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1    Introduction 

Open topological strings on Calabi-Yau manifolds have been the subject of much 
recent activity in the context of geometric transitions and enumerative geome- 
try [l]-[6],[14]-[19],[20]-[23],[25]-[28],[30]-[35],[37]-[39]. In particular, Aganagic and 
Vafa [5] found a new class of large N geometric dualities which yield very interest- 
ing predictions for open topological string amplitudes on noncompact Calabi-Yau 
threefolds. Recall that the original geometric transition discovered by Gopaku- 
mar and Vafa [14] relates open strings on a deformed conifold to closed strings 
on the blow-up of the same conifold singularity. As shown by Witten many years 
ago [40], the topological open string on a deformed conifold is equivalent to U(N) 
Chern-Simons theory on the vanishing 53 cycle. The new transitions of [5] predict 
a similar relation for a more complex geometric set-up in which the open string 
theory is corrected by instanton effects. Such situations have been anticipated by 
Witten in [40], where the instanton corrections have been elegantly interpreted as 
non-local Wilson loop operators in the Chern-Simons action. The Wilson loops in 
question are boundaries of holomorphic discs (or higher genus bordered Riemann 
surfaces) interpreted as knots in 53. Then the computation of the open string free 
energy reduces to a fascinating combination of open string enumerative geometry 
and perturbative Chern-Simons theory. 

In this paper we show that these techniques can be successfully applied to 
the large N duality proposed in [5], resulting in a precise match between open 
and closed string amplitudes. The computation of open string amplitudes in this 
background entails two different aspects. One has first to compute the instanton 
corrections to the Chern-Simons effective action, which is essentially a problem 
in open string enumerative geometry [16, 23, 30]. In fact, a detailed (and quite 
involved) analysis shows that in this particular model all these corrections are 
generated by multicovers of a single rigid disc. The corresponding instanton ex- 
pansion has been predicted by Ooguri and Vafa in [35] and computed explicitly 
by Katz and Liu [23] and Li and Song [30] . The next step is a Chern-Simons 
computation, in which the instanton corrections are treated as non-local Wilson 
loop perturbations [40]. We show that the final result is in perfect agreement with 
the closed string free energy, provided that one takes into account a certain cor- 
rection to the duality map. A remarkable aspect of this correspondence is that a 
priori the closed and open string instanton expansions exhibit different multicover 
contributions. This discrepancy is miraculously accounted for by the perturbative 
Chern-Simons corrections, so that in the end we obtain a precise match. 

The paper is structured as follows. Section two is a brief review of the geo- 
metric construction of [5], and the duality predictions. In section three we review 
and develop the computation of closed string amplitudes of [5], finding a com- 
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plete expression for the closed string free energy. Section four is devoted to open 
string amplitudes and the duality map, and we conclude with a series of technical 
considerations on open string morphisms in section five. 

2    The Transitions 

The starting point of our discussion is the first model considered in [5], namely a 
toric noncompact Calabi-Yau threefold X defined by the toric quotient (<D5 \ F) /(C*)2 

XQ   XI   X2   X3   X4 
1      0-1      1    -1 (1) 
-21001 

where the disallowed locus is F = {XQ = X3 = 0} U {Xi = X3 = 0} U {X1 = 
X4 = 0}.This toric quotient can be equivalently described as a symplectic quotient 
C5//C/(l)2 with the moment maps 

|Xo|2-|X2|
2 + |X3|2-|X4|2=Re(5) 

-2|Xo|2 + |Xi|2 + |X4|2=Re(t) (2) 

where (s,t) are complexified Kahler parameters with Re(s) > 0, Re(t) > 0. Note 
that for t = s = 0, the quotient (2) is a singular variety described in terms of 
invariant polynomials x = —X2X3, y = X0X1X4, u = X0X3X2, v = XoX2X2 by 

uv + xy2 = 0. (3) 

This singularity admits several distinct crepant resolutions corresponding to nonzero 
values of (Re(<s),Re(t)), which parameterize the extended Kahler cone. As usual, 
each such resolution corresponds to a different triangulation of the toric diagram, 
and different resolutions are related by flops. The triangulation corresponding to 
(2) is represented in fig. 1. 

Using this description, it easy to see that the exceptional locus consists of two 
smooth rational curves C5, Ct with normal bundles 

NCs/x = 0(-l)®0(-l),        NCt/x = 0®0{-2) (4) 

As suggested by the notation, the two curves have volumes fcJ = Re(s), fcJ = 
Re(t). Moreover, Cs is rigid while Ct moves in a one parameter family on X. A 
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Figure 1: Triangulation of the toric variety (2) with Re(s) > 0, Re(£) > 0 

very useful and intuitive description of X can be achieved by representing it as a 
(topological) T2 x IR fibration over R3 [17, 29]. The discriminant of this fibration 
is the planar graph represented with continuous lines in fig. 1. In this framework, 
the curves Cs,Ct can be described as topological S1 fibrations over certain line 
segments ending on the edges of F. We will not give more details here since this is 
standard material [17, 29]. The extremal transition considered in [5] consists of a 
contraction of Cs on X, followed by a smoothing of the resulting nodal singularity. 
Let us denote by X the singular variety obtained in the process. As discussed in 
[5], X can be realized as a partial resolution of the singularity (3) obtained by 
blowing-up the plane u = y = 0 

up = yA,   uv + xy   = 0. (5) 

There are two coordinate patches Ui, U2 on the total space of the blow-up (#, y, v, A) 
and (#, M,v,p), with transition functions 

x = #,   v = v,   u = yA,   p——. 
A 

(6) 

