subalgebra of so(l,10) with 
g. In general, the rotations which give rise to supersymmetric reductions belong to the 
intersection of a spinor isotropy subalgebra of so (1,10) with 9, but we choose to organise 
the results in terms of the spinor isotropy subalgebra, e.g., su(5) in this case. 
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at the intersection of these hyperplanes, for example, #4 = 65 and 61+62 = 0, 
which corresponds to p in an sp(l) x 5p(l) subalgebra. The reduction now 
preserves a fraction z^ = j of the supersymmetry. 

Finally, in case (B) with p|| = 0 and /9j_ fixing some directions, we can 
choose coordinates so that di = 0 = 62. The supersymmetric locus consists 
of the intersection of the hyperplanes (3.17) with the hyperplanes 61 = 0 
and 62 = 0. The resulting four hyperplanes are described by the equations 

5 

y^ /jiiOi = 0       where //? = 1. 
i=3 

A generic p in this locus is annihilated by four weights, hence the reduc- 
tion preserves a fraction z/ = | of the supersymmetry, and p belongs to an 
J5U(3) subalgebra. We are free to specialise to any intersection of the above 
planes: simple intersections correspond to setting another one of the 9i to 
zero, or equivalently to p lying in an $u(2) subalgebra. This enhances the 
supersymmetry to a fraction is = i. Finally, the only point in more than two 
hyperplanes is the origin, whence p = 0 and hence the reduction preserves 
all the supersymmetry of the membrane, namely a fraction u = |. These 
results are summarised in Table 2. 

As mentioned in the introduction, we could consider a discrete subgroup 
FQ C F such that T/TQ is compact. The corresponding eleven-dimensional 
configurations classified above, MM2/ro5 correspond to new smooth super- 
symmetric vacua which are asymptotic to IR1,10/^. In the particular case 
in which £ = T|| -f p, 7j| being an spacelike translation, Miv^/Fo corresponds 
to a stack of M2-branes in an eleven-dimensional fluxbrane vacua. We shall 
next concentrate on the Kaluza-Klein reductions. 

3.1.4    Explicit reductions 

We shall start by studying the reductions not involving timelike translations. 
The Killing vector can thus be written as £ = dz + A, where z stands for a 
longitudinal direction, i.e. y2, and A stands for the infinitesimal rotation in 
the space transverse to the brane 

A = 0i(y3d4 - y%) + e2(y5d6 - y6d5) 

+ 93(y7d8 - y8d7) + 04(y93b - jM) . 

The constant matrix B introduced in (2.6) is an 8 x 8 matrix which can 
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Translation Subalgebra i/ dim 
■■ 

fiu(4) 1 
16 3 

fiu(3) 1 
8 2 

adi Bp{l)x*p{l) 1 
8 2 

a^O 5U(2) 1 
4 1 

{0} 1 
2 0 

d+ su(4) 1 
16 2 

BP{1)XSP(1) 1 
8 1 

BU(5) 1 
32 4 

ado 5U(2) X 5U(3) 1 
16 3 

0 < |a| < /i BU(4) 1 
16 3 

SP(1) X 5jj(l) 1 
8 2 

Table 2: Supersymmetric reductions of the M2 brane. We indicate the 
form of the translation, the spinor isotropy subalgebra to which the rotation 
belongs, the fraction v of the supersymmetry preserved and the dimension 
of the corresponding stratum of the moduli space 3VC of supersymmetric 
reductions. 

be written as 

/O -01 0 0 0 0 0 0 \ 
0i 0 0 0 0 0 0 0 
0 0 0 -02 0 0 0 0 

5 = 
0 
0 

0 
0 

02 
0 

0 
0 

0 
0 

0 

-03 

0 
0 

0 
0 

0 0 0 0 03 0 0 0 
0 0 0 0 0 0 0 -04 

(3.18) 

\OOOOOO04O/ 

in the basis {x3,x4,... x9,x^} spanned by the adapted coordinates defined 
in (2.5). It is straightforward to derive the ten-dimensional metric 

g = A1/2{V-lds2(El'1) + ds2(E*)} 
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where we have introduced the notation a;u := x1 dx3 — x^dx1. The RR 1-form 
Ai, NS-NS 3-form field strength Hz and dilaton $ are listed below: 

Ax = A"1 V (e^ + d-i^ + ^w78 + ^w911) 

fl"3 = dvolE1'1 AdF-1 

$ = ^log(A3/2-V-1)  , 

whereas the RR 4-form i/4 field strength vanishes. The configuration de- 
pends on an scalar function A which is defined in terms of the scalar function 
A appearing in Section 2.3, by 

A = F-2'3 • A , 

and equals 

A = 1 + V {(fc)2 [(s3)2 + (s4)2] + (02)
2 [(a:5)2 + (a:6)2] 

+ (^3)2[(^)2 + (^)2]+(^4)2[(x9)2 + (^)2]}. 

Notice that for arbitrary values of the angles 02-, the string coupling con- 
stant blows up, irrespectively of the direction, at large distances, whereas it 

is bounded from above by the constant (^(flt)2) Q1^ at r -> 0. Thus, 
it is always possible to have a weakly coupled region close to the origin, 
whereas as we move away from it, the M-theory description becomes more 
reliable. 

As already discussed before, for arbitrary values of the deformation pa- 
rameters {#;}, the configuration would break supersymmetry completely, and 
its interpretation would be in terms of composites configurations involving 
fundamental strings lying in the x1 direction at r = 0 and, generically, four 
different F7-branes lying at rr3 = x4 = 0, rr5 = re6 = 0, x1 — x* = 0 and 
x9 = x^ = 0, respectively. It is the presence of the F7-branes that breaks 
supersymmetry completely. 

On the other hand, there are five different types of supersymmetric con- 
figurations 

(1) If 9i = 0 for all z, this is the standard type IIA configuration describing 
fundamental strings streching along the x1 direction at r = 0 and 
preserving 1/ = 1/2 of the spacetime supersymmetry. 

(2) Setting 9s — 64 = 0 and 9i = 772^2 corresponds to fundamental strings 
streching along the x1 direction at r = 0 and lying on an F5-brane that 
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v Object Subalgebra 

1 
4 
1 
8 
1 
8 
1 

16 

FA||F5 

FA||F3 

FA||F1 

FA||F1 

«i(2) 

Su(3) 

Sp(2) 

5U(4) 

Table 3:   Supersymmetric configurations of fundamental strings (FA) and 
fluxbranes 

sits on x3 = x4 = x5 — x6 = 0. This configuration preserves i/ = 1/4 
of the spacetime supersymmetry. 

(3) Setting 64 = 0 and 61 = 772^2 + %03 corresponds to fundamental strings 
streching along the a;1 direction at r = 0 and lying on an F3-brane that 
sits on x3 = x4 = x5 = x6 = x7 = xs = 0. This configuration preserves 
1/ = 1/8 of the spacetime supersymmetry. 

(4) Setting 61 = 772^2 and #3 = 774^4 corresponds to fundamental strings 
and j-BPS fluxstrings lying on xl at r = 0. It preserves 1/ = 1/8. 

(5) Setting #1 = 772^2 + %^3 + ^4^45 corresponds to fundamental strings 
and fluxstrings lying on x1 at r = 0. It preserves v = 1/16. 

The allowed supersymmetric configurations are summarised in Table 3. 

If one sets the charge of the original M2-brane to zero, one recovers the 
corresponding fluxbrane configurations reviewed in 2.1. These do have some 
notion of flux associated with the integral over the transverse sections to the 
fluxbrane of F2 = GL4I, or wedge products of it. It is natural to compute this 
flux, when fundamental strings are switched on. We shall concentrate on 
F5-branes for simplicity. Notice that due to the presence of the fundamental 
strings, the RR 1-form potential depends on the point x = (:r3,£4,£5,a;6), 
but it is still invariant along the x1 direction. Thus, the flux may depend 
on the point where we fix the transverse section along which we compute it. 
Fixing this point x, and computing the integral 

47r  JR4(X) 

afterwards, one can check that the flux equals 9 2 (as in flat case) everywhere 
except at x = 0, where the string lies. In that point, the flux vanishes. This 
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absence of flux at x = 0 seems to be consistent with the fact that there is 
no moduli associated with relative motions among fundamental strings and 
F5-branes. Indeed, a probe computation shows that fundamental strings do 
always feel a force when they sit away from r = 0. 

We shall next discuss the Kaluza-Klein reductions involving translations 
which are null. From our general discussion on freely-acting spacelike Killing 
vectors £, we already know the only allowed possibilities are those in which 

where A is a rotation acting on the transverse space to the brane and without 
fixing any direction. It is thus the same as the one used previously, but 
this time no 0i are allowed to vanish. By using our general formalism, 
the constant matrix B is again given by (3.18). This determines the ten- 
dimensional metric to be 

g - A1/2 (y-^idx2)2 + FVWtE8)) 

- A"1/2 F1/2 (flxu,34 + 02u,56 + flau/8 + e4^ + V-1 dx-)2 , 

where u1^ := xldx^ — x^dx1. On the other hand, there are non-trivial RR 
1-form Ai, NS-NS 3-form field strength f/3 and dilaton $ which are listed 
below: 

Ai = A"1 {flio;34 + O2U56 + 9SUJ
78

 + 04^ + V-1 dx"} 

H3 = dx~ A dx2 A dV~l 

$-|log(A.F1/3)  . 

The above type IIA configuration depends on an scalar function A which 
was again defined in terms of the scalar function A appearing in the general 
discussion section, by 

A = Vl/3 • A , 

and equals 

A = (0O2 [(z3)2 + (s4)2] + to)2 [(*8)2 + (s6)2] 

+ (03)2 [(X7)2 + (X8)2] + (*4)2 [(X9)2 + {X*? 

As before, the string coupling constant blows up at large distances but 

is bounded from above by (Ei(^)2)3/4 Ql/A at r -> 0. 
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For arbitrary values of the deformation parameters 0i (0i i=- 0), the con- 
figuration would break supersymmetry completely. It is only when Q\ — 
77202 + 77363 + 77464 or #1 = 77262 and 63 = —77377464, that the above config- 
uration preserves v — 1/16 or v — 1/8, respectively. We do not have a 
physical interpretation for this set of configurations, and even though they 
were obtained by Kaluza-Klein reduction along the orbits of some Killing 
vectors which are spacelike everywhere, we were not able to prove whether 
these spacetimes have no causal singularities. 

Let us finally move to the third possibility, the one involving timelike 
translations. The Killing vector is given by £ — a<9o + A, A standing for the 
spacetime rotation 

A = 61 {x1d2 - x2d1) + 62 (x3d4 - xAd3) 

+ #3 {x5de - x6d5) + 64 {x7d8 - x8d7) + 65 {x9d^ - x^d^j  , 

where the timelike translation parameter is bound by 0 < |a| < /i, with /i2 

given by (3.13). 

In this case, the constant matrix B is a 10 x 10 matrix, which in the basis 
{a;1, a;2,... x9, x^} can be written as 

B = 

/o -0i 0 0 0 0 0 0 0 0 \ 
01 0 0 0 0 0 0 0 0 0 
0 0 0 -02 0 0 0 0 0 0 
0 0 02 0 0 0 0 0 0 0 
0 0 0 0 0 -03 0 0 0 0 
0 0 0 0 0s 0 0 0 0 0 
0 0 0 0 0 0 0 -04 0 0 
0 0 0 0 0 0 04 0 0 0 
0 0 0 0 0 0 0 0 0 -05 

\o 0 0 0 0 0 0 0 05 0 / 

(3.19) 

The corresponding type IIA configurations have a ten-dimensional metric 
given by8 

g = A1/2{V-lds2(E2) + ds2(Es)} 

- A-WV-1 [0iu;12 + V {02U,34 + 03u;56 + <W8 + 95^}]2 , 

where u** := xW - xW. The RR 1-form A1, NS-NS 3-form field strength 

8We are grateful to Hannu Rajaniemi for spotting a small error in a previous version 
of this formula. 
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Hz and dilaton $ axe given by 

Ai = A-1 j^io;12 + V {02u;34 + ^w56 + 04a;78 + ^w9"}} 

iJ3 = advolE2AdVr-1 

$ = \\og(hZ/2-V-1)  . 

The configuration depends on an scalar function A which is defined in terms 
of the scalar function A appearing in the general discussion section, by 

A = F-2/3 • A , 

and equals 

A = -a2 + (fc)2 [(x1)2 + (x2)2] + V {(fo)2 [(x3)2 + (x4)2] 

{Ozf [(a,5)2 + (x6)2] + (^)2 [(s7)2 + (x8)2] + (ft)2 [(*9)2 + (^)2]}  . + 

For generic values of the five parameters {#;}, i = 1,2,..., 5, the above 
configuration breaks supersymmetry. There are several loci in this five- 
dimensional parameter space where supersymmetry is restored. If the rota- 
tion along the M2-brane is non-vanishing, 6i ^ 0, there are two possibilities 
to be discussed: 

(1) Yli Vfli — 0 such that //% = 1. The full rotation belongs to the 5u(5) 
spinor isotropy subalgebra. This configuration preserves u = 1/32 of 
the spacetime supersymmetry. 

