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Abstract 

We complete the construction of vacuum string field theory by 
proposing a canonical choice of ghost kinetic term - a local insertion 
of the ghost field at the string midpoint with an infinite normalization. 
This choice, supported by level expansion studies in the Siegel gauge, 
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allows a simple analytic treatment of the ghost sector of the string 
field equations. As a result, solutions are just projectors, such as the 
sliver, of an auxiliary CFT built by combining the matter part with 
a twisted version of the ghost conformal theory. Level expansion ex- 
periments lead to surprising new projectors - butterfly surface states, 
whose analytical expressions are obtained. With the help of a suitable 
open-closed string vertex we define open-string gauge invariant oper- 
ators parametrized by on-shell closed string states. We use regulated 
vacuum string field theory to sketch how pure closed string amplitudes 
on surfaces without boundaries arise as correlators of such gauge in- 
variant operators. 
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1    Introduction and Summary 

Since it became clear that open string field theory (OSFT) [1] could pro- 
vide striking evidence [2] for the tachyon conjectures governing the decay 
of unstable D-branes or the annihilation of D-brane anti-D-brane pairs [3], 
the intriguing possibility of formulating string field theory directly around 
the tachyon vacuum has attracted much attention. A proposal for such 
vacuum string field theory (VSFT) was made in [4], and investigated in 
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. 

Lacking an exact analytic solution of OSFT that describes the tachyon 
vacuum, it has not been possible yet to confirm directly, or to derive the 
VSFT action from first principles. Therefore VSFT has been tested for 
consistency. The main property of VSFT is that the kinetic operator, which 
in OSFT is the BRST operator, is chosen to be independent of the matter 
conformal theory, and is thus built only using the reparametrization ghost 
conformal field theory. Families of consistent candidates for this kinetic 
term, many of which are related via field redefinitions, were exhibited in [4]. 
It was possible to show that in VSFT the ratios of tensions of D-branes are 
correctly reproduced from the classical solutions purporting to represent such 
D-branes. This was seen in numerical experiments [5], and analytically using 
a boundary conformal field theory (BCFT) analysis whose key ingredient 
was the construction of the sliver state [7] associated with a general BCFT. 
The sliver is a projector in the star algebra of open strings; its matter part 
is identified with the matter part of the solution representing a D-brane 
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[5, 21, 22]. These tests did not select a particular kinetic term, in fact, data 
concerning the kinetic term, as long as it is only ghost dependent, cancel in 
the computation of ratios of tensions. 

The formulation of VSFT cannot be considered complete unless a choice 
is made for its kinetic term. This choice seems necessary in order to under- 
stand confidently issues related to: (a) the normalization of the action giving 
us the brane tensions, (b) the spectrum of states around classical solutions, 
and (c) the emergence of closed string amplitudes. It has been suggested by 
Gross and Taylor [10] and by Schnabl [24] that it may be difficult to obtain 
solutions of VSFT with non-zero action if we insist on finite normalization of 
the kinetic term, leading to the conclusion that VSFT could be a workable, 
but singular limit of a better defined theory. Even if this is the case, it is 
important to find which particular choice of the kinetic term appears in this 
limit, and to investigate it thoroughly 

Indeed this is what we shall do in the present paper. We are led by 
various pieces of evidence to a specific form of Q that is quite canonical 
and interesting. We should say at the outset that this form of Q leads 
to vanishing action for classical solutions unless its overall normalization is 
taken to be infinite. Hence regulation appears to be necessary, and as we 
shall discuss, possible. Q is a ghost insertion at the open string midpoint. 
More precisely it takes the form 

Q oc —(c(i) - c(-i)) = co - (c2 +' c-2) + (04 + c-A)  (1.1) 

The open string is viewed as the arc \z\ = 1, ^s{z) > 0, and thus z = i is 
the midpoint. The selected Q arises from a consideration of the equations of 
motion in the Siegel gauge. Again, there was early evidence, based on level 
expansion [4], that for a finite kinetic term the Siegel gauge would yield zero 
action, and perhaps other gauges would be more suitable. But in the spirit 
of the present paper, where we are willing to allow infinite normalization of 
the kinetic term, the Siegel gauge is a good starting point. This strategy 
was recently investigated in a stimulating paper by Hata and Kawano [14]. 
In the Siegel gauge the equation of motion \I> + 60(* * ^) = 0 can be solved 
analytically not only in the matter sector, where the matter sliver arises 
[22, 5], but also in the ghost sector1. It is then possible to compute \I> * ^ 
and determine Q by requiring that that ^ * \I/ takes the form — Q\]/. The 
authors of [14] obtained expressions that could be analyzed numerically to 
glean the form of Q. We have done this analysis and obtained evidence that 
the operator in (1.1) arises. 

1The methodology was introduced in [22], but the correct expressions were given in 
[14]. 
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We can also do a rather complete analytical study using BCFT tech- 
niques to obtain a solution of the equations of motion with kinetic term 
given in (1.1). Here, as a first step we twist the ghost conformal field the- 
ory stress tensor to obtain an auxiliary BCFT where the ghost fields (c, 6) 
have spins (0,1). This is clearly a natural operation in view of (1.1) since 
local insertions of dimension zero fields are simple to deal with. Moreover 
the resulting Virasoro operators commute with bo and the new SL(2,R) vac- 
uum coincides with the zero momentum tachyon. Analytic treatment of the 
string field equations of motion becomes possible by rewriting the original 
equations in this twisted BCFT, and one finds that the solution is simply the 
sliver of the twisted BCFT! This geometrical approach gives a directly cal- 
culable expression for the Neumann coefficients characterizing the solution, 
as opposed to the analytic solution [14] that involves inverses and square 
roots of infinite matrices. We give numerical evidence that the solutions are 
one and the same. 

Given that the classical solution in OSFT describing the tachyon vacuum 
is quite regular, one could wonder about the origin of the infinite normal- 
ization factor that appears in the choice of our kinetic term. The only way 
this could arise is if the variables of VSFT are related to those of OSFT by 
a singular field redefinition. We give examples of singular field redefinitions 
which could do this. They involve reparmetrizations of the open string co- 
ordinate which are symmetric about the mid-point and hence preserve the 
*-product. We start with a Q that is sum of integrals of local operators made 
of matter and ghost fields, and consider a reparametrization that has an in- 
finite squeezing factor around the mid-point. This transforms the various 
local operators (if they are primary) according to their scaling dimension, 
with the coefficient of the lowest dimension operator growing at fastest rate. 
Thus if the initial Q contains a piece involving the integral of c, then under 
this reparametrization the coefficient of this operator at the mid-point grows 
at the fastest rate. This not only provides a mechanism for explaining how 
the coefficient of the kinetic term could be infinite, but also explains how a 
kinetic operator of the form c(i) — c(—i) emerges under such field redefinition 
even if the initial Q contains combinations of matter and ghost operators. 
This scenario supports a viewpoint, stressed in [10, 23], that a purely ghost 
Q is a singular representative of an equivalence class of kinetic operators 
having regular representatives built from matter and ghost operators. This 
singular limit is useful for some computations, e.g. ratios of tensions of D- 
branes, but working with a regular representative may be necessary for other 
computations like the overall normalization of the tension. 

While the BRST operator QB happens to be invariant under the action 
of the reparametrization generators Kn that are symmetric about the the 
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string midpoint, Q is not invariant under an arbitrary reparametrization of 
this type. Nevertheless, being a midpoint insertion, it transforms naturally 
under reparametrizations z -> f(z) leaving invariant the midpoint. c(±z) 
simply scale with factors proportional to the inverse of the derivatives of / 
at ±i. 

The expression for Q chosen here is rather special in that it is concen- 
trated at the midpoint, and thus it would seem to be an operator that cannot 
be treated easily by splitting into left and right pieces. In particular the ac- 
tion of Q on the identity string field is not well defined. One can define 
Q, however, as the limit of ghost insertions Qe that approach symmetri- 
cally the midpoint as e -> 0, so that Qe annihilates the identity for every 
non-zero e. Although the action of Qe on a state \A) can be represented as 
\S€ * A) — \A * S€) for an appropriate state |56), and thus Q6 would be seen 
to be an inner derivation, the state |5e), involving insertion of a c on the 
identity string state just left of the midpoint, diverges as e approaches zero. 
It thus seems unlikely that Q can be viewed as an inner derivation. 

As mentioned above, Q defined this way has infinite normalization. Via 
a field redefinition we could make Q finite, at the cost of having an infinite 
overall normalization of the VSFT action. In either description regulariza- 
tion is necessary. We examine this directly at the gauge fixed level. Working 
in the Siegel gauge we introduce a parameter "a" to define a deformation 
5(a) of the gauge fixed action, such that the VSFT action is recovered for 
a — oo. We introduce a multiplicative factor Ko(a) in front of the action to 
have a complete action Sa = KQ(a)S(a). In order to have a succesful regular- 
ization we require that 5(a) for any fixed a gives a finite value for the energy 
of the classical solution representing a D-brane. We find evidence that this 
is the case using the level expansion procedure. The prefactor /^o(a) can 
then be adjusted to give, by construction, the correct tension of the D-brane 
solution. The Feynman rules in this regulated VSFT generate correlation 
functions on world-sheet with boundary, with an additional factor involving 
a boundary perturbation, in close analogy with the effect of switching on 
constant tachyon background in boundary string field theory (BSFT) [25]. 

The level expansion analysis of the VSFT equations of motion leads to 
a surprise. The numerical data indicates that the solution is converging 
towards a projector that is different from the sliver. Like the sliver the new 
projector is a surface state. Considering that the sliver represents only one 
of an infinite set of projectors, this result is not totally unexpected. We 
provide a list of a whole class of surface states, refered to as the butterfly 
states, satisfying properties similar to the sliver. There is strong numerical 
evidence that the solution in level expansion is approaching one particular 
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member of this class, — a state which is a product of the vacuum state of 
the left half string and the vacuum state of the right half-string. Further 
properties of the butterfly states are currently under investigation [26]. 

Another subject we discuss in great detail is that of closed strings.2 Our 
analysis begins with the introduction of gauge invariant operators in OSFT. 
These open string field operators Oy{^) are parametrized by on-shell closed 
string vertex operators V, and concretely arise from an open/closed transi- 
tion vertex that emerged in studies of closed string factorization in OSFT 
loop diagrams[27]. This open/closed vertex was studied geometrically in [28] 
where it was shown that supplemented with the cubic open string vertex it 
would generate a cover of the moduli spaces of surfaces involving open and 
closed string punctures. In OSFT the correlation functions of such gauge in- 
variant operators gives us the S-matrix elements of the corresponding closed 
string vertex opertors computed by integration over the moduli spaces of 
surfaces with boundaries. 

We argue that in VSFT gauge invariant operators take an identical form, 
and confirm that our choice of Q is consistent with this. We then sketch how 
the correlation function of n gauge invariant operators in regulated VSFT 
could be related to the closed string S-matrix of the n associated vertex op- 
erators arising by integration over moduli spaces of surfaces without bound- 
aries. This means that conventional pure closed string amplitudes could 
emerge from correlators of gauge invariant operators in VSFT. In this anal- 
ysis we begin by noting that at the level of string diagrams a = 0 gives us 
back the usual OSFT Feynman rules, whereas as we take the regularization 
parameter a to oo this corresponds to selecting a region of the moduli space 
where the length of the boundary is going to zero. By a scaling transforma- 
tion, and a factorization analysis we find that the amplitude reduces to one 
involving the n closed string vertex operators and an additional zero mo- 
mentum closed string vertex operator of dimension < 0. We show in detail 
how a new minimal area problem guarantees that the string diagrams for 
these n + 1 closed string vertex operators do generate a cover of the rele- 
vant moduli space of closed Riemann surfaces. This shows how closed string 
moduli arise from the original open string moduli. If the only contribution 
to this (n + l)-point amplitude comes from the term where the additional 
closed string vertex operator is the zero momentum dilaton, then we get 
back the n-point closed string amplitude of the external vertex operators. 
In the picture that emerges, closed string states are not introduced by hand - 
bulk operators of the CFT (necessary to even define the BCFT in question) 

For other attempts at getting closed strings from open string theory around the tachyon 
vacuum, see refs.[37, 38, 19]. 
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are used to write open string functionals that represent the closed string 
states. Those are simply the gauge invariant operators of the theory. Since 
the analysis, however, is sensitive to the regularization procedure, complete 
understanding will require a better control of the regularization procedure. 

