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Abstract 

We prove uniqueness of static, asymptotically flat spacetimes with 
non-degenerate black holes for three special cases of Einstein-Maxwell- 
dilaton theory: For the coupling "a = 1" (which is the low energy 
limit of string theory) on the one hand, and for vanishing magnetic or 
vanishing electric field (but arbitrary coupling) on the other hand. Our 
work generalizes in a natural, but non-trivial way the uniqueness result 
obtained by Masood-ul-Alam who requires both a = 1 and absence of 
magnetic fields, as well as relations between the mass and the charges. 
Moreover, we simplify Masood-ul-Alam's proof as we do not require 
any non-trivial extensions of Witten's positive mass theorem. We also 
obtain partial results on the uniqueness problem for general harmonic 
maps. 
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1    Introduction. 

In 1967 W. Israel proved (roughly speaking) that static, asymptotically 
flat (AF) vacuum spacetimes with non-degenerate, connected horizons are 
Schwarzschild [1]. His method is based on the integration of two "divergence 
identities" constructed from the norm V of the static Killing vector £ and 
from the induced metric 'g on a slice E orthogonal to it (and their deriva- 
tives). In the sequel Israel's theorem has been generalized to include certain 
matter fields. In particular, Israel himself also proved uniqueness in the 
Einstein-Maxwell (EM) case [2]. Later, it was realized that the proof of this 
theorem could be better understood in terms of the 5'0(2, l)-symmetry of 
the "potential space" (i.e. of the target space of the corresponding harmonic 
map) [3, 4]. Associated with that symmetry there are conserved currents 
and a suitable combination of them yields, upon integration, a functional re- 
lationship between V and the electrostatic potential 0. Using these relations 
one can then apply the symmetry transformations on the target space, which 
reduces the problem to the vacuum case. This observation leads immediately 
to a further generalization, namely to Einstein-Maxwell-dilaton (EMD) the- 
ory with "string coupling" (a = 1) [4]. The symmetry group of this theory 
is a direct product of an "electric" and a "magnetic" 50(2, l)-part, (and the 
target space is a corresponding direct sum), whence the components can be 
treated individually as above. This gives uniqueness for a three-parameter 
family of black hole solutions found by Gibbons [5]. In fact, arguments along 
these lines apply to the much more general case in which the target space 
is a symmetric space and yield uniqueness results for solutions which arise 
from the Schwarzschild family by applying those symmetry transformations 
of the respective theory which preserve AF [6]. (We remark, however, that 
the uniqueness results in [3, 4, 6] all contain some errors or gaps). 

An alternative strategy for proving uniqueness consists, in essence, of 
performing conformal rescalings on the spatial metric # suitable for apply- 
ing the rigidity case of a positive mass theorem. The "basic version", ap- 
propriate for non-degenerate black holes in the vacuum case, was found in 
1987 by Bunting and Masood-ul-Alam [7]. These authors take two copies of 
the region exterior to the horizon, glue them together along the bifurcation 
surface and rescale the metric on this compound with a suitable (positive) 
function of the norm of the static Killing vector which compactifies one of 
the ends smoothly. The resulting space is shown to be complete and with 
vanishing Ricci scalar and vanishing mass. Hence, the rigidity case of the 
positive mass theorem implies that the rescaled metric must be flat, and the 
rest follows from the field equations in a straightforward manner. 
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The main advantage of the method by Bunting and Masood-ul-Alam is 
that it admits disconnected horizons a priori. However, as to generalizations 
to matter fields, they are not so straightforward to obtain along these lines. 
The first part of the strategy is to find candidates for conformal factors 
by taking functions which transform the family of spherically symmetric 
black hole (BH) solutions whose uniqueness is conjectured to flat space, and 
express these functions in terms of V and the potentials. In general there 
are many possibilities if matter is present. However, (as follows from our 
Theorem 2), for harmonic maps there is in fact a unique choice of such 
"factor candidates" as functions on the target space provided that the latter 
has the same dimension as the space of spherically symmetric BH. This is the 
case, in particular, for EM, where these dimensions are three. (Alternatively, 
the magnetic or the electric field can in advance be removed by a trivial 
duality transformation, which reduces the dimensions to two). These "factor 
candidates" are direct generalizations of the vacuum quantities, and so the 
same procedure as before yields uniqueness of the non-extreme Reissner- 
Nordstrom solution [8, 9]. 

In EMD theory, spherically symmetric BH have been studied extensively 
(see, e.g. [10, 11] and the references therein). We first note that in this situ- 
ation no duality transformation is available to remove either the electric or 
the magnetic field. Assuming for the moment that the latter is absent, there 
is just a two-parameter family of spherically symmetric BH which, conse- 
quently, cannot define a unique "factor candidate" on the three-dimensional 
target space. While Masood-ul-Alam did not give a single suitable confor- 
mal factor in this situation, he made remarkable observations [12] which 
we reformulate as follows. Firstly, for the coupling a = 1, and assuming a 
certain relation between the mass and the charges, he found two pairs of 
conformal factors ^fi-t and *f2± such that the Ricci scalars ^TZ and ^TZ 
corresponding to the metrics ®g± = ®Q,±V2g and ^g^ = ^Cl±V2'g satisfy 
®ti±®1l + ^ti^yil > 0. Secondly, he observed that the rigidity case of 
Witten's positive mass theorem has a generalization which requires just the 
condition above (rather than non-negativity of each Ricci-scalar) to give flat- 
ness of ^g± and ^g^ provided that the masses of these metrics also vanish. 
(For the general formulation of this "conformal positive mass theorem" c.f. 
Simon [13]). By adapting the remaining procedure from the vacuum case, 
Masood-ul-Alam then obtained uniqueness of the two-parameter subfamily 
of the Gibbons solutions mentioned above [12]. 

The achievements of the present paper are threefold. Firstly, we show 
(in Lemma 4) that the seemingly subtle conformal positive mass theorem 
of Masood-ul-Alam and Simon have in fact trivial proofs, based on the fol- 
lowing fact: If the Ricci scalars R and R' of two metrics h and h' related 
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by a conformal rescaling hf = fi2/i satisfy R + Q,2Rf > 0, then the Ricci 
scalar R of the metric h = tth is (manifestly) non-negative (by virtue of the 
standard formula for conformal rescalings). In particular, Masood-ul-Alam's 
uniqueness result can be obtained by applying this observation to h = ^g± 

and h' = ^y^, and by using the rigidity case of the standard positive mass 
theorem for the metric h = ®Q ^Q, V2*?. 