This shows that the blow-up Z is isomorphic to the total space of the rank three 
bundle O © O © 0{—1) over IP1. The local equations of the proper transform X 
in the two patches are 

vA + xy == 0,   v + xup  = 0. (7) 

Note that there is a conifold singularity left in the first patch, which can be 
smoothed out by deforming the equations as follows 

v\ + xy — n,   v + xup W (8) 

where // E A* is a complex deformation parameter on the unit disc.   Through- 
out this paper we will work at some fixed arbitrary value of /i, which can be 
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assumed real and positive without loss of generality1. Let y/ A denote the family 
parameterized by /i. The generic fiber Y^ is a smooth noncompact Calabi-Yau 
threefold, and the central fiber is isomorphic to X. Moreover, standard surgery 
arguments [8] show that the nonzero Betti numbers of a generic smooth fiber are 
62(1^) = 1, bs(Ylji) = 1. The third homology is generated by a vanishing 3-sphere 
L/x C Yju, which is the fixed point set of the local antiholomorphic involution 
1 : Ui -> C/i, L : (x,y,v,\) -> (?/,#, \,v). Note that L^ is lagrangian with respect 
to any symplectic form u on Z such that UJ^ is odd under the involution L. Such 
a symplectic form can be constructed as follows. We can think of Z as a direct 
product Z = W x C2, where VK is the total space of 0{—1) over F1. We have 
coordinates (x,f) on the C2 factor, and local coordinates (y, A) and (u, p) on W. 
The local antiholomorphic involution L is of the form L = (/«V,K

_1
), where K is a 

map /^ : C2 -> 17i fl W, n : (a;, v) -> (y, A). Pick a symplectic Kahler form 77 on W, 
and let r/i be the restriction of r/ to Ui fl W. Then rj' = K,*r]i defines a symplectic 
form on C , and we can take CJ = rj — 7/ to be the desired symplectic form2 on Z. 
Prom now on we fix such a symplectic form on Z. The second homology group 
H2(YfjL,Lljl]Z) — Z is generated by a holomorphic disc D in Y^ with boundary 
on L^, which can be constructed as follows. Let D be the disc |t| > /i1/2 in a 
projective plane P1 with homogeneous coordinates [ti,^], and affine coordinates 
* — ^1/^27 *' = W^i- I11 local coordinate patches, the embedding map / : D -» Y^ 
is given by 

Ux :X(t) = t, v(t) = £    x(t) = 0, y(t) - 0 
1 (9) 

U2 ■.pit') = t7,!;^) - /<£(*') = O^(^) = 0. 

It is easy to check that this local description of the map is compatible with the 
transition functions (6) and that the boundary of D is mapped to L^. Note that 
D is preserved by the antiholomorphic involution. It will be proven in section five 
that D is an integral generator and that there are no holomorphic curves on Y^. 
Therefore we can define an open string Kahler parameter as the symplectic area 
of the disc 

top = I /*"■ (10) 
JD 

A deformation argument to be detailed in section five shows that tov = t at 
classical level. 

^f // = |/x|e10 with 0 ^ 0, we can reduce to // = |/x| e JR+ by a change of coordinates 
x' ^xe1*, v =vex*. 

2To be more precise, let 71-1,2 denote the projections from Z — W x <D2 onto the two factors. 
Then u = irlr] — TTJT/. 
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In the context of geometric transitions, we have to consider an open string 
topological theory defined by wrapping N D-branes on the sphere L^. This theory 
is well defined since L^ is lagrangian. Then, large N geometric duality [5] predicts 
a relation between closed string free energy on X and open string free energy on 
Yfj, of the form 

?*(?,$, 9,)\s=i\ = ^op(top,\9s) (11) 

where A = Ngs is the 't Hooft coupling constant for U(N) Chern-Simons theory 
on Lp. In this formula, (4,3) denote closed string flat coordinates, which are 
related to the classical complexified Kahler parameters (4, s) by the mirror map. 
For the present model the relation between (£, s) and (£, s) has been discussed in 
[5]. By analogy t0p denotes an open string flat coordinate corresponding to t0p 
[2, 3, 28, 33, 34]. To conclude this section, note that the topological A model 
amplitudes are independent of fj, by standard decoupling arguments, so we will 
drop the subscript // from now on. In order to check the duality predictions we 
need exact expressions for both terms in (11), which will be worked out in the 
next sections. 

3    Closed string amplitudes 

In this section we consider closed string A model amplitudes on X. The partition 
function ^(4,5,^) has been computed in [5] up to terms depending on t. The 
strategy is to first compute the genus zero partition function using local mirror 
symmetry, and then write down a complete formula by interpreting the answer 
in terms of BPS invariants [13, 24, 31]. Note that this method is specific to the 
present model; in general one cannot derive all the higher genus amplitudes from 
the genus zero expression and BPS constraints. The resulting expression is3 

Fcl(t,s,gs) = Yl 
n>l 

e-n(s+t) 
+ 

n{2 sm(ngs/2)2)      n(2 sm(ngs/2)2) 
+ (^—dependent terms). 