In the final section of this paper we discuss our results, offer some per- 
spectives, and suggest two possible alternative directions for investigating 
vacuum string field theory. In one of them we propose a pure ghost action 
that is completely regular, but the string field has to be of ghost number 
zero. In the other we suggest that many of the successess of VSFT may 
be preserved if we introduced bulk matter stress tensor dependence at the 
midpoing into the kinetic term. 

2    The Proposal for a Ghost Kinetic Operator 

In this section we state our proposal for the purely ghost kinetic operator 
Q in VSFT and discuss the novel gauge structure that emerges. The ki- 
netic operator Q is a local insertion of a ghost field with infinite coefficient. 
We explain how such kinetic term could arise from less singular choices via 
reparametrizations that map much of the string to its midpoint. With this 
choice of kinetic term, the gauge symmetry is enlarged as compared with 
that of usual open string field theory. Finally we explain the sense in which 
Q is not an inner derivation, but can be viewed as the limit element of a set 
of derivations that are inner. 

2.1     Ghost kinetic operator and gauge structure 

The conjectured action for vacuum string field theory is given by [8]: 

S = -/.o [^(*, G*> + ^, * * *)] , (2.1) 

where «o is an overall normalization constant, Q is an operator made purely 
of the ghost world-sheet fields, |\I/) is the string field represented by a ghost 
number one state in the matter-ghost BCFT, and (A, B) = (A\B) de- 
notes the BPZ inner product of the states \A) and \B). If Q is nilpo- 
tent, is a derivation of the *-algebra, and satisfies the hermiticity condition 
(QA\B) = —(—1)A(A\Q\B), then this action is invariant under the gauge 
transformation; 

<$|tf) = Q|A) + |tf*A)-|A*#). (2.2) 
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Although the constant KQ can be absorbed into a rescaling of \I/, this changes 
the normalization of Q. We shall instead choose a convenient normalization 
of Q and keep the constant KQ in the action as in eq.(2.1). 

A class of kinetic operators Q satisfying the required constraints for gauge 
invariance was constructed in [4]. They have the form: 

oo 

Q = 5]unC2n, (2.3) 

where the u^s are constants, and, 

Cn   =   cn + (-l)nc-n    n^O, 

Co   =   co. (2.4) 

We propose the following form of Q as a consistent and canonical choice 
of kinetic operator of VSFT: 

1 1 ^ 
Q   =    _(cW_c(z)) = -(c(i)-CH))^^(-irC2n, 

71=0 

=     Co - (C2 + C-2) + (C4 + C_4) • (2.5) 

With this choice of Q, the overall normalization KQ will turn out to be 
infinite, but we shall discuss a specific method for regularizing this infinity. 
In writing the expression for Q we are using the standard procedure of using 
the double cover of the open string world-sheet, with anti-holomorphic fields 
in the upper half plane being identified to the holomorphic fields in the lower 
half plane. 

It is instructive to discuss in which sense the cohomology of Q so defined 
vanishes. In fact, the equation Q\^) = 0 has no solutions if |*) is a Fock 
space state. This is clear since any state built from finite linear combina- 
tions of monomials involving finite number of oscillators must have bounded 
level, while Q involves oscillators of all levels, including therefore infinitely 
many oscillators that do not annihilate the state |\I/). Therefore, there is 
no standard Fock-space open string cohomology simply because there are 
no Q closed states in the Fock space. Suppose on the other hand that a 
more general state \x) is annihilated by Q. Then, given that Q contains CQ 

with unit coefficient, we have that \x) = {Q,M|x) = 2(&olx))- Tw0 things 
should be noted: \x) also has a local insertion at the string midpoint, and, it 
appears to be always Q trivial. The only subtlety here is that (601x)) could 
be infinite in which case the triviality of \x) is questionable.   In fact, this 
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possibility arises for the case of gauge invariant operators related to closed 
strings, as will be discussed in section 7. 

As discussed in earlier papers, field redefinitions relate many of the ki- 
netic terms of the form (2.3). Typically these field redefinitions are in- 
duced by world-sheet reparametrization symmetries which are symmetric 
around the string mid-point, and leaves the mid-point invariant. Such a 
reparametrization z -» /(^), while acting on the kinetic operator of the 
form (2.5), will transform Q to {2i)-l{{f{i))'lc{i) - (ff{-i))-lc(~i)). This 
leaves Q invariant if ff(i) = 1. Thus we see that the kinetic operator Q 
is actually invariant under a complex codimension 1 subgroup of the group 
generated by the Kn transformations. 

The choice of kinetic term is special enough that the action defined by 
(2.1) and (2.5), generally invariant only under the gauge transformations 
in(2.2), is in fact invariant under two separate sets of gauge invariances: 

W = Q|A>, (2.6) 

and 

6\V) = |tf *A)-|A*tf). (2.7) 

In fact, the quadratic and the cubic terms in the action are separately invari- 
ant under each of these gauge transformations. These follow from the usual 
associativity of the *-product, nilpotence of Q, and the additional relation: 

(QA,B*C)=0, (2.8) 

which holds generally for arbitrary Fock space states A^B and C (other 
orderings, such as (^4, QB * C) and (A, B * QC) also vanish). This relation 
in turn follows from the fact that Q involves operators c, c of dimension —1 
inserted at i. As a result: 

(QA, B*C) = (f1o (QA(0))f2 o B(0)fz o C(0)) (2.9) 

vanishes since the conformal transformation of Q gives a factor of (/{(z))-1, 
and f[(i) is infinite.3 (f^s are the standard conformal maps appearing in 
the definition of the *-product and have been defined below eq.(4.11)). The 
symmetry of the action under the homogeneous transformation (2.7) is in 
accordance with the conjecture that at the tachyon vacuum many broken 
symmetries should be restored[40, 38]. 

3For more general states, such as surface states or squeezed states the inner product 
(2.9) might be nonvanishing. For example, note that (2.8) does not imply that (^4, QB) = 0 
as might be suggested by the identity (^4, QB) = {Z,A* QB). This latter expression does 
not vanish since the identity string field is not a Fock space state. We cannot therefore 
assume that A * QB can be set to zero even for Fock space states A and B. 
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2.2    Possible origin of a singular Q 

While the VSFT action described here is singular, the original OSFT action 
is non-singular. In this subsection we shall attempt to understand how a 
singular action of the type we have proposed could arise from OSFT. 

In order to compare VSFT with OSFT, it is more convenient to make a 
rescaling \$) — (s^o)-1/3!^) to express the action as: 

S = -h &*>-G*> + ^*. * * *>1 . (2-10) 
9o LZ ^ ■J 

where 

Q = (5o«o)1/3Q. (2.11) 

Here g0 is the open string coupling constant. OSFT expanded around the 
tachyon vacuum solution |$o) has the same form except that Q is replaced 
by the operator Q\ 

Q\A) = QB\A) + |*o * A) - (-l)A\A * *o> ■ (2.12) 

Since ^o is infinite, so is Q. On the other hand, since the classical solution 
|$o) describing the tachyon vacuum in OSFT is perfectly regular, we expect 
Q to be regular. Thus one could ask how a singular Q of the kind we 
are proposing could arise. Clearly for this to happen the OSFT and the 
VSFT variables must be related by a singular field redefinition. We shall 
now provide an example of such field redefinition which not only explains 
how the coefficient of the kinetic term could be infinite, but also provides 
a mechanism by which ghost kinetic operator proportional to c(i) — c(—i) 
could arise. 

Let us begin with a Q of the form: 

Q = Y^     daar(a)Or(a), (2.13) 
r    J 

where ar are smooth functions of a and Or are local operators of ghost 
number 1, constructed from products of 6, c, and matter stress tensor. The 
above expression is written on the double cover of the strip so that a runs 
from -TT to TT and we only have holomorphic fields. Since ar are finite 
such a Q might be obtained from OSFT by a non-singular field redefinition. 
Given this Q, we can generate other equivalent Q by reparametrization of 
the open string coordinate a to /(a) such that /(TT - a) = TT - f(a) for 
0 < cr < TT and f(-a-ir) = -TT-f(a) for -TT < a < 0. Such reparametriza- 
tions do not change the structure of the cubic term but changes the kinetic 
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term. If Or corresponds to a primary field of dimension /ir, then under this 
reparametrization Q transforms to: 

E jdaar{<,)(l'(a))>"OrUW)). (2.14) 

Consider now a reparametrization such that f,(±ir/2) is small and in particu- 
lar / dG{fl{a))~l gets a large contribution from the region around a = ±7r/2. 
Let us for example take /'(cr) ~ (a =F |)2 + e2 for a ~ ±71-/2.4 In this case 
the dominant contribution to eq.(2.14) will come from the lowest dimen- 
sional operator c as long as the corresponding ar does not vanish at ±7r/2, 
and the transformed Q will be proportional to 

-(c(7r/2)+c(-7r/2)). (2.15) 

The relative coefficient between c(7r/2) and c(—7r/2) has been fixed by re- 
quiring twist invariance. In the upper half plane coordinates (z = eT"fzcr) 
this is proportional to e~l(c(i) — c(—i)), — precisely the kinetic term of our 
choice. Thus this analysis not only shows how a divergent coefficient could 
appear in front of the kinetic term, but also explains how such singular field 
redefinition could give rise to the pure ghost kinetic term even if the original 
Q contained matter operators. 

If Or is not a primary operator, then its transformation properties un- 
der a reparametrization is more complicated. Nevertheless, given any such 
operator containing a product of matter and ghost pieces, the dominant 
contribution to its transform under a singular reparametrization of the form 
described above will come from the lowest dimensional operator, i.e. c or c, 
unless the coefficients of these terms cancel between various pieces (which 
will happen, for example, if the operator is a (total) Virasoro descendant of 
a primary other than c, e.g. the BRST current). 

To summarize, according to the above scenario the singular Q of VSFT 
given in eq.(2.11), (2.5) is a singular member of an equivalence class of Q's 
whose generic member is non-singular and is made of matter and ghost op- 
erators. The singular pure ghost representative is useful for certain compu- 
tations e.g. ratios of tensions of D-branes, construction of multiple D-brane 
solutions etc., whereas the use of a regular member may be necessary for 
other computations e.g. overall normalization of the D-brane tension, closed 
string amplitudes etc. 

Singular reparametrizations of the kind discussed above could also ex- 
plain the appearance of a sliver or other projectors as classical solutions 

4 Another special case of this would be a choice of f(cr) where a finite region around the 
mid-point is squeezed to an infinitesimal region. 
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of VSFT. As an example we shall illustrate how an appropriate singu- 
lar reparametrization could take any finite |m) wedge state to the sliver. 
Prom refs.[21, 7] we know that the wave-functional of a wedge state |ra) 
can be represented as a result of functional integration on a wedge of an- 
gle am — 27r(m — 1) in a complex {w) plane, bounded by the radial lines 
w — pezf and w — pe^f+27r(m~1)). We put open string boundary condition 
on the arc, and identify the lines w = pe1^ and w = pe1^ +27r(m-1)) as the 
left and the right halves of the string respectively. In particular if a denotes 
the coordinate on the open string with 0 < a < TT, then the line w = pel * is 
parametrized as: 

w= l + iel<J =ttan(^-^)>        for    0 < a < J . (2.16) 
1 - ie%<T 4      2J' -     - 2 v       J 

From the above description it is clear that we can go from an wedge state 
|ra) to an wedge state |n) via a reparametrization: 

(u?/i) = (w/iy,        7 = ^L = ^i. (2.17) 

In terms of a, this corresponds to the transformation: 

tan(^ - £) = Utf{j - |) • (2.18) 

In order to get the sliver, we need to take the n -> oo limit. In this limit 
7 -> oo. Since for 0 < a < 7r/2, | tan(7r/4 — cr/2)| < 1, we see that as 7 —> 00 
any a in the range 0 < a < 7r/2 gets mapped to the point cr' = 7r/2. This 
corresponds to squeezing the whole string into the mid-point. This shows 
that using such singular reparametrization we can transform any wedge state 
\m) into the sliver, and provides further evidence to the conjecture that 
the VSFT action with pure ghost kinetic term arises from OSFT expanded 
around the tachyon vacuum under such singular reparametrization. 