Secondly, we extend (in Theorem 1) Masood-ul-Alam's uniqueness results 
in EMD theory to the cases with non-vanishing magnetic field (still for the 
coupling a = 1) on the one hand, and to arbitrary a but either vanishing 
magnetic field or vanishing electric field on the other hand (while the generic 
case is still open). To obtain this result we have not only to assume that 
the horizon is non-degenerate, but in addition that the mass and the charges 
do not satisfy the relation characterizing the spherically symmetric BH with 
degenerate horizons. As to the situation with none of the fields vanishing, 
it is "underdetermined" in the sense that we have a four-dimensional target 
space with just a three-parameter family of spherically symmetric solutions. 
However, as mentioned above in connection with Israel's method, this target 
space splits into a direct sum on which there act "electric" and "magnetic" 
50(2,1) groups, respectively. On each component we can now define pairs 
of conformal factors $fi± and ^fi± in a natural manner. Thus, exploiting 
the group structure in this way again reduces the problem, in essence, to the 
EM case. 

The case of arbitrary a but without magnetic or electric field is the more 
subtle one. We have now a three-dimensional target space, with invariance 
group 50(2,1) x 50(1,1), and a two-parameter family of spherically sym- 
metric BH found by Gibbons and Maeda [10]. Along with the two compo- 
nents of the group there come again naturally two pairs of conformal factors 
$fi± and ^Q± such that (in the case with vanishing magnetic field) the cor- 
responding Ricci scalars satisfy ^ti^lZ + a2 ^Q^H > 0. Now we use the 
following extension of the previous observation: If the Ricci scalars R and 
Rf of two metrics h and h' related by a conformal rescaling /z/ = fi2/i satisfy 
R + /3Q2Rf > 0 for some constant /?, then the Ricci scalar R of the metric 
h = fi2^/(1+^)/i is (manifestly) non-negative. Thus the uniqueness proof can 
now be completed by taking ft = a2, h = ®g, h' = ^g and by applying the 
standard positive mass theorem to h = $fi2/(1+^) *«2/*/(i+/3)^2£ 

Thirdly, we consider "coupled harmonic maps" in general. In Theorem 
2 we show that "candidates" for conformal factors are determined uniquely 
on a subset of the target space corresponding to spherically symmetric BH. 
In order to obtain a uniqueness proof these "candidates" would have to (i) 
be extended suitably to the whole target space if the spherically symmetric 
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BH subset is smaller than the whole target space and (ii) be shown to be 
positive, having the right behaviour at infinity and at the horizon for every 
coupled harmonic map (without the assumption of spherical symmetry) and 
with rescaled Ricci scalar being non-negative. We discuss Theorem 2 with 
the EMD case serving as an example. 

We finally recall that, in the vacuum case P. Chrusciel was able to ex- 
tend the uniqueness proof such that horizons with degenerate components 
[14] are admitted a priori, and he also obtained a certain uniqueness result 
for degenerate horizons in the presence of electromagnetic fields [15]. The 
idea is to use an alternative conformal rescaling due to Ruback [16] (which 
avoids compactification) and a suitably generalized positive mass theorem 
by Bartnik and Chrusciel [17] which allows "holes". To obtain a further 
generalization including dilatons with the present methods would require a 
"conformal" version of this positivity result, which is not known. 

2    Basic Definitions 

Definition 1. A smooth spacetime (M^g) is called a static non-degenerate 
black hole iff the following conditions are satisfied. 

(1.1) {M^g) admits a hypersurface orthogonal Killing vector £ (i.e. 
£[a V/5$7] = 0) with a non-degenerate Killing horizon %. 

(1.2) The horizon % is of bifurcate type, i.e. the closure % of % contains 
points where the Killing vector £ vanishes. 

(1.3) (M^g) admits an asymptotically flat hypersurface S which is orthog- 
onal to the Killing vector £ and such that V2 = — £a£a —> 1 at infinity 
and 92 C H. 

Remarks. 

1. A Killing horizon H is a null hypersurface where £ is null, non-zero 
and tangent to H. The surface gravity « of H is defined as Vay

2|^ = 
2fi£Q,|'ft; it is necessarily constant on each connected component of W 
(see [18]) and nonzero (by definition) for non-degenerate horizons. 

2. Racz and Wald have shown that condition (1.2) is satisfied in most 
cases of interest in which (1.1) holds. More precisely, when the Killing 
vector is complete with orbits diffeomorphic to M and H is a trivial 
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bundle over the set of orbits %/£ of the Killing vector, then a non- 
degenerate horizon is of bifurcate type or else the geodesies tangent to 
the Killing vector £ reach a curvature singularity for a finite value of 
the affine parameter [19]. Similarly, condition (1.2) is automatically 
satisfied in stationary, globally hyperbolic spacetimes containing no 
white hole region (cf. [19]; and see [20] for the precise conditions). 
Thus, we could replace condition (1.2) by any of these global conditions 
on the spacetime. 

We also remark that our only global condition is contained in (1.3). By 
AF we mean the following 

Definition 2. A Riemannian manifold (E, h) is called asymptotically flat 

iff 

(2.1) Every "end77 E00, (which is a connected component o/E\{ a sufficiently 
large compact set }) is diffeomorphic to M3 \ B, where B is a closed 
ball 

(2.2) On E00 the metric satisfies (in the cartesian coordinates defined by the 
diffeomorphism above and with r2 = J2i(xl)2) 

hij - Sij = 02{r~5) for some 6 > 0. (1) 

(A function fix1) is said to be Ok(ra), k e N, if/(x*) = 0(ra), djfix1) = 
0(r0i~1) and so on for all derivatives up to and including the kth ones). 

Remarks. 

1. In the definition above, E is the topological closure of E, and g is the 
induced metric on E. Notice that our definition implies, in particular, 
that E is complete in the metric sense. 