(2) If the rotation belongs to the 5u(2) x su(3) spinor isotropy subalgebra, 
there are two subcases to be considered due to the isometrics of the 
starting M2-brane configuration. Indeed, 

(2.1) If the rotation on the brane (0i) belongs to the su(2) subalgebra. 
In this case, /ii#i + //202 = 0 and X^=3 4 5 HiOi = 0. 

(2.2) If the rotation on the brane (0i) belongs to the su(3) subalgebra. 
In this case, ^4^4 + fcOs — 0 and X)t=i 2 3 A4*^ — 0. 

Notice that all other possibilities are conjugate to the ones selected 
above. Both of them preserve v = 1/16. 

On the other hand, if 0i = 0, one is just left with a transverse rotation 
A = p±. Due to the isometries of the background configuration, we are just 
left to consider two possibilities: 



FIGUEROA-0'FARRILL and SIMON 743 

(1) If pj_ belongs to the 5u(4) spinor isotropy subalgebra.   In that case, 
Yli=2    5 Mi^i = 0- The resulting configuration preserves v = 1/16. 

(2) If px belongs to the 5p(l) xsp(l) subalgebra. In that case, M202+M303 = 
0 and //404 + /is^s = 0. The resulting configuration preserves v = 1/8. 

As in the former family of reductions, the physical interpretation and the 
causal structure of the above spacetimes is still missing. 

3.2    Supersymmetric reductions of the delocalised M2-brane 

The standard Kaluza-Klein reduction of the M2-brane to obtain the D2- 
brane, requires that the M2-brane be delocalised along one transverse direc- 
tion; that is, that the M2-brane admit a Killing vector which is a translation 
along a transverse direction. The metric of the spacetimes exterior to such 
a membrane is again of the general form (1.7) but now with three factors: 

g = V-Wds^E1*) + V^dz2 + vWds^E7) , (3.20) 

where z is the transverse coordinate along which the membrane is delocalised 
and V = l + |Q|/r5 is a harmonic function on E7 depending only on the radial 
distance. The symmetry group is now 

G = ISO(l, 2) x R x SO(7) , (3.21) 

with Lie algebra 

g = (|Ri.2 x B0^ 2)) x R X 50(7) . (3.22) 

Therefore a Killing vector may be decomposed as 

f = 7]l + TL + A|| + px , (3.23) 

with the same notation as above. 

3.2.1    Freely-acting spacelike isometries 

We proceed as before by using the freedom of acting by G in order to bring 
A to a normal form. Either A = 0 or else it can be brought into one of three 
normal forms: an infinitesimal boost, rotation or null rotation. We can again 
discard the boost since this leads to a £ which is not spacelike. The same 
reason forces T|| = 0 in the case where A is a null rotation. Arguing as in 
the previous section, we are left with the following two cases of freely-acting 
spacelike Killing vectors: 
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(A) £ = TJ_ + ^u + PJL, where r ^ 0 for otherwise £ does not act freely; 

(B) £ = rj| + TJ_ + P|| + /ox? where r|| + TJ_ is spacelike, but where 

(i) if p|| = 0 then ry can be either spacelike, timelike or null; and 

(ii) if p|| 7^ 0, then T|| is timelike. 

In all cases the decomposition of £ is orthogonal relative to the brane metric. 
We also remind the reader that r, p and is stand, respectively, for a transla- 
tion, a rotation and a null rotation, and that the subscripts || and _L denote 
directions tangent to and perpendicular to the brane, respectively. Notice 
that p± here always fixes at least one direction since it defines a tangent 
vector field on an even-dimensional sphere. 

3.2.2    Moduli space of smooth reductions 

We now describe the different strata of the moduli space of smooth reduc- 
tions. In case (A), coordinates can be chosen so that the Killing vector £ 
takes the form 

$ = adz+ N+2 + O2R34 + #3^56 + #4^78 • 

The moduli space is obtained by projectivising and quotienting by the action 
of the Weyl group and hence this stratum of the moduli space is three- 
dimensional. Supersymmetry will then select a two-dimensional locus. 

In case (B) with p|| 7^ 0, ry must be timelike, whence 

£ = ado + bd9 + OxRn + 02#34 + #3^56 + 04^78 , 

where |a| < |6|. There are six free parameters, whence this stratum is five- 
dimensional after projectivisation. Supersymmetry will then select a four- 
dimensional locus. 

Finally in case (B) with p\\ = 0, we have to distinguish between three 
cases depending on whether T\\ is timelike, spacelike or null. If T|| is timelike 
we can bring £ to the form 

Z = ado+ bd9 + 02i?34 + 03^56 + 04^78 , 

with \a\ < \b\.   As a result there are five free parameters yielding a four- 
dimensional moduli space. Supersymmetry will further select a three-dimensional 
locus. Similarly if T|| is spacelike, we can bring f to the form 

£ = adi+ bd9 + 62R34 + 03R56 + 04^78 , 
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where now a and b cannot both be zero. Again we have a four-dimensional 
moduli space of smooth reductions with a codimension-one locus of super- 
symmetric reductions. Finally if ry is null, £ takes the form 

£. = 3+ + bd9 + 02#34 + 0SRw + 04^78 , 

with b 7^ 0. This gives rise to a three-dimensional moduli space of smooth 
reductions with a two-dimensional locus of supersymmetric reductions. 

3.2.3    Absence of closed causal curves 

The purpose of the present subsection is to analytically prove that despite the 
intuition, the above spacetimes do not have closed causal curves. We shall 
concentrate on spacetimes reduced along the orbits infinitesimally generated 
by Killing vectors £ which act non-trivially either on a timelike or a lightlike 
direction. For simplicity, we will not allow the transverse rotation parameters 
to be arbitrary, but set all of them to zero. 

Let us start by analysing the problem of existence of closed causal curves 
in an M2-brane background delocalised in one transverse direction z reduced 
along the orbits of the Killing vector 

£ = ado + bdz . 

The only condition that such a Killing vector is required to satisfy is to be 
spacelike everywhere. This requirement provides us with the constraint that, 
for all r, 

||£||2 = V~2^(r) (-a2 + V(r)b2) > 0 . (3.24) 

To analyse this question, it is convenient to change coordinates to an 
adapted coordinate system, in which the Killing vector becomes a single 
spacelike translation f = dz>. In this case, this is easily achieved by a linear 
transformation in the original {x0,z} space. In the new coordinate system 
{t'jz'}, the eleven-dimensional takes the form 

g = -y-2/3 [a\dJ)2 + b-2{dt')2 + 2ab-ldz'dt,} + 62^1/3(^)2 

+ y1/W(E7) . 

What we would like to know is whether there exist closed causal curves 
^(A), i.e., H^fH2 < 0 joining the points (t'o^o^o) and (^o^o^o + A)> since 

they become identified in the quotient.   Let us assume that such a curve 



746 SUPERSYMMETRIC KALUZA-KLEIN REDUCTIONS 

exists. If so, there must exist at least one value A* of the affine parameter A 
where the timelike component of the tangent vector to the curve vanishes: 

dtf 
3Xk   such that     — 

aA 
0 

If one computes the norm of such a tangent vector at A* 
inequality 

one derives the 

ll£ll2(A*) dX + I*.E£ <0 

Due to the constraint (3.24), it is clear that the left hand side of the above 
norm is the sum of positively defined terms, so that the inequality can never 
be satisfied. This already shows the non-existence of closed timelike curves. 
Furthermore, the only possibility for the equality to be satisfied is whenever, 
for all i, 

dz' dx1 

dX  A*       dX 
0 

But the existence of one point where the tangent vector to the causal curve 
vanishes identically violates the fact that A is an affine parameter. We thus 
conclude that no closed lightlike curves are allowed in this spacetime. 

The corresponding proof for the action generated by £ = d++bdz involves 
similar ideas and techniques. In this case, the requirement of having an 
everywhere spacelike Killing vector gives rise to the condition 

V(r)1^b2>0     =>     |6|>0. 

By a linear transformation, we can move to an adapted coordinate system 
{z\ rr+/} in which the Killing vector becomes a single translation £ = dzt and 
the eleven-dimensional metric takes the form 

g = 2V-V3dx- (dz' + b-1dx+') + V^b^dz')2 

+ V1^ds2(^) + V-2/3(dx2)2 . 

If we again assume the existence of a closed causal curve of affine pa- 
rameter A joining the points (XQ

1
, XQ^X^ZQ) and (XQ*, XQ, XQ, zr

0 + A), there 
must necessarily exist at least one value for this affine parameter A* where 

3A*    such that 
dx' 
dX 

= 0 

By computing the norm of the tangent vector to the causal curve at the point 
A*, and using the fact that |6| > 0, it is immediate to show the non-existence 
of such closed causal curves by the same argument used before. 
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3.2.4    Supersymmetry 

Now we determine the locus of supersymmetric reductions. In all the cases 
of smooth reductions, the rotation component of the Killing vector takes the 
general form 

p = Orfn + 02#34 + 03#56 + 0AR7s , 

which is the special case of (3.16) corresponding to 6$ = 0. This allows 
us to reduce the determination of the supersymmetric locus to the case of 
the M2-brane, with the added feature that when in addition #i = 0 we 
have the option of adding a null rotation to £ with the effect of halving the 
fraction of supersymmetry, as described in Section 2.2. We will not repeat 
the arguments here and simply state the results, which are illustrated in 
Table 4. 

Before moving into the explicit Kaluza-Klein reductions, let us stress 
that the previous classification gives rise to a wealth of smooth supersymmet- 
ric M-theory backgrounds, MM2/F0 by considering discrete subgroups FQ C 
F. These include a stack of delocalised M2-branes and eleven-dimensional 
fluxbranes (£ = di + pi) or eleven-dimensional nullbranes (£ = di + v\\)- The 
latter is an example of an eleven-dimensional time-dependent background in 
which a compact spacelike worldvolume dimension shrinks as time evolves 
down to a minimum size and then re-expands. It would be very interesting 
to understand the physics on the throat of the brane in such an scenario. 

3.2.5     Explicit reductions 

In the following, we shall explicitly write down the different type IIA config- 
urations obtained by the inequivalent Kaluza-Klein reductions identified and 
classified in previous subsections. Let us start by the subspace of the moduli 
space in which the parameter a associated with the spacelike translation adi 
is set to zero. In order to discuss both null and flux branes at the same time, 
we shall present the Kaluza-Klein reduction along the orbits of the Killing 
vector £ = dz + A, where the infinitesimal transformation A is given by 

A = /3BQ2 + O1R12 + #2^34 + #3^56 + #4^78 • 

Thus, whenever (3 = 0, we will be discussing composite configurations of D2- 
branes and flux branes; whenever |/3| = |0i|, we will be discussing composite 
configurations of D2-branes, null branes and flux branes. 

The constant matrix B is a 9 x 9 matrix which does not act both on 
the x9 and z directions.   Relative to the basis {re0, a;1,... ,a;8}, it is given 
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Translation Subalgebra V dim 

adi + bdz 5u(3) 1 (-M 8    U6/ 3(2) 

a, b not both 0 au(2) 1(1) 2(1) 

(a = 0,M0) {0} i (1) 1(0) 

d+ + bdz au(3) 1 
8 2 

b^O «u(2) 1 
4 1 

{0} 1 
2 0 

su(4) 1 
16 4 

ado + bdz Su(3) 1 
8 3 

Sp(l) X Bp(l) 1 
8 3 

\b\ > \a\ > 0 au(2) 1 
4 2 

{0} 1 
2 1 

Table 4: Supersymmetric reductions of the delocalised M2-brane. We in- 
dicate the form of the translation, the spinor isotropy subalgebra to which 
the rotation belongs, the fraction u of the supersymmetry preserved and the 
dimension of the corresponding stratum of the moduli space M of super- 
symmetric reductions. The numbers in parentheses indicate the values in 
the presence of a null rotation, which can only occur when the translation 
is trasverse. 

explicitly by 

/o 0 p 0 0 0 0 0 0 \ 
0 0 -01 0 0 0 0 0 0 

P 01 0 0 0 0 0 0 0 
0 0 0 0 -02 0 0 0 0 

B = 0 0 0 92 0 0 0 0 0 
0 0 0 0 0 0 -03 0 0 
0 0 0 0 0 03 0 0 0 
0 0 0 0 0 0 0 0 -04 

\o 0 0 0 0 0 0 04 o J 

(3.25) 

The corresponding type IIA configurations have a ten-dimensional metric 
given by 

g = A1/2 {F-^rfs^E1'2) + V^ds^E7)] 
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_ £-l/2yl/2 |y-l ^02 + eia;12j + ^34 + ^56 + ^78^   ^      (3>26) 

where again ujli = xldx^ — x^dx1. In addition, the RR l-form Ai, NS-NS 
3-form field strength ffa, RR 4-form H^ and dilaton $ are given by 

^ = A"1 {y-1 [^02 + flic/2] + ^u;34 + ^u;56 + 04U78} 

Ha = - (/^x2^1 A dz2 + (9ia;2(ia;0 A da;2 + (/fo0 + ^i^1)^0 A dx1) A dV1 

iJ4 = dvol(E1'2)Ady-1 (3'27) 

$ = fiog(A.y1/3) . 