2.3    Action of Q on the identity state 

Among the constraints for gauge invariance is the derivation property 

Q(A *B) = QA*B + (-1)A A*QB (2.19) 

which must hold. This property indeed holds for each Cn and therefore 
holds for the chosen Q. On the other hand, there was a criterion related to 
the identity string field 1 that distinguished two classes of kinetic operators. 
There are candidate operators for Q which viewed as integrals over the string, 
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have vanishing support at the string midpoint. Those operators annihilate 
the identity and they split into left and right parts, as discussed in [10]. On 
the other hand there are operators, such as CQ, which do not kill the identity.5 

As we will discuss below, our choice of Q, using insertions precisely at the 
midpoint, does not annihilate the identity. In fact, a direct computation 
shows that QI is divergent. However, we will also show that Q can be 
considered as the limit of a sequence such that every member of the sequence 
annihilates the identity state. 

Recall that \I) is defined through the relation: 

(l\(j)) = (h1ocf)(0))D (2.20) 

for any Fock space state |^). Here h o (f)(0) denotes the conformal transform 
of the vertex operator 0(0) by the conformal map /i, ()r) denotes correlation 
function on a unit disk, and the conformal map hjsf for any N is defined as 

Thus (l\c(i)\(/)) = (hi oc(i)hiO(j)(0)) is divergent since hioc(i) — /i/1(i)~
1c(0) 

and hid) vanishes. 

We now define a new operator Qe by making the replacements 

c(i)   -+   ^(e-iec(ieie)+eiec{ie-ie)), 

c(-i)    -+    ^{e-iec(-ieie) + eiec(-ie-ie)^ (2.22) 

in (2.5). In the local coordinate picture where the open string is represented 
by the arc |£| = 1 in the upper £ half-plane, this corresponds to splitting the 
midpoint insertion c(£ = i) into two insertions, one on the left-half and the 
other on the right-half of the string. The splitting is such that for e —>• 0 we 
recover the midpoint insertion, but this time 

(I| (e-iec{ieie) + eiec(ie-i€)^ = 0, (2.23) 

as can be verified using equations (2.20), (2.21) - the point being that by 
the geometry of the identity conformal map the two operators land on the 
same point but with opposite sign factors multiplying them, and thus cancel 
each other out exactly. 

5Siiice they are derivations of the star algebra we believe they should be viewed as outer 
derivations. Indeed, an inner derivation De acts as DtA = e * A — A * e, so it is reasonable 
to demand that all inner derivations annihilate the identity string field. Not being inner, 
Co would have to be outer. 



D. GAIOTTO, ET. AL. 417 

The replacements (2.22) in (2.5) lead to the operator Qe: 

Qe   =    1 fe-iec(ieie) + eiec(ie-ie) - e-iec(-iei£) - ei£c(-ie-ie)) 

oo 

=    J](-irC2ncos(2n6). (2.24) 

Because of (2.23), and an analogous result for the split version of c(—i), 
the operator Qe defined above annihilates the identity \T) for every e ^ 0. 
In addition, being a superposition of the anti-commuting derivations Cn, it 
squares to zero, and is a derivation. It also has the expected BPZ property 

((2eA,B) = -(-)A(A,QeB). (2.25) 

Therefore, Qe satisfies all the conditions for gauge invariance. 

Since Qe approaches the Q defined in (2.5) as e -> 0, we could define 

Q = lim Qe. (2.26) 
e->0 

Defined in this way, Q annihilates the identity. Acting on Fock space states, 
such care is not necessary, and we can simply use (2.5), but in general the 
definition (2.26) is useful. 

We can express the action of Qe on a state \A) as an inner derivation: 

Q€\A) = \Se*A)-(-l)A\A*Se), (2.27) 

where 

\Se) - 1 (e-^ciien - e^c(-ie-n) \1). (2.28) 

However note that \S€) diverges in the e -> 0 limit since (5C|0) for any Fock 
space state |$) involves (/^(ie*6))"1, which diverges as e —> 0. Thus while 
the Qe operators may be viewed as inner derivations for e ^ 0, it does not 
follow that Q can also be viewed as an inner derivation. 

3    Algebraic Analysis of the Classical Equations 

In this section we reconsider the algebraic analysis of the classical equations 
of motion of VSFT in the Siegel gauge carried out in refs.[14, 22]. The main 
result of the analysis of [14] is an expression for the coefficients un defining Q 
(see (2.3)) in terms of infinite matrices of Neumann coefficients in the ghost 
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sector of the three string vertex. We shall summarize briefly their results 
and evaluate numerically the coefficients un, finding striking evidence that 
the Q that emerges is indeed that in (2.5). 

As usual we begin by looking for a factorized solution: 

tt = ^®tfm, (3.1) 

with tyg and \I/m denoting ghost and matter pieces respectively, and satisfy- 
ing: 

|*m) = |*m *m *m> , (3.2) 

and 

g|ttff> + |tt9**tt9> = 0. (3.3) 

If we start with a general class of kinetic operators of the form (2.3) with UQ 

normalized to one, and make the Siegel gauge choice 

&o|tt)=0, (3.4) 

then the equation of motion (3.3) takes the form 

\*g)+bo\*g**g)=0. (3.5) 

Note that these contain only part of the equations (3.3) which are obtained 
by varying the action with respect to fields satisfying the Siegel gauge con- 
dition. The full set of equations will be used later for determining Q. 

The solution for |$m) can be taken to be any of the solutions discussed 
in [6, 7, 8, 9]. The solution for |^) is given as follows. Denote the ghost 
part of the 3-string vertex as:6 

3 3 

I^)i23 =exp(^     J2     ^^Lt)lI(4r)cSr))|0)(1)®|0)(2)®|0)(3), 
r=l 

(3.6) 

(r)      (r) 
where c^ , &n   are the ghost oscillators associated with the r-th string and 
|0)(r) denotes the SL(2,R) invariant ghost vacuum of the r-th string.  The 

The coefficients V^ are related the ghost Neumann functions N^n introduced in 
ref.[29]asKr^ = -niV^n. 
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matrices V™n have cyclic symmetry V™n = Vmt1^1 as usual.   We now 
define: 

(Vo)mn = Vmni \V±)mn = Vrrin     ? Cmn = ( — 1)    Omn? 

(5b)m = KS,        (£±)m = V^1,        for    l<m,n<oo, 
(3.7) 

Mo = Cyo,        M± = CF±, (3.8) 

and, 

f = -if 1 + Mo - J(l - Mo)(l + 3Mo)),        5 = CT. (3.9) 
2Mov ^^ 

The solution to eq.(3.5) is then given by: 

|*s) = Mg exp(  Ys   O-nSnmb-rr) Ci|0) , (3.10) 
n,7?2>l 

for some appropriate normalization constant Mg.  Given the solution |\I/p), 
one can explicitly construct \^g *9 tyg). It was shown in ref.[14] that 

|*, ^ Vg) = -(co + Y, UnCn)\*9), (3.11) 
n>l 

where the vector u = {ui,U2: •.. } is given by: 

ti   =    (l-T)-^ VQ 

+,M+, ff.,,1 - M0,-.,l + T,- f Z ™»    i f f_ ) f (^ ] .,3,2) 

This expression was simplified in refs.[15, 18], but we use eq.(3.12) for our 
analysis. Using eqs.(3.3) and (3.11) we see that Q can be identified as: 

Q = co + ^2unCn. (3.13) 
n>l 

The coefficients V^ and hence the matrices Mo, M±, T and the vectors 
So, Slj. can be calculated using the results of [29]. In turn, this can be used 
to calculate un from eq.(3.12). For odd n, un vanishes by twist symmetry. 
The numerical results for u^s for even n at different levels of approximation, 
and the values extrapolated to infinite level using a fit, have been shown in 
table 1. The results are clearly consistent with i^n = (—l)n and hence the 
choice of Q given in (2.5). 
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L /2 h /6 ^8 /io 

40 -0.87392 . 0.830099 -0.803468 0.784561 -0.770184 

80 -0.881488 0.840223 -0.814839 0.796433 -0.781999 

160 -0.888335 0.849592 -0.825743 0.808389 -0.7947 

240 -0.892017 0.85465 -0.831672 0.814956 -0.801763 

320 -0.894496 0.858053 -0.835666 0.819388 -0.806544 

oo -0.97748 0.96864 -0.961296 0.953502 -0.944372 

Table 1: Numerical results for ^ at different level approximation. The last 
row shows the interpolation of the various results to L = oo, obtained via a 
fitting function of the form ao + ai/ ln(L) + a2/(ln(Iv))2 + a3/(ln(L))3. 

4    BCFT Analysis of Classical Equations of Motion 

In this section we shall discuss a method of solving the equations of motion 
(3.3) using the techniques of boundary conformal field theory. As a first step 
we introduce a twisted version of the ghost CFT where the ghost field c(z) 
is of dimension zero. We also establish a one to one map between the states 
of the twisted and untwisted theory. We then study the star product in the 
twisted theory and relate it to that in the untwisted theory. The upshot 
of this analysis is that with our Q the ghost part of the standard string 
field equations is solved by the state representing the sliver of the twisted 
ghost CFT. We conclude with a direct CFT construction of the Fock space 
representation of this twisted sliver and find that it compares well with the 
algebraic construction of the solution [14]. 

4.1    Twisted Ghost Conformal Theory 

We introduce a new conformal field theory CFT' by changing the energy 
momentum tensor on the strip as 

T'(w) = T(w) - djg(w),        f'(w) = f(w) - djg(w), (4.1) 

where T, T denote the energy momentum tensor in the original matter- 
ghost system, T', Tf denote the energy momentum tensor of new theory, 
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and jg = cb, jg = cb are the ghost number currents in the original theory. 
The ghost operators in the new theory, labeled as 6', c', 6', and c', to avoid 
confusion, have spins (1,0), (0,0), (0,1) and (0,0) respectively, and satisfy the 
usual boundary condition bf = &', cf = c' on the real axis. A few important 
facts about the 6', cf system are given below: 

• The first order system (6', c') has a central charge of minus two. 

• Since cf has dimension zero, the SL(2,R) vacuum 10') of this system, 
defined as usual in the complex plane, satisfies 

<>i|0') = 0. (4.2) 

• The Virasoro operators from T' commute with bo- 

The mode expansions of T, T" and jg on the cylinder with coordinate w = T+ 

ia (obtained from the double cover of the strip, identifying the holomorphic 
fields at (r, a) with anti-holomorphic fields at (r, —a) for — TT < a < 0) are 
given by: 

TM = ]r>ne-™ -£,    T'H = XXe-™ - ^,    jg(w) = ^jne-™, 
n n n 

(4.3) 

where c = 0 is the total central charge of the original theory and d = 24 is 
the total central charge of the auxiliary ghost-matter theory. It follows from 
(4.1) and (4.3) that 

L'n = Ln + njn + 6n)o • (4.4) 

In the path integral description the euclidean world-sheet actions S and Sf 

of the two theories are related as: 

S' = S+-^ jd2£,SyRM{ip + v), (4.5) 

where £ denotes the world-sheet coordinates, 7 denotes the Euclidean world- 
sheet metric, R^ is the scalar curvature computed from the metric 7 and <p, 
(p are the bosonized ghost fields related to the anti-commuting ghost fields 
as follows: 

c - a**,     c ~ e^,     b ~ e"^,     b ~ e"^ , (4.6) 

and 

c'-e^,    c'-e^,     b'ne-w,    V ~ e~i(p. (4.7) 
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It should be noted that on general world-sheets the ip field has different dy- 
namics in the two theories. On the strip, however, the world-sheet curvature 
vanishes and we have S = 5'. The (p fields in the two theories can be iden- 
tified, and hence the above equations allow an identification of states in the 
two theories by the following map between the oscillators and the vacuum 
states of the two theories: 

bn ** b'n,        cn <* 4,        ci|0) <-> 10') (0|c-i ^ (O'l, (4.8) 

where |0) and I07) denote the SL(2,R) invariant vacua in the original theory 
and the auxiliary theory respectively. The last two relations follows from 
the oscillator identification and (4.2). We thus see that the zero momentum 
tachyon in the original theory is the SL(2,R) vacuum of CFT7. The two 
vacua are normalized as 

(0|c-iCoc1|0> = (0/|c{l|0
/> = ^26), (4.9) 

where V^ denotes the volume of the 26-dimensional space-time. We shall 
denote by (• • •) and (• • •)' the expectation values of a set of operators in |0) 
and 10') respectively. Also given a state \A) we shall denote by A and A' 
the vertex operators of the state in the two theories in the upper half plane 
coordinates. Thus: 

\A)=A{0)\0)=A'(0)\0,). (4.10) 

Finally we note that BPZ conjugation in the twisted theory, obtained by the 
map 10') -> (0'|, cn -> (-l)nc_n, and bn -> (-l)n"f"16_n, can be shown to 
give a state identical to the one obtained by BPZ conjugation in the original 
theory, given by |0) -* (0|, cn -> (-l)

n+1c_n, and bn -> (-l^b-n. Thus we 
do not need to use separate symbols for the BPZ inner product in the two 
theories. 