2. Let q be a fixed point of £ on H (i.e. q G H and £(#) = 0), which 
exists by assumption (1.2). Then, the connected component of the 
set {p\ flip) = 0} containing q is a smooth, embedded, spacelike, two- 
dimensional submanifold of M [21, 14]. Such a component is called 
a bifurcation surface. By assumption (1.3), any connected component 
(dE)a of the topological boundary of E is contained in the closure of 
the Killing horizon. Thus, (section 5 in [19]), (<9E)a must be a subset 
of one of the bifurcation surfaces of £. Furthermore, the induced metric 
g on the hypersurface E can be smoothly extended to E U (9E)a (see 
Proposition 3.3 in [14]). Hence (E, #) is a smooth Riemannian manifold 
with boundary. 
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Next we define the concept of "coupled harmonic map" and "massless 
coupled harmonic map" between manifolds. 

Definition 3. A coupled harmonic map is a C2 map T : E —> V between 
the manifolds (E,g) and (V,7), (with g a positive definite metric and 7 any 
metric), which extremizes the Lagrangian (-density) 

L = JteTg [U - 7a6(TOr))0yViTa(z)V.T6^)] , (2) 

upon independent variations with respect to gij and Ta(x) (Here V is the 
covariant derivative and R is the Ricci scalar with respect to g, and Tc{x) is 
the expression ofT in local coordinates ofV). The Euler-Lagrange equations 
of (2) are called coupled harmonic map equations and read explicitly 

Vrfr'ix) + Tl (T(aO) ViT^aOV^fr) - 0, (3) 

Rij(x) = 7a6(T(a;))ViT
a(a;)V,T6(rr;). (4) 

where Rij is the Ricci tensor of g and rj}c are the Christoffel symbols of the 
metric 7. 

Remarks. 

1. The definition above generalizes the notion of "harmonic map" which 
has as Lagrangian only the second term in (2), with prescribed metric 
g and with Ta(x) as dynamical variable. * 

2. Below we will consider "massless coupled harmonic maps" which we 
define to be coupled harmonic maps such that (S,^) is AF with van- 
ishing mass, i.e. 5 > 1 in (1). 

3. Coupled harmonic maps as defined above for 3-dimensional configu- 
ration spaces arise via "dimensional reduction" from a large class of 
matter models (in particular for "massless" fields) in a spacetime with 
Killing vector [6]. To obtain these coupled harmonic maps one can take 
as the domain manifold S the space of orbits, provided this space is a 
manifold. In the static case we are dealing with, E can be envisioned 
as a hypersurface orthogonal to the Killing field £ and g == V2^^ where 
g is the induced metric on E. The mass of g is Mg = Mk — M where 
M is the ADM mass and Mk is the "Komar mass" [22, 23]. One can 
show that Mk = M under rather general assumptions. In particular, 
this holds if (E,p) is AF and if the energy-momentum tensor satisfies 
T^v = r~3~€ (see [23]; it also follows by a slight modification of the 
vacuum case [24]. Compare also [22] which is valid for complete slices). 
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In the EMD case we will show below that asymptotic flatness alone as 
introduced in Definition 2 (i.e. without the falloff requirement on T^) 
yields M^ = M and hence a massless coupled harmonic map. In Sect. 
5 we will consider massless coupled harmonic maps in general. 

3    Einstein-Maxwell-dilaton fields 

The EMD theory is defined by the following Lagrangian (-density) on M 

L = y/-deb*g(4R - 2VaTVar - e-2aTFapFaP). (5) 

Here, 4g is a Lorentzian metric on Ai, r is a scalar field, a is a real and 
positive ("coupling"-) constant, and the 2-form F^ is closed. By the latter 
property (which is one of Maxwell's equations) there exists locally a vector 
potential A^ such that Fap — 2V[QA^]. Taking g^, r and A^ as dynamical 
variables in (5), variation with respect to A^ implies that the 2-form e~2aT * 
Ffiu = \e~2aT

ZVLV Fap (where e^^p is the volume form corresponding to 
4<7) is also closed (the second Maxwell equation). Hence, locally there also 
exists a vector potential C^ such that *FAiiy = 2e2Q:rV[MCz/]. (Alternatively, 
we could have taken C^ as dynamical variable and derived the existence of 
Ay). EM is contained as the particular case r = const. Other important 
subcases are a = 1, which arises in string theory and as the bosonic sector of 
n = 4 supergravity, and a = y/3 which corresponds to Kaluza-Klein theory 
(i.e. a Ricci-flat Lorentzian metric on a 5-dimensional manifold admitting a 
spacelike Killing vector with certain specific properties). 

We assume that on M there is a timelike, hypersurface-orthogonal Killing 
field f which also leaves the scalar and electromagnetic fields invariant. In 
other words, the twist vector defined by Uy = e^o-r^V0^7* vanishes, and we 
have £fT = C^FyV = 0 where £f is the Lie derivative along £. We further 
define the electric and magnetic fields by Ey = Fy^ and By = e~'2oLT^Fylf^

u. 
Using these definitions together with ojy = 0 and with the Ricci identitities 
and the Einstein equations, we obtain 

0 = V^j = e^rrlT peC = 2£[/A], (6) 

and therefore either By = 0 or Ey = aBy for some function a. In the EM case 
(r = const.), it is easy to see that a = const., but this need not hold when 
the dilaton field is present. Maxwell's and Killing's equations now imply 
that V^-E,,] = 0 and V^B^] = 0. Hence, assuming that the manifold M 
is simply connected, there exist (globally) electric and magnetic potentials 
</) and tl> defined (up to constants) by Ey = Vy<j) and by By — Vyip.  We 



M.MARS, W.SIMON 287 

remark that, on domains where the vectors A^ and C^ are defined, we can 
achieve that C^A^ = £fC^ = £f</> = Cgj) = 0 by a suitable choice of gauge 
(i.e. by adding gradients of suitable functions to A^ and C^). In this gauge 
the scalar potentials also satisfy 0 = A^ and if) = Cv^

v, 

We now write the EMD field equations as equations on a hypersurface 
(£, #) orthogonal to £. In terms of the variables introduced above they read 
explicitly (with V denoting the covariant derivative and A the Laplacian 
with respect to <?), 

AF = y-^-^V^VV + F-^^V^VV, (7) 

AT = -V^ViT^V + aV-2e-2(XTV^VV - aT^V^V^VV,       (8) 

A^ = y-1ViyVV-2aVirVV7 (9) 

A^ = V'1 ViV VV + 2aViTVV, (10) 

R^ = y-iViV^F + 2^^^ - y-2e-2ar(2V^V^ - ^v^vV) - 

-  v-V"(2V^v^-stJv^vV), (11) 

where ili_j is the Ricci tensor of g. For the trace of (11) we obtain 

R = 2ViTVV + 2V-2e-2aTVi(i>Vi4> + 2V-2e2aTViipViip.        (12) 

We first give a lemma on the behaviour of the fields on the horizon. 