(12) 

Note that throughout this paper we will mainly consider truncated partition func- 
tions, i.e. we will drop the typical polynomial terms which occur in the low genus 
expansion. In order to run a precision test of the duality (11), we need to find the 
remaining ^-dependent terms. This can be done using local mirror symmetry by 
analogy with [5] The local mirror manifold of the A model described in section two 

3Prom now on we will denote the flat coordinates by (t) s) dropping the symboP. Although this 
notation is potentially ambiguous, the meaning should be clear from the context. In particular, 
topological amplitudes will always be written in terms of flat coordinates. 
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is a hypersurface W in C2 x (C*)2 which can be written in terms of flat coordinates 
as [5] 

^u—t—s\ zw = (l- e-u){l - e""1) - e-v(l - e^-8) (13) 

where (^, w) are coordinates on C2 and (e"w, e~v) are single valued open string flat 
coordinates on (C*)2 [2, 3, 15, 28, 33, 34]. The terms in (12) have been found by 
computing the first derivative dsFo(t,s) of the genus zero partition function as a 
classical period in the local mirror geometry [7, 18, 19]. We have 

dsFofas) 
fA 
/     v(u)di 

Jt+s 

where 

v(u) = log 
0u—t—s 

_(l-e-u)(l-eu-*) 

(14) 

(15) 

The integral is taken along the semi-infinite contour 75 represented in fig. 2, which 
can be thought as the projection of a lagrangian three-cycle onto the (u, v) plane. 
Since this cycle has infinite volume, we have to introduce an infrared cut-off A. 
Evaluation of (15) results in 

dsF0(t,s) = -J2 
n>l 

e-n(s+t)        e- 
 o  + — n" rr 

(16) 

up to polynomial and A-dependent terms. As explained in [5] this suggests the 
existence of two stable BPS states with charges [C5], [C8 + Ct] 6 ff2(-X",Z). The 
terms in (12) represent the contributions of these two states to the BPS invariants. 

In order to detect eventual ^-dependent terms, one has to perform a similar 
computation of Sji^t, s). The relevant contour is jt represented in fig. 2. We 
have 

/0 POO 

v(u)du =  /     v{—u)du 
-oo ^0 

(17) 

with v(u) given by (15). Since we are mainly interested in truncated amplitudes, 
it suffices to compute <92i<b(«M) in order to avoid convergence issues. Then we are 
left with an easy calculation 

d2
tF,{s 

re 

,*)=   / 
JO 

-u—t—s 

1 - e~u-t-s      1 

-u—t 

o — U — t du = Yl 
3-n(tH-s) -nt 

n>l 
n n 

(18) 
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Re(u) 

Re(v)    y 

Figure 2: Mirror Riemann surface 

Combining (16) and (18) we obtain the following expression for the truncated 
genus zero amplitude 

Fo(t,s) = Y2 
n>l 

z-ns       e-n(t+s) -nt 

+ 
n0 n0 n0 (19) 

Reasoning by analogy with [5], this form of the genus zero amplitude predicts an 
extra term in the expression of the closed string partition function 

n>l L 

0-n(s+t) -nt 

+ 
n{2sm(ngs/2)2)      n(2sm(ngs/2)2)      n(2sin(ngs/2)2) 

(20) 

A couple of remarks are in order at this point. The expressions (12), (20) are 
conjectural at this stage since they have not been confirmed by explicit A model 
closed string computations. While the terms in (12), have a clear interpretation 
in terms of BPS invariants, for the third term in (20), such an interpretation is 
more subtle. The problem is that in the class [Ct] there is a family of rational 
curves with parameter space C, which is noncompact. Therefore it is not clear 
how to define the BPS invariants or the Gromov-Witten invariants in this case. 
A possible approach is to choose an appropriate compactification of X and then 
take a large volume limit. The resulting invariants will be well defined, but they 
may be dependent on the particular compactification chosen. This is a drawback, 
since such compactifications are far from unique. At the same time, we should 
keep in mind that the above B model computation gives an answer (at least at 
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genus zero), without making such a choice. So a legitimate question is whether 
this computation has an A model counterpart. We will propose below a partial 
answer, leaving a more conceptual approach for future work. 

Figure 3: A Toric Compactification of X. 

To begin with, note that we can compactify this model to a local Calabi-Yau 
variety containing a Hirzebruch surface WQ and a transverse (—1,-1) curve. This 
is represented in fig. 3. The class [Ct] is the fiber class of FQ, and Cs can be 
identified with the transverse curve to FQ. This is a flopped version of the local 
dP2 model. In this new model, the family of curves in class [Ct] has a compact 
parameter space P1, and the BPS invariants in the class d[Ct\ are very simple [24]. 
We have nj = —e(P1) = —2 and nr

d = 0 for all other values of (d,r), where e(P1) 
is the Euler character of P1. There are two stable BPS states whose wavefunctions 
are harmonic representatives of i?0,0^1) and respectively iJ^^P1). In order to 
recover our original model X, we have to take an infinite volume limit of the 
base P1 of FQ. In this limit, the harmonic function in iJ0,0^1) becomes non- 
normalizable, hence the corresponding BPS state is lifted from the spectrum. We 
are left with a single BPS state corresponding to the harmonic (1, l)-form on P1, 
which can be kept normalizable in this limit. Taking into account the sign as 
well, we obtain precisely the contribution in (20). To conclude our discussion of 
closed string amplitudes, note that we can also find an interpretation of (20) in 
Gromov-Witten theory. Namely, using the same compactified model, one can try 
to compute the Gromov-Witten invariants in the class n[Ct] by localization with 
respect to an (C*)2 action on FQ [7]. The (C*)2 action leaves two fibers invariant, 
which will be denoted by C/, C2; C/ passes through the intersection point with C5, 
while C2 is a fiber at infinity from the point of view of X. The fixed locus of the 
(C*)2 action on Mg(Xc,n[Ct]) consists accordingly of two classes of components 
corresponding to maps onto C£ and respectively C2. Moreover, by symmetry, 
it is easy to see that the two classes of components have equal contributions to 
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the integral representation of Gromov-Witten invariants for all (#, n). Since the 
integral in question is taken over a compact moduli space, the sum of the two 
contributions must be a rational number, hence each individual contribution must 
also be a rational number. In the decompactification limit, the fiber at infinity 
is effectively removed, and we are left with a single (<D*)2-invariant component. 
Therefore we can unambiguously define a closed string expansion on X by simply 
taking the contribution of a single fixed component of Mg(Xc,n[Ct]). For genus 
zero, and low enough degree, it can be checked that this contribution is — -\ as 
expected. We conjecture that this procedure also gives the expected answer for all 
(#, n), but we will not try to prove it here. 