4.2    Relating Star Products and the analytic solution 

Next we would like to find the relationship between the star-products in the 
two theories. We shall denote by * and *' the star products in the original 
and the auxiliary theory respectively. Thus: 

(A\B*0   =   (A°A(0)f2oB(0)f3oC(0)), 

{A\B*'C}   =   (fioA'(0)f2oB'(0)f3oC,(0)y, (4.11) 

where we have fi(z) = /ijHM*)), /2W = fcjV'^M*)), and Mz) = 
/i2

1(e4iri/3/i3(z)), with /IJV(Z) defined as in eq.(2.21), are the standard con- 
formal maps used in the definition of the * product.  The simplest way to 
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relate these two star products is to use the path integral prescription for 
(A\B * C) and (A\B *' C) given in [1]. In this description the star product is 
a result of path integral over a two dimensional surface in which three strips, 
each of of width TT and infinitesimal length e, representing the external open 
strings, are joined together such that the second half of the r-th string co- 
incides with the first half of the (r -I- l)-th string, for 1 < r < 3, with the 
identification r = r + 3. The result is a flat world-sheet with a single defect 
at the common mid-point of the three strings where we have a deficit angle 
of —TT. Thus for this geometry J cP^y/^R^ gets a contribution of —TT from 
the mid-point, and S and Sf are related as: 

S, = S-^(V(M) + (p(M)) (4.12) 

where M denotes the location of the midpoint. Since the action appears in 
the path integral through the combination e~s

: we have 

</i o A(0)f2 o B(0)h o 0(0)) = Ko(h o A'(0)f2 o B'(0)h ° C(0)a+'(M)*-'(M))' 
(4.13) 

where KQ is an overall finite normalization constant, 

and M = fi(i) = /2(i) = fo{i)- The primes on a^ denote that these 
are operators in the auxiliary b'^d system. These operators have confermal 
weights (-1/8,0) and (0,-1/8) respectively. We have explicitly verified 
eq.(4.13) using specific choices of the states \A), |2?), \C). Since in the local 
coordinate system the mid-point of the string is at i, we can write 

h o A,(0)a+f(M)a',(M) = Jim \f[(i + e^h o (A'(0)a+'(i + e)a-'(i + e)). 

(4.15) 

This, together with (4.11) and (4.13), and the relation lo (a-+/(z + e)a~,(i + 
e)) ~ a+/(i - e)a~r(i — e) for I(z) — -l/z gives 

|J5*C>    =    \imKQ\f[{i + e)\llAa^\i-e)a~\i-e)\B^C), 

a   a^{i-e)G-'{i~e)\B^C), (4.16) 

where the constant of proportionality is infinite since /t'(i + e) ~ e-1/3 di- 
verges as e -> 0. However at this stage we are analyzing the solution only 
up to a (possible infinite) scale factor, and so we shall not worry about this 
normalization. 

The equations of motion 

Q|*) + |***)=0, (4.17) 
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can now be written as: 

Q|*> oc -a+,{i - e)a-'{i - e)|* *' *). (4.18) 

We shall show that for the choice of Q given in (2.5), eq.(4.18) is satisfied by 
a multiple of H' where 3' is the sliver of the auxiliary ghost - matter system, 
satisfying 

(3,|^) = (/o^(0))', (4.19) 

for any Fock space state |</>). Here /(^) = tan-1 £. For this we first need to 
know what form the operator Q takes in the auxiliary ghost-matter theory. 
We use 

Q    =    C0 + 5>-:L)n(C2n + C-2n) 
n>l 

=   e^ + ^-lHc^ + ^an) 
n>l 

=   c!(i) + c!(-i), (4.20) 

where the argument of cf(±i) in the last two expressions refer to the coordi- 
nates on the upper half plane. If we now take the inner product of eq.(4.18) 
with a Fock space state (01, then for the choice |\I>) oc |S'), the left hand side 
is proportional to: 

(/ o (/(OHc'W + c,H)))), - (/ o ^'(0) (c/(too) + c'Hoo)))'.     (4.21) 

Note that since c has dimension zero in the auxiliary BCFT, there is no 
conformal factor in its transformation. On the other hand, since SVS' = 3', 
and f{i + e) ~ — | Ine = zr/, the right hand side is proportional to 

(/ o (V(0)a+,(z + e))a-f(i + e)))'    oc    (/ o 0,(O)a+,(^r?)a-,(^r7))
, 

oc    (/o0,(O)a+,(ir?)a
+,(-^7?))^ 

(4.22) 

where in the last expression we have used the Neumann boundary condition 
on (p to relate cr'',(irj) to cr+/(-iry). Thus we need to show that (4.21) and 
(4.22) are equal up to an overall normalization factor independent of ((f)\. 
This is seen as follows. Since both correlators are being evaluated on the 
upper half plane, the points ±ioo correspond to the same points.7 Thus 
on the right hand side of eq.(4.21) we can replace c'^oo) + cf(—ioo) by 

7This can be made manifest by making an SL(2,R) transformation that brings the point 
at oo to a finite point on the real axis. 



D. GAIOTTO, ET. AL. 425 

2c/(ioo). On the other hand on the right hand side of (4.22) we can replace 
a+,(iri)(7+,(—iri) by the leading term in the operator product expansion of 
cr4"' with cr+/, i.e. cf(ioo). As a result both (4.21) and (4.22) are proportional 
to {fo<l>'(0)c!(ioo)y. 

At this point we would like to note that a different kind of star product 
has been analyzed in works by Kishimoto [15] and Okuyama [20] which helps 
in solving the Siegel gauge equations of motion in the oscillator formalism. 
It will be interesting to examine the relation between the *' product and the 
product discussed by these authors. 

4.3    The twisted sliver state from CFT and a comparison 

Since in the arguments above we have ignored various infinite normalization 
factors, the result may seem formal. In this subsection, therefore, we verify 
explicitly that the solution H' obtained this way agrees with the solution 
obtained in refs.[22, 14] by algebraic method. This has an added advantage. 
The geometrical construction of H' given below expresses the Neumann co- 
efficients in terms of simple contour integrals that can be evaluated exactly 
for arbitrary level. On the other hand the algebraic solution, as usual, in- 
volves inverses and square roots of infinite matrices, and therefore can only 
be evaluated approximately using level expansion. 

This is done as follows.  Writing 3' = Eg ® Sm, we have for the ghost 
part: 

(-^A/^O'lexp^   J^   CnSnmbm) (4.23) 
n,m>l 

where Afg is a normalization factor. The BPZ dual ket is 

\E'g) = Mg exp( Y, c-nSnmb^ |0'),        Snm = (-l)n+mSnm .    (4.24) 
7i,m>l 

The calculation of the matrix elements S (or S) is done using the a small 
variant of the CFT methods in [30]. The idea is to evaluate 

h{z,w) = {Qf\e^[-   Yl   Cn5nmfom)cH6(2:)co|0,) (4.25) 
n,ra>l 

in two different ways.   In the first one we expand using c(w) = J2pc-pwP 
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and b(z) = Y^q b-qz
q~l and find 

n,m u u 

(4.26) 

In the second evaluation of (4.25) the right hand side is viewed as a correlator 

h{z,w)   =   (foc'(w)fob'(z)foc,(0)y 

=    (c/(/MW(*))^c'(/(0))y 
df(z) 1 /M-/(0) (      . 

dz   f(w)-f(z) f(z)-f(0)' K •    > 

where the function /(^) denotes the insertion map associated with the geom- 
etry of the surface state, and the derivative ^ arises because b has conformal 
dimension one. The general result now follows from comparison of (4.26) and 
(4.27) together with (4.24) 

?       _ /■   1 xn+m /   ^    1      I* dw       1       df{z) 1 f (w) - /(0) 

^m     [   ij        %2mz-%2mwm^   dz    f(z)-f(w)f(z)-f(p)\ 
(4.28) 

This is the general expression for the Neumann coefficients of a once punc- 
tured disk in the twisted ghost CFT. For our particular case, the twisted 
sliver is defined by f(z) = tan~1(^) and the Neumann coefficients vanish 
unless n + m is even. Therefore we find: 

■'nm J   2m zn J 
dw     1 1 1 tan 1(^) 
2m wm+l 1 + z2 (tan"1 (z) - tan"1^)) tan"1^) " 

o o 
(4.29) 

The first few coefficients are 

Sn = -l = -0.33333,    ^31 = -^ ^ 0.26667,    822 = ^7 = 0.06667, 
3 15 15 

S51 = - YJ| = -0.23280,    533 = -^ = -0.08783, 

- 64 
542 = - ^7- = -0.067724. (4.30) 

945 

Since 10') = ci|0), we see that |^) defined in eq.(3.10) and |H^) describe 

the same state if the matrices Smri defined in eq.(3.9) and 5mn defined in 
eq.(4.29) are the same. The numerical results for SVnn are given in table 2, 
and can be seen to be in good agreement with Smn given in eq.(4.30). 
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L Sn Szi $22 55i 533 542 

100 -0.31526 0.248339 0.066288 -0.21432 -0.081680 -0.067263 

150 -0.316448 0.249482 0.066269 -0.21543 -0.082030 -0.067220 

200 -0.317244 0.250270 0.066271 -0.21621 -0.082281 -0.067215 

250 -0.31783 0.250862 0.066279 -0.21680 -0.082473 -0.067220 

oo -0.33068 0.26345 0.067965 -0.22916 -0.08642 -0.06698 

Table 2: Numerical results for Snrn at different level approximation. The 
last row shows the interpolation of the various results to L = oo, obtained 
via a fitting function of the form ao + ai/ln(L). 

5    Regularizing the VSFT action 

As pointed out already in section 2, in order to get a D-25-brane solution 
of finite energy density, we need to take the overall multiplicative factor KQ 

appearing in eq.(2.1) to be infinite. We shall now discuss a precise way of 
regularizing the theory so that for any fixed value of the regulator a1 the value 
of ^0(^)5 needed to reproduce the D-25-brane tension correctly, is finite. The 
action (2.1) is then recovered by taking the a -* 00 limit. Presumably this 
regularization captures some of the physics of the correct regularization pro- 
cedure coming from the the use of nearly singular reparametrization instead 
of the singular reparametrization discussed in section 2.2. 

5.1     The proposal for regulated gauge fixed VSFT 

The regularization is done by first fixing the Siegel gauge bo|\I/) = 0. In this 
way, the kinetic operator in (2.1), with Q given in (2.5), becomes CQ. We 
then replace this gauge fixed kinetic operator by co(l + a^Lo). The result 
is the regulated action Sa given by: 

5a -Ko(a) [-<#,co(l + a-1^)*) + -(*,***> (5.1) 

The gauge fixed unregulated VSFT is recovered in the a -> 00 limit. 

