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1    Introduction 

In the past two decades we have witnessed many fruitful interactions between 
mathematics and physics. One example is in the Donaldson-Floer theory for 
oriented four manifolds. Physical considerations lead to the discovery of the 
Seiberg-Witten theory which has profound impact to our understandings of 
four manifolds. Another example is in the mirror symmetry for Calabi-Yau 
manifolds. This duality transformation in the string theory leads to many 
surprising predictions in the enumerative geometry. 
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String theory in physics studies a ten dimensional space-time X x E3'1. 
Here X a six dimensional Riemannian manifold with its holonomy group in- 
side 5C/(3), the so-called Calabi-Yau threefold. Certain parts of the mirror 
symmetry conjecture, as studied by Vafa's group, are specific for Calabi-Yau 
manifolds of complex dimension three. They include the Gopakumar-Vafa 
conjecture for the Gromov-Witten invariants of arbitrary genus, the Ooguri- 
Vafa conjecture on the relationships between knot invariants and enumera- 
tions of holomorphic disks and so on. The key reason is they belong to a 
duality theory for G2-manifolds. G2-manifolds can be naturally interpreted 
as special Octonion manifolds [23]. For any Calabi-Yau threefold X, the 
seven dimensional manifold X x S1 is automatically a G2-manifold because 
of the natural inclusion SU (3) C G2. 

In recent years, there are many studies of G2-manifolds in M-theory 
including works of Archaya, Atiyah, Gukov, Vafa, Witten, Yau, Zaslow and 
many others (e.g. [1], [5], [13], [2]). 

In the studies of the symplectic geometry of a Calabi-Yau threefold X, 
we consider unitary flat bundles over three dimensional (special) Lagrangian 
submanifolds L in X. The corresponding geometry for a C?2-manifold M is 
called the special M-Lagrangian geometry (or C-geometry in [19]). where we 
consider Anti-Self-Dual (abbrev. ASD) bundles over four dimensional coas- 
sociative submanifolds, or equivalently special H-Lagrangian submanifolds 
of type II [23],   (abbrev. H-SLag) C in M. 

Counting ASD bundles over a fixed four manifold C is the well-known 
theory of Donaldson differentiable invariants, Don(C). Similarly, counting 
unitary flat bundles over a fixed three manifold L is Floer's Chern-Simons 
homology theory, HFcs (L). When C is a connected sum Ci^C^ along 
a homology three sphere, the relative Donaldson invariants Don (Ci)'s take 
values in HFcs (L) and Don (C) can be recovered from individual pieces by 
a gluing theorem, Don(C) = (Don (Ci) ,Don {C2))HFcs^L) (see e.g. [7]). 
Similarly when L has a handlebody decomposition L = ii#E^25 each Li 
determines a Lagrangian subspace Ci in the moduli space A4^lat (S) of uni- 
tary flat bundles over the Riemann surface S and Atiyah conjectures that 
we can recover HFcs (L) from the Floer's Lagrangian intersection homology 

group of A and £2 in Mflat (E), HFcs (L) = HF^^ (A, £2). Such 
algebraic structures in the Donaldson-Floer theory can be formulated as a 
Topological Quantum Field Theory (abbrev. TQFT), as defined by Segal 
and Atiyah [3]. 

In this paper, we propose a construction of a TQFT by counting ASD 
bundles over four dimensional H-SLag C in any closed (almost) GVmanifold 
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M. We call these M-SLag cycles and they can be identified as zeros of a 
naturally defined closed one form on the configuration space of topological 
cycles. We expect to obtain a homology theory He (M) by applying the 
construction in the Witten's Morse theory. When M is non-compact with 
an asymptotically cylindrical end, X x [0, oo), then the collection of boundary 
data of relative H-SLag cycles determines a Lagrangian submanifold CM i*1 

the moduli space MSLag {X) of special Lagrangian cycles in the Calabi-Yau 
threefold X. 