Lemma 1. For static Einstein-Maxwell-dilaton non-degenerate black holes, 
there hold the following relations on the boundary dE 

VWiT 
9S = 0' V^ = 0, WViV 

as as"0'      <13> 

Proof. Recall that the induced metric g on the hypersurface S can be 
smoothly extended to E U (9S)a (see Proposition 3.3 in [14])• Since r 
was assumed to be C2, it follows from (12) that V~2e~2aTVi^VV and 
F~2e2arVi'0V^ have regular extensions to <9£. Now the first equation 
in (13) follows from (8) while the remaining two equations follow from (9) 
and (10). 

We can bring equations (7)-(ll) to the form of a coupled harmonic map 
between (E,V2(7) and the four-dimensional target manifold V defined by 
(V, r, (/>, V>) G M+ x R x E x R endowed with the metric 

ds2 = jabdxadxb = 2V-2dV2 + 2dT2 - 2V-2{e-2aTd(j)2 + e2aT#2).    (14) 
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For reasons discussed in Sect. 5, our results on this model will be re- 
stricted to three special cases, namely i}) = 0, a = 1 and <fi = 0. In each case, 
it is useful for our purposes to parametrize the target space V by variables 
(denoted by $A and ^A (A = -1,0,1)) in terms of which the isometry group 
of (V,7) acts linearly. The definitions of $A and ^A are different in the 
three cases, but we treat these cases independently and therefore use below 
the same symbols for simplicity. 

Thus, in terms of the auxiliary variables yp = Ve^T, (3 G R, (f> = 

Vcii^-PT <f) and ^ = \/a2 + 1 I/J we define 

V> = 0: 

$0    =    Ta1?. *°    =    0' 

*1     =     Jba-Ta1^2-!)], *1     =     5(7-l/a+7_i/c 2l *i   =    l(l-i/a+lJ1/a)- 

a = l: 

$-i = ^TI-ITV + I)],     *-i = Ih-i-rzK^ + i)], 

^ = 0: 

$-1     =     |(7i/a-7!%), *-l.   =     5[7-a-7li(^ + l)], 

1 
2 *1     =     ^(Tl/a+Vj, *!     =     5[7-a-7li(^-l)]- 

Capital indices are raised and lowered with TJAB = diag(l, —1,-1). Since 
we define here six variables out of the four ones V, r, 0 and ^ there must be 
two constraints, which read $A$

A
 = -1 = ^B^

B
- We also introduce the 

following quantities (which are in general not Ricci tensors of any metric) 
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*&,   =   V^V^A, *Ri,   =   Vi^V^A, 

*R   =   g'^Rij, ^R   =   g'^Rij, 

where V denotes the covariant derivative of g = V2^. We now write the 
coupled harmonic map field equations in terms of these variables. Since here 
and henceforth the case (f) = 0 arises from the case ip = 0 via the exchange 
$ *+ \I/, we only give the latter case explicitly. (A denotes the Laplacian 
with respect to g). 

A<f>A   =   *R$A,        A*A = ^*A, (15) 

</> = 0: Rij   =   ^^^Rij + a^Rij), (16) 

a = l: Rij   =   tRij+VRij. (17) 

These equations can be obtained by varying the Lagrangian (-densities) 

</> = 0: 

a=l : 

^ = v-detg   i2+ _   _. .^ _.   _ /     . 

independently with respect to g^, $A and ^A and imposing (afterwards) 
the constraints <I>A$

A
 = -1 = *B*

B
. 

The Lagrangian, the constraints and the field equations are invariant 
under the isometry group of the target space metric (14). In terms of the 
variables §A and ^ the invariance transformations take the simple form 

where ®LA
B and ^LA

B satisfy TIABL C^D 
== 'HCDi i-e- they are elements 

of 50(2,1). Since for vanishing magnetic and electric fields we have \I/o = 0 
and $o = 0, respectively, the corresponding symmetry groups are 50(2,1) x 
50(1,1), while in the case a = 1 we have the full group 50(2,1) x 50(2,1). 
We will also use the notation $a = {$_i,$o}5 ^a = {^-i^o}? and move 
these indices with the metric r]^ = diag(l, —1). 

In the case a = 1 Gibbons has given the general (three-parameter-) fam- 
ily of spherically symmetric solutions [5] (which we write here in harmonic 
coordinates) 
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*• - ^r^'    ^"v^^1 (8) 

d52   =   dp2 + (p2~A2)(^2 + sin2^#2), (19) 

where *Ma, ^Ma and A > 0 are constants satisfying ^Ma^Ma = ^M^M" = 
A?. (By sub- and superscripts on multipole moments we always mean indices 
and not exponents). 

The spherically symmetric solutions in the other two cases (ip = 0 and 
0 = 0; c.f. Gibbons and Maeda [10]) are given by the two-parameter sub- 
families with ^0 = 0 and $o = 0, respectively. Clearly, the horizon is located 
at p = ^4, with A = 0 characterizing the degenerate case. 

In the next section we will prove uniqueness of these classes of solutions 
(in the non-degenerate case). 

We now examine in detail the asymptotic structure of the fields intro- 
duced above. The complete analysis is somewhat involved, but consists in 
essence of assembling and adapting bits and pieces available in the literature. 
The whole procedure is also quite similar to the "instanton" case considered 
in [25]. 

Lemma 2. On an end (S00,^) of a static, asymptotically flat solution of 
(15)-(17) there is a coordinate system xl (in general different from the one 
of Def 1 but still called xl) and there exist constants ®Ma, *Mf ^Ma and 
*Mf such that 

**   -   ^ + *J^ + 0«>(±), (20) 

*"   =   !^ + !^P + 000(^), (21) 
9ij   =   Sij + -i —(^H-aVJ + O^-g).   (22) 

Proof. The definition of asymptotic flatness (1) implies R = 0(r 2 s) 
for some 8 > 0 and hence (by adjusting constants suitably) we have, from 

(12), 

T = 01(r~e),        ^ = 01(r-e)>        ^ = 01(r-e),        for some    e > 0. 
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Using next the full equation (11) we obtain ViVjV = 0(r 2 €). To get 
information on V and its partial derivatives, namely 

1-V = 02(r-e), 

requires an iterative procedure which we take over from Proposition 2.2 of 
[26] (compare also lemma 5 of [25]). Standard results on the inversion of the 
Laplacians in (7)-(10) (Corollary 1 of Theorem 1 in [27]) then yield 

r = 02(r-€),        (/> = 02(r-€),        </> = OV"6). 