Although the parameter a has been introduced as a regulator, the Feyn- 
man rules derived from the regulated action (5.1) have some close resemb- 
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lence to boundary string field theory (BSFT) rules [25] in the presence of a 
constant tachyon background. To see this, let us note that the propagator 
computed from this action is proportional to: 

bJL-=hordle-KL0+a) (52) 

7o 
=   hn     I 

LQ + a 

This is similar to the propagator in OSFT except for the factor of e~la in the 
integrand. The three string vertex computed from the action (5.1) is also 
proportional to the three string vertex of OSFT. Thus when we compute the 
Feynman amplitudes using these Feynman rules, we shall get an expression 
similar to that in OSFT except for an additional factor of exp(—aY^ik), 
where the sum over i is taken over all the propagators in the Feynman dia- 
grams. Now in OSFT a Feynman diagram can be interpreted as correlation 
function on a Riemann surface obtained by gluing strips of length li using 
the three string overlap vertices. Since each strip of length k contributes 2li 
to the total length of the boundary in the Feynman diagram, we see that 
a factor of e~aSi^ can aiso be interpreted as e~aB/2, where B is the total 
length of the boundary of the Riemann surface associated with the Feyn- 
man diagram. This is reminiscent of the term a f d6 representing constant 
tachyon perturbation in the boundary string field theory, with 6 denoting 
the coordinate on the boundary. We should, however, keep in mind that the 
world-sheet metric used in defining constant tachyon background in bound- 
ary SFT is different from the world-sheet metric that appears naturally in 
the Feynman digrams of OSFT, and so we cannot directly relate the tachyon 
of boundary SFT to the parameter a appearing here. Presumably the a —> oo 
limit corresponds to the same configuration in both descriptions. 

5.2    Level truncation analysis 

To test the consistency of our regulation scheme, we now perform a numerical 
analysis using the level truncation approximation. We must find that for any 
fixed value of the regulator a, computations with the regulated action (5.1) 
have a well-defined finite limit as the level of approximation L is sent to 
infinity. We define in the standard way the level approximation (L, 2L) by 
truncating the string field up to level L (level is defined as L = LQ + 1) 
and keeping the terms in the action which have a total level of 2L. For 
a fixed value of a, and a given level of approximation (L,2L), we look for 
translationally invariant solutions \I/£ in Siegel gauge corresponding to D-25 
brane. 

The energy density of the D-25-brane solution in the regulated theory at 
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level (L, 2L) approximation can be expressed as: 

£a{L) ^M(^, (co + a-1^)^) = KQ{a)f{a,L), (5.3) 

where f(a,L) can be computed numerically. It indeed turns out that for a 
fixed a, as the level of approximation L becomes larger than a, the function 
/(a, L) approaches a finite value i^a). This is best seen from Fig.l, where we 
have displayed the plot of a3/(a, L) vs. a for different levels of approximation 
L. Thus for a fixed a, we get the energy density of the D-25-brane solution 
to be: 

£a = K^{a)F{a), (5.4) 

We can now take the a -> oo limit keeping KQ(a)F(a) to be fixed at the 
D-25-brane tension 725- In other words we choose the overall normalization 
of the action as 

«o(a) = 
T25 

F(a) 
(5.5) 

This gives a precise way of defining the vacuum string field theory using level 
truncation scheme. 

If we go back to the analog of the ^ variables by defining 

M> = Ma)s0
2)-1/3£ 

then the action takes the form: 

where 

9o ll " 

1/3 

(5.6) 

(5.7) 

1/3 

Qa   =    (^o(a))1/3(co + a-1coLo)=(|^)     * + (^j)     <^o. 

(5.8) 

The data in Fig.l suggests that a3F(a) grows linearly, i.e. F(a) ~ 1/a2 for 
large a. Hence, in the a -> 00 limit, the coefficient of CQ diverges, and that 
of CQLQ vanishes. 

We now examine the form of the D-25 brane solution.   The solutions 
$2 are string fields belonging to the universal ghost number one subspace 
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U(a, L) L = 4 L = 6 L = % L = 10 L = 12 L = 00 

a = 2.0 -.0812 -.0834 -.0846 -.0855 -.0861 -0.0904 

o = 2.5 -.1121 -.1164 -.1191 -.1210 -.1224 -0.1315 

a = 3.0 -.1372 -.1436 -.1478 -.1508 -.1530 -0.1673 

a = 3.5 -.1576 -.1660 -.1715 -.1754 -.1785 -0.1994 

a = 4.0 -.1744 -.1845 -.1911 -.1959 -.1996 -0.2251 

a = 4.5 -.1884 -.1999 -.2075 -.2130 -.2173 -0.2468 

a = 5.0 -.2002 -.2130 -.2214 -.2275 -.2323 -0.2656 

Table 3: Sample numerical results for the coeificient [/(a, L) at different level 
approximation (L, 2L) for different values of a. 

V{a,L) Z = 4 L = 6 £ = 8 L = 10 £ = 12 L = 00 

a = 2.0 -.1440 -.1440 -.1438 -.1436 -.1435 -0.1429 

a = 2.5 -.1884 -.1887 -.1886 -.1885 -.1884 -0.1878 

a = 3.0 -.2225 -.2232 -.2234 -.2234 -.2234 -0.2227 

a = 3.5 -.2495 -.2506 -.2510 -.2512 -.2513 -0.2515 

a = 4.0 -.2712 -.2728 -.2735 -.2738 -.2740 -0.2742 

a = 4.5 -.2892 -.2912 -.2920 -.2925 -.2928 -0.2946 

a = 5.0 -.3043 -.3066 -.3076 -.3082 -.3086 -0.3109 

Table 4: Sample numerical results for the coefficient V(a,L) at different 
level approximation (L, 2L) for different values of a. The last column of 
tables 3 and 4 shows a large L extrapolation obtained with a fit CQ + ci/L + 
C2/L2 + C3/L3. The further large a extrapolation in (5.10) is done with a 
more complete set of data than shown in these tables (all values of a from 2 
to 5 with an increment of 0.1). 
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Figure 1: This figure shows the plot of the function a?f(a,L), computed at 
level (L, 2L) approximation, as a function of a. Starting from the topmost 
graph, the six continuous curves correspond to L = 2, 4, 6, 8, 10 and 12 
respectively. The lowermost dotted curve is an L = oo extrapolation of the 
data obtained with a fit of the form ao + ai/L + 0,2/L2 + 0,3/Ls. 

[3, 21] obtained by acting on the vacuum with ghost oscillators and matter 
Virasoro generators. Up to level 4, 

T(a, L) [   ci |0) + U(a, L)L%ci|0) + F(a, L)c_i |0) (5.9) 

+A(a, L)i:^4ci |0) + B(a, L) (L^2)
2ci |0) + C(a, 1)1™^^ |0) + 

^(a,L)(-3c_3 +6_3C_1c1)|0) + E(a,L)6_2c_2Ci|0) + .. 

Our regulation prescription instructs us to first take the large L limit of *£, 
and then remove the regulator by sending a -> 00. As shown in tables 3 
and 4, up to the overall normalization T(a,L) which has been factored out, 
the coefficients of the solution for a given regulator a are fairly stable as the 
level is increased. Considering data for 2 < a < 5, and L = 2,4,6,8,10,12, 
we first perform a large L extrapolation with a fitting function of the form 
CQ + ci/L + C2/L2 + C3/L3; then we extrapolate to a = 00 with a fit 70 + 
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7i/a + 72/ft2 + 73/a3. This procedure gives 

lim   lim ,?"        ^   ci 10)-0.4564 L^cilO)-0.4901 c_i|0) (5.10) 
ft->oo i,->-oo T(a, L) 

+ 0.0041 L^CilO) + 0.0917 (L^2)
2ci|0) + 0.2037 L!?2c.i|0> 

-0.1131(~3c_3 + 6-3C-i)|0> - 0.00246_2C_2Ci|0) + ... 

While this double extrapolation procedure is the correct general prescription, 
we would like to show that for certain purposes it is possible to work in the 
non-regulated theory, or in other words to commute the limits in (5.10) 
by first removing the regulator sending a —> 00 and then performing level 
truncation in the theory with Q = (c(i) — c(—i))/(2i). In fact, we know that 
the non-regulated theory gives correct results about existence of classical 
D-p brane solutions and the ratios of their tensions [5, 7] so it should be 
the case that the limits in (5.10) can be commuted for this class of physical 
questions. This will obviously be the case if we can show that up to an 
overall normalization, classical solutions are the same regardless of the order 
of limits, 

lim   lim —^rr=  lim   lim —^— . (5.11) 
a->oo L-+00 T(a, L)       L-*oo a-^oo T(a, L) 

It is easy to perform numerical analysis directly at a — 00 for a given level 
of approximation. Although the energy, being proportional to F(a), goes 
to zero in this limit unless we compensate for it by making n^{a) large, the 
solution approaches a finite limit up to the overall normalization. Numerical 
results are shown in table 5. 

We find: 

lim   lim ——z   &   ci|0) - 0.4603L^2ci|0)- 0.4900c_i|0) (5.12) 
a->oo L-»oo 1 (a, L) 

+ 0.0029 L^cilO) + 0.1049 (L^2)
2ci|0) + 0.2311 L™2c-i|0) 

-0.1258(-3c_3 + 6^3C-i)|0) + 0.00016_2c_2Ci|0) + ... 

This is compatible with (5.10) and (5.11). 

We thus find evidence that classical solutions of VSFT are independent 
of the order of limits, up to an overall normalization factor that needs to be 
adjusted so as to keep the tension fixed. This justifies the analytic treatment 
of the equations of motion based on matter/ghost factorization, which has 
been an important assumption in all studies of VSFT, and which holds only 
in the a -> 00 limit. Moreover, we can study numerically the D-25 brane 
solution in the a —> 00 theory at fixed L, which is much simpler than taking 
the L —> 00 limit first and then taking the a —> 00 limit. 
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U(L) V{L) ML) B{L) C{L) D{L) E{L) 

L = 2 -.2879 -.4576 - - - - 

L = 4 -.3015 -.4357 .0094 .0358 .1082 -.0844 -.0103 

L = 6 -.3394 -.4596 .0080 .0523 .1440 -.0995 -.0037 

^ = 8 -.3631 -.4708 .0072 .0627 .1640 -.1072 -.0019 

L = 10 -.3798 -.4771 .0066 .0700 .1768 -.1114 -.0011 

L = 12 -.3923 -.4811 .0060 .0755 .1858 -.1141 -.0007 

L = oo -.4603 -.4900 .0029 .1049 .2311 -.1258 .0001 

Table 5: Coefficients of the a = oo solution, at different level approximation 
(L,2L) (we use U(oo,L) = U(L), and he same convention for the other 
coefficients). The last row shows an extrapolation to infinite level with a 
fitting function of the form ao + ai/L + 0,2/L2 + 0,3/X3. 

V2 V2 v4 V4 V6 

L = 2 -.2879 -.4576 - - - 

L = 4 -.3364 -.4736 .0056 -.00193 - 

L = Q -.3655 -.4816 .0048 -.00216 -.00111 

L = 8 -.3852 -.4861 .0043 -.00197 -.00080 

L = 10 -.3999 -.4891 .0039 -.00176 -.00065 

L = 12 -.4105 -.4912 .0036 -.00157 -.00056 

L = 00 -.4778 -.5027 .0012 -.00007 -.0002 

Table 6: Coefficients of the a = 00 solution written as an exponential of 
matter and twisted ghost Virasoro operators, at different level approximation 
(L,3L). The last row shows an extrapolation to infinite level with a fitting 
function of the form ao + ai/L + 0,2/L2 + a^/L3. 
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It is illuminating to write the D-25 brane solution in a basis of Fock 
states obtained by acting on the zero-momentum tachyon with the matter 
Virasoro generators L^n and the ghost Virasoro generators Lfn (n > 2) of 
the twisted be system introduced in section 4.8 It turns out that to a very 
good degree of accuracy the solution can be written as 

oo oo 

*a=oo ~ exp(J] V2nL™2n) exp(2 Sfenl^JcilO). (5.13) 
n=l n=l 

This is precisely the form expected for a surface state of the twisted BCFT 
introduced in section 4. The results for the coefficients V2n and S^n at various 
level approximations (L, 3L) are shown in table 6. Extrapolating for L —> oo 
with a fit of the form ao + ai/L + 0*2/L2 + 0,3/L3 we find 

*a=oo    ~   exp(-0.5027L/f2-0.00007L,f4 + ...)ci|0)^ 

® exp(-0.4778L^2 + 0.0012L^4 - 0.0002L?6 + ... )|0)m . 