The configuration depends on an scalar function A which is defined in terms 
of the scalar function A appearing in the general discussion section, by 

A = y1/3 • A , 

and equals 

A = 1 + V-1 {{x2)2[e\ - p2] + (^0 + M1)2} + (02)2 [(a;3)2 + (z4)2] 

+ (^3)2[(a;5)2-f(a;6)2]+(^)2[(^)2 + (^8)2]   • 

Whenever \0\\ < |/?|, there always exists a Lorentz transformation such that 
9iRi2 4- /3JBO2 becomes a pure boost. Therefore, such a configuration always 
breaks supersymmetry. Furthermore, the corresponding Killing vector is no 
longer spacelike everywhere, pointing out to the existence of regions in space- 
time where there exist closed timelike curves. These configurations would 
correspond, whenever we restrict ourselves to regions of spacetime with no 
causal sickness, to similar cosmological scenarios to the ones discussed in 
[45, 46, 48, 49], but this time taking place on the worldvolume of a 2+1 
brane. By switching on the moduli associated with transverse rotations, one 
is just adding F7-branes into the discussion. On the other hand, if |#i| > |/3|, 
there always exists a Lorentz transformation mapping 0ii?i2+/3i3o2 to a pure 
rotation, whose physical interpretation has already been given. 

Let us concentrate on the interpretation of the different supersymmetric 
loci summarised in 4. If we set j3 = 0, there are four different possibilities to 
be considered: 

(1) The case 0i = 0 for all i corresponds to the well-known D2-brane in 
type IIA preserving v = 1/2 of the spacetime supersymmetry. 

(2) We must distinguish between two case of two non-vanishing 6s: 

(i) If 9i = 772#2> the configuration describes a D2-brane in the (12)- 
plane and an F5-brane along the (56789)-plane sitting at xl = 
x2 = x3 = xA = 0. It preserves v = 1/4 of the spacetime su- 
persymmetry, with Killing spinors being preserved by an su(2) 
subalgebra. 
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(ii) If 02 = %^3, the configuration describes a D2-brane in the (12)- 
plane and an F5-brane along the (12789)-plane sitting at xs = 
x4" = xb = a;6 = 0. It preserves u = 1/4 of the spacetime su- 
persymmetry, with Killing spinors again preserved by an 5u(2) 
subalgebra. 

(3) There are again two distinct case of three non-vanishing 6s: 

(i) If 6i = 7)262 + %035 the configuration describes a D2-brane in 
the (12)-plane and an F3-brane along the (789)-plane sitting at 
x1 = x2 = x3 = x4 — xb = rr6 = 0. It preserves v = 1/8 of the 
spacetime supersymmetry, with Killing spinors being preserved 
by an $u(3) subalgebra. 

(ii) If 02 — 77303 + tyi&i, the F3-brane extends along the (129)-plane 
sitting at x3 = x4 = a;5 = n;6 = a;7 = x8 = 0. It preserves the 
same amount of supersymmetry as the previous case due to the 
existence of an su(3) subalgebra preserving some Killing spinors. 

(4) As explained in the general discussion about preservation of supersym- 
metry, there are two inequivalent ways of preserving Killing spinors 
when four of the 0s are non-vanishing: 

(i) 0i = 772#2 + %03 + 7/4^4. This configuration describes a D2-brane 
in the (12)-plane and a flux string along the a;9 direction, preserv- 
ing v = 1/16 of the spacetime supersymmetry. This is the one 
associated with the su(4) isotropy algebra discussed before. 

(ii) 0i = rj202 and 0s = 774^4. This second possibility involves a 
D2-brane and a maximally supersymmetric flux string in the x9 

direction. It preserves 1/ = 1/8 and it is associated with the 
5p(l) x sp(l) isotropy algebra. 

If P y£ 0, the only allowed possibility preserving supersymmetry requires 
|0i| = \(3\. Let us thus concentrate on this case. Depending on whether the 
remaining parameters vanish or satisfy certain linear relations, we distinguish 
between the following configurations 

(1) If 0i = 0 i = 2,3,4, it describes a D2-brane in the (12)-plane and 
a null brane. This composite configuration preserves u = 1/4 of the 
spacetime supersymmetry. 

(2) If one of the 0s is non-vanishing, the corresponding configuration breaks 
supersymmetry completely, due to the presence of a F7-brane besides 
the previous D2-brane and null brane. 
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(3) If two of the 9s are non-vanishing, we shall distinguish among two 
cases: 

(i) If 62 7^ 77303, the configuration describes a system of two inter- 
secting F7-branes (besides the composite system of a D2-brane 
and a null brane), such that all supersymmetry is broken. 

(ii) If 62 = 77303, the intersection among the F7-branes gives rise to the 
so-called F5-brane, extending along the (12789)-plane and sitting 
at x3 = x4 = xb = xe = 0. The full configuration includes the 
previous pair D2/null-brane system, thus preserving u = 1/8. 

(4) If all 6s are non-vanishing, we need to distinguish between two cases: 

(i) If 62 7^ %03 + 77404, the configuration describes the intersection 
of three intersecting F7-branes, besides the D2-null-brane system, 
thus breaking all supersymmetry. 

(ii) If 02 = 77303 + 77404, the intersection of the F7-branes gives rise to 
a F3-brane extending along the (129)-plane and sitting at xk = 0 
k=3,..., 8. Thus, there exists a composite configuration involving 
a D2-brane, null brane and F3-brane preserving v = 1/16. 

The supersymmetric configurations discussed above are summarised in 
table 5. 

v Object Subalgebra 
1 
4 D2J.F5 

D2||F5 

fiu(2) 

1 
4 D2 + N R 
1 
8 D2±F3 

D2||F3 

5U(3) 

1 
8 D2 + N + F5 5u(2) x R 
1 

16 D2±F1 5U(4) 
1 

16 D2±F1 *P(1) x fip(l) 
1 

16 D2 + N + F3 5u(3) x R 

Table 5: Supersymmetric configurations of D2-branes (D2), fluxbranes and 
nullbranes. 

It is interesting to compute the fluxes associated with fluxbranes in the 
presence of D2-branes. We shall concentrate on the F5-brane, for simplicity. 
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According to table 5, there are two different cases to be discussed. Let 
us start with D2 \\ F5. This corresponds to setting 61 = #4 = /? = 0 
and 9 = 62 = 03 in (3.26) and (3.27). Notice, by inspection of (3.27), the 
absence of NS-NS charge in this case and the fact that the RR 1-form does 
not depend on the point of the F5-brane worldvolume, as it was the case 
for the fundamental strings analysed in the previous section. It is clear then 
that the flux "carried" by the F5-brane is exactly the same as in flat space 

S*2h 
F2AF2 = 0- 

R4 

It is interesting to note that the solution we found is not expected to 
be the most general one for this system, due to the existence of moduli. 
Indeed, if one probes the F5-brane background with a D2-brane oriented 
as described above, the D2-brane does not feel any force for an arbitrary 
transverse distance among both objects, whereas in the solution described 
here the D2-brane lies on the F5-brane. This is certainly not necessary, as 
it was for fundamental strings. 

When the D2-branes are transverse to the F5-brane, the RR 1-form does 
depend on the radial distance along the (56789)-plane spanned by the F5- 
brane, whereas there appears some NS-NS charge in the radial direction on 
the (12)-plane, where the D2-brane lies. Nevertheless, proceeding as for the 
fundamental strings, that is, choosing a point on the F5-brane and keeping 
it as a parameter, it can be shown that 

a(r2.A-2) 
F2 A F2 oc —i— -dri A dipi A dr2 A dipi , 

ori 

where xl + ix1 = ri e1^1 and rz3 + ixA = ri elip2. Therefore, the flux equals 
the one of the flat spacetime, except at the origin where it vanishes. 

Let us move to the region of the moduli space where the extra spacelike 
translation parameter is non-vanishing. In other words, let us consider the 
Kaluza-Klein reduction along the orbits of the Killing vector £ = dz + a, 
where 

a = ad2 + O2RU + Q3R56 + 04R78 ■ 

The constant matrix B is a 7x 7 matrix which does not act on the {a;0, x1, x9} 
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directions. It is given explicitly, in the basis {a;2,..., x8}, by 

B = 

(0 0 0 0 0 0 0 \ 
0 0 -02 0 0 0 0 
0 02 0 0 0 0 0 
0 0 0 0 -03 0 0 
0 0 0 03 0 0 0 
0 0 0 0 0 0 -04 

^o 0 0 0 0 04 o / 

(3.28) 

Since a involves a translation, the constant vector C defined in (2.6) taking 
care of the inhomogeneous part of the infinitesimal transformation is non- 
vanishing. It is a given by a 7-vector 

(C)' = (a,3). 

The corresponding type IIA configurations have a ten-dimensional metric 
given by 

g = I1'2 {V'1'2 (ds^E1'1) + {dx2)2) + V1'2 (dS
2(E6) + (dz9)2)} 

- A-1/2^1^ {aV-Ux2 + 02a,34 + 0ZJ><> + 04a,78}2  , 

where we are still using the notation UJ
1
^ = xtdx^ — x^dx1. In addition, the 

RR 1-form Ai, NS-NS 3-form field strength H3, RR 4-form H4 and dilaton 
$ are listed below: 

Ai = A"1 {aV^dx2 + 02a;34 + 03a;56 + 04a;78} 

i?3 = -advol(E1'1) AdV'1 

HA = dvol (E1-1) A dx2 A dV-1 

$ = f log (A • F1/3)  . 

The configuration depends on an scalar function A which is defined in terms 
of the scalar function A appearing in the general discussion section, by 

A = yi/3 . A , 

and equals 

A-l + a2F-1 + (02)2((a;3)2 + (a;4)2) 

+ (03)2 ((^5)2 + (z6)2) + (04)2 ((x7)2 + (x8)2) 

To begin with, we shall give an interpretation for the configuration in 
which all transverse rotations are set to zero:   9i = 0 for i = 2,3,4.   We 
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would like to interpret it as the lift to ten dimensions of a bound state of 
(p, g)-strings in N=2 D=9 supergravity, or as the T-dual of (p, g)-strings in 
type IIB, this being the reason why fundamental strings are delocalised in 
the x2 direction in the above supergravity solution. This interpretation can 
be inferred as follows. The global symmetries of supergravity theories com- 
pactified on torus have been studied extensively [77, 78]. Let us concentrate 
on N=2 D=9 obtained by reduction of D=ll on a 2-torus. This nine- 
dimensional theory is SL(2, R) invariant. What this means, among other 
things, is that configurations obtained from D=ll supergravity by reduc- 
tion first along the z direction, and afterwards, along the x direction, can 
be mapped to those configurations in which one first reduces along the x 
direction, and then on the z direction. In this particular case of transverse 
directions, there is indeed an SO(2) transformation of angle 7r/2 relating both 
configurations. There exist, of course, more general transformations. This 
is pretty close to what we have been doing. By reducing the M2-brane con- 
figuration along dx and dz, or the other way around, we are describing (p, 0) 
or (0, g)-strings in N=2 D=9. Under SL(2, K) transformations, one can gen- 
erate the full spectrum of (p, g)-strings. Notice that these transformations 
are nothing but linear diffeomorphism transformations in D=ll supergrav- 
ity which map dz into adz + bdx^ which is the kind of Killing vector we used 
to reduce the starting M2-brane configuration. Thus, the ten-dimensional 
configuration found above is nothing but the lift to ten dimensions of one 
of these (p, g)-strings, which is a bound state of D2-branes and delocalised 
fundamental strings. 

Once this background has been understood, it is easy to interpret the ef- 
fect of turning on the deformation parameters 0i. Indeed, whenever 0$ ^ 0, 
the corresponding configurations are no longer asymptotically flat. They 
correspond to composite configurations of the vacuum and fluxbranes. The 
discussion of the different supersymmetric and non-supersymmetric possi- 
bilities is analogous to the ones already given before, so we refer the reader 
to the Table 6 summarising the results. 

v 
 1 

Object Subalgebra 
1 
2 
1 
4 
1 
8 

D2-FA 
D2-FA + F5 
D2-FA + F3 

{0} 
su(2) 
5U(3) 

Table 6: Supersymmetric configurations of bound states made of D2-branes 
and delocalised fundamental strings (D2-FA) and fluxbranes. 
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Let us move to the region of the moduli space where there is a non- 
vanishing null translation. In other words, we shall discuss the Kaluza-Klein 
reductions along the orbits of the Killing vectors £ = dz + a where 

a = d+ + 02#34 + 03#56 + 04#78 • 

The constant matrix B is formally the same as in (3.28), but this time being 
written in the basis {a:+, a;3,... ,x7, xs}. Thus, besides the z direction, it 
leaves invariant the {#-, a;2, x9} directions. Since a involves a translation 
in the null direction £+, there is a non-trivial 7-vector C describing the 
inhomogeneous part of the isometry transformation 

(C)« = (i,6). 