It is now useful to pass to the variables gij, $a and \I/a which have the 
asymptotic behaviour 

$a = 02(r-£),        *a = 02(r-e),        gij = Sij + 02(r-e)        (23) 

and to introduce harmonic coordinates, which preserves these falloff proper- 
ties. Then we can write (15)-(17) in the form (the subsequent step follows an 
idea of Kennefick and 0 Murchadha [28] and has been erroneously omitted 
in [25]) 

g'iaidjQa = 0(r-2-3£),   g^did^a = 0(r-2-3e),   g^d^gM = Oir'2-*). 
(24) 

Inversion of the Laplacians now yields (23) but with 2e instead of e. Iterating 
this procedure sufficiently many times, we can improve the falloff on the r.h. 
sides of (24) to O2^-3"^) for some /? > 0. Following now [29] and [30], 
(but keeping here harmonic coordinates for simplicity) we can write these 
equations as 

A$a = 0(r-3-^)        A*a = 0(r-3-^)        ASy = O^"3"^) 

where A is now the flat Laplacian. Inversion yields the monopole terms in 
(20) and (21), (while the monopole term is absent in (22) due to the har- 
monic gauge condition), and remaining terms of 02(r~1~^). Finally, the last 
procedure can also be iterated to give (20)-(22) as they stand. 

Remarks. 

1. In the coordinate system introduced above, we can write the (Komar- 
)mass M and define a dilaton charge D and electric and magnetic 
charges Q and P as follows: 

lnV=^ + 0(l)   T=£ + 0(1)   <t>=^ + 0(±)   IM£ + O(1) 
(25) 
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The relation between these "multipole moments" and the quantities 
*Ma and *Ma is 

</> = 0: 

a = l: 

^M,!   =   -M + aD ^M_i   =   -M-a-lD 

*M0   =   y/c? + \Q. *Mo   =   0 

$M_i   =   -M + I> *M-i    =   -M-D 

*MQ   =   V2Q *M0   =   V2P 

and similar for <fi = 0. 

2. As elaborated in [30], the expansion (20)-(22) can in fact be pursued 
to arbitrary orders to give multipole expansions of a rather simple 
structure. 

4    The uniqueness proof 

In the previous section we described three special cases of EMD theory whose 
target spaces have similar group structures. We have exposed the theory in 
a way which makes these structures manifest by choosing variables which 
linearize the group action. This allows us to perform the uniqueness proof 
in close analogy with the electromagnetic case [8, 9]. The analogy suggests, 
in particular, the following choice of conformal factors, 

^± = ^±1),        ^± = ^±1), (26) 

and the rescaled metrics are denoted by 

9ij -   *l±gi3i 9ij -    M±9i3- 

We also define *A± = -^M"1 ± |*M0| and *Afc = -^M"1 ± |*M0| in 
terms of the quantities introduced in (20) and (21), while in terms of the 
charges M,DyP and Q (c.f. remark 1 at the end of Sect.3) we have 

^ = 0:   *A± = M-aD±VTTrf\Q\   *A± = M + a-1D (27) 

a = 1 : *A± = M - D ± y/2\Q\ ^^± = M + D± V2\P\ (28) 

Finally, we introduce *A2 = *A+*A- and *A2 = *A+*A-. In the 
following Lemma we show (among other things) that these quantities are in 
fact non-negative. 
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Lemma 3. Let (£,#, ^a, ^a) be non-degenerate black hole solutions of (15)- 
(17) with $A_ ^ 0 and *A_ ^ 0. Then 

1. (E,$(7+) and (E,^^) are asymptotically flat Riemannian spaces with 
C2- metrics and with vanishing mass. 

2. (E,^^-) (E,1^-) admit one-point compactifications E = EUF such 
that (E5^y~) (E,^^-) are complete Riemannian spaces with C2- met- 
rics. 

3. The spaces (E?
$^+) and (E,*^+) can be glued together with (E,$p~) 

and (E,^g+); respectively, to give Riemannian spaces {N,®g) and 
(N^g) with C1,1 —metrics. 

Proof. The proof is identical in all three cases discussed in the preceding 
section (the coupling constant a does not appear). Moreover, since the 
proof consists of the identical "$"- and "$" -parts we only give the former 
explicitly. 

We first show that ®Qt± > 0. We define the quantities *S± = (1 ± 
$o)($i - S-i)-1 - 1 which satisfy *-+ *S_ = 4$fi_($i - ^-i)"1 and we 
note that ($i — $_i) > 0 since V > 0. Moreover, by a straightforward 
calculation and by using (15)-(17) we find that 

-V*[(*i - S-xWSjJ = AC*! - $_i) = *J?(Si - $_i) = 
= (Vi*H+)(Vi$H_)($1-$_1)

3.   (29) 

By the maximum principle, the quantities ®E± take on their extrema on the 
boundary, i.e. either on 9E or at infinity. Since the BH is non-degenerate, 
W = ViVV'V is non-zero at d£. Hence rii = — W~l/2ViV is a unit outward 
normal to d£. Using Lemma 1, we obtain nllVi®E± < 0 on d£ and so *3± 
must in particular take on their maxima at infinity where they approach 
zero, from (20). Hence ®E± < 0 on E. This proves the positivity of $0_, 
and obviously we have $fit+ > $f!!_. Observe now that the asymptotic 
behaviour (20) and (21) yields *S± = r'^M"1 ± *M0) + 0{r~2) and 
$0_ = $A2r-2 + 02(r-3). Therefore, $S± < 0 implies $A_ > 0 and *ft- > 
0 implies and ®A2 > 0 (which justifies the definition of ®A2). Together 
with the definitions and the assumption of this Lemma, we obtain ®A+ > 
®A- > 0 and ®A2 > 0. Hence $fi_ qualifies as conformal factor for a 
C2- compactification. Further, since ^fi-j. = 1 + 02(r~2) and since gij has 
vanishing mass, the latter is also true for ^g^- 

To do the matching we use again standard results (see e.g. [31]). We 
first show that the induced metric on 9E is the same on (E,$g~) and on 
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(S, ®g+). This is the case because the metrics are ^g± = (®fi>±V)2(y~2g) = 
($f]±F)2g and g extends smoothly to 9S (see Proposition 3.3 of [14]) and 
V®Q,± are regular at <9S. Furthermore, the explicit expressions of $0± show 
that F*ft+ = F^fi_ at V = 0. 