When we decompose M — Mi#x^2 along an infinite asymptotically 
cylindrical neck, it is reasonable to expect to have a gluing formula, 

HCCMHFF^^M^M,) Lag 

The main technical difficulty in defining this TQFT rigorously is the com- 
pactness issue for the moduli space of H-SLag cycles in M. We do not know 
how to resolve this problem and our homology groups are only defined in 
the formal sense (and physical sense?). 

2    ^-manifolds and H-SLag geometry 

We first review some basic definitions and properties of G^-geometry, see 
[19] for more details. 

Definition 1. A seven dimensional Riemannian manifold M is called a G2- 
manifold if the holonomy group of its Levi-Civita connection is inside G2 C 
50(7). 

The simple Lie group G2 can be identified as the subgroup of 50 (7) 
consisting of isomorphism g : Ml —> M7 preserving the linear three form $1, 

fi = /V2/3 - fl {ele0 + e2e3) - f2 (e2e0 + eV) - f (e3e0 + eV) , 

where e^e^e^e3,/1,/2,/3 is any given orthonormal frame of R7. Such a 
three form, or up to conjugation by elements in GL (7, M), is called positive, 
and it determines a unique compatible inner product on M7 [6]. 

Gray [12] shows that G^-holonomy of M can be characterized by the 
existence of a positive harmonic three form fi. 

Definition 2. A seven dimensional manifold M equipped with a positive 
closed three form Q, is called an almost G2-manifold. 
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Remark: The relationship between G2-manifolds and almost Gr2-manifolds 
is analogous to the relationship between Kahler manifolds and symplectic 
manifolds.   Namely we replace a parallel non-degenerate form by a closed 
one. 

For example, suppose that X is a complex three dimensional Kahler 
manifold with a trivial canonical line bundle, i.e. there exists a nonvanishing 
holomorphic three form fix- Yau's celebrated theorem says that there is 
a Kahler form ux on X such that the corresponding Kahler metric has 
holonomy in SU (3), i.e. a Calabi-Yau threefold. In particular both fix and 
cux are parallel forms. Then the product M = X x S4 is a G2-manifold with 

tt = Renx+ux Ad0. 

Conversely, one can prove, using Bochner arguments, every G2-metric on 
X x Sl must be of this form. More generally, if cux is a general Kahler form 
on X, then (X x S1^) is an almost G^-manifold and the converse is also 
true. 

Next we quickly review the geometry of H-SLag cycles in an almost G2- 
manifold (see [19]). 

Definition 3. An orientable four dimensional submanifold C in an almost 
G2-manifold (M, fl) is called a coassociative submanifold, or simply a H- 
SLag, if the restriction ofQ to C is identically zero, 

fi|c = 0. 

If M is a Gr2-nianifold, then any coassociative submanifold C in M is 
calibrated by *fi in the sense of Harvey and Lawson [14], in particular, it 
is an absolute minimal submanifold in M. The normal bundle of any H- 
SLag C can be naturally identified with the bundle of self-dual two forms 
on C. McLean [27] shows that infinitesimal deformations of any H-SLag are 
unobstructed and they are parametrized by the space of harmonic self-dual 
two forms on (7, i.e. Hi (C,M). 

For example, if S is a complex surface in a Calabi-Yau threefold X, then 
5 x {t} is a H-SLag in M = X x S1 for any t G S1. Notice that Hi (S, R) is 
spanned by the Kahler form and the real and imaginary parts of holomor- 
phic two forms on 5, and the latter can be identified holomorphic normal 
vector fields along S because of the adjunction formula and the Calabi-Yau 
condition on X. Thus all deformations of S x {t} in M as H-SLag subman- 
ifolds are of the same form.   Similarly, if L is a three dimensional special 
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Lagrangian submanifold in X with phase 7r/2, i.e. UJ\L = RefixU = 0, 
then L x S1 is also a H-SLag in M = Xx S1. Furthermore, all deforma- 
tions of L x Sl in M as H-SLag submanifolds are of the same form because 
H+ (L x 51) = H1 (L), which parametrizes infinitesimal deformations of 
special Lagrangian submanifolds in X. 