The corresponding type IIA configurations have a ten-dimensional metric 
given by 

g = A1/2 {F"
1
'

2
 (2dx+dx- + (dx2)2) + V1'2 (<fo2(E6) + (<fo9)2)} 

_ K-I/2VI/2 {v-ifa- + e2UJM + e3u
56 + ^u;78}2 , 

whereas the RR 1-form Ai, NS-NS 3-form field strength H3, RR 4-form Hi 
and dilaton $ are listed below: 

Ai = A-1 {V-ldx- + e2UJU + ^w56 + e4u}78} 

H3 = -da;- A dx2 A dF-1 

i?4 = dx+ A dx" A dx2 A dF_1 

$ = flog(A.F1/3^  . 

The configuration depends on an scalar function A which is defined in terms 
of the scalar function A appearing in the general discussion section, by 

A = V1/3.A, 

and equals 

A = 1 + (02)2 [(x3)2 + (x4)2] + (03)2 [(*5)2 + (a;6)2] + (^)2 [(x7)2 + (x8)2]   . 

Even though we lack a good physical understanding of the above set of 
configurations, it is instructive to look at the particular case in which 0* = 0 
for all i. We expect not to be describing any fluxbrane, and manage to 
isolate the new effect associated with the Kaluza-Klein reduction along an 
orbit involving lightlike translations. In such a case, the metric reduces to 

g = V-Wds2^1'2) + V^2da2(E7) - V-S'2{dx-)2 . 
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There is the standard RR 4-form giving the expected charge carried by a 
stack of D2-branes (and also the expected dilaton profile for a D2-brane con- 
figuration), but also non-trivial RR 1-form and NS-NS 3-form field strength 
given respectively by 

Ai = V^dx"        and       #3 = -dx~" A dx2 A dV'1 . 

By inspection of the above expressions, it is clear that asymptotically at 
spacelike infinity (r -> 00), the solution is no longer Minkowski spacetime, 
but a wave background. Thus, just as fluxbranes induce some magnetic flux 
under Kaluza-Klein reduction and also modify the spacelike asymptotics, the 
extra lightlike translation induces the propagation of a lightlike perturbation 
at infinity. In the region r —> 0, one recovers the description close to a stack 
of D2-branes, in the first approximation. The stability and supersymmetry 
of the configuration requires both H3 and F2 = dAi to be null forms. 

By switching on the 0$ parameters, one expects to add fluxbranes to the 
above configuration. Since the discussion of the different possibilities does 
not give any new insight, we leave the details to the interested reader. 

Let us finally consider the region of the moduli space which involves an 
extra timelike translation. That is, let us discuss the Kaluza-Klein reduction 
along the orbits of the Killing vector £ = dz + a, where 

a = ado + #2^34 + #3^56 + 04^78      ,      H < 1 - 

The constant matrix B is again a 7 x 7 matrix given by (3.28) in the basis 
{a;0, :c3,...,£7, a;8}. Thus, it leaves the {a;1, a;2, a;9} directions invariant. 
There is again a non-vanishing vector C given by 

(C)' = (a,S). 

The corresponding type IIA configurations have a ten-dimensional metric 
given by 

g = A1/2 \v-V2ds2(E1'2) + vWds^E7)} 

- A-VV1'2 {-aF"1^0 + 02u;34 + fca;56 + ^w78}2 , 

whereas the RR 1-form Ai, NS-NS 3-form field strength if3, RR 4-form H4 
and dilaton $ are listed below: 

Ai = A"1 {-V-ladx0 + 02W34 + 03W56 + 04W78} 

H3 = -adx1 A dx2 A dV'1 

H4 = dvol (E1'2) A dV'1 

$ = |log(A-F1/3) . 



FIGUEROA-O'FARRILL and SIMON 757 

The configuration depends on an scalar function A which is defined in terms 
of the scalar function A appearing in the general discussion section, by 

A = F1/3 • A , 

and equals 

A = l-V-la2 + (02)
2[(x3)2 + (x*)2} 

+ (03)2 [(z5)2 + (x6)2] + (e4)
2 [(a;7)2 + (z8)2]  . 

Let us start by considering the particular configuration in which all trans- 
verse rotation parameters vanish: 9i = 0 for i — 2,3,4. The role played by 
the bound |a| < 1 can be immediately appreciated by inspection of the 
corresponding metric 

g = - (V - a2)-172 (da;0)2 + (F - a2)1/2 {dS
2(E7) + ^"^^(E2)} . 

It is now clear that the condition |a| < 1 ensures the absence of horizons in 
spacetime. Furthermore, if |a| > 1 would have been arbitrary, these horizons 
sitting at 

A Q 
a2-l ' 

would have divided spacetime into regions (r > rn) having closed timelike 
curves and regions (r < rn) free of this causal sickness. 

Despite these features, the physical interpretation of these configurations 
remains unclear. Proceeding as in previous configurations involving more 
than one spacelike translation, it would be natural to interpret this configu- 
ration as a bound state of D2-branes and delocalised E2-branes [79, 80, 81], 
the charge of the latter being constrained by the bound |a| < 1. It is clear 
that the geometry in the region r -> 0 is the one describing the core of a 
stack of D2-branes, whereas in the asymptotic spacelike infinity, this time 
we recover Minkowski spacetime by a trivial rescaling of coordinates (notice 
that the dilaton acquires a constant factor depending on a in this asymptotic 
limit). 

Even though this configuration has no clear physical interpretation, it 
is obvious that it allows the addition of fluxbranes by switching on the 9i 
parameters, while preserving some supersymmetry. Since the discussion of 
these possibilities does not involve any new features, we leave the details to 
the reader. 



758 SUPERSYMMETRIC KALUZA-KLEIN REDUCTIONS 

4    Kaluza-Klein reductions of the M5-brane 

In this section we classify the set of M-theory backgrounds obtained by 
modding out the M5-brane background by a one-parameter subgroup of 
its isometry group and study the corresponding smooth supersymmetric 
Kaluza-Klein reductions along the orbits of the Killing vectors generating 
such subgroups. We shall first describe the standard M5-brane configuration 
in section 4.1. Afterwards, we shall discuss the M5-brane delocalised along 
one transverse direction in section 4.2. 

4.1     Supersymmetric reductions of the M5-brane 

The M-theory fivebrane [82] is described by a metric of the type (1.7) with 
two factors, 

g = V-VWiE1'5) + F2/W(E5) , (4.1) 

where V = 1 + |Q|/r3 with \Q\ some positive constant and r the radial 
distance in the transverse E5. The 7-form dual to the 4-form is given by 

*JF4 = dvoKE1'5) A dV-1 , (4.2) 

up to a constant of proportionality. The Killing spinors are of the form 

e = V-Wen , (4.3) 

where £oo is a constant spinor satisfying 

dvo^E1'5) • eoo = £oo • (4.4) 

The symmetry group is 

G = ISO(l, 5) x SO(5) C 180(1,10) , (4.5) 

with Lie algebra 

fl= (B?1'5 ^50(1,5)) X50(5) , (4.6) 

whence any Killing vector £ can be decomposed as 

* = rll + All + P-L > (4-7) 

with the usual notation. 
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4.1.1    Freely-acting spacelike isometries 

As before, to determine the freely-acting spacelike Killing vectors, we exploit 
the freedom to conjugate by G in order to bring £ to a convenient normal 
form. Conjugating first by the SO(l,5) subgroup, we can bring A to one 
of several normal forms. Either A = 0 or else it is conjugate to one of the 
following three normal forms 

1. A = (3B0l + 0ii?23 + 02^45, with 0 £ 0; 

2. A = iV+2 + 0jR45; or 

3. A = 0li?23 + #2-^453 

with the same notation introduced earlier. The first case can be easily dis- 
carded since for ft ^ 0, £ is not everywhere spacelike, regardless what p± and 
r are. Changing the origin in the worldvolume of the brane, it is possible 
to set r in the second case to ad- + bds; but again unless a = 0, £ will not 
be everywhere spacelike. For a freely-acting £ one must in addition have 
r ^ 0. Similarly in the third and final case, r must be spacelike for £ to 
be everywhere spacelike, hence we can conjugate r to a spacelike direction 
orthogonal to A, say r oc 9i, where again for a free action r ^ 0. In this 
case the vector fields all integrate to a free action because of the presence 
of the translation. In summary, we have three possible cases of freely-acting 
spacelike Killing vectors in the M5-brane geometry: 

(A) £ = T|| + p|| + p_L, with r 7^ 0 spacelike and where p|| can vanish; and 

(B) £ = T|| + i/|| + p\\ + P_L, with z/|| y£ 0, r ^ 0 spacelike, and where py can 
vanish. 

We again remark that the above decompositions of £ are orthogonal relative 
to the brane metric. 

4.1.2    Moduli space of smooth reductions 

In case (A) above, the Killing vector £ can be brought to the form 

£ = adi + 61R23 + e2RAb + #3i?67 + 04^89 , 

with a ^ 0.   There are five free parameters, which after projectivisation 
and modding out by the action of the Weyl group yields a four-dimensional 
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moduli space of smooth reductions and within it a three-dimensional super- 
symmetric locus. 

In case (B), the Killing vector £ can be brought to the form 

f = adi + N+3 + 02it45 + 03R67 + 04^89 , 

where a ^ 0. There is now a three-dimensional moduli space of smooth 
reductions and supersymmetry will select a two-dimensional locus. 

4.1.3     Supersymmetry 

In both of the above cases the rotation component of the Killing vector f 
takes the general form 

p = ^ifea + 92R45 + OsRer + #4^89 • (4.8) 

Relative to a basis dual to the Rij the weights of the subspace So of the 
half-spin representation of Spin(l, 10) obeying (4.4) are given in equation 
(A.3). The supersymmetric locus is therefore the union of eight hyperplanes 

4 

^p MO- = 0 ,        where /i? = 1. (4.9) 
i=l 

(Again there are only eight hyperplanes, because the weights fj, and — fj, 
determine the same hyperplane.) A rotation p belonging to one and only 
one of these hyperplanes belongs to an 5u(4) subalgebra. Two weights will 
annihilate such a rotation and hence the associated reduction will preserve 
a fraction u = ^ of the supersymmetry. Points which lie in the intersection 
of two hyperplanes come in two flavours: those points where no 9 vanish, 
which belong to an sp(l) x sp(l) subalgebra and those for which one of 
the 6s vanish, which belong to an su(3) subalgebra. In either case, such a 
rotation is annihilated by four weights and hence the reduction will preserve 
a fraction v = i of the supersymmetry. Points which lie in the intersection 
of three hyperplanes necessarily have two vanishing 9s and they belong to 
an 5u(2) subalgebra and their reductions preserve a fraction u = ~ of the 
supersymmetry. Finally the only point which lies in the intersection of four 
hyperplanes (and hence in all hyperplanes) is the origin. This reduction 
preserves all the supersymmetry of the M5-brane, hence a fraction u = ^. 
This concludes the analysis of case (A). Case (B) corresponds to setting 
9i = 0 and introducing a null rotation, whence the supersymmetry is further 
halved. There are now four hyperplanes in the subspace 9i = 0. The generic 
points belong to an su(3) subalgebra and their reductions preserve a fraction 
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v = Yg of the supersymmetry. Points in the intersection of two hyperplanes 
belong to an JSU(2) subalgebra and preserve a fraction v = |. Finally, the only 
point in the intersection of three hyperplanes is the origin, which preserves 
a fraction u = | of the supersymmetry. This is summarised in Table 7. 

Notice that by constructing MMS/TO, where FQ C T is a discrete sub- 
group, the previous classification gives rise to a whole set of smooth su- 
persymmetric eleven-dimensional configurations. This set includes a stack 
of M5-branes and eleven-dimensional fluxbranes (f = di + p) or eleven- 
dimensional nullbranes (£ = <9i + ^||). 

Null rotation? Subalgebra i/ dim 

fiu(4) i 
16 3 

su(3) 1 
8 2 

No sp(l)xsp(l) 1 
8 2 

zu(2) 1 
4 1 

{0} 1 
2 0 

«u(3) 1 
16 2 

Yes BU(2) 1 
8 i 

{0} 1 
4 0 

Table 7: Supersymmetric reductions of the M5-brane. All translations are 
spacelike and tangent to the M5-brane. We indicate the spinor isotropy sub- 
algebra to which the rotation belongs, the fraction v of the supersymmetry 
preserved and the dimension of the corresponding stratum of the moduli 
space M of supersymmetric reductions. 

4.1.4     Explicit reductions 

It is possible to discuss the full set of inequivalent Kaluza-Klein reductions 
of the M5-brane by a single computation, the one associated with reductions 
along the orbits of the Killing vector f = dz + A, where 

A - PBos + 0i/223 + 02R45 + e3R67 + 6AR89 , 

and z stands for the xl direction along the M5-brane. 