To summarize the main point of this section we have presented compelling 
evidence that the complete closed partition function on X is given by (20). We 
will show in the next section, that this expression is also in very good agreement 
with geometric duality predictions. 

4    Open String Amplitudes and The Duality Map 

Let us consider now open string A model amplitudes on the deformation space Y 
with N D-branes wrapped on L. According to [40], the target space effective action 
for N D-branes wrapping L is U(N) Chern-Simons gauge theory. This theory has 
played a central role in large N geometric duality for the conifold, starting with 
[14]. The novelty in the case under consideration is that the Chern-Simons theory 
is corrected by open string instanton effects. Such situations have been anticipated 
in section 4.4. of [40], where the instanton effects have been elegantly interpreted 
as nonlocal Wilson loop corrections to the Chern-Simons action. Suppose for 
simplicity that we have a single holomorphic disc D in y, with boundary on L. 
Schematically, the full effective action can be written as 

S(A) = Scs(A) + Finst(gs, t^ V) (21) 

where top is an open string flat coordinate4, gs = -^^ is the renormalized Chern- 
Simons coupling constant and V — Pexp /r A is the holonomy of the U(N) con- 
nection around the boundary Y of D, regarded as a knot in L. For large Kahler pa- 
rameters, the instanton corrections can be treated perturbatively from the Chern- 
Simons point of view. Moreover, in the present paper we are interested in a large 
iV 't Hooft expansion so that the open string free energy takes the form 

FoP{toP, A, gs) = ^(A, gs) + In (eW^oP,^ ) (22) 

We have dropped again the symboPin the notation of flat coordinates. 
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where A = Ngs is the 't Hooft coupling constant and ^(A,^) is the Chern- 
Simons free energy. In order to evaluate (22) we need an exact expression for the 
open string instanton corrections Finst(gs,top,V). We will give here a schematic 
treatment, leaving some formal details for the next section. Recall that in section 
two we have constructed a holomorphic disc D embedded in Y with boundary on 
L. We reproduce for convenience the local expression of the embedding map from 

(9) 

Un  A(t)=t, v(t) = £, *(*)= 0, y(t) = 0 

U2 :   ptf) = <>(*') - lAt'txtf) = OMt') = 0 (23) 

where D is the disc {|t| > /i1//2} = {\tf\ < M-1/2} in F1 with affine coordinates 
(t,tr). The boundary of D is mapped to the sphere L, which is defined by 

Ui :A = v, x = y 

U2:pv = l,x = pu. (24) 

Note that the second coordinate patch U2 covers the disc £>, but it does not cover 
the entire sphere L. In fact, equation (24) shows that U2 covers L with the circle 
{A = v = 0, |a;| = \y\ = M1//2} removed, since v,p are not allowed to vanish on 
L fl 1/2- This shows that L n U2 is diffeomorphic to S1 x IR2 and the boundary of 
D is a section of this cylinder which can be identified with the circle \tf\ = /z-1/2. 
Moreover, the normal bundle to D in Y can be identified with a trivial rank two 
bundle on D with coordinates (#, u) along the fiber. These coordinates are subject 
to the boundary conditions 

x = pu. (25) 

This is a familiar situation since the boundary conditions (25) are identical to 
the ones of [23, 30]. In particular, using their results, it follows that the embed- 
ding / : D -» Y is rigid. For completeness, note that the boundary conditions (25) 
define a totally real subbundle iVjR of the normal bundle N restricted to the bound- 
ary F = dD. The pair (AT, NJR) forms a Riemann-Hilbert bundle with generalized 
Maslov index /i(iV, iVja) = —1. By the double construction, the group of global 
sections H0(D, F; AT, Afo) is zero. We will show in the next section that D is a gen- 
erator of H2(Y,L;Z) = Z. By analogy with the closed string situation, the open 
string instanton numbers should be defined in terms of intersection theory on the 
moduli space of maps from bordered Riemann surfaces to the pair (Y, L) [23]. The 
homotopy classes of open string maps / : E^ —> Y with /(dE^/J C L are classi- 
fied by the class /3 = d[D], with d G Z. We denote by Mg^{Y, L; d[D)) the moduli 
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space of stable open string maps to the pair (Y, L) such that /*[S^,/i] = d[D]} as de- 
fined in [23]. This space should have a suitable compactification M^>/l(Y,L;d[JD]). 
At the moment, very little is known about the structure of the compactified space 
Mgft(Y, L; d[D]). However, in the particular case considered here, this space has at 
least certain disconnected components which are familiar from the work of [23, 30]. 
The components in question are isomorphic to moduli spaces of multicovers of the 
disc D, which are disconnected components of Mg^Y, L\ d[D]) because D is rigid. 
In addition to the degree d, the multicovers of D are also characterized by the 
winding numbers nQ, a — 1,... , h of the h boundary components. Therefore we 
have disconnected components Mg^D.Y^d.ria). According to [23] these should 
be thought of as orbifold spaces with boundary. Note that at this point we do 
not know if M^(Y, jL;d[Z)]) has other disconnected components in addition to 
Mgfi(D, F; d: nQ). The open string Gromov-Witten invariants A^ for maps of de- 
gree d should be defined in terms of a virtual fundamental class of degree zero on 
Mp)/l(Y, L;d[D]) [23] whose construction is not known at the present stage. As- 
suming that such a construction exists, the invariants Nj will receive contributions 
Nd,na from all disconnected components Mgfi(D, F; d, na) which have been evalu- 
ated in [23, 30]. In addition, we may have contributions from other disconnected 
components of M^/^Y, L; d[D]), which are beyond our control at the present stage. 
We will however present an argument in a later section suggesting that such extra 
contributions are absent. For the time being, we assume that this is the case, 
and write down the answer found in [23, 30]. Since the spaces Mg^D^T^d^ria) 
have boundary, the invariants N^na depend on the choice of boundary conditions, 
which in the present case amounts to the choice of a framing of F [23, 30, 35], i.e. 
the choice of a homotopy class of sections of Afo. In the canonical framing, we 
have the following instantonq expansion 