Definition 4. A H-SLag cycle in an almost G2-manifold (M, fi) is a pair 
(C,DE) with C a M-SLag in M and DE an ASD connection over C. 

Remark: H-SLag cycles are supersymmetric cycles in physics as studied 
in [26]. Their moduli space admits a natural three form and a cubic tensor 
[19], which play the roles of the correlation function and the Yukawa coupling 
in physics. 

We assume that the ASD connection DE over C has rank one, i.e. a U (1) 
connection. This avoids the occurrence of reducible connections, thus the 
moduli space Mm~SLag (M) of H-SLag cycles in M is a smooth manifold. 
It has a natural orientation and its expected dimension equals 61 (C), the 
first Betti number of C. This is because the moduli space of H-SLags has 
dimension equals b+ (C) [27] and the existence of an ASD U (l)-connection 
over C is equivalent to Hi (C,R) D if2 (C,Z) 7^ 0. The number b1 (C) is 
responsible for twisting by a flat U (l)-connection. 

For simplicity, we assume that b1 (C) = 0, otherwise, one can cut down 
the dimension of A4m~~SLa9 (M) to zero by requiring the ASD connections 
over C to have trivial holonomy around loops 71,..., ^(C) m C representing 
an integral basis of Hi (C, Z). We plan to count the algebraic number of 
points in this moduli space #Mm~SLa9 (M). 

This number, in the case of X x S1, can be identified with a proposed 
invariant of Joyce [17] defined by counting rigid special Lagrangian subman- 
ifolds in any Calabi-Yau threefold. To explain this, we need the following 
proposition on the strong rigidity of product H-SLags. 

Proposition 5. If L x S1 is a M-SLag in M = X x S1 with X a Calabi-Yau 
threefold, then any H-SLag representing the same homology class must also 
be a product. 

Proof: For simplicity we assume that the volume of the S1 factor is unity, 
Vol (Sl) = 1. If L x 5'1 is a H-SLag in M then L is special Lagrangian 
submanifold in X with phase 7r/2, i.e. Re^tx\L — ^\L — 0. Suppose C 
is another H-SLag in M representing the same homology class, we have 
Vo\ (C) = Vol (L).  If we write Ce = C n {X x {9}) for any 6 € S\ then 
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Vol (Cg) > Vol (L), as L is a calibrated submanifold in X. Furthermore the 
equality sign holds only if Co is also calibrated. In general we have 

Vol (C) > [  Vol (Co) dO, 
Js1 

with the equality sign holds if and only if C is a product with S1. Combining 
these, we have 

Vol (L) - Vol (C) > f  Vol {Co) dO > [  Vol (L) d9 = Vol (L). 
Js^ Js1 

Thus both inequalities are indeed equal. Hence C = L' x Sl for some special 
Lagrangian submanifold 1/ in X. ■ 

Suppose M = X x S'1 is a product GVnianifold and we consider product 
H-SLag C = L x Sl in M. Prom the above proposition, every H-SLag 
representing [C] must also be a product. Since b+ (C) = b1 (L), the rigidity 
of the H-SLag C in M is equivalent to the rigidity of the special Lagrangian 
submanifold L in X. When this happens, i.e. L is a rational homology three 
sphere, we have b2 (C) = 0 and 

No. of ASD U(l)-bdl/C = #H2 (C, Z) = #H2 (L, Z) = #iJi (L, Z). 