(5.14) 

We note that although the solution has precisely the form expected for a 
surface state of the auxiliary matter-ghost system, it does not approach 
the twisted sliver S', for which the coefficient of I/_2 is —1/3. This should 
not bother us, however, since we can generate many other surface states 
(related to the sliver by a singular or non-singular reparametrization of the 
string coordinate symmetric about the mid-point) which are all projectors. 
Moreover, at least formally, all rank one projectors are gauge-related in 
VSFT. The numerical result (5.14) strongly suggests that as L -> 00 the 
solution is in fact approaching the remarkably simple state 

\B') ~ exp(-|(L™2 + L'faJdlO), (5.15) 

which we call the (twisted) butterfly state. It is possible to show that the 
state IB') is indeed a projector of the *' algebra and an exact solution of the 
VSFT equations. In the next section we shall come back to this point. 

Let us finally check numerically that the Siegel gauge D-25 brane solution 
obtained in level truncation solves the equation of motion of VSFT with our 
proposed Q. To this end we take the solution ^=00 compute ^a=oo^^a=oo^ 
and try to determine Q = (CQ + ]Cn>i u2n(c2n + c-2n)) up to a constant of 
proportionality using the equation: 

*a=oo * #a=oo <* Q^a=oo - (5.16) 

A simple counting argument along the lines of section 2.2 of [21] shows that all ghost 
number one Siegel gauge string fields that belong to the SU(1,1) singlet subspace [41] can 
be written in this form. 
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U2 U4 Ue Us uw 

L = 2 -.8020 - - - - 

L = 4 -.8672 .7249 - - - 

L = 6 -.9003 .7918 -.6854 - - 

L = 8 -.9201 .8333 -.7451 .6615 - 

L = 10 -.9334 .8627 -.7868 .7138 -.6457 

L = oo -.9969 .9983 -.923 - - 

Table 7: CoefEcients of the BRST operator deduced from the a = oo solution, 
at different level approximations (L, 3jL).The last row shows an extrapolation 
to infinite level with fits of the form ao + ai/L + 0,2/L2 + as/L3 (0,3 = 0 for 
1*4, as = a2 = 0 for UQ). 

The results for the coefficients U2n at various level approximation (L, 3L) are 
shown in table 7 and are indeed consistent with our choice (2.5) for Q. 

6    The Butterfly State 

The level truncation results have led to the discovery of a new simple pro- 
jector, the butterfly state, different from the sliver. There are in fact several 
surface states that can be written in closed form and shown to be projectors 
using a variety of analytic approaches. In this section we briefly state with- 
out proof some of the relevant results. A thorough discussion will appear in 
a separate publication [26]. 

Consider the class of surface states |2?a), defined through: 

<Ba|0) = </aoflO))D (6.1) 

with 

fa(0 = -sin(atan  1^). 
a 

(6.2) 

As a -» 0, we recover the sliver.   For a = 1 we have the butterfly state 
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\B) = |Ba=i), defined by the map 

f1^) = —-L==. (6.3) 

In operator form the butterfly can be written as 

|5> = exp(-^_2)|0). (6.4) 

For any a, these states can be shown to be idempotents of the * algebra, 

\Ba) * \Ba) = \Ba). (6.5) 

Moreover, in analogy with the sliver, the wave-functional of \Ba) factorizes 
into a product of a functional of the left-half of the string and another 
functional of the right half of the string. These states are thus naturally 
thought as rank-one projectors in the half-string formalism [6, 9, 10]. The 
key property that ensures factorization is the singularity of the conformal 
maps at the string midpoint, 

/a(±i) = ±ioo. (6.6) 

It is possible to give a general argument [26] that all sufficiently well-behaved 
conformal maps with this property give rise to split wave-functionals. 

The case a = 1 is special because the wave-functional of the butterfly 
\Ba=i) factors into the product of the vacuum wave-functional of the right 
half-string and the vacuum wave-functional of the left half-string. It is thus 
in a sense the simplest possible projector. It is quite remarkable that the 
same state emerges in VSFT as the numerical solution preferred by the level 
truncation scheme. 

Finally, in complete analogy with the 'twisted' sliver S7, the 'twisted' 
states \Bf

a) solve the VSFT equations of motion with Q = (c(i) — c(—i))/(2i), 

Q\B'a)<x\B'a)*\B'a). (6.7) 

Indeed the proof of section 4 that S' satisfies the VSFT equations of motion 
QE' oc E'xE' only depends on the fact that the map /(£) = tan-1 £ associated 
with the sliver takes the points ±i to ±ioo. As can be seen from (6.6), this 
property is shared by the map fa associated with the state \BQ}. 

7    Gauge invariant operators in OSFT and VSFT 

Since open string field theory on an unstable D-brane has no physical excita- 
tions at the tachyon vacuum, the only possible observables in this theory are 
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correlation functions of gauge invariant operators. A natural set of gauge 
invariant operators in this theory has been constructed in [28] by using the 
open/closed string vertex that emerges from the studies of [27]. In this sec- 
tion we will describe in detail these gauge invariant operators in OSFT and 
show how they give rise to gauge invariant operators in VSFT. It would be 
interesting to analyze the correlation functions of these operators around the 
tachyon vacuum by using OSFT in the level truncation scheme. 

The same gauge invariant operators discussed here have been considered 
independently by Hashimoto and Itzhaki, who examined the gauge invari- 
ance in an explicit oscillator construction, and motivated their role mostly 
in the context of OSFT [39]. 

We shall begin by reviewing the construction of ref.[28] and then we will 
consider the generalization to VSFT. 

7.1    Gauge invariant operators in OSFT 

The original cubic open string field theory [1] describing the dynamics of the 
unstable D-brane, is described by the action: 

5=4 
To 

^(*,QB*>+ !(*,***>' (7.1) 

with gauge invariance: 

8\$) = QBIA) + |$ * A) - |A * $). (7.2) 

Here QB is the BRST charge, g0 is the open string coupling constant, |$) 
is the string field, and |A) is the gauge transformation parameter. In this 
theory there are gauge invariant operators CV(<I>) corresponding to every 
on-shell closed string state represented by the BRST invariant, dimension 
(0,0) vertex operator V = ccVm, where Vm is a dimension (1,1) primary in 
the bulk matter CFT. Given any such closed string vertex operator F, we 
define Ov(§) as the following linear function of the open string field $: 

cv(*) = (/H o {vmm)D = (vmio *(O))D ,       (7.3) 

where hN has been defined in eq.(2.21), and ( )D denotes correlation func- 
tion on a unit disk. Since V is dimension (0,0) it is not affected by the 
conformal map hi despite being located at the singular point z = i.9 In 
[28] these operators were added to the OSFT action and it was shown that 

9In dealing separately with ghost and matter contributions, however, it may be useful 
to define Ov($) as liinc_>o+ lim77_>0+(y(-77)/ii+e o.$(0)). 
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the resulting Feynman rules would generate a cover of the moduli spaces of 
closed Riemann surfaces with boundaries and closed string punctures thus 
producing the appropriate closed string amplitudes. The operators Oy($) 
can be interpreted as the open string one point function 

ovm = P\v{im, (7.4) 

where (I| is the identity state of the *-product. The world sheet picture is 
clear, CV(<I>) corresponds to the amputated version of a semi-infinite strip 
whose edge represents an open string, the two halves of which are glued and 
a closed string vertex operator is located at the conical singularity. Gauge 
invariance of Oy ($) under (7.2) follows from the BRST invariance of V and 
the relations 

\A) * {V(i)\B)) = V(i)\A * 5),        (V(i)\A)) * \B) = V{i)\A * B).    (7.5) 

7.2    Gauge invariant operators in VSFT 

Since the VSFT field ^ must be related to the original unstable D-brane 
OSFT field ($)■ by a field redefinition, the existence of gauge invariant ob- 
servables in the OSFT implies that there must exist such quantities in the 
VSFT as well. Even though the explicit relation between |\I/) and |$) is 
not yet known, we now argue that the VSFT gauge invariant observables 
actually take the same form as in OSFT. 

The possible field redefinitions relating VSFT and OSFT were discussed 
in ref.[4]. If we denote by |$o) the classical OSFT solution describing the 
tachyon vacuum, then the shifted string field |$) = |$) — |$o) may be related 
to |\I/) by homogeneous redefinitions preserving the structure of the cubic 
vertex, namely 

(ff0
2«o)1/3W = e-^|$), (7.6) 

where K satisfies: 

K(A*B)   =   {KA)*B + A*(KB), 

(KA,B)   =   -(A, KB). (7.7) 

The explicit normalization factor (^^o)1^3 on the left hand side of eq.(7.6) 
has been chosen to ensure the matching of the cubic terms in (2.1) and (7.1) 
(see eq.(2.10)). Two general class of examples of K satisfying (7.7) are: 

K\A) = Y/*nKn\A), (7.8) 
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where Kn = Ln — (—l)riL_n, and 

K\A) = \S*A)-\A*S), (7.9) 

for some ghost number zero state \S). Let us now consider the gauge invari- 
ant operator 

Ov(*) = (Vmi 0 *(0))>J9 = (I\V(im , (7.10) 

invariant under the gauge transformation 

<J|$) = QB|A> + |($ + $o) * A) - |A * ($ + $o)>, (7.11) 

and study what happens to this under an infinitesimal field redefinition gen- 
erated by a K of the form (7.8) or (7.9). It is easy to see that both these 
field redefinitions preserve the form of CV, replacing $ by (ffo^o)1'3^- For 
transformations of the form (7.8) this follows because V(i), being a dimen- 
sion zero primary, commutes with the i^n's and the identity is annihilated 
by Kn. For transformations of the form (7.9), form invariance follows from 
eq.(7.5). Thus if $ and vf are related by a field redefinition of the form (7.6), 
with K being a combination of^transformations of the type (7.8) or (7.9), 
then we can conclude that Ov(&) is given by (^Avo)1//30y(*), with 

<JV(tt) = (^(0)^1 o *(0)))D = (I\V(i)\*). (7.12) 

This must be a gauge invariant operator in VSFT. Invariance of (7.12) 
under the VSFT gauge transformation (2.7) follows directly from (7.5), and 
the relation (I|A* B) — {A\B). Invariance under (2.6) requires 

<X|V(0Q|A) = (hi o (T/(i)QA(0)))D = 0. (7.13) 

If we choose Q to be of the form ^n unCn, then for any choice of the coef- 
ficients un, Q commutes with V(i). Thus if we further restrict the i^'s so 
that Q annihilates |X), then the gauge invariance of Oy is manifest. Our 
choice Q — (c(i) — c(—i))/2i, however, does not annihilate \L) unless we 
define Q in a specific manner discussed in (2.24). Nevertheless, as we shall 
now show, Q annihilates V(i)|I) independently of the definition (2.24) and 
simply because of the collision of local ghost insertions. Consider a definition 
of Q that does not annihilate |X), by putting the operators in Q at i + e for 
some finite e and then take the e -> 0 limit. This gives: 

(hi o (F(2)QA(0)))D a lira ^ o. (v{i){c{i + e) - c(i + €))A(0)) ) 

-  a^MO){^|-f^f}^A(o,)o.       (,:", 
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Using the results: 

hi(i + e) - e2,    ti^i + e) - e,     ^(0)0(7?) - ry,        V{0)c(r)) ~ r],    (7.15) 

we see that the expression between (• • • ) vanishes linearly in e. Thus Oy (ty 

defined in (7.12) is invariant under each of the transformations (2.6) and (2.7) 
for Q given in (2.5). 

It is interesting to relate the present discussion to our observations on 
the cohomology of Q below equation (2.5). It was noted there that Q closed 
states had to have ghost insertions at the open string midpoint. The question 
that emerges is whether or not the gauge invariant operators discussed here 
are Q trivial. Presumably they are not. Indeed, thinking of ccVm as c acting 
on cVm we find that the insertion of cVm, which is not of dimension zero 
but rather of negative dimension, on a point with a defect angle leads to 
a divergence. Therefore one cannot think of the gauge invariant operators 
as ordinary trivial states. Alternatively, one may wonder if the condition 
that the closed string vertex operator V be a dimension-zero primary can be 
relaxed and still have Oy be a sensible gauge invariant operator. Again, the 
answer is expected to be no. Inserting an operator with dimension different 
from zero at the conical singular point either gives zero or infinity. Moreover, 
if the operator is not primary there are also difficulties with equation (7.5). 