The other junction condition is that the second fundamental forms of 9S 
with respect to the unit outward normals of (S, ®g+) and of (S, $#+) agree 
apart from a sign. Under a conformal rescaling h^ • = ti2hij, the second fun- 
damental of a hypersurface transforms as if^ = fii^A^ — nifyhAB, where 
n is the unit normal vector with respect to hij and h^B is the induced metric 
on the hypersurface. We recall that the boundary <9£ is totally geodesic with 
respect to the metric §y (i.e. KAB = 0) [1]. A simple calculation using (13) 
now shows that nlVi(®Q±V)\dx = =

FK/2. Thus, the two second fundamen- 
tal forms differ by a sign and so the glued Riemannian space (A/*, *g) is C1,1. 

Remark. For the spherically symmetric solutions (18),(19), we have ^A- = 
*A- = 0 iff the horizon is degenerate. In our considerations (c.f. definition 
1, and the preceding Lemma in particular) we always exclude degenerate 
horizons. Hence the conditions ®A- ± 0 and ^A- ^ 0 in Lemma 3 seem 
redundant. In fact, for connected horizons, ®A- > 0 and * A- > 0 follow di- 
rectly from the "mass formulas" [32]. Admitting now disconnected horizons, 
we report here on our partially successful efforts of dropping requirements 
®A- 7^ 0 and ^^L ^ 0. In terms of the mass and the charges they read 
(restricing ourselves for simplicity to the case '0 = 0): 

M-aD^ y/l+o?\Q\       aM + D^O. (30) 

In absence of the dilaton, i.e. in EM theory, the second condition is clearly 
trivial, while the first one reduces to M ^ \Q\. A generalization of Witten's 
proof yields M > \Q\ if the constraints hold (but without the assumption of 
staticity) [33, 34] and also gives the extreme Reissner-Nordstrom solution in 
the limiting case M = \Q\ [17]. In the case with dilaton, it has been shown 
by the technique of [33] that 

Vl + a2M>\Q\ (31) 

[35, 36], and we conjecture that equality holds iff the solution is the degen- 
erate Gibbons-Maeda one ((18), (19) with A = 0). Next, as an extension of 
the arguments by Penrose, Sorkin and Woolgar [38] for showing positivity 
of mass, Gibbons and Wells [37] claimed that the inequality 

M - aD > y/l + a2\Q\. (32) 

holds, and again it is natural to conjecture that the limiting case is precisely 
the one with degenerate horizons. Now observe that, if both conjectures on 
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the limiting cases of (31) and (32) were true, we would obtain both inequal- 
ities (30) in the non-degenerate case. Unfortunately, however, the positive 
mass claim of [38] (and hence also (32)) has so far not been established 
rigorously. 

We now pursue an idea (applicable to all three cases x/) = 0, (/> = 0 and 
a =.1) for showing directly that $A_ ^ 0 and ^A- ^ 0 in the static case. 
To exclude the case ® A- = 0, which is equivalent to ^M0 = i^M-1, we 
conclude indirectly: if one of these relations held, (20) would give, for the 
corresponding ST, the expansion ^5T = r~3($Mi~

1a;1 =F ^M^X
%
) + 02(r~3). 

This would, however, contradict ^S^ < 0 unless ®M^lx% = ±*M|V and 
thus $5± = 02(r~3). To proceed further we now write (29) on some end 
S00 in the form 

with A denoting (as already in Sect. 3) the flat Laplacian, and /^ and k1 are 
smooth functions with falloff 0(r~2). Inverting this Laplacian we observe 
that the leading term in the expansion of ®E± must be a homogeneous 
solution of order 0(r-3) which, on the other hand, must again be absent 
due to ^Srp < 0. The idea is now to iterate this procedure and arrive at 
$ Sip = 0 on the end S00, which would obviously contradict ®ET < 0 and 
show that ®A- > 0 as claimed. This argument would be rigorous if there 
were an analytic compactification of E near spatial infinity. Known proofs of 
analyticity of static solutions are based on deriving regular elliptic systems 
for the conformal field equations, and have been carried out for vacuum 
and for EM fields [39, 8]. However, to simplify the algebraic complications 
in the latter case, the particular conformal factor (26) has been employed 
which requires M > |Q|. (In the purely asymptotic regime, this has to 
be imposed as an extra condition). It is likely that in terms of a different 
conformal factor (and after substantial algebraic work) one would obtain 
analyticity without this requirement. Extensions to the EMD case should 
then be straightforward as well. 

Our final lemma is the "conformal positive mass" one, whose rigidity 
case will be employed later. 

Lemma 4. Let (Af,h) and (N,h') be asymptotically flat Riemannian three- 
manifolds with compact interior and finite mass, such that h and h! are 
C1'1 and related via the conformal rescaling h! — Q2h with a C1'1- function 
Q, > 0. Assume further that there exists a non-negative constant (3 such that 
the corresponding Ricci scalars satisfy R + fiVL2R! > 0 everywhere. Then the 
corresponding masses satisfy m + flm' > 0. Moreover, equality holds iff both 
(A/", h) and (N, h') are flat Euclidean spaces. 
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Proof. For the Ricci scalar R with respect to the metric h = Q2^/(1+^/i 
we obtain, by standard formulas for conformal rescalings 

(1 + p)R = 0"^(i? + ptfH) + 2)9(1 + /^ft^ViftV'ft. 

By the requirements of the lemma, A is AF and R is non-negative. Hence, by 
virtue of the positive mass theorem and by the relation fh = (1 + /?)_1(m + 
/3mf) for the masses we obtain the claimed results. 

We can now easily prove our main result. 