Here we have used the fact that the first cohomology group is always torsion 
free. Thus the number of such H-SLag cycles in X x S1 equals the number of 
special Lagrangian rational homology three spheres in a Calabi-Yau three- 
fold X, weighted by #Hi (L,Z). Joyce [17] shows that with this particular 
weight, the numbers of special Lagrangians in any Calabi-Yau threefold be- 
have well under various surgeries on X, and expects them to be invariants. 
Thus in this case, we have 

^Mm-SLag ^x x sij = joyce>s proposed invariant for #SLag. in X. 

In the next section, we will propose a homology theory, whose Euler charac- 
teristic gives #Mm-SLa9 (M). 

3    Witten's Morse theory for H-SLag cycles 

We are going to use the parametrized version of H-SLag cycles in any almost 
GVmanifold M. We fix an oriented smooth four dimensional manifold C and 
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a rank r Hermitian vector bundle E over C. We consider the configuration 
space 

C = Map{C,M) xA{E), 

where A (E) is the space of Hermitian connections on E. 

Definition 6. An element (J^DE) in C is called a parametrized W-SLag 
cycles in M if 

where the self-duality is defined using the pullback metric from M. 

Instead of Aut{E), the symmetry group Q in our situation consists of 
gauge transformations of E which cover arbitrary diffeomorphisms on M, 

E    A     E 

M   gA   M. 

It fits into the following exact sequence, 

1 -> Ant {E) -> g -> Diff (C) -> 1. 

The natural action of Q on C is given by 

g-(f,DE) = (fogM,g*DE), 

for any (/, DE) E C = Map (C, M) x A (E). Notice that Q preserves the set 
of parametrized H-SLag cycles in M. 

The configuration space C has a natural one form $o: At any (/, DE) G C 
we can identify the tangent space of C as 

T(f,DE)C = F (C, /*TM) x fi1 (C, ad (E)). 

We define 

$o (/, I>E) (V, B)= [ Tr [/* tafl) A FE + /*fi A B], 

for any (v,B) G T(/jDl?)C. 

Proposition 7.  T/ie one form $o on C is closed and invariant under the 
action by Q. 
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Proof: Recall that there is a universal connection ©^ over C x A (E) 
whose curvature F^ at a point (#, DE) equals, 

FJB|(xIz),) = (F|0,Fi1
IFS2) 

G fi2 (C) ® 0° {A) + Q1 (C) ® n1 {A) + Q,0 (C) ® fi2 (^) 

with 

IF^0 = FE, F^1 (v,B) = B(v)y^= 0, 

where v € T^C and 5 G fi1 (<7,ad(J5)) = TDEA(E) (see e.g. [20]). The 
Bianchi identity implies that TVFE is a closed form on C x A(E). We also 
consider the evaluation map, 

ev:C-xMap(C,M) -> M 

ev{xj) = f{x). 

It is not difficult to see that the pushforward of the differential form ev* (ft) A 
Tr¥E on C x Map(C}M) x A{E) to Map{C,M) x A{E) equals $<,, i.e. 

$0= /* e^*(fi)ATrF£;. 
Jc 

Therefore the closedness of $o follows from the closedness of Q. It is also 
clear from this description of $o that it is ^-invariant. ■ 

Prom this proposition, we know that $o — ^o locally for some function 
$o on C. As in the Chern-Simons theory, this function ^o can be obtained 
explicitly by integrating the closed one form $o along any path joining to a 
fixed element in C. When M = X x Sl and C = L x iS'1, this is essentially 
the functional used by Thomas in [30]. 

Prom now on, we assume that E is a rank one bundle. 

Lemma 8. The zeros of $o are the same as parametrized M-SLag cycles in 
M. 