7.3    Classical expectation value of Oy 

Given a classical solution of VSFT representing a D-brane we can ask what 
is the value of 

Ov(*d) = (I\V(i)\Vd). (7.16) 

For |*d) = |^) <g) |*m), and V = ccVm, we have: 

Ov(*d) = (2p|cg(0l*p> (2m|^m(t)|*m> • (7.17) 

The ghost factor is universal, — common to all D-brane solutions, and all 
closed string vertex operators of the form ceVm. If we take \^m} to be a 
solution of the form discussed in [8], representing a D-brane associated with 

some boundary CFT BCFT, then it is easy to show following the techniques 
of [8] that (2m|y(i)|^r

m) has the interpretation of a one point correlation 
function on the disk, with closed string vertex opertor Vm inserted at the 

center of the disk, and the boundary condition associated with BCFT on 
the boundary of the disk. This, in turn can be interpreted as (Sm|Vr

m) where 

{Bm\ is the matter part of the boundary state associated with BCFT and 
(V^) is the closed string state created by the vertex operator Vm. 
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8    Closed string amplitudes in VSFT 

In this section we give our proposal for the emergence of pure closed string 
amplitudes in the context of VSFT. The basic idea is that the open string 
correlation of the gauge invariant observables discussed in the previous sec- 
tion give rise to closed string amplitudes obtained by integration over the 
moduli spaces of Riemann surfaces without boundaries. In order to justify 
this we will have to make use of the regularized version of VSFT. 

8.1    Computation of correlation functions of O v 

Figure 2: The feynman diagram contributing to the correlation function 
((Ov.Ov.Ov,)). 

We shall now study correlation functions of the operators Oy in VSFT. 
In particular, we shall analyze the following gauge invariant correlation func- 
tions: 

^OnW'-Ovnm) (8.18) 

where <??C )) stands for correlation functions in string field theory and should 
not be confused with correlation functions in two dimensional conformal field 
theory. These correlation functions are calculated by the usual Feynman 
rules of string field theory, - in particular for n = 3 the tree level correla- 
tion function receives contribution from just one Feynman diagram shown 
in Fig.2. In computing these Feynman diagrams we shall work with the 
regulated action (5.1) and take the a -> 0 limit at the end. Including all the 
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normalization factors, the Siegel gauge propagator is given by: 

a^oia))-1^— = -^bo rdle-1^^ . (8.19) 
Lo + a      Ko{a)    J0 

We should, however, keep in mind that this regularization procedure is ad 
hoc, and so the results obtained from this should be interpreted with cau- 
tion The correct regularization procedure presumably comes from replacing 
the singular reparametrization discussed in section 2.2 by a nearly singular 
reparametrization. 

Since the propagator (8.19) is closely related to the propagator of OSFT, 
and reduces to it up to an overall normalization in the a —» 0 limit, it will be 
useful to first review the calculation of these correlation function in OSFT 
around the D-25-brane background. In OSFT, the Feynman diagrams just 
have closed string vertex operators attached to strips of length ^ and these 
strips, together with internal open string propagators, are glued with three 
open string vertices. So a typical diagram will have schematically 

poo roo 

TT /     Mie-^ TT /     dlje- 
4  Jo jJo 

tjLo 

where the £j are intermediate propagator lengths. For an amplitude with n 
external closed strings there are altogether (2n — 3) propagators and (n — 2) 
vertices. Let us denote by la (1 < a < (2n — 3)) the lengths of the strips 
associated with these (2n — 3) propagators. Thus the contribution to the 
amplitude can be written as (ignoring powers of the open string coupling 
constant g^)\ 

, 2n-3 

I 11 dlaF(h,...l2n-3) (8.20) 
J    a=l 

for some appropriate integrand F which is computed in terms of correla- 
tors of closed string vertex operators and ghost factors associated with the 
propagators on an appropriate Riemann surface. 

If we repeat the calculation in VSFT with the regularized propagator 
(8.19), we get an additional factor e~aE^ in the integrand. This, in effect 
will restrict the integration region to la of order a-1 or less. Also each 
propagator carries a multiplicative factor of CL/KQ (a) and each vertex carries 
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a multiplicative factor of «o(a). Thus the amplitude now takes the form: 

/2n-3 

]Xdlae-a^l«F(lu...l2n^) 
a=l 

roo      r 

=(a2/Ko(a))na-3Ko(a) / dv /  TT ^a*^ " Z W6"""^'-"^^)- 
^o     •/   a=l 

(8.21) 

We can absorb the n factors of (a2/Ko(a)) into a multiplicative renormaliza- 
tion of the operators Oy- Using eq.(5.4) with £a = 725, the renormalized 
amplitude may be written as: 

An = ^|_ jT dv e-av I JJ ^ ^^ _ J- /Q)i?^l5. . . l2n_3 j .    (8.22) 

JP(/I, ... hn-s) is computed by evaluating a correlation function on a 
Riemann surface of the form shown in Fig.3. Since v in the above integral 
represents the sum of the length parameters la, we have la < v, and the 
closed string vertex operators are inserted within a distance of order v of 
each other. The boundary, shown by the thick line at the bottom, has length 
2v since each length parameter la contributes a length 2la to the boundary. 
Finally, the height of the diagram, measured by the distance between the 
boundary and the closed string vertex operators, is constant and equal to 
7r/2 - this is because open string strips have width TT. In addition to the 
closed string vertex operators, the correlator also includes an insertion of &o 
on each propagator. 

Let us now rescale the metric on this world-sheet by multiplying all 
lengths by nv'1. In the resulting metric, and with v now small, the Riemann 
surface looks like a long cigar of circumference 27r and height lc = 7r2/(2v). 
All the closed string vertex operators are inserted within a finite distance of 
each other at the closed end of the cigar, and their positions are naturally 
parametrized by quantities ua defined, for a = 1,2 • • • , 2n — 3, as 

ua = 27r—     ->     ^wa = 27r. (8.23) 
a 

The other end of the cigar is open and represents the boundary of the surface. 
The integration contours for the 6-integrals run parallel to the length of the 
cigar. We will call this surface CV(S), and as defined it is a cylinder of height 
7r2/(2v), circumference 27r, with one end open and the other sealed and 
having closed string punctures with positions parameterized by the ua. We 
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Vi h V2     h 

(2^ 

Figure 3: The Riemann surface representations of the Feynman diagram 
contribution to the three closed string amplitude. Vi denote the locations 
of the closed string vertex operators, la denote the lengths of the strips 
representing open string propagators, and AMB, BMC and CM A denote 
the three strings interacting via the three string vertex with a common mid- 
point M. The thick line at the bottom is the boundary of the world-sheet 
diagram created from the Feynman diagram. The two diagrams originate 
from two different contributions to the three string vertex, corresponding to 
{A, B*C) and {A, C * B) respectively. 

can use v and ua as independent variables of integration. Since the 6-contour 
integrals in the correlation function guarantee that the integrand transforms 
as a volume form dv A dui A • • • in the moduli space, we can formally denote 
these insertions as BVB^ where Bv denotes a single b insertion associated 
with the -u-integration and B^ is product of (2n — 4) 6-insertions associated 
with the integration over u. Calling M(u) the moduli space of wa's, the 
amplitude in (8.22) can thus be written as 

An — ^- /     dv e-™ /       (Vi • • • VnBMw 
lM(u) 

(8.24) 

In order to proceed further we build the surface Cv(u) by sewing the semi- 
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C0(u) ^ 

Figure 4: Pictorial representation of CQ(U) and H which are glued together 
to produce the surface Cv(u). 

infinite cylinder CQ (S), obtained when v = 0, to the closed/boundary vertex 
Vb represented by a semi-infinite cylinder of circumference 27r ending on an 
open boundary. If we denote by wi and W2 the coordinates used to describe 
the above two cylinders Cv(u) and V&, with Wi = Wi + 27r and Q(wi) < 0, and 
we let Zi = exp(—iwi)] the sewing relation Z1Z2 = t, with real t produces the 
surface Cv with v = —7r2/(21nt). We therefore have that the amplitude in 
question can be written as: 

■ (xl\B,e-"i<-L°+L')\Vb),    (8.25) 

where the Xk is a basis element in the space of ghost number two closed 
string vertex operators, Xk ls the conjugate basis of ghost number four vertex 
operators satisfying {xCk\xi) — fah |H) denotes the boundary state associated 
with the D-brane under consideration, and LQ^LQ refers to the closed string 
Virasoro generators. In the first correlator, Xk is inserted on the puncture 
at infinity, and the second correlator is the one point function on the semi- 
infinite cylinder. 
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We now need to determine Bv. This is done by going to the lc = 7r2/2v 
coordinate system, and using the transformation property of the fr-insertions 
under a change of coordinates. In particular, we have 

Bvdv = Bicdlc . (8.26) 

Furthermore the form of Bic is well known, — it simply corresponds to an 
insertion of a contour integral of (b + b) along the circumference of the cigar. 
We shall denote this by (60 + bo). This gives: 

TT2 

dvBv = 2^2 <M&o + bo>> • (8-27) 

Substituting this into eq.(8.25) we get, 

■(xc
k\(bo + bo)e-&L°+L^\Vb), (8.28) 

The key geometrical insight now is that the moduli space A4(u) defines 
a space of surfaces CQ(U) which is precisely the moduli space A4n+i of n + 1- 
punctured spheres. This is a rigorous result and follows from a new minimal 
area problem that will be discussed in the next subsection. Therefore the 
integral above can be written as 

T25    TT
2
 x-^  f dv 

/ {Vi'-VnBjtxticoW 
JMn + l 

a3F(-< -   k 

IMn+i 

=   J2CMVu-..Vn,Xk), (8.29) 
k 

where {h^^hk) is the conformal weight of Xk, and Ac(Vi,... Vn,Xk) is the 
(n + l)-point closed string amplitude of states Vi,... Vn and Xk- Ck are 
constants defined as: 

Ck = Jka) Y I ^^-^^(xmbo + bom ■ (8.30) 

The multiplicative factor Ck is non-zero in the a -> 0 limit only for hk + hk < 
0. For this range of values of (h^hk) Ck's ^e actually infinite due to the 
divergence in the i>-integral from v ~ 0 region. However, note that the 
multiplicative factor T25/{a3F(a)) vanishes as a -^ 00 as is seen from Fig.l. 
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Thus this competes against the divergent ^-integral. It will be interesting 
to see if in the correct regularization procedure inherited from OSFT, the 
divergences in the v integral are also regulated (as will happen, for example, 
if the kinetic operator is multiplied by an additional factor of eeLo for some 
small e), and the final answer for the closed string amplitude is actually 
finite. 

We also note that among the contributions to (8.29) is the contribution 
due to the zero momentum dilaton intermediate state. By the soft dilaton 
theorem, this is proportional to the on-shell n-point closed string amplitude 
on the sphere. One could again speculate that in the correct regularization 
procedure this is the only contribution that survives, and so the correlation 
function (8.18) in the correctly regularized VSFT actually gives us back the 
on-shell n-point amplitude at genus zero. A similar argument has been given 
in [38] in the context of boundary string field theory. 

Since the regularization procedure we have been using is ad hoc, one can 
ask what aspect of our results can be trusted in a regularization indepen- 
dent manner. To this end, note that if the kinetic operator is simply CQ, 

then the corresponding propagator is represented by a strip of zero length. 
Thus whatever be the correct regularization procedure, the regulated prop- 
agator will be associated with strips of small lengths if the regularization 
parameter (analog of a-1) is small. As our analysis shows, in this case the 
corresponding Feynman diagram contribution to (8.18) will be associated 
with a world-sheet diagram with small hole, and this, in turn, is related to 
genus zero correlation functions of closed string vertex operators with one 
additional closed string insertion. Thus we can expect that whatever be the 
correct regularization procedure, the correlation function (8.18) will always 
be expressed in terms of a genus zero correlation function of closed string 
vertex operators. 

In the absence of a proper understanding of the correct regularization 
procedure of the VSFT propagator, a more direct approach to the problem 
of computing closed string amplitude in the tachyon vacuum will be to try to 
do this computation directly in OSFT around the tachyon vacuum. There 
are two competing effects. On the one hand we have divergence due to 
the dilaton and other tadpoles. On the other hand, the coefficient of the 
divergence vanishes since the tachyon vacuum has zero energy. Both of these 
are regulated in level truncation. Thus it is conceivable that if we compute 
the correlation functions of the operators Oy in OSFT around the tachyon 
vacuum by first truncating the theory at a given level L, and then take the 
limit L -» oo, then we shall get a finite result for these correlation functions. 