Theorem 1. Let (M,^g) be a static, simply connected spacetime with a 
non-degenerate black hole solving the Einstein-Maxwell-dilaton field equa- 
tions in one of the following three cases: 

(1) The magnetic field vanishes. 

(2) The electric field vanishes. 

(3) The dilatonic coupling constant a is equal to one. 

Assume further that the mass and the charges satisfy ®A- ^ 0 and * A- ^ 0 
(c.f. (27),(28)). Then (M^g) must be a member of the spherically sym- 
metric "Gibbons-Maeda-" family of solutions [10]. 

Remark. The condition that (.M,4#) is simply connected is used only 
to guarantee the global existence of the electric and magnetic potentials </> 
and ij). This condition fits rather naturally to BH spacetimes. In concrete 
terms, if the exterior of the BH is assumed to be globally hyperbolic, the 
"topological censorship theorems" of Chrusciel and Wald [40] and Galloway 
[41] imply simply connectedness. Thus the conclusions of the theorem hold 
for BH with a globally hyperbolic domain of outer communications. 

Proof. We introduce the Ricci scalars ^TZ and ^H with respect to ^gij 
and ^gij (which should not be mixed up with ®R and ^i?), and 

^Ei = *fr1ea6$
0Vi$6,        *Ei = *n-1eaby

aViy
b, 

where 612 = 1 = —e2i- We find that 

V> = 0: 
*f22 *K + a2 *ft2 *ft = 2 *fi2 V ^Ei *£,• + 2 *fi2 V 9Ei 

9Ejt 

a = l : 
*ft2 *K + *fi2 ^TZ = 2 *ft2 *^' *Ei ^Ej + 2 *ft2 *^' *Ei "Ej. 
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where the r.h. sides are manifestly non-negative. Defining now (3 = a2 and 
the metrics h = ^g, hf = ^g and h — Q2g by 

^ = 1 : 

G2 = ^fi *ft, 

we can apply the rigidity case of Lemma 4, which yields that (AT, *g), (jV, ^g) 
and (A/", 3) are flat. This also implies that ^fJ-t = ^fi± and hence $1 = #1. 
Furthermore, we have $2^ = ^Ei = 0, which yields that a_i$_i = ao^o and 
b-i^-i = 60^0 for some constants a_i, ao, 6-1 and 6o- Hence all potentials 
$^ and SPA ^e functions of just a single variable. The following one is 
particularly useful 

2     A
2^! 4-1)      A2^^!) 

4(*i - 1)        4(*i - 1) ' 

where A2 = ®A2 = ^A2 (and ®A2 and ®A2 were defined before Lemma 3). 
In fact, the field equations (16),(17) and the flatness of {Af^g) imply that 
ViV^SR2 = 2Sij, and so 5ft coincides with the standard radial coordinate in 
M3 (for details, c.f. the proof of Theorem 1 in [25]). To obtain the form (18) 
we introduce the harmonic coordinate p = 5ft + A2 /45ft. 

5    Harmonic maps 

In this section we consider massless coupled harmonic maps in general, as 
introduced in Definition 3. Our aim is to obtain information on the possible 
conformal factors which are suitable for proving uniqueness of spherically 
symmetric BH following the method of Bunting and Masood-ul-Alam. For 
this purpose we first study massless coupled harmonic maps where both 
(S,p) and T are spherically symmetric. Any such map must be of the form 
T = £ o A, where £ : I C R —> V is an affinely parametrized geodesic of (V, 7) 
and A : S —► R is a spherically symmetric harmonic function on S (see, 
e.g. [6]). Thus, spherically symmetric solutions are described by geodesies 
in the target space. However, in general not all geodesies of the target 
space correspond to a non-degenerate spherically symmetric BH. Let us put 
forward the following definition. 

Definition 4. Let V be the target space of a coupled harmonic map. We 
define VBH CV as VBH — {% G V\there exists a spherically symmetric, non- 
degenerate black hole spacetime whose defining geodesic in the target space 
passes through x}. 
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Remark. In this section we will assume that the condition of AF (im- 
plicit in our definition of a BH in Sect. 2) restricts the values of the matter 
fields and the norm of the static Killing vector to specific values at infinity 
(perhaps after suitable shifts and/or rescalings of the fields). For example, 
in the case of EMD we have chosen V = r = l, 0 = ^ = 0 at infinity. 
The corresponding point in the target space will be denoted by p^. Thus, 
every point x E VBH can be joined to Poo by at least one geodesic giving 
rise to a non-degenerate, spherically symmetric BH. We will denote any such 
geodesic by CE('S) 

and we will fix the (affine) parametrization uniquely by 
demanding (without loss of generality) Cx(0) = Poo, Cz(l) = x- Notice that 
this condition restricts the harmonic function A appearing in T = (^ o A to 
satisfy A = 0 at infinity in E00. A geodesic passing through POQ will qualify 
as a defining geodesic for a spherically symmetric BH provided several con- 
ditions are met on the BH boundary. In particular, it is necessary that the 
geodesic reaches V = 0 (i.e. the horizon of the BH) at an infinite value of 
the affine parameter and that the rest of fields remain finite there. A more 
detailed description of the necessary and sufficient conditions in the case of 
target spaces which are symmetric spaces can be found in [6]. 

Notice that the subset VBH need not be a submanifold (although this 
happens to be the case in all explicit cases known to us). In particular, 
it could happen that two or more geodesies connecting x and poo define 
spherically symmetric BH. However, such geodesies would define different 
BH solutions so that we can still associate to every solution one geodesic in 
a unique way. 

In Theorem 2 below we shall determine explicitly and uniquely the con- 
formal factors on VBH for which the method of Bunting and Masood-ul-Alam 
has a chance to work. In the following, we shall be dealing with objects on E 
which are the pull-backs of objects on V under T. In order to avoid cumber- 
some notation we shall use the same symbol for both objects. The precise 
meaning should become clear from the context. 

Theorem 2. Consider a massless coupled harmonic map with target space 
(V, 7) and let £l± be positive, C2 functions fl± : V —>> K with the following 
properties 

(1) For any spherically symmetric, non-degenerate, static black hole 
{^sph,9sph) the metric fl±gsph is locally flat. 