Proof: Suppose (/,!)#) is a zero of $o- By evaluating it on various 
(0, B), we have /*fi = 0, i.e. / : C —► M is a parametrized H-SLag. This 
implies that the map 

JQ : Tnx)M -> k2T*xC 

has image equals A^T^fC, for any x E C. By evaluating $o on various {v, 0), 
we have i7^ = 0, i.e. (f^Ds) is a parametrized H-SLag cycle in M. The 
converse is obvious. ■ 
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Prom above results, $o descends to a closed one form on C/Q, called <&. 
Locally we can write $ = dJ7 for some function T whose critical points are 
precisely (unparametrized) H-SLag cycles in M. Using the gradient flow 
lines of JF, we could formally define a Witten's Morse homology group, as in 
the famous Floer's theory. Roughly speaking one defines a complex (C*, 9), 
where C* is the free Abelian group generated by critical points of J7 and d 
is defined by counting the number of gradient flow lines between two critical 
points of relative index one. 

Remark: The equations for the gradient flow are given by 

where £ E Q2 (M, TM) is defined by (£ (u, v), w) = Ct (u, v, w). 

The equation 

d2 = o 

requires a good compactification of the moduli space of BrSLag cycles in 
M, which we are lacking at this moment (see [31] however). We denote 
this proposed homology group as He (M), or He (M, a) when /* [C] = a € 
H4(M,Z). 

This homology group should be invariant under deformations of the al- 
most G2-metric on M and its Euler characteristic equals, 

X {He (M)) - #Mm-SLa9 (M). 

Like Floer homology groups, they measure the middle dimensional topology 
of the configuration space C divided by Q. 

4    TQFT of H-SLag cycles 

In this section we study complete almost G2-manifold Mi with asymptot- 
ically cylindrical ends and the behavior of HQ (M) when a closed almost 
Gf2-manifold M decomposes into connected sum of two pieces, each with an 
asymptotically cylindrical end, 

M = Mi#M2. 
x 

Nontrivial examples of compact Gf2-manifolds are constructed by Kovalev 
[18] using such connected sum approach. The boundary manifold X is nec- 
essary a Calabi-Yau threefold. We plan to discuss analytic aspects of M^s 
in a future paper [24]. 
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Each Mi's will define a Lagrangian subspace CM^ in the moduli space 
of special Lagrangian cycles in X. Furthermore we expect to have a gluing 
formula expressing the above homology group for M in terms of the Floer 
Lagrangian intersection homology group for the two Lagrangian subspaces 
CMI and CM2 ? 

He (M) = HF%S
g
La9{x) (CMl,CM2). 

These properties can be reformulated to give us a topological quantum field 
theory. To begin we have the following definition. 

Definition 9. An almost G2-Tnanifold M is called cylindrical if M — XxM1 

and its positive three form respect such product structure, i.e. 

tto = Re Q,x + wx A dt. 

A complete almost G2-manifold M with one end X x [0,oo) is called 
asymptotically cylindrical if the restriction of its positive three form equals 
to the above one for large t, up to a possible error of order O (e~*). More 
precisely the positive three form Q, of M restricted to its end equals, 

Ql = n0 + d( 

for some two form ( satisfying |(| + |VC| + |V2C| + |V3C| < Ce~*. 

Remark: If M is an almost GVmanifold with an asymptotically cylindri- 
cal end X x [0, oo), then (X^ux^x) is a complex threefold with a trivial 
canonical line bundle, but the Kahler form UJX might not be Einstein. This 
is so, i.e. a Calabi-Yau threefold, provided that M is a G2-manifold. We 
will simply write dM = X. 

We consider H-SLags C in M which satisfy a Neumann condition at 
infinity. That is, away from some compact set in M, the immersion / : C —> 
M can be written as 

/ : L x [0,00) -» X x [0, 00) 

with df /dt vanishes at infinite [24]. A relative H-SLag itself has asymptoti- 
cally cylindrical end L x [0,00) with L a special Lagrangian submanifold in 
X. A relative W-SLag cycle in M is a pair (C, DE) with C a relative H-SLag 
in M and DE a unitary connection over C with finite energy, 

/ {Fsfdv <oo. 
Jc 
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Any finite energy connection DE on C induces a unitary flat connection Dg' 
on L [7]. 