nJ .  dQ teVd. (26) 
d=i Zdsm-f 

One can write similar, although more complicated expressions for an arbitrary 
framing, but we will not give more details here. However, it would be very in- 
teresting to understand how duality works at arbitrary framing. We thank Mina 
Aganagic and Cumrun Vafa for clarifying discussions on this point. The target 
space effective action (21) becomes 

OO _f1f 

s^^ + .g^-s^. <27> 
Performing a analytic continuation along the lines of [9, 12, 14, 36], the 't Hooft 
expansion of the Chern-Simons free energy can be set in the form 

OO ^py 



DIACONESCU, FLOREA AND GRASSI 631 

where A = Ngs is the 't Hooft coupling constant. Recall that throughout this 
paper we consider truncated string amplitudes, so we have dropped a polynomial 
and logarithmic piece. Those terms are well understood in the context of geometric 
duality [14]. 

In order to finish the computation we have to evaluate the expectation value 
0f eFinst(9s,toPy)t por ari unknot with the canonical framing we have [35] 

trT^1 ... txVkl \ = (tYVkl \ ... (tiVkl \ (29) 

for any positive integers fci,... , &/. Using this property and expanding the expo- 
nential, we find 

In /eFmst(9»toP9v)\ = iy   e    ov   UxVd\ m (30) 

The expectation values (tryd) have been evaluated in [35] for arbitrary d, with 
the result 

, . p-idX/2 _ JdX/2 

(UVd)='       Mn»       • <31» 

Collecting all the results, we obtain the following expression for the open string 
free energy 

~ einX ~   e-d(top-%) _ e-d(top+£) 

fop(topi\gs) =2^      , ngs,2 + Z^ 7 T~^2 ' (32) 
n=1 n (2siii-f)       d=1 d (2sin^J 

This expression is to be compared with the closed string free energy worked out 
in section three. 

4.1     Comparison with Closed String and Duality Map 

Recall that in the previous section we found the closed string free energy on X to 
be 

OO . 

JaGfc, -, *) = £ . 2 (e-ns + e-<^ - e""*) . (33) 
n=1n(2sin-f)    v / 

This formula is remarkably similar to (32), except for the different dependence 
of the instanton factors on Kahler moduli. However, it is straightforward to see 
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that we will obtain a precise agreement if we conjecture a duality map relating the 
closed and open string Kahler parameters by 

iX 
2 

s = -i\,        t = top + —. (34) 

Note that the relation 5 = — iX differs by a sign from the duality map obtained in 
[13]. Changing the sign in the duality map corresponds to a flop in the closed string 
geometry. One can check that the alternative duality map s = iX corresponds to a 
different large radius limit of the model dicussed in section two, namely Re(t) > 0, 
Re(s) < 0. 

At this point, one may wonder what is the physical interpretation of the half 
integral shift of the second Kahler parameter. In the large volume regime, t, t0p 
differ from the classical Kahler parameters by exponentially small corrections. 
Hence, as discussed in more detail at the end of section five, a classical geometric 
reasoning would predict a relation of the form t = t0p, which is obviously in 
contradiction with (34). 

On the other hand, the shift (34) appears to be a perturbative quantum correc- 
tion in Chern-Simons theory. Such a correction would not be visible at tree level 
in the field theory, which is consistent with the treatment of [5]. Prom a string 
theory point of view, we can think of this shift as a nonperturbative correction 
to the open string flat coordinates induced by degenerate open string instantons. 
Recall that the Chern-Simons perturbation expansion has been interpreted as a 
sum over virtual instantons at infinity in [40] (section 4.2.) These are essentially 
open string Riemann surfaces which degenerate to trivalent graphs geodesically 
embedded in L. In the present context, we can have a partial degeneration of a 
surface E^ to another surface Sp/^/ mapped to the disc D and a trivalent graph 
with external legs ending on the boundary of D. For example, the degeneration 
of a sphere with three holes is represented in Fig.4. In the field theory limit, the 
sum over degenerate instantons is equivalent to a sum over trivalent graphs (in 
double line notation) with external legs ending on F. This is nothing else but 
the perturbative expansion of the Wilson line vacuum expectation values in Chern 
Simons theory performed above. 