448 GHOST STRUCTURE AND CLOSED STRINGS ... 

8.2    Closed string moduli from open string moduli 

We have seen in the previous subsection that the calculation of a corre- 
lator of gauge invariant observables in regulated VSFT can be related to 
the amplitude involving closed string states parametrizing these observables 
if a certain kind of string diagrams produces a full cover of the moduli 
space of closed Riemann surfaces with punctures. The diagrams in question 
are obtained by drawing all the diagrams of OSFT supplemented by the 
open/closed vertex with the constraint that the total boundary length is 2v. 
Here v = J2^a where the l^s are the lengths of the open string propaga- 
tors. The diagrams are then conventionally scaled to have cylinder with a 
total boundary length of 27r and height of 7r2/(2v). The patterns of gluing 
are described by the parameters ua > 0 defined in (8.23) and satisfying 
]Ca ua — 27r. At this stage one lets v —> 0 and thus the cylinder becomes 
semi-infinite, with the boundary turning into the (n + l)-th puncture. The 
claim is that the set of surfaces obtained by letting the ua parameters vary 
generate precisely the moduli space of (n + 1) punctured spheres. 

In order to prove this we will show that the above diagrams arise as the 
solution of a minimal area problem. As is well-known, minimal area problems 
guarantee that OSFT, closed SFT, and open/closed SFT generate full covers 
of the relevant moduli spaces.10 The basic idea is quite simple; given a 
specific surface, the metric of minimal area under a set of length conditions 
exists and is unique. Thus if we can establish a one to one correspondence 
between the string diagrams labelled by {ua} and such metrics, we would 
establish that the ua integration region covers the moduli space in a one 
to one fashion. The minimal area problem for our present purposes is the 
following 

Consider a genus zero Riemann surface with (n + 1) punctures. Pick one 
special pucture PQ, and find the minimal area metric under the condition 
that all curves homotopic to PQ have length larger or equal to 27r. 

As usual homotopy equivalence does not include moving curves across 
punctures, thus a curve surrounding PQ and Pi is not said to be homotopic 
to a curve surrounding PQ. This problem is a modification of the minimal 
area problem defining the polyhedra of classical closed string field theory [31] 
- in this case one demands that the curves homotopic to all the punctures 

10In the case of OSFT, the first proof of cover of moduli space was given in [34] who 
focused on the case of surfaces without open string punctures, and argued that by fac- 
torization the result extends to the case with punctures. In [35] a direct proof based on 
minimal area metrics is seen to apply for all situations. 
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be longer than or equal to 27r [36]. 

We use the principle of saturating geodesies to elucidate the character 
of the minimal area metric solving our stated problem. This principle [32] 
states that through every point in the string diagram there must exist a curve 
saturating the length condition. Therefore the solution must take the form 
of a semi-infinite cylinder of circumference 27r. The infinite end represents 
the puncture PQ. The other side must be sealed somehow, and the other n 
punctures must be located somewhere in this cylinder. Since there are no 
length conditions for the other punctures, they do not generate their own 
cylinders. 

Assume now that the other punctures are met successively as we move up 
the cylinder towards the sealed edge. This is actually impossible, as we now 
show. Let Pi be the first puncture we meet as we move up from PQ. Consider 
a saturating circle just below the first such puncture. That circle has to be of 
length 27r since it is still homotopic to PQ. If the cylinder continues to exist 
beyond Pi a geodesic circle of length 27r just above Pi is not homotopic any 
more to PQ, and there is no length constraint on it anymore. This cannot 
be a solution of the minimal area problem since the metric could be shrunk 
along that circle without violating any length condition. This shows that all 
the punctures must be met at once. Thus the picture is that of a semiinfinite 
cylinder, where on the last circle the n closed string punctures are located, 
and the various segments of the circle are glued to each other to seal the 
cylinder, so that any nontrivial curve not homotopic to PQ can be shrunk to 
zero length. 

This is exactly the pattern of the string diagrams that we obtained. It is 
clear that the ua parameters associated to a fixed Feynman graph are in fact 
gluing parameters. Thus the string diagrams solve the minimal area problem 
and due to the uniqueness of the minimal area metric they do not double 
count. Can they miss any surface ? There are two alternative ways to see 
that the answer is no. First, the space of ua parameters has no codimension 
one boundaries, and includes all the requisite degenerations of the (n + 1) 
punctured sphere associated with the collision of two or more punctures. 
Since these are the standard properties of moduli spaces, no surfaces can be 
missing. Second, for any surface there is a string diagram - this is guaranteed 
because this minimal area problem is known to have a solution defined by 
a Jenkins-Strebel quadratic differential. Such quadratic differential builds a 
string diagram consistent with our Feynman rules, and thus must have been 
included. 

We illustrate the above result with an example, the case of four-punctured 
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spheres generated by considering the correlation of three gauge invariant ob- 
servables. We shall explain that the only boundaries of the ua integration 
region are the known boundaries of the moduli space corresponding to de- 
generation of the four-punctured sphere. In this case three strips of lengths 
^1^2:^3 representing the three external propagators are joined by a 3 open 
string vertex - no internal propagator is possible here. The amplitude con- 
tains sum over two different world-sheet digrams, coming from two different 
cyclic arrangements of the open strings at the vertex, as shown in Fig.3(a) 
and (b). If we denote by Zi, Z2, Z3 the lengths of the strips associated with the 
open string propagators, and v = h + h + Z3, then the region of integration, 
with Ui = 27rli/vi is 

Ui>Q,    ^2ui = 27r. (8.31) 

There are apparently three codimension one boundaries of the Ui integration 
region, associated with each u^ = 0. These correspond to Zj = 0. It is 
easy, however, to see from Fig.3 that the configuration Z^ = 0 for any i 
are actually identical configurations in the two diagrams, and hence in the 
sum of two diagrams the k = 0 configuration simply marks the transition 
from the component of the moduli space covered by the first diagram to 
another component of the moduli space covered by the second diagram. On 
the other hand the codimension two boundaries corresponding to the three 
cases of Ui = 27r, represent the configurations where two length parameters 
vanish and produce the expected degenerations of the 4-punctured sphere. 
In particular the Zj = Zj; = 0 configuration represents the degeneration where 
the z-th and the j-th. vertex operators come close to each other, and the 
other vertex operator approaches, in the conformal sense, the boundary of 
the surface. 

Indeed even if the height of the cylinders is finite we are producing a 
boundaryless subspace of the moduli space of a sphere with three punctures 
and one hole. As the height of the cylinder goes to infinity we really have 
four punctures and again we are producing a boundaryless moduli space 
involving four punctures on a sphere and all the requisite degenerations. 
This must be the moduli space of four punctured spheres. 

The generalization to the case of n-point amplitude is straightforward. 
Any codimension one boundary corresponding to a single Zj vanishing marks 
a transition to another component of the moduli space represented by an- 
other diagram, whereas if a group of li associated with a connected part of 
the diagram, and containing at least two external propagator vanishes, it 
corresponds to a degeneration of the Riemann surface. A detailed argument 
along the lines of [35] should be possible to construct, but as we do not 
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expect complications, we shall not attempt to give the complete argument 
here. 

The discussion above clearly holds for surfaces of arbitrary genus, and 
the minimal area problem is just the same one. More interestingly, however, 
the discussion also generalizes for the case of multiple boundary components. 
Given our Feynman rules of regularized VSFT, the analysis of the previous 
subsection would lead to surfaces in which each boundary component would 
give rise to a semi-infinite cylinder of circumference 27r. The various cylinders 
would join simultaneously with a generalized set of ua parameters describing 
their gluing. If the Feynman graph represents a surface of genus g with n 
gauge invariant operators and b boundaries, the space of ua parameters will 
generate the moduli space Mg^+b of genus g boundariless Riemann surfaces 
with n + b punctures. The associated minimal area problem justifying this 
result would consider the metric of minimal area on a genus g surface with 
n + b punctures under the condition that all curves homotopic to the b 
punctures be longer than or equal to 27r. Thus the correlation function 
would reduce to the pure closed string amplitude of n closed string vertex 
operators and b zero momentum massless states. 

9    Discussion 

In this paper we have fixed a specific form of the kinetic term Q of VSFT 
thus giving a precise definition of the theory and making it possible to study 
in detail various questions. While the selected Q is special in several ways, 
VSFT thus defined needs regulation for some but not all computations. Our 
regulation of VSFT is admittedly somewhat tentative. If VSFT can be 
shown explicitly to arise as a singular reparametrization of the OSFT ac- 
tion expanded around the tachyon vacuum, a more natural regulator may 
be obtained by viewing the reparametrization as a flow and using the repre- 
sentatives near the singular endpoint. 

We believe other results presented in this paper may have uses beyond 
the ones investigated presently. 

Our explicit level expansion calculations have uncovered the existance 
of surface states different from the sliver and still satisfying the projec- 
tor condition. These new projectors may have important applications. 

The twisted CFT used to obtain exact analytic solutions may be a 
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useful tool to obtain exact solution of string field theory even for the 
original OSFT representing the vacuum around unstable D-branes. 

We have uncovered local gauge invariant operators in open string field 
theory. Their natural relation to closed string vertex operators is 
reminiscent of AdS/CFT, and of gauge invariant operators in non- 
commutative gauge theory. There could be interesting uses for these 
operators in studying observables of VSFT. 

• We have seen how closed string moduli arise from the open string 
moduli of regulated VSFT, by noting how a minimal area problem 
involving open string curves naturally dovetails into a minimal area 
problem involving closed string curves. This, we believe may capture 
the essence of the mechanism by which closed strings emerge in vacuum 
string field theory. 

We end this section by presenting two possible modifications of VSFT 
that could have intriguing applications. 

• It may possible to relax naturally the purely ghost condition on the 
kinetic operator Q while preserving the fact that Q is a local insertion. 
Certain kinds of matter insertions would not destroy the key properties 
that guaranteed some of the successes of VSFT. For example, our 
present choice of Q - the ghost field at the open string midpoint, 
could perhaps be modified by multiplication of operators involving the 
matter stress tensor also inserted at (or near) the mid-point. It is not 
clear if one could satisfy the conditions of nilpotency of Q and absence 
of cohomology, but if so, modified slivers with stress tensor insertions 
at (or near) the midpoint could yield solutions representing D-branes, 
and the computation of ratios of tensions of D-branes described in [7, 8] 
would hold. 

• It appears to be possible to formulate a version of VSFT where the 
original sliver of the matter and (&, c) system is a solution, and the ac- 
tion for the sliver is finite. This requires, however, using string fields of 
ghost number zero, and the connection with the usual string field theo- 
ries that use ghost number one string fields could reintroduce singular 
behavior. Consider the operator Y(z) = \cdcd2c{z), a dimension zero 
primary of ghost number three. Being of dimension zero such an oper- 
ator can be readily inserted at the string midpoint. We can therefore 
try Y(i) + Y(—i) as kinetic term of the action: 

s = /? \m(Y{i) + Y(-i)m + i<$|(y(t) + y(-0)l* * *> (9.1) 
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where now the string field $ must be of ghost number zero, and j3 
is a constant. This action is invariant under the homogeneous gauge 
transformation J|$) = |$ * A) — |A * $). No Fock space state can be 
annihilated by Y(i) + Y(—i) and therefore there are no conventional 

physical states. The equation of motion becomes (Y(i) + Y(-i)) 11$) + 

|$ * $)J =0 and (minus) the sliver provides a simple solution.  The 

value of the action at the solution is S — g/3(S|(Y(i) + Y(—i))|S). 
Since the sliver is constructed as an exponential of Virasoro operators 
of zero central charge acting on the vacuum, and Y is a dimension zero 
primary, the value of the action is S = %l3(0\{Y{i) + Y(-z))|0) = ±0. 
This can be made to agree with the expected answer by appropriate 
choice of the finite constant /?. 

Although the relationship of the action (9.1) to the original open string 
field theory is not clear, this action has the property that given any 
boundary conformal field theory, we can construct, following [7, 8], 
a solution to the equations of motion such that the energy density 
associated with the solution is equal to the tension of the correspond- 
ing D-brane. This is one of the properties that must be satisfied by 
any string field theory that represents string field theory around the 
tachyon vacuum. 
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