Such a pair (L, D^;/) of a unitary flat connection DE' over a special La- 
grangian submanifold L in a Calabi-Yau threefold X is called a special La- 
grangian cycle in X. Their moduli space MSLag (X) plays an important role 
in the Strominger-Yau-Zaslow Mirror Conjecture [29] or [22]. The tangent 
space to MSLa9 {X) is naturally identified with H2 (L, R) x if1 (L,ad (£'))• 
For line bundles over L, the cup product 

U:H2(L,R) xHl(L,R) -> R, 

induces a symplectic structure on MSLa9 (X) [15]. Using analytic results 
from [24] about asymptotically cylindrical manifolds, we can prove the fol- 
lowing theorem. 

Claim 10. Suppose M is an asymptotically cylindrical (almost) G2-manifold 
with dM = X. Let J^4m-SLa9 (M) be the moduli space of rank one relative 
MSLag cycles in M.  Then the map defined by the boundary values, 

b : Mm-SLa9 (M) -+ MSLa9 (X) , 

is a Lagrangian immersion. 

Sketch of the proof ([24]): For any closed Calabi-Yau threefold X (resp. 
G2-manifold M), the moduli space of rank one special Lagrangian subman- 
ifolds L (resp. H-SLags C) is smooth [27] and has dimension b2 (L) (resp. 
b\ (C)). The same holds true for complete manifold M with a asymptot- 
ically cylindrical end X x [0, oo), where b+ (C)L2 denote the dimension of 
L2-harmonic self-dual two forms on a relative H-SLag C in M. 

The linearization of the boundary value map Mm~SLa9 (M) -> MSLa9 {X) 
is given by H+ {C)L2 A H2 (L). Similar for the connection part, where the 

boundary value map is given by H1 (C)L2 -)> Hl (L). We consider the fol- 
lowing diagram where each row is a long exact sequence of Z/2-cohomology 
groups for the pair (C, L) and each column in a perfect pairing. 

0   -+   Hl{C,L) ->     Hl(C) 4   H2(L) ->   i?3(C,L) 
®                        ®                     ® ® 

0   4-     Hl(C) <-   Hl(C,L) <-   Hl{L) £     H^C) 
I I ; I 
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Notice that H+ {C,L), H\ (C) and H2 (L) parametrize infinitesimal defor- 
mation of C with fixed <9C7 deformation of C alone and deformation of L 
respectively. 

By simple homological algebra, it is not difficult to see that Im a © Im /? 
is a Lagrangian subspace of H2 (L) ffi H1 (L) with the canonical symplectic 
structure. Hence the result. ■ 

Remark: The deformation theory of conical special Lagrangian subman- 
ifolds is developed by Pacini in [28]. 

We denote the immersed Lagrangian submanifold b (jv^-SLw (M)) in 
MSLa9 (X) by CM- When M decompose as a connected sum Mi#x^2 
along a long neck, as in Atiyah's conjecture on Floer Chern-Simons homology 
group [3], we expect to have an isomorphism, 

He (M) s HF^S
g
La9{x) (£Ml,CM2). 

More precisely, suppose tit with t G [0, oo), is a family of GVstructure on 
Mt = M such that as t goes to infinite, M decomposes into two components 
Mi and M2, each has an aymptotically cylindrical end X x [0,00).   Then 

we expect that lim^oo He (Mt) 9* HF^g 
ag("X) {CM1->£'M<1)' We summarize 

these structures in the following table: 

Manifold: (almost) G2 -manifold, M7 (almost) CY threefold, X% 

SUSY Cycles: H -SLag. submfds.+ ASD bdl SLag submfds.-f flat bdl 

Invariant: Homology group, He (Af) Fukaya category, Fuk (MSLa9 {X)) . 

These associations can be formalized to form a TQFT [4]. Namely we 
associate an additive category F (X) = Fuk (MSLag {X)) to a closed almost 
Calabi-Yau threefold X, a functor F (M) : F (XQ) -> F (Xi) to an almost 
Gf2-manifold M with asymptotically cylindrical ends Xi — XQ — Xi U XQ. 