5    The Geometry of Open String Maps 

We have shown so far that the open string instanton computations are in very 
good agreement with the predictions of large N duality provided that one sums 
only over multicovers of a rigid disc D in Y. A legitimate question at this point is 
if there are additional contributions from other components of the moduli space of 
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Figure 4: A degenerate open string instanton of type (</, h) = (0,3) 

open string maps which may spoil this agreement. This is the problem we would 
like to address in this section, by developing a more formal approach to open string 
morphisms to the pair (Y,L). 

The main difficulty in answering this question is the lack of explicit construc- 
tions for generic open string maps in this background. This results in a very poor 
understanding of the moduli space Mg^Y^L'^dlD]) and its compactification. We 
can considerably simplify our task by adopting the strategy of [16, 23], which 
means we can restrict our considerations to open string maps invariant under a 
certain torus action on Y which preserves L. In principle, this should allow us to 
settle the issue of extra contributions without a detailed knowledge of the moduli 
space. 

In order to gain a better control on the geometry, we first compactify the 
hypersurfaces Y^ by taking a projective closure of the ambient variety Z. Recall 
that Z is isomorphic to the total space of 0(—l) © 20 over P1, which can be 
represented as a toric variety 

Z,    Z2   X   Y     V 
C*   1     10-10 [M) 

with disallowed locus {Zi = Z^ — 0}. The family yjIS. can be described as a 
family of hypersurfaces in Z determined by 

ZxV + XYZl = iiZ2. (36) 

The local coordinates (x,y,v,\) and (x,u,v,p) are standard affine toric coordi- 
nates for (35). For example, A = Z1/Z2, x = X, y = YZ2, v = V. The (relative) 
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projective closure of Z is the compact toric variety Z — (C6 \ F) /(C*)2 determined 
by 

Zi   Z2   X    Y    V   W 
C*     1      1     0    -1    0     0 (37) 
C*     0     0     1      1      1     1 

with disallowed locus F = {Zx = Z2 = 0} U {X = Y = V = W = 0}. Note that 
Z ~ F (SO 0 0{-l)) over P1. Then the projective completion of the family (36) 
is a family y/A of compact hypersurfaces in Z given by 

ZiVW + XYZ$ = 11Z2W2. (38) 

Let Y denote a generic fiber of this family (as noted before, we drop the subscript 
// with the understanding that // is fixed at some real positive value.) We denote by 

Y<-±Y^Z the obvious embedding maps. The divisor at infinity on Y, (^ is defined 
as the pull back of the Cartier divisor W — 0 on Z, so that Y = Y \ £00- There is 
a subtlety related to this compactification, namely the variety Y is singular along 
the locus 

{Z2 = V = W = 0} U {Zi = X = Y = W - 0} (39) 

which is entirely contained in the divisor at infinity. In principle, one should blow- 
up these singularities in order to have a good control over the geometry. However, 
for the present application this step is not really necessary since we can reduce 
our problem to questions about curves on Z, which is smooth. After completing 
the argument, it will become clear that blowing up Y along the singular locus at 
infinity does not affect the conclusion. 

For future reference, note that in terms of homogeneous coordinates the local 
coordinates on Y are given by 

Zl X YZ2 V 
Ul1     X=Z2'     X=w^     y = ^     v=w 
TT Z2 X YZl V 
U2:     P = Y^     x=w'     u = ^r^     v=w' (40) 

In the following, we will also need local coordinates at infinity defined in the open 
SetU3 = {Z2^0,V^0} 

A=V     x = v>     y=—'     v = v- (41) 

Let us record some details on the geometry of Z. Since Z is toric and given by 
(37), its Picard group has rank two and it is generated by toric divisors. We can 
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pick a system of generators (^1,6) determined by the divisor classes 

ft :   (Z1 = 0) = (Z2 = 0), 6 :   {X = 0) = (F = 0) = {W = 0). (42) 

Note that Y = 0 defines a divisor in the class £2 - f 1 and, using an explicit set of 
generators of the fan, we obtain the relations 

tf = 0,   $(£2-fi) = 0 

^1 = 14 = 1- (43) 
If we regard Z as a F3 fibration over P1, ^ is the class of a fiber, and £2 is the class 
of a relative hyperplane section. The Mori cone of Z is generated by curve classes 
corresponding to 3-cones in the toric fan determined by the data (37). From (43) 
it is clear that a basis of the Mori cone is given by 

r?i = e22(6-6),    m = iiil (44) 

Let us choose some convenient representatives of these curve classes 

rj! :  X = Y = V = 0,        % :  Zi - X = Y = 0. (45) 

After these preliminary remarks, we are ready to discuss open string maps. As 
mentioned in the first paragraph of this section, we restrict our considerations to 
open string morphisms which are fixed points of a certain torus action. In the 
present context, we will consider a torus action on Y induced by an action on Y 
which preserves the divisor at infinity. There is a natural (S4)4 action on Z with 
weights 

(46) 

The subgroup (51)2 C (S1)4 defined by Ai + A4 = 0 and A2 + A3 = 0 preserves the 
hypersurface Y and the sphere L. It is also clear that the divisor ^ is invariant, 
therefore we obtain a well defined (S'1)2-action on Y. For localization purposes, 
it suffices to consider a diagonal subgroup T C {S1)2 acting on (Y,L). In the 
coordinate patch C/i, this action reads 

A -> e-iXie\,        x -> e'iX2ex       y -» eiX29y       v -» eiAl V (47) 

Since the action of T preserves L, it induces an action on the moduli space of 
open string morphisms with lagrangian boundary conditions on L. Our strategy is 
to find the fixed points of this action subject to a homology constraint. First note 
that any T-invariant stable map / : E^ —> Y with /(c?£o,i) C L must have the 
following form [16, 23, 30]. The domain E^ is of the formE^ U Ai U A2 U ... Ah 

Zi Z2 X Y V w 
Ai 0 A2 A3 A4 0. 