The constant matrix B is a 9 x 9 matrix, which does not act on the x^ 
coordinate and which equals, formally, the one appearing in (3.25), but this 
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time in the basis {x0, x2,..., x9}. The ten-dimensional metric obtained after 
Kaluza-Klein reduction can be written as, 

g = A1/2 {v-^W^1'4) + V^2ds2(£5)} 

_ A-
1/2

V-
1/2

 {/3W
03 + 0lW

23 + e2u45 + v [esuj67 + e4u
S9] }2 ,   (4.io) 

whereas the RR 1-form Ai, RR 4-form H4 and dilaton $ are listed below: 

A1 = A"1 {/3a;03 + ^w23 + ^2u)45 + V [e3uj67 + ^w89]} 

Hi = - *dvol (E1'4) A dF-1 (4.11) 

$ = fiog(i.F-1/3). 

The configuration depends on an scalar function A which is defined in terms 
of the scalar function A appearing in the general discussion section, by 

A = V'1^ • A , 

and equals 

A = 1 + (x3f [(erf - /?2] + (f3x0 + elx
2)2 + (02)

2 [(x4)2 + (x5)2] 

+ V {m2 [(x*)2 + (x7)2} + (04)
2 [(x*)2 + (x»)2}} . 

As discussed for the M2-brane reductions, whenever \0i\ < |/3|, there is 
always a Lorentz observer who sees a pure boost. Such spacetime breaks 
supersymmetry and contains closed timelike curves. If we restrict to the 
regions of spacetime where such closed causal curves do not exist, their 
interpretation would give rise to similar cosmological models to the ones 
discussed in [45, 46, 48, 49] but this time on the worldvolume of a 1+5 
brane. On the other hand, whenever \9i\ > |/3|, there is always an observer 
who measures a pure rotation, so that case would be related to fluxbranes. 

Let us concentrate on the interpretation of the different regions of the 
above reduction. If we set /3 = 0, there are five different possibilities to be 
considered: 

(1) The case #z- = 0 for all i corresponds to the well-known D4-brane in 
type IIA preserving v = 1/2 of the spacetime supersymmetry. 

(2) If one of the 9s is non-vanishing, the configuration describes a com- 
posite state involving a D4-brane and an F7-brane. Depending on the 
chosen 8, its location is a (456789t])-plane at x3 = x4 = 0 (if 0i ^ 0) or 
a (234589[])-plane at xQ = x7 = 0 (if 02 ^ 0). In either case, supersym- 
metry is completely broken due to the presence of these F7-branes. 
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(3) If there are two non-vanishing 6s we must distinguish between four 
cases: 

(i) If 0i = 77202, the configuration describes a D4-brane in the (2345)- 
plane and an F5-brane along the (6789tl)-plane sitting at x2 = 
x3 = x4 = x5 = 0. It preserves u = 1/4 of the spacetime su- 
persymmetry, with Killing spinors being preserved by an 5u(2) 
subalgebra. 

(ii) If 9s = 77404, the configuration describes a D4-brane in the (2345)- 
plane and an F5-brane along the (2345t])-plane sitting at x6 = 
x7 = x8 — rr9 = 0. It preserves v — 1/4 of the spacetime su- 
persymmetry, with Killing spinors being preserved by an 5u(2) 
subalgebra. 

(hi) If 0i = 77303, the configuration describes a D4-brane in the (2345)- 
plane and an F5-brane along the (4589t|)-plane sitting at x2 = 
x3 = x6 = x7 = 0. It preserves v = 1/4 of the spacetime su- 
persymmetry, with Killing spinors again preserved by an su(2) 
subalgebra. 

(iv) If 0i ^ rjjOj i ^ j, the configuration describes a system of two 
intersecting F7-branes besides the aforementioned D4-brane. It 
breaks supersymmetry completely. 

(4) When there are three non-vanishing 0s, we must distinguish between 
three cases: 

(i) If 0i = 77202 + 77303, the configuration describes a D4-brane in 
the (2345)-plane and an F3-brane along the (89t|)-plane sitting 
at xk = 0 k = 2,..., 7. It preserves v = 1/8 of the spacetime 
supersymmetry, with Killing spinors being preserved by an su(3) 
subalgebra. 

(ii) If 02 = 77303 + 77404, the F3-brane extends along the (23t])-plane 
sitting at x^ = 0 k = 4,... ,9. It preserves the same amount 
of supersymmetry as the previous one due to the existence of an 
5u(3) subalgebra preserving some Killing spinors. 

(iii) If 6i 7^ 77^ + 77^0^ for all i, j, k distinct, the configuration de- 
scribes the intersection of three different F7-branes plus a D4- 
brane. Spacetime supersymmetry is completely broken. 

(5) When four 0s are nonvanishing, there are generically two inequivalent 
ways of preserving Killing spinors, but due to the symmetries of our 
configuration, these split into four: 
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(i) If #1 = 772#2 + 77303 + 77404, the configuration describes a D4- 
brane in the (2345)-plane and a flux string along the x^ direction, 
preserving u = 1/16 of the spacetime supersymmetry. This is the 
one associated with the 5u(4) isotropy algebra discussed before. 

(ii) If #i = 77202 and 9s = 774^4, the configuration involves a D4-brane 
and a j-BPS fluxstring in the x^ direction. It preserves v = 1/8 
and it is associated with the sp(l) x sp(l) isotropy algebra. 

(iii) The case 9i = 77363 and 62 = 77464, has the same interpretation as 
the previous one, but the sp(l) xsp(l) isotropy algebra is selected 
in a different way. 

(iv) If non of the three previous possibilities are satisfied, there are 
four intersecting F7-branes and a stack of coincident D4-branes 
breaking spacetime supersymmetry completely. 

If (3 ^ 0, the only allowed possibility preserving supersymmetry requires 
\0i\ = |/3|. Let us thus concentrate on this case. Depending on whether the 
remaining parameters vanish or satisfy certain linear relations, we distinguish 
between the following configurations 

(1) If 9i = 0 for i = 2,3,4, it describes a D4-brane in the (2345)-plane and 
a nullbrane. This composite configuration preserves 1/ = 1/4 of the 
spacetime supersymmetry. 

(2) If one of the 0s is non-vanishing, the corresponding configuration breaks 
supersymmetry completely, due to the presence of an F7-brane besides 
the previous D4/nullbrane pair. 

(3) If two of the 0s are non-vanishing, we shall distinguish between three 
cases: 

(i) If 0i ^ rjjOj i ^ j, the configuration describes a system of two 
intersecting F7-branes (besides the composite system of a D4- 
brane and a nullbrane), such that all supersymmetry is broken. 

(ii) If 02 = 77303, the intersection among the F7-branes gives rise to the 
so-called F5-brane, extending along the (2389t])-plane and sitting 
at x4 = x5 = x6 = x7 = 0. The full configuration includes the 
previous pair D4/nullbrane system, thus preserving u = 1/8. 

(iii) If 03 = 77404, one finds a second F5-brane, this time extending 
along the 2345tl-plane and sitting at x6 = x7 = x8 — x9 = 0. As 
before, the configuration preserves is = 1/8. 

(4) If all 0s are non-vanishing, we need to distinguish between two cases: 
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(i) If 62 7^ 77303 + 77404, the configuration describes the intersection of 
three intersecting F7-branes, besides the composite D4/nullbrane 
system, thus breaking all supersymmetry. 

(ii) If 62 = 77303 + 77404, the intersection of the F7-branes gives rise to 
an F3-brane extending along the (23t])-plane and sitting at xk = 0 
k=4,..., 9. Thus, there exists a composite configuration involving 
a D4-brane, a nullbrane and an F3-brane preserving u = 1/16. 

The set of supersymmetric configurations described above is summarised 
in Table 8, where the notation Dp J_ Fq(r) has been introduced. The latter 
stands for a Dp-brane+Fg-brane composite configuration sharing r spacelike 
directions. 

v Object Subalgebra 

D4J_F5(0) 
1 
4 D4±F5(4) 

D41_F5(2) 

811(2) 

1 
4 D4 + N R 
1 
8 D4_LF3(0) 

D4±F3(2) 

*u(3) 

1 
8 (D4J-F5(4)) + N 

(D4±F5(2)) + N 

su(2) x R 

1 
8 D4±F1(0) sp(l) x sp(l) 
1 

16 D4±F1(0) 5u(4) 
1 

16 (D4±F3(2)) + N su(3) x R 

Table 8: Supersymmetric configurations of D4-branes, fluxbranes and null- 
branes. 

Before finishing this presentation, we would like to compute the fluxes 
associated with F5-branes in the presence of D4-branes. There are three 
cases to be considered separately, as indicated in Table 8, and discussed 
in the text above. Whenever the D4-branes are parallel to the F5-brane, 
01 = #2 = /? = 0, 0 = 03 = 04, the RR 1-form potential in (4.11) depends 
on the direction x^ along the F5-brane but transverse to the D4-branes. As 
it happened for fundamental strings, it can be shown that the flux carried 
by the F5-brane equals the one on flat spacetime, except at x^ = 0, where 
it vanishes.   It is precisely at x^ = 0, where the D4-branes lie.   A probe 
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computation shows that indeed D4-branes with the above orientation are 
only stable where the flux vanishes. On the other extreme, when the D4- 
branes are completely tranverse to the F5-branes 63 = #4 = (3 = 0, 6 = 61 = 
62, the RR 1-form potential in (4.11) is independent of the worldvolume 
F5-brane point. Therefore the flux equals the one carried in flat spacetime 
everywhere. Finally, when they are relatively transverse, 62 = O4 = (3 = 
0, 9 = 9i = #3, the RR 1-form potential in (4.11) depends on the radial 
distance in the 89tl-plane spanned by the F5-brane. By fixing a point in this 
plane, it can be shown that 

d (riA-2) 
F2AF2OC -2—^ t-dn A d0i A dr2 A (102 , 

dr2 

where we used the same parametrisation as for the corresponding M2-brane 
discussion. Its integral over R4 equals the one in flat spacetime everywhere 
except at the origin of the (89tl)-plane, where it vanishes. 

4.2    Supersymmetric reductions of the delocalised M5-brane 

To obtain the NS5-brane by Kaluza-Klein reduction of the M5-brane, it is 
necessary to delocalise the M5-brane along a transverse direction. In this 
section we will classify the supersymmetric Kaluza-Klein reductions of such 
a delocalised M5-brane. The metric of the spacetime exterior to such a 
fivebrane is again of the general form (1.7) but now with three factors: 

g = V-VWiE1'5) + V2'zdz2 + V^WCE4) , (4.12) 

where z is the transverse coordinate along which the fivebrane is delocalised 
and V = 1 + \Q\/r2 is a harmonic function on E4 depending only on the 
radial distance. The symmetry group is now 

G = ISO(l,5) x[RxSO(4) , (4.13) 

with Lie algebra 

g = (K1'5 xi 50(1,5)) x R x 50(4) . (4.14) 

Therefore a Killing vector may be decomposed as 

£ = l+7± + A||+p_L (4.15) 

in the usual notation. 
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4.2.1    Freely-acting spacelike isometries 

As for the localised fivebrane, either the Lorentz transformation A = 0 or 
else it can be brought to one the following normal forms: 

1. A = PBOI + 0iitb + #2#45, with /3 ^ 0; 

2. A = iV+2 + 0R45- or 

3. A = 0ii?23 + $2#45• 

It is again easy to discard the first case, since /3 ^ 0 means that £ is not 
everywhere spacelike. In the second case, T)| is spacelike and Ty + rj_ cannot 
be zero, because otherwise the action is not free: as in the M2 case, there 
would be points outside the horizon with nontrivial stabilisers. As in the 
M2-brane, the norm of the transverse rotation p± obeys a sharp bound 

r2M2 > llpj.11^ > r2m2 , 

where M > m > 0 and m can be nonzero since the transverse sphere is 
three-dimensional and possesses infinitesimal isometries without zeros. This 
means that in the third case, the norm of the Killing vector is bounded below 
by 

IKII2 > ^-1/3 (IhiHL + IIPiiHL) + ^ (IKIIL + r2m2)  , 

which is again sharp. Because there are points where py = 0, the bound can 
be improved to 

lkl|2>^-1/3|h|llL + ^2/3(IKIlL+r2m2)  , 

which is still sharp. The right-hand side of the above bound defines a func- 
tion f of r with the following asymptotic properties. As r —> 0, 

/(r)HQ|2/3|M^-4/3 + 0(r2/3), 

whence it blows up if Tj_ ^ 0 and goes to zero otherwise. In the asymptotic 
regime where r —> oo, 

/(O^mV + llrnll^ + KII^ + O^-1), 

which blows up for m > 0, and approaches (the square of) the flat norm of 
T|| + rj_ otherwise. Therefore, generically / has a minimum at some critical 
value ro > 0; although if either rj_ or m vanish this may be either zero or 
not exist, respectively.  As in the case of the M2-brane, there is a positive 
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number /J, such that £ is everywhere spacelike if and only if HTUH^ > —/x2. 
This number is obtained by solving /'(ro) = 0, which gives /i as a function 
of ro, and substituting this into /(ro) = 0 which can be solved for ro and 
hence for //. One finds that the critical radius obeys 

rW = IQIHTLHSO , (4.16) 

should one exist (it does if m > 0) and hence that 

MHIriHoo + mlQI1/2. (4.17) 

If m = 0 we see that it is enough that T|| + TJ_ be asymptotically spacelike. 