They satisfy 

(i)     F ((f)) = the additive tensor category of vector spaces ((Vec)), 
(ii)    F (X1 UX2) = F (XJ ® F (X2). 

For example, when M is a closed G2-manifold, that is a cobordism between 
empty manifolds, then we have F (M) : ((Vec)) -» {{Vec)) and the image 
of the trivial bundle is our homology group He (M). 
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5    More TQFTs 

Notice that all TQFTs we propose in this paper are formal mathematical 
constructions. Besides the lack of compactness for the moduli spaces, the 
obstruction issue is also a big problem if we try to make these theories 
rigorous. This problem is explained to the author by a referee. 

There are other TQFTs naturally associated to Calabi-Yau threefolds 
and G2-manifolds but (1) they do not involve nontrivial coupling between 
submanifolds and bundles and (2) new difficulties arise because of corre- 
sponding moduli spaces for Calabi-Yau threefolds have virtual dimension 
zero and could be singular. They are essentially in the paper by Donaldson 
and Thomas [9]. 

TQFT of associative cycles 

We assume that M is a GVmanifold, i.e. fi is parallel rather than closed. 
Three dimensional submanifolds A in M calibrated by fi is called associa- 
tive submanifolds and they can be characterized by X\A = 0 ([14]) where 
X G SI3 (M,TM) is defined by (w,x{x?y?z)) = *£l{w,x,y,z). We define a 
parametrized A-cycle to be a pair (/, DE) G CA = Map(A,M) x A(E) 7 

with / : A -> M a parametrized A-submanifold and DE is a unitary flat 
connection on a Hermitian vector bundle E over A. There is also a natural 
^-invariant closed one form $A on CA given by 

$A (/, DE) («, B) = f TrFE AB + </*x, 
JA 

v) 
TM ' 

for any (v,B) G T (AJ*TM) x O1 (A,ad{E)) = TU,DE)CA . Its zero set is 
the moduli space of A-cycles in M. As before, we could formally apply 
arguments in Witten's Morse theory to §A and define a homology group 
HA{M). 

The corresponding category associated to a Calabi-Yau threefold X would 
be the Fukaya-Floer category of the moduli space of unitary flat bundles over 
holomorphic curves in X, denote Mcurve (X). We summarize these in the 
following table: 

Manifold: G2 -manifold, M7 CY threefold, X6 

SUSY Cycles: A-submfds.-f flat bundles Holomorphic curves-h flat bundles 

Invariant: Homology group, HA (M) Fukaya category, Fuk (Mcurve {X)) . 
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TQFT of Donaldson-Thomas bundles 

We assume that M is a seven manifold with a G^-structure such that 
its positive three form O is co-closed, rather than closed, i.e. dQ = 0 with 
6 = *fl In [9] Donaldson and Thomas introduce a first order Yang-Mills 
equation for GVmanifolds, 

FE A e = 0. 

Their solutions are the zeros of the following gauge invariant one form $DT 

onA(E), 

®DT{DE)(B)= [ Tr[FEAB}Ae, 
JM M 

for any B E ti1 {M,ad(E)) = TDEA(E). This one form $DT is closed 
because of dQ = 0. As before, we can formally define a homology group 
HDT (M). The corresponding category associated to a Calabi-Yau threefold 
X should be the Fukaya-Floer category of the moduli space of Hermitian 
Yang-Mills connections over X, denote MHYM (X). Again we summarize 
these in a table: 

Manifold: G2 -manifold, M7 CY threefold, X6 

SUSY Cycles: DT-bundles Hermitian YM-bundles 

Invariant: Homology group, HDT (M) Pukaya category, Fuk (MHYM (X)) . 

It is an interesting problem to understand the transformations of these 
TQFTs under dualities in M-theory. 
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