636 GEOMETRIC TRANSITIONS AND OPEN STRING INSTANTONS 

where S^ is a prestable curve of arithmetic genus g with h marked points pi,. ..ph 
and Ai,...., Afc are discs attached to E^ by identifying the origin of each disc with 
a point Pa, a = 1,... , h. The map f^o : S° —> Y must be a T-invariant stable 
map to y, and /^ : AQ, —>> Y must be a T-invariant map to a disc in Y (with 
boundary) on L. 

There is however a significant difference between our model and those of [16, 
23, 30]. In those cases, although the target space Y is a noncompact Calabi-Yau 
threefold, the maps actually take values in a compact submanifold thereof, which is 
simply a disc in [23, 30] and a projective plane in [16]. In our case we have certain 
components of the moduli space which consist of multicovers of a rigid disc, but 
we do not know a priori that these are all the components. Therefore we cannot 
a priori assume that the map / : E^ -> Y takes values in a compact submanifold 
of Y. The correct treatment of this situation is to work in a relative setting, 
namely we should consider open string maps to the pair (Y, L) with prescribed 
order of contact along the divisor at infinity ("OQ. For this, one should blow-up the 
singularities of Y at infinity, and consider maps to the resulting smooth three-fold. 
This would be an open string version of relative Gromov-Witten theory which 
will not be pursued here in detail. In principle, in this physical situation, one 
should consider open string morphisms with order of contact zero at infinity, and 
there would be very subtle questions related to the compactification of the moduli 
space. It will eventually become clear that for the present purposes we do not 
need to develop a full theory along these lines; it suffices to extend our search to 
T-invariant open string maps to the pair (Y, L) subject to the homology constraint 
/*p0,fc] ~ d[D]. Since Y has singularities at infinity, conceptually, we can think 
of maps / : E^ -> Y as maps / : E^ —» Z with boundary conditions on L, such 
that5 /*pp,/i] — J*d[D] and the image of / lies in Y. This is the point of view we 
will take below, when we refer to open string maps to Y. In the end, we will show 
that the structure of the fixed locus is such that there are no other contributions 
to the open string invariants besides those considered in the previous section. 

Given the special structure of T-invariant open string maps, the problem re- 
duces to finding T-invariant maps / : EQ,! —> Y with lagrangian boundary condi- 
tions along L. We claim that any such map can be extended to a T-invariant map 
/ : EQ —>• Y from a smooth genus zero curve EQ ^ IP1 to Y. This further reduces 
the problem to searching for T-invariant rational curves on Y which intersect L. 

In order to justify this claim, recall that L is defined in the coordinate patch 

Recall that j : Y —>• Z denotes the embedding. There is a subtlety related to this point, since 
we may have different homology classes in H2(Y, L; Z) which are mapped to the same homology 
class in H2(Z, L, Z). This can be taken into account by a careful treatment. 
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{x,y,v,X) by 

vX + xy = iJl,        \ = v,        x — y. (48) 

Take a tubular neighborhood Qe of L in Y (hence also in Y) of the form Qt = 
Y D Bl, where Bf is the eight-ball 

|A|2 + |W|2 + |rr|2 + |y|2<2(/i
2 + e2)1/2 (49) 

where e G IR+ (recall that /i is also taken real and positive throughout this pa- 
per.) According to [8], Qe is a complex manifold with boundary diffeomorphic to 
B3 x Ss. The boundary 5 = dQe is diffeomorphic to S2 x S3. Moreover, since 
L is lagrangian, it follows that S is a contact hypersurface with respect to the 
symplectic form induced from Y [10, 11]. If we take e small enough, for any map 
/ : So,! -> Y with /(<9X!o,i) C L, /(Eo,i) H Qe is a small cylinder H embedded in 
Qe with the two boundary components mapped to L and respectively S. Given 
the local form of the T-action (47), if / : So,i —> Y is T-invariant, there are only 
four such cylinders that can occur this way. We have 

1/2 
Sx :/W2 < |A| < [(/i2 + e2)1^ + e\ \v = ^x = y = 0 

-2 
1/2 

(^2 + ,2)1/2 _   1   /    < |A| < Ml/2jf; = ^ = y = o 
J A 

1/2 

H3:M1/2<N<[(M2 + e
2)1/2 + el     ,y=^A = t; 

L J X 

-4 
(/,2 + e2)l/2_e 

1/2 
< |a;| < /J, 

x 
0. 

(50) 

In each of these cases, we can find a suitable extension of / to a map / : SQ -> 
Y. For example let us consider Hi. Since / is T-invariant, we can find a local 
coordinate t on /~1(Si) and a positive integer k such that / is locally given by 

\{t) = tk,        «(«) = £,        x{t)=v{t) = Q. 