In summary, the freely-acting spacelike Killing vectors of the delocalised 
fivebrane geometry fall into two cases: 

(A) £ = T|| + TJ_ + ^u + p|| + pj_, with z/|| 7^ 0, T|| + r^ spacelike and where 
Tji if nonzero must also be spacelike; and 

(B) £ = T|| + Tj_ + p|| + pj_, with r|| satisfying a norm constraint of the form 
llr||lloo ^ —M2? where /J, is given by equation (4.17). In particular, if p± 
has zeros, then ry + rj_ must be asymptotically spacelike. 

The rotation pu is allowed to vanish in both cases and, once again, the 
decompositions of £ are orthogonal with respect to the brane metric. In 
both cases, the translation T|| + T± must be nonzero for the action of £ to be 
free. 

4.2.2     Moduli space of smooth reductions 

In case (A) we can always choose coordinates so that the Killing vector £ 
takes the form 

£ = adi + bdz + iV+2 + 02#45 + 03#67 + #4^89 , 

where a and b cannot both be zero. There are five free parameters which yield 
a four-dimensional moduli space of smooth reductions after we projectivise 
and quotient by the action of the (discrete) Weyl group. Supersymmetry 
will then select a three-dimensional locus. 

Case (B) breaks up into three cases depending on the nature of T||: 
whether it is timelike, spacelike or null. In the first case we can bring £ 
to the form 

£ = ado + bdz + O1R23 + #2^45 + O^Rej + #4^89 ? 
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which gives rise to a five-dimensional moduli space of smooth reductions 
with a four-dimensional supersymmetric locus. The results are similar for 
T|| spacelike. Finally, if £ is null then we can always bring it to the form 

£ = d++bdz + 0ii?23 + 02^45 + 03^67 + 04^89 , 

whence we have one less parameter. Therefore the moduli space of smooth 
reductions will be four-dimensional with a codimension-one locus of super- 
symmetric reductions. 

4.2.3    Absence of closed causal curves 

It is rather straightforward to extend the proofs of absence of closed causal 
curves given for the quotients of the M2-brane background to the M5-brane 
background discussed here. As in that case, we shall set all 6i and (3 to zero. 

Let us start by analysing the problem of existence of closed causal curves 
in an M5-brane background delocalised in one transverse direction (z) re- 
duced along the orbits of the Killing vector 

£ = ado + bdz . 

The only condition that such a Killing vector is required to satisfy is to be 
spacelike everywhere. This requirement provides us with the constraint 

||£||2 = V(r)"1/3 (-a2 + V(r)b2) > 0 . (4.18) 

Writing the metric in an adapted coordinate system, in which £ = dz>, one 
finds 

g = _vr-l/3 [a2(d^)2 + 6-2(^)2 + 2a&-Wltf] + l?V2l*{dJ)2 

+ y-1/3d5
2(E5) + y2/3d5

2(E4). 

Let us assume the existence of causal curves a;(A), i.e. ||gf ||2 < 0, joining 
the points (£Q, X^Z'Q) and (*(,, a^, z'^ + A). As argued for the M2-brane back- 
ground, there must exist at least one value of the affine parameter A where 
the timelike component of the tangent vector to the curve vanishes: 

dt1 

3A*    such that     — 
aA 

= 0 
A* 



770 SUPERSYMMETRJC KALUZA-KLEIN REDUCTIONS 

If one computes the norm of such a tangent vector at A*, one derives the 
inequality 

mm d\ 

5      ,  ,•  2 

j=l 
dX +vv3Yl 

i=6 
dX 

<0 . 

Due to the constraint (4.18), it is clear that the left hand side of the above 
norm is the sum of positive-definite terms, so that the inequality can never 
be satisfied. This already shows the non-existence of closed timelike curves. 
Furthermore, the only possibility for the equality to be satisfied is whenever 
for all i, 

dz[_ 

dX 

d^_ 

dX 
= 0, 

which violates the definition of A being an affine parameter.  We thus con- 
clude that no closed lightlike curves are allowed in this spacetime. 

The corresponding proof for the action generated by £ = d++bdz involves 
similar ideas and techniques. In this case, the requirement of having an 
everywhere spacelike Killing vector gives rise to the condition 

F(r)2/362>0 |6|>0 

By a linear transformation, we can move to an adapted coordinate system 
{z', x+f} in which the Killing vector becomes a single translation £ = dz> and 
the eleven-dimensional metric takes the form 

g = 2V-l^dx- {dz' + b-ldx+') + V2l*#{d*>¥ 
+ y2/3dS

2(E4)-(-F-1/3ds2(E4)2_ 

If we again assume the existence of a closed causal curve of affine pa- 
rameter A joining the points (XQ

1
 , a;^", #Q, ZQ) and (x^1, x^, ^Q? 

Z
Q + A), there 

must necessarily exist at least one value for this affine parameter A* where 

3A*    such that 
dx 
d\ 

= 0 

By computing the norm of the tangent vector to the causal curve at the point 
A*, and using the fact that |6| > 0, it is immediate to show the non-existence 
of such closed causal curves by the same argument used before. 
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4.2.4    Supersymmetry 

The determination of the supersymmetric locus can be read off from the 
results of the M5-brane. We will not repeat the arguments simply state the 
results, which are contained in Table 9. 

Translation Subalgebra v dim 

su(4) 1 
16 4 

adi + bdz Sp(l) x Sp(l) 1 
8 3 

su(3) 8   vie) 3(3) 

a, 6 not both 0 BU(2) HI) 2(2) 

{0} HI) 1(1) 

au(4) 1 
16 3 

<9+ + bdz sp(l) X 8p(l) 1 
8 2 

su(3) 1 
8 2 

6/0 BU(2) 1 
4 1 

{0} 1 
2 0 

5u(4) 1 
16 4 

ado + bdz ep(l) x 5p(l) 1 
8 3 

a, b not both 0 su(3) 1 
8 3 

|a| <n su(2) 1 
4 2 

{0} 1 
2 1 

Table 9: Supersymmetric reductions of the delocalised M5-brane. We in- 
dicate the form of the translation, the spinor isotropy subalgebra to which 
the rotation belongs, the fraction v of the supersymmetry preserved and the 
dimension of the corresponding stratum of the moduli space M of supersym- 
metric reductions. The numbers in parentheses indicate the values in the 
presence of a null rotation. 
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4.2.5     Explicit reductions 

Let us start the discussion on the explicit configurations by concentrating 
on the region of the moduli space involving an extra spacelike translation in 
addition to the one on the delocalised transverse direction z. In other words, 
we shall start by reducing along the orbits of the Killing vector £ = dz + a, 
where 

a = adi + PB02 + 0li?23 + hRrt + 03^67 + 04^89 . 

Notice that by parametrising the reduction in this way, we will be able to 
discuss both the possibility of fluxbranes and nullbranes at the same time. 

The constant matrix B is now 10 x 10. In the basis {^0, a;1,..., a;9}, it 
can be written as 

£ = 

f0 0 0 0 0 0 0 0 0 0 \ 
0 0 0 0 0 0 0 0 0 0 

p 0 0 -0i 0 0 0 0 0 0 
0 0 01 0 0 0 0 0 0 0 
0 0 0 0 0 -02 0 0 0 0 
0 0 0 0 02 0 0 0 0 0 
0 0 0 0 0 0 0 -03 0 0 
0 0 0 0 0 0 0s 0 0 0 

0 0 0 0 0 0 0 0 0 -04 u 0 0 0 0 0 0 0 ^4 0 / 

(4.19) 

Whenever the extra spacelike translation is non-vanishing (a 7^ 0), there will 
be a non-vanishing 10-vector C taking care of the inhomogeneous part of the 
symmetry transformation. In the same basis as the one used in the matrix 
(4.19), this vector is 

(C7)« = (0,a,Cf). 

The corresponding type IIA configurations have a ten-dimensional metric 
given by 

g = A1/2 {ds^E1'5) + Vrfs2(E4)} 

- A-^V {V-1 [adx1 + (3u;02 + O^23 + 02u;45] + O^1 + eAu™}2 , 
(4.20) 

whereas the RR 1-form Au NS-NS 7-form field strength H7i RR 6-form He 
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and dilaton $ are listed below, 

A, = A"1 {V-1 [adx1 + pu02 + e^23 + 02u;45] + ^3^67 + ^u;89} 

#7 = dvol (E1'5) AdV~l 

He = -/3{x2dx2 - x0dx0) A dx1 A da;3 A da:4 A da;5 A dV~l 

- adx0 A da;2 A da;3 A da;4 A da;5 A dV'1 

- Oxdx0 A da;1 A (a;2da;2 + a;3da;3) A da;4 A da;5 A dV'1 

- Qzdx0 A da;1 A da;2 A da;3 A (a;4da;4 + a;5dx5) A dV"1 

$ = fiog(A.y2/3) . 

(4.21) 

The configuration depends on an scalar function A which is defined in 
terms of the scalar function A appearing in the general discussion section, 
by 

A = V2/z ■ A , 

and equals 

A - 1 + V-1 {a2 + (x2)2(0? - /52) + 03*° - ft*3)2} + (02)
2 [(z3)2 + (z4)2] 

+ (e3)2[(x6)2 + (a;
7)2]+(^)2[(x8)2 + (x9)2]  . 

We shall discuss the interpretation of the different solutions proceeding 
in an analogous way to the one followed for the M2-brane Kaluza-Klein re- 
ductions. Thus, let us start by examining the subspace of the moduli space 
of reductions defined by a — 0. We already know that whenever \6i\ < |/3|, 
there is always a Lorentz observer who sees a pure boost. Such spacetime 
breaks supersymmetry and contains closed timelike curves. Restricting our- 
selves to regions of spacetime where such closed causal curves do not exist, 
their interpretation would give rise to similar cosmological models to the 
ones discussed in [45, 46, 48, 49]. On the other hand, whenever |#i| > |/3|, 
there is always an observer who measures a pure rotation, so that case would 
be related to fluxbranes. 

After this brief comment, let us study the subset defined by /3 = 0, that 
is, the one involving no nullbranes. There are five different possibilities to 
be considered: 

(1) If all 6i = 0 we have the well-known NS5-brane in type IIA preserving 
v — 1/2 of the spacetime supersymmetry. 

(2) If one of the 0s is non-vanishing, the configuration describes a compos- 
ite state involving an NS5-brane and an F7-brane. Depending on the 
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chosen 6, its location is a (456789tl)-plane at x3 = x4 = 0 (if ^i 7^ 0) or 
a (234589t])-plane at xQ = x7 = 0 (if #2 7^ 0). In either case, supersym- 
metry is completely broken due to the presence of these F7-branes. 

(3) If there are two non-vanishing 0s, we must distinguish between four 
cases: 

(i) If #1 = ?72#2, the configuration describes a NS5-brane in the 
(12345)-plane and an F5-brane along the (16789)-plane sitting 
at x2 = xz = x4 = x^ = 0. It preserves 1/ = 1/4 of the spacetime 
supersymmetry, with Killing spinors being preserved by an su(2) 
subalgebra. 

(ii) If 63 = 77404, the configuration describes an NS5-brane in the 
(12345)-plane and an F5-brane along the (12345)-plane sitting at 
xQ = x7 = xs = x9 = 0. It preserves u = 1/4 of the spacetime 
supersymmetry, with Killing spinors being preserved by an su(2) 
subalgebra. 

(iii) If 61 = 77303, the configuration describes an NS5-brane in the 
(12345)-plane and an F5-brane along the (14589)-plane sitting at 
x2 = x3 = xQ = x7 = 0. It preserves is = 1/4 of the spacetime 
supersymmetry, with Killing spinors again preserved by an JSU(2) 

subalgebra. 

(iv) If 8i y^ rjjBj for distinct i, j, the configuration describes a system 
of two intersecting F7-branes besides the aforementioned NS5- 
brane. It breaks supersymmetry completely. 

(4) If there are three non-vanishing 0s, we must distinguish among three 
cases: 

(i) If 0i = 7/202 + %037 the configuration describes an NS5-brane in 
the (12345)-plane and an F3-brane along the (189)-plane sitting 
at xk — 0 k = 2,..., 7. It preserves u = 1/8 of the spacetime 
supersymmetry, with Killing spinors being preserved by an su(3) 
subalgebra. 

(ii) 02 = 77303 + 77404. In this case, the F3-brane extends along the 
(123)-plane sitting at xk — 0 k = 4,..., 9. It preserves the same 
amount of supersymmetry as the previous one due to the existence 
of an su(3) subalgebra preserving some Killing spinors. 

(iii) If 6i / 77^0^ + 77fc0fc for distinct i, j, &, the configuration describes 
the intersection of three different F7-branes plus a NS5-brane. 
Spacetime supersymmetry is completely broken. 
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(5) Finally, in the case of four non-vanishing 0s, there are generically two 
inequivalent ways of preserving Killing spinors when four of our de- 
formation parameters are non-vanishing, but due to the symmetries of 
our configuration, these split into four: 

(i) If #i = 77202 + 7?303 + f?4#45 the configuration describes an NS5- 
brane in the (12345)-plane and a fluxstring along the x1 direction, 
preserving is = 1/16 of the spacetime supersymmetry. This is the 
one associated with the $u(4) isotropy algebra discussed before. 