Note that in this parameterization, /_1(Si) is isomorphic to the annulus 

,1/2* < \t\ < (/i
2 + e

2)V2 + e] 
l/2k 

Now we can define a map from the disc 

D(e,k): 0<\t\< [(/i
2 + e

2)1/2 + e 
l/2k 

(51) 

(52) 

(53) 
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to Y which in the local coordinates at infinity (41) reads 

A = <*,        v'(t) = -tk,        x(t) = y(t) = 0. (54) 

Here we are forced to work in the coordinate patch at infinity since v -» oo as 
t -> 0 in (51). In particular, the origin of the disc D(e, k) is mapped to the point 
at infinity P = [0,1,0,0,1,0]. Then we can glue the disc D(e^k) to £0,1 along 
the annulus (52) obtaining a smooth rational curve £0 and the map / : £0,1 —> Y 
extends by (54) to a map / : £0 -» Y. By T-invariance, the image of this map 
has to be a rational curve in Y preserved by T and passing through the point at 
infinity P. The only curve on Y satisfying these conditions is 

Ci : ZxV = HWZ2,        X = Y = 0. (55) 

By writing (55) in local coordinates, it follows that Ci intersects L along a circle 
which divides it into two discs with boundary on L. One of them Di is the disc 
D considered in the previous section, while the second one D^ is a disc in Y with 
origin at P. The invariant map / : £0,1 —> Y is a k : 1 cover of D. 

Similar considerations apply to the other three cases in (50). For the second 
case, we obtain again the curve (55), but the roles of Di and D'l are reversed. 
We now obtain a k : 1 cover of the disc Dr

1. For the remaining cases, we find a 
T-invariant curve 

C2 : XYZ2 = nW2,        Z1 = V = 0 (56) 

which is divided by L into two discs -D2>^2 in Y. By contrast with the previous 
situation, both D2 and D2 intersect the divisor at infinity at Q = [0,1,0,1,0,0] 
and respectively R = [0,1,1,0,0,0]. Moreover, the invariant map / : £0,1 -> Y is 
a k : 1 cover of D2 and respectively D^. To summarize this discussion, we conclude 
that an invariant map from a disc to Y with boundary conditions on L must be a 
multicover of one of the four discs Di, Z)J_, .D2, D2 found above. Note that except 
Di = D, the other three discs have points at infinity, hence they are not contained 
in the noncompact hypersurface Y. For this reason, one might be tempted at this 
point to rule out all fixed points consisting of maps with components along D^, D2 
or Z?2, keeping only maps with components along D. However, since we do not 
really understand the structure of the moduli space, we should proceed with more 
caution here. 

We will show next that the discs D[,D2 or D^ are in fact ruled out by the 
homology constraint /*[£p,/l] = d[D]. The idea is to push forward homology classes 
to Z, which is smooth, and use the structure of the Mori cone. First, note that 
using a standard exact sequence argument, we have an isomorphism 

0 -> H2(Z, Z)^H2(Z, L; Z) -» 0. (57) 
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Therefore, it suffices to compute the homology classes oT^-Di],... jOT1^] m 

terms of the generators 771,772 of the Mori cone defined in (45). This is not quite 
straightforward, since the discs are rigid, and one cannot measure their homology 
class by using intersection theory as in the case of holomorphic curves. Instead we 
have to use the following deformation argument. Suppose we deform the sphere 
L in Z be changing the value of // to //' < /i. In this paragraph we restore the 
subindex fi for Y, L in order to keep track of the /i-dependence. Then the disc Di^ 
also changes to Di^ which can be obtained from Di^ by gluing in a small cylinder, 
which is fillable in Z. This shows that a~l[Di^] = oT^Diy] for any /i,//, and 
the same is true for the other three discs. 

The advantage of this approach is that we can deform to fi = 0, such that 
the sphere L^ shrinks to zero size. In this limit, the discs become holomorphic 
curves on Z whose homology classes in H2(Z,Z) can be easily determined from 
the algebraic equations. Let us consider for example the discs Di^Di. In the limit 
/j, = 0, the defining equations (55) of Ci specialize to 

ZiV = Q,        X = Y = 0. (58) 

Therefore Ci specializes to a reducible curve with components X = Y = V — 0 and 
respectively Zi = X = Y = 0, which are precisely the generators (45) of H2(Z: Z). 
The two discs Di, D^ are deformed in this limit to these two components of Ci, 
therefore we find 

[Di] = m,        [D'1]=V2. (59) 

By a similar reasoning we also find [D2] = [-C^] — %• Note that this deformation 
argument shows that the symplectic area of the disc D is the same as that of the 
curve Ct after transition. Therefore at classical level, t = top as noted at the end 
of section two. 

Now we can determine the general structure of a T-invariant open string mor- 
phisms subject to the constraint /♦[S^] = d[D], with d a positive integer. Since 
771, 772 are generators of the Mori cone, it follows that for any such fixed point 
f\Aa '• AQ -> Y must be a multicover of D. The other discs are indeed ruled out 
by homology constraints since one cannot have effective curves C on Z so that 
drji = [C] + ^772 for d, d7 > 0. Moreover, by the same argument, the closed curve 
S^ is mapped either to a point or to a T-invariant rational curve in the class 771. 
Now, one can check that the only T-invariant curves on Y in this class are the sec- 
tions defined by X = Y = W = 0, X = V = W = 0&ndV = Y = W = 0. These 
are all included in the divisor at infinity Coo 5 and they are disconnected from the 
invariant disc D. Since the image of any map has to be connected, it follows that 
we cannot have fixed open string maps with components along the above curves. 
This leaves only maps that contract the curve E^ to a point, while mapping Aa 
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to D. These are precisely the fixed points in the multicover moduli space of D, 
considered in [23, 30], whose contributions have been taken into account in the 
previous section. After this rather lengthy analysis, we can conclude that this is 
the complete answer. 
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