(ii) If #i = 7)262 and #3 = 774#4, the configuration involves an NS5- 
brane and a j-BPS fluxstring in the x1 direction. It preserves 
v = 1/8 and it is associated with the sp(l) X5p(l) isotropy algebra. 

(iii) If 61 = 7)303 and 62 = 77404, we have the same interpretation as 
the previous one, but the 5p(l) xsp(l) isotropy algebra is selected 
in a different way. 

(iv) If all other cases, there are four intersecting F7-branes and a 
stack of coincident NS5-branes breaking spacetime supersymme- 
try completely. 

If /3 y£ 0, the only allowed possibility preserving supersymmetry requires 
|0i| = |/3|, which is the nullbrane sector. Depending on whether the re- 
maining parameters vanish or satisfy certain linear relations, we distinguish 
between the following configurations: 

(1) If 0i = 0 for i = 2,3,4, the configuration describes an NS5-brane in the 
(12345)-plane and a nullbrane. This composite configuration preserves 
v = 1/4 of the spacetime supersymmetry. 

(2) If one of the 0s is non-vanishing, the corresponding configuration breaks 
supersymmetry completely, due to the presence of an F7-brane besides 
the previous NS5/nullbrane pair. 

(3) If two of the 0s are non-vanishing, we shall distinguish between three 
cases: 

(i) If 9i / 77^0^, for i ^ j, the configuration describes a system of two 
intersecting F7-branes (besides the composite system of a NS5- 
brane and a nullbrane), such that all supersymmetry is broken. 

(ii) If 02 = 77303, the intersection among the F7-branes gives rise to the 
so-called F5-brane, extending along the (12389)-plane and sitting 
at z4 = x5 = xd = x7 = 0. The full configuration includes the 
previous pair NS5/nullbrane system, thus preserving v = 1/8. 
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(in) If 63 = 77404, one finds a second F5-brane7 this time extending 
along the (12345)-plane and sitting at x6 = x7 = x8 = x9 = 0. 
As before, the configuration preserves v = 1/8. 

(4) If all 9s are non-vanishing, we need to distinguish between two cases: 

(i) If 02 y£ r)303 + 7/404, the configuration describes the intersection of 
three F7-branes, in addition to the NS5/nullbrane system, thus 
breaking all supersymmetry. 

(ii) If 02 = r]303 + 77404, the intersection of the F7-branes gives rise to 
an F3-brane extending along the (123)-plane and sitting at xk = 0 
k=4,..., 9. Thus, there exists a composite configuration involving 
a NS5-brane, nullbrane and F3-brane preserving u = 1/16. 

The set of supersymmetric configurations described above is summarised 
in Table 10, where a similar notation to the one introduced for the M5-brane 
Kaluza-Klein reductions has been used. 

V Object Subalgebra 

NS5±F5(1) 
1 
4 NS5±F5(3) 

NS5±F5(5) 
su(2) 

1 
4 NS5 + N .0? 
1 
8 NS5±F3(1) 

NS5±F3(3) 
su(3) 

1 
8 (NS5±F5(3)) + N 

(NS5±F5(5)) + N 
su(2) x R 

1 
8 NS5±F1(1) sp(l) x sp(l) 
1 

16 NS5±F1(1) su(4) 
1 

16 (NS5±F3(3)) + N «u(3) x R 

Table 10:  Supersymmetric configurations of NS5-branes (NS5), fluxbranes 
and nullbranes. 

Before finishing the discussion of the a = 0 sector, we would like to 
compute the fluxes associated with F5-branes in the presence of NS5-branes. 
There are three cases to be considered separately, as indicated in Table 10, 
and discussed in the text above. Whenever the NS5-branes share a single 
direction with the F5-brane, 03 = 04 = 0 = 0, 0 = 01 = 02, the RR l-form 
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potential in (4.21) depends on the distance to the origin of the F5-brane 
plane through the harmonic function V(r). It can be shown that the flux 
carried by the F5-brane equals the one on flat spacetime, except at r = 0, 
where it vanishes. On the other extreme, when the NS5-branes are parallel 
to the F5-branes 0i — 62 = /? = 0, 0 = ^3 = #4, the RR 1-form potential 
in (4.21) is independent of the worldvolume F5-brane point. Therefore the 
flux equals the one carried in flat spacetime everywhere. Finally, when they 
are two relatively transverse dimensions, 62 = O4 = /3 = 0, 9 = 61 = 63, the 
RR 1-form potential in (4.21) depends on the relative radial distance in the 
(89)-plane spanned by the F5-brane. By fixing a point on this plane, it can 
be shown that 

d (^A-2) 
F2 A F2 oc -2—H- t-dri A d6>i A dr2 A d6>2 . 

Its integral over [R4 equals the one in flat spacetime everywhere except at 
the origin of the (89)-plane, where it vanishes. 

All previous considerations were restricted to the a = 0 subspace. Let 
us move to the subspace where a / 0. It is useful to set all the rotation pa- 
rameters 0i and /? to zero. In this case, a similar discussion to the one giving 
rise to a bound state of D2-branes and delocalised fundamental strings ap- 
plies here. Indeed, the construction is entirely analogous just differing in the 
starting eleven-dimensional background, which now is that of a delocalised 
M5-brane. Thus, following the same arguments, we will interpret this sys- 
tem as a bound state of NS5-branes and delocalised D4-branes, which still 
preserves one half of the spacetime supersymmetries. This vacuum allows 
further supersymmetric configurations both in the fluxbrane and nullbrane 
sectors. Since the detailed discussion of all these possibilities does not give 
any new insight and follows closely previous classifications, we simply sum- 
marise the results in Table 11. 

Notice that the previous discussion does not cover the particular case 
6 = 0 and a 7^ 0 in 9. That would give rise to delocalised D4-branes in 
the presence of fluxbranes, whenever 9i ^ 0. Since we are not particularly 
interested in the study of delocalised branes in the presence of fluxbranes, 
we shall not present the details for these configurations. 

Let us move to the region of the moduli space where the extra translation 
is along a null direction. That is, the starting Killing vector is decomposed 
as £ = dz + a, where 

a = d+ + 0iR23 + 02^45 + 03-^67 + 04^89 • 
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V Object Subalgebra 
1 
2 NS5-D4 

(NS5-D4)±F5(1) 
{0} 

1 
4 (NS5-D4)±F5(3) 

(NS5-D4)±F5(5) 

su(2) 

1 
4 (NS5-D4) + N R 
1 
8 (NS5-D4)J_F3(1) 

(NS5-D4)±F3(3) 

fiu(3) 

1 
8 ((NS5-D4)±F5(3)) + N 

((NS5-D4)_LF5(5)) + N 

su(2) x R 

1 
8 (NS5-D4)±P1(1) sp(l) x sp(l) 
1 

16 (NS5-D4)±F1(1) su(4) 
1 

16 ((NS5-D4)±F3(3)) + N su(3) x R 

Table 11:   Supersymmetric configurations of bound states made of NS5- 
branes and delocalised D4-branes (NS5-D4), fluxbranes and nullbranes. 

The constant matrix B is a 9 x 9 one, leaving the second null direction x~ 
invariant. In the basis {a;+, x1,..., x9}, it can be written as 

/o 0 0 0 0 0 0 0 0 \ 
0 0 -di 0 0 0 0 0 0 
0 01 0 0 0 0 0 0 0 
0 0 0 0 -02 0 0 0 0 
0 0 0 02 0 0 0 0 0 
0 0 0 0 0 0 -03 0 0 
0 0 0 0 0 03 0 0 0 
0 0 0 0 0 0 0 0 -04 

\o 0 0 0 0 0 0 04 o / 

(4.22) 

Since there is an extra null translation (its parameter can always be set to 
one), there is a non-vanishing 9-vector C taking care of the inhomogeneous 
part of the isometry transformation. In the same basis as the one used in 
the matrix (4.22), this vector is 

(<?)' = (1,0). 

The corresponding type IIA configurations have a ten-dimensional metric 
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given by 

g = k1'2{d82{E1>*) + Vds2{EA)} 

- A-^V {e3ujQ7 + 04W89 + V-1 [dx- + flxu;23 + 02a;45] }2 , 

whereas the RR 1-form Au NS-NS 7-form field strength H7, RR 6-form HQ 
and dilaton $ are listed below 

Ax = A-1 {V1 [dx- + OIOJ
23

 + 6>2a;45] + Osu67 + ^w89} 

i?7 = dvol (E1'5) AdV-1 

He = dx" A dvol (E4) A dV1 

- 9idx+ A dx' A (a;2dx2 + x3dx3) A da;4 A da:5 A dV~l 

- 02dx+ A dx~ A dx2 A dz3 A (xAdx4 + a;5dx5) A dV'1 

* = |iog(A.y2/3) . 

The configuration depends on an scalar function A which is defined in terms 
of the scalar function A appearing in the general discussion section, by 

A = y2/3 • A , 

and equals 

A = 1 + V-1 {(Bx)2 [(x2)2 + (z3)2] + (02)
2 [(x4)2 + (x*)2]} 

+ (fc)M(«6)2 + (^)2] + (»4)2[(^)a + (*9)2] • 

Whenever all ^s vanish, and following a similar discussion to the one pre- 
sented when dealing with a delocalised M2-brane, one should expect to get 
a configuration which interpolates among a wave background at asymptotic 
infinity and a linear dilaton background [83], which is the corresponding ge- 
ometry close to a stack of NS5-branes. This is indeed straightforward to 
check. The stability and supersymmetry of the configuration require both 
HQ and F2 = dAi to be null forms, but its role is not clear to us. Switching 
on the 6i parameters, one is adding fluxbranes to the previous configuration. 

Let us finally move to the region of the moduli space where the extra 
translation is along a time direction. That is, the starting Killing vector is 
decomposed as £ = dz + a, where 

a = ado + #1 #23 + 02it45 + 03#67 + ^4^89 • 

The constant matrix B is now 9x9, leaving the spacelike direction x1 in- 
variant. Formally, it is given by the matrix (4.22), but this time written in 
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the basis {x0)X2,... ,x9}. The inhomogeneous part of the isometry trans- 
formation defines a non-trivial 9-vector C 

(C7)' = (a,3). 

The corresponding type IIA configurations have a ten-dimensional metric 
given by, 

g = A1/2{dS
2(E1'5)+Vds2(E4)} 

- A-WV fau67 + e4u
89 + v-1 [-adx0 + e^ + e2^} }2 , 

where we remind the reader that u1^ := xldx^ — x^dx1. In addition the RR 
1-form Ai, NS-NS 7-form field strength H-j, RR 6-form iJ6 and dilaton $ 
are listed below 

Al = A'1 {V-1 [-adx0 + 6W23 + O2UJ45] + OSUJ
67

 + 64UJ
89

} 

#7 = dvol (E1,5) AdV'1 

HQ = adx0 A dvol (E5) A dV'1 

- 6idx0 A dxl A (x2dx2 + x3dx3) A dx4 A dx5 A dV'1 

- 62dx0 A dx1 A dx2 A dx3 A (x4dx4 + x5dx5) A dV'1 

$ = flog(A.F2/3)  . 

The configuration depends on an scalar function A which is defined in 
terms of the scalar function A appearing in the general discussion section, 
by 

A = F2/3 • A , 

and equals 

A = 1 + V-1 {-a2 + (0O2 [(x2)2 + (z3)2] + (&)2 [(x4)2 + (x5)2]} 

+ (^3)2[(a;
6)2 + (a;

7)2]+(^)2[(^)2 + (a;
9)2]    • 

We shall follow the same strategy as for the similar construction regarding 
the M2-brane. If we set 9i = 0 V i, we are left with a ten-dimensional 
configuration whose geometry is given by 

g = -(V-a2)-1/2Vl'2(dx0)2 

+ (V- a2)1/2 {v-1/2ds2(E5) + F1/2^2(E4)| 
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As before, the condition |a| < 1 ensures the absence of horizons in spacetime. 
If we would have allowed Id > 1, there would have been horizons at 

r| = 
Q 

a2-l 

dividing spacetime into regions (r > rn) having closed timelike curves and 
regions (r < rn) free of these causal singularities. 

We shall not add any further comments regarding the physical interpre- 
tation of these configurations, besides the possibility of looking at them as 
bound states of NS5-branes and delocalised E4-branes [79, 80, 81]. They 
are again interpolating among flat spacetime and the linear dilaton back- 
ground [83]. It is straightforward to add fluxbranes by switching on the 9i 
parameters, while still preserving some supersymmetry. 

Looking at table 9, we learn that the previous Kaluza-Klein reduction 
does not cover the case 6 = 0 and a ^ 0, which is certainly allowed if both 
#3 and #4 are non-vanishing. We include the corresponding ten dimensional 
configuration below for completeness, even though its physical interpretation 
is unclear to us and the final background is delocalised in the z direction. 
The type IIA metric is given by 

g = V-WWfc5) + V^k1'2 [{dzf + d52(E4)] 

- F-l/2A-l/2 [0ia,23 + ^45 + y (^67 + ^89)]2   ^ 

where we remind the reader that a/-7 := xldx^ — x^dx1. In addition the RR 
1-form Ai, RR 6-form HQ and dilaton $ are non-trivial and listed below 

A! = A-1 {9IUJ
23

 + 62UJ45 + V {O30J67 + 04u;89)} 

i/6 = -advol(E5) AdV'1 

$ = fiog(A-y-1/3) . 

The configuration depends on an scalar function A which is defined in 
terms of the scalar function A appearing in the general discussion section, 
by 

A = y-Va . A , 

and equals 

A = -a2 + (0O2 [(x2)2 + (x3)2} + {02? [(z4)2 + (z5)2] 

+ V{{e3f [(*6)2 + (x7)2] +(04)2 [(a8)a + 0r9)2]} • 
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5    IIA/IIB discrete quotients and duality 

All the ideas and formalism developed so far apply equally well to any back- 
ground in type IIA/IIB supergravity having some isometry group G. In 
particular, D-brane backgrounds [84] allow an analogous description of the 
form (1.7) and adding the corresponding non-trivial profile for the dilaton. 
Their Killing spinors satisfy the same properties as the ones discussed in Sec- 
tion 1.4. Thus we can again conclude that the action of the symmetry group 
on the Killing spinors is induced by the action of Spin(l,p) x Spin(9 — p) on 
the asymptotic spinors. Once more, translations will act trivially on spinors, 
whereas Lorentz transformations will impose certain constraints analogous 
to the vanishing of (1.9). It should conceptually be clear, that we could clas- 
sify the (not necessarily) supersymmetric freely-acting spacelike isometries 
as we did for the M2-brane and M5-brane configurations. By constructing 
the discrete quotients Mnp/Fo, FQ being some discrete subgroup of the cor- 
responding one-parameter subgroup F, such that F/FQ is compact, we would 
reach new supersymmetric smooth type IIA/IIB configurations. 

It is nevertheless well-known that the configurations described in the pre- 
vious sections are dual to the ones outlined above. Consider an M-theory 
background reduced along the orbits of £i = dz + A, with a further compact 
spacelike direction #, such that translations along it, infinitesimally gener- 
ated by £2 = dx, commute with the action generated by £1. The claim is 
that the type IIA configuration obtained through Kaluza-Klein reduction 
along the orbits of £1 is equivalent to the one obtained through Kaluza- 
Klein reduction along the orbits of £2, applying a T-duality transformation 
[78] along the orbits of £1, plus an S-duality transformation in type IIB, and 
finally, after a relabelling of coordinates, applying a T-duality back to type 
IIA. The mechanism just described is an obvious extension of the well-known 
M-theory flip, when one of the orbits is twisted. 

After all these preliminary remarks, it should be clear that most of the re- 
sults derived previously extend straightforwardly for Dp-branes, among other 
configurations in type IIA/IIB. In particular, it should be clear that we can 
construct time-dependent backgrounds starting from Dp-branes (p > 3) and 
constructing the quotient manifold associated with the discrete identification 
giving rise to the ten-dimensional nullbrane. Similar comments would apply 
for the fluxbrane sector. As a particular example, let us consider D3-branes. 
We shall concentrate on the non-trivial identifications preserving 1/ = 1/4 of 
the spacetime supersymmetry generated by £ = dz + A, where dz generates 
translations along the brane and A is either a rotation p belonging to an 
5u(2) subalgebra (flux 5-brane construction) or a null rotation u belonging 
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to an R subalgebra (nullbrane construction). Both quotients survive the 
near horizon limit, even though they break the superconformal symmetries, 
so that there is no supersymmetry enhancement in this case. It is natural 
to ask about the corresponding gauge theory dual for type IIB in these con- 
figurations, and it is natural to guess that it will be given in terms of the 
corresponding orbifold constructions in X=4 supersymmetric Yang-Mills. 

Let us denote the matter fields transforming in the adjoint representation 
of SU(Ar) by (f)1 i = 1,..., 6, whereas the coordinates of the four-dimensional 
manifold where the field theory is defined will be denoted by (x^^z) fi = 
0,1,2 and z standing for the compact one. Due to the isometries of the 
background, there are two inequivalent su(2) constructions. Indeed, one 
may consider a rotation p± acting on the transverse directions to the brane, 
or a rotation which acts both on Zi = cf)1 +i(f)2 and u; = x1 +ix2. In the first 
case, the compatibility of the gauge structure of the theory with the orbifold 
requires the matrices Zi and Z2 = 03 + i^4 to satisfy 

Z1{x^z + R) = ei9n(x^:z)Zl(x
tl,z)(n(x^,z))-1 

Z2(^, z + R) = e'ieQ(x^ z)Z2(x^ z)(n(x^ z))"1 , 

where Q(x^^z) is an SU(iV) group element describing a gauge transforma- 
tion, whereas the remaining two adjoint matrices satisfy the standard ones 

f {xIA,z + R)=n(xt',z)<l>i(xiA,z){n(xfA,z))-1    i = 5,6 . 

In the second case, since the group also acts non-trivially on the CJ plane 
where the field theory is defined, one has four adjoint matrices satisfying 

(t)i{x0,eieu,z + R) = n{x^)z)(l)i{x^,z){n{x^,z))-1    i = 3,4,5,6 , 

whereas the Zi is twisted by a constant phase 

Zi(xVV* + #) = e-ien{x^z)Z1{x^z){n(x^,z))-1 . 

Finally, in the null rotation identification, all adjoint matrices 0* satisfy 
that for all i, 

fix^.z + R) = fi(^,^)f {x^,z){^{x^z))~1 , 

where a^ stands for the image of x^ under a (not infinitesimal) null rotation. 
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A Group theory and spinors 

In this appendix we collect some facts about how the spinor representation 
of Spin(l, 10) decomposes under certain subgroups. These results are useful 
in determining the supersymmetric Kaluza-Klein reductions of the M2 and 
M5-brane solutions. 

Let us start by recalling a few facts about the irreducible representa­
tions of Spin(l, 10) and of the Clifford algebra Cf(l, 10). The Clifford alge­
bra Cf(l, 10) is isomorphic (as a real associative algebra) to Mat(32, IR) Ef) 

Mat(32, IR), where Mat(n, IR) is the algebra of n x n real matrices. This 
means that there are two inequivalent irreducible representations: real and 
of dimension 32. They are distinguished by the action of the centre which is 
generated by the volume form 

which squares to the identity. 

The condition (3.4) translates into an eight-dimensional chirality condi-
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tion on the spinor. Indeed, decomposing dvol(El510) into a product 

dvo^E1'10) = dvo^E1'2) dvol(E8) = roi2r34...|, 

of two commuting operators, we obtain 

dvolfE1'2)*- = dvol(E8) dvoKE1'10)^ = ± dvol(E8)s , 

where the sign depends on the action of dvol(El510), equivalently on the 
choice of irreducible representation of G£(l, 10). Let us assume that a choice 
has been made once and for all and let S'n denote the corresponding irre- 
ducible representation. This is an irreducible representation of Spin(l, 10). 
Under the natural Spin(10) subgroup, Sn remains irreducible as a real rep- 
resentation, even though its complexification is reducible. This is because 
dvol(E10) is a complex structure and to diagonalise it requires complexifying 
the spinors. Indeed, we have 

Sii®C = 5io©5io, (A.l) 

where 5io consists of those complex spinors e such that 

dvol(E10) • e = is , 

and 5io is the complex conjugate. We will abbreviate equation (A.l) with 
the notation 

Sn = [SioJ • 

In other words, the double brackets indicate the underlying real represen- 
tation of the representation obtained by adding to a complex representa- 
tion its complex conjugate, which has a natural real structure. Notice that 
dimR [Sio] = 2 dime Sio (which in this case is 32), as the notation tries to sug- 
gest. We are interested in how 5ii breaks under the natural Spin(2) x Spin(8) 
subgroup of Spin(10). Since the volume element of E2 is a complex structure, 
whereas that of E8 squares to the identity, we see that 

Sio = (S2®#)e(52®S8-), 

where 5^ are the half-spin representations of Spin(8), and S2 is the one- 
dimensional complex irreducible representation of Spin(2) with weight 1; 
that is, 52 is the "half-spin" representation of Spin(2). Since the represen- 
tations 3$  are real, 

S,ii = [52]®(58
+e.58-)1 

whence the subspace of Sn consisting of spinors which obey (3.4) transforms 
under Spin(2) x Spin(8) as [£2] ® S*, for some choice of sign. 
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The problem of determining which Kaluza-Klein reductions of the (delo- 
calised) M2 brane preserve some supersymmetry comes down to determining 
which elements in (the Lie algebra of a maximal torus of) Spin(2) x Spin(8) 
(or Spin(2) x Spin(7) for the delocalised M2 brane) preserve a spinor in 
[[S2] ® Sit- ^s explained in Section 2.2, one way to do this is to simply 
determine the weight decomposition of [62] ® S^1 under the maximal torus. 
We will work infinitesimally, hence we will decompose {82} ® S^ under a 
Cartan subalgebra of BO (2) x 50(8). 

Up to conjugation, a typical element in 50(2) x 50(8) can be written as 

O1R12 + #2^34 + #3^56 + #4-^78 + 05^91} 

where the infinitesimal rotations Rij generate a Cartan subalgebra in so (2) x 
BO (8), with R12 spanning 50 (2) and the rest spanning a Cartan subalgebra 
of BO (8). In the case of the delocalised M2-brane, we must restrict to a 
BO(7) subalgebra, which means setting 65 = 0, say. Relative to a basis for 
the root space canonically dual to the i^j, the weights of the representation 
[S2] ® Sjt are easy to work out. First of all [S2] has weights ±1, whereas 5^ 
has weights (±1,±1,±1,±1) where the signs are uncorrelated, but where 
their product is ±1 for 5^ respectively. Putting these two results together 
we find that the weights of [Sy ® 5^ are (±1,±1,±1,±1, ±1) where the 
signs are uncorrelated but where the product of all but the first sign is ±1 
for [S2] ® SgS respectively. In other words, we have 

weights ([5'2]®5'8
±) = 

(1*1,1*2,1*3,1*4,1*5) ri = 1 and J^ = ±li  .    (A.2) 
i=2 ) 

For the (delocalised) M5-brane we have to break Sn into irreducible 
representations of Spin(l, 5) xSpin(5) or Spin(l, 5) xSpin(4). The situation is 
analogous. We can decompose the volume element dvol(E1,10) into a product 

dvo^E1'10) = dvolfE1'5) dvol(E5) = roi-srer.^ 

of commuting operators which both square to the identity. Again a choice 
for the value of dvol(E1,10) on the representation S translates the condition 
(4.4) into a five-dimensional chirality condition on the spinor: 

dvoKE1'5)* = dvol(E5)dvol(E1'10)e = ±dvol(E5)^ , 

where the sign depends on the choice of irreducible representation 5ii. The 
low-dimensional isomorphisms 

Spin(l, 5) ^ SL(2, H)        and       Spin(5) ^ Sp(2) 
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tell us that the irreducible representations of these groups are two-dimensional 
quaternionic; equivalently, four-dimensional complex with a quaternionic 
structure.  Let S^ denote the positive and negative chirality half-spin rep- 
resentations of Spin(l,5) and let S5 denote the half-spin representation of 
Spin(5). The complexified spinors break up as 

The right-hand side also has a natural real structure, since the tensor product 
of two quaternionic representations is real. We can summarise this relation- 
ship by 

Sn = [(5+ ® 56-) ® S5] , 

where the single brackets denote the underlying real representation of a 
complex representation admitting a real structure. (Notice that dimply] = 
dime V, which agrees with dimR 5ii = 32 as it should.) The subspace of 
spinors satisfying (4.4) transforms as [Sf ® 55], where the sign depends on 
the choice of S'n. In order to determine which Kaluza-Klein reductions of 
the (delocalised) M5 brane preserve some supersymmetry, we need to de- 
termine the weights decomposition of [Sf ® S5] under a Cartan subalgebra 
of Spin(5) x Spin(5). Both half-spin representations 5^ of Spin(l,5) are 
isomorphic to S5 as representations of Spin(5). Therefore we are interested 
in the first instance in the weight decomposition of Ss under a Cartan sub- 
algebra of Spin(5) and then in that of [S5 ® 55] under a Cartan subalgebra 
of Spin(5) x Spin(5). A typical element of the Cartan subalgebra of Spin(5) 
can be written as 

O1R12 + #2-^34 

in the same notation as that used above. Relative to a basis for the weight 
system which is canonically dual to the Rij, the weights of the representation 
55 are given by {(±1, ±1)} with uncorrelated signs for a total of four weights. 
Similarly, the weight decomposition of [S5 ® £5] is given by 

weights ([55 ® 55]) = < 0ui,/i2,/i3,/M) UMi^2,/^3,/M) l4 = 1> (A.3) 
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