(2) (E^, (ft+)2flfsp/i) is asymptotically flat and (E^, (ft-)2^) admits a 
one-point compactification of infinity. 
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Then, Cl± must take the following form on VBH 

n+(x)^coSh
2J^{x^a{x),   n^x)=Smh2J^{x^a{x)   \/xevBH(M) 

where (a(x) is the tangent vector at x of the geodesic (x{s) in (V,7) defining 
the spherically symmetric black hole (EsphiQsph)- 

Conversely, for any spherically symmetric static black hole i^sph-tQsphjj 
the metrics ti±gsphj with Ql± given by (33) are locally flat. 

Proof. Prom the coupled harmonic map equations (3), (4) and from the 
behaviour of the Ricci scalar under a conformal rescaling g' = Q2<7, where O 
is a function V -> IR, we find 

tftf = (7o6 - 4^^ + 2^^) V^T-V^T6 (34) 

where D is the covariant derivative on V. Let x € VBH and Cz be the geodesic 
in (V,7) giving rise to the spherically symmetric BH i^sph^sph)- Applying 
(34) to this solution and using Condition (1) we obtain, with fi-t = (cr1*1)2, 

0 = (jao " 8^^) C'HAK'WViAV'A. (35) 

Defining a:t = a^- o ^, equation (35) becomes, after using the fact that ^ 
is a geodesic, 

where N(x) = Ci
a{x)Cia{x). Condition (2) imposes, first of all, that n+(p) = 1 

and fi-(p) = 0, or, equivalently, 

£±(0) = 1/2 ±1/2. (37) 

Furthermore, under a conformal rescaling g' = a4*?, the mass changes ac- 
cording to 

m -m' = l- I   ViCjdS\ (38) 
ZTT Jsoo 

where S00 stands for the sphere at infinity in S00. For the conformal factor 
<T

+
, the right-hand side is zero because the metric gsph has vanishing mass 

and {cr^^gsph is flat. Similarly, for <J", infinity is compactified to a point 
and so the right-hand side must also vanish (the sphere at infinity becomes 
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a point). Let Sr be a sphere or radius r in S^ (r sufficiently large). Then 
(38) implies 

f   ^1 
' JSr      ds 

0= lim 
1—KX) 

ViXdS* (39) 
s=X 

A trivial analysis of the Laplace equation for spherically symmetric functions 
in a spherically symmetric, AF spacetime shows that V^A = 0(r~2). Thus, 
(39) implies ^|s=o = 0. The unique solution of the ODE (36) fulfilling this 
initial condition and (37) is 

a+(x) = cosh 
N(x) 

a  (x) = sinh 
N{x) 

Vz e VBH 

and the first part of the Theorem follows. 

In order to prove the converse, we need to show that the Ricci tensor 
Rf of the conformally rescaled metric Q,±gSph vanishes for any spherically 
symmetric BH. Prom the previous results we know that the Ricci scalar R^ 
vanishes. Prom spherical symmetry, it follows that we only need to check 
whether the radial component of Rfj vanishes, i.e. R^VlW3 X = 0. Prom 
the coupled harmonic map equations (3),(4) and from spherical symmetry 
it follows, at any point y G 53^ and for any function F : V ->• M, 

^^ r^ ,        1 dG ia(x)daF(x) {hij -27^)1^ + 

+e(x)ib(x)DaDbF(x) (ViAVjA)) |y     (40) 

where x = T(y), G = ViAVlA, rii is the unit radial normal of (T,sph,gSph) 
(i.e. rii = G-1/2ViA wherever G ^ 0) and hij is the projector orthogonal 
to rii. Using (40) for F = a±, (4), (35) and the transformation law for the 
Ricci tensor under conformal rescalings we obtain 

JjgVWA = 4G2(y)    - 
l_dG 

AGdX 
Daa

d 

?{*)+ 

DaDtO* ib/ ?(*)?(*) + 
Daa

±Dba
:i 

a ±2 eweix)). (4i) 

Next we need to evaluate G. Again, from spherical symmetry and the cou- 
pled harmonic map equations it follows that Rge — 0. This determines the 
metric gsvh modulo two constants. Integrating the spherically symmetric 
Laplace equation on this background, the following expression is obtained 

1 dG, N 

-40 dA (y) = 

N(x) 
cotanh 

N{x) 
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Inserting this into (41) and using the explicit form for a± we obtain 
i?^V2AVJA = 0, which proves the claim. 

Remark. Notice that the proof of the theorem holds for any geodesic pass- 
ing through x £ VBH defining a spherically symmetric BH. Thus, if there 
exists a point x G VBH with two or more geodesies defining a BH, then the 
proof of Bunting and Masood-ul-Alam can work only provided the square 
distance function N(x) = £a(#)£a(a;) takes the same value on each of these 
geodesies (so that the conformal factors ft-t are well-defined). This should be 
viewed as a restriction on the set of coupled harmonic map models for which 
the method of [7] may work. As mentioned above, all known models have 
the property that the "BH"-geodesic passing through x G VBH is unique. 

We conclude with a discussion of the results of this section, with the 
EMD case serving as example. 

The crucial step in the uniqueness proof of Bunting and Masood-ul-Alam 
[7] is to define appropriate conformal factors on the target space which rescale 
the spherically symmetric BH to flat space and which have the appropriate 
asymptotic behaviour. In Theorem 2 above, we have used these properties 
as guiding principles to define, for general coupled harmonic maps, unique 
functions Sl± : VBH -> IR on a certain subset VBH of the target space V. 
These "candidates" for conformal factors would be perfectly suited for a 
uniqueness proof if they could (i) be extended suitably to the whole target 
space if VBH is smaller than the whole target space and (ii) be shown to be 
positive, having the right behaviour at infinity and at the horizon for every 
coupled harmonic map (without the assumption of spherical symmetry) and 
with rescaled Ricci scalar being non-negative. 

In vacuum and in EM theory, VBH coincides with the target space and the 
theorem above yields unique conformal factors (which coincide with the ones 
used in [8, 9]). The uniqueness obtained here is remarkable for the following 
reason. It is clear that there are infinitely many possibilities to combine the 
potentials V and (j> to factors which rescale the Reissner-Nordstrom metric to 
the flat one, and which have the right boundary conditions. In fact, we can 
just take 0 to be either a suitable function only of V or only of 0. However, 
such conformal factors would in general depend explicitly on the mass M 
and the charge Q of the solution and therefore would not be functions on V 
as required in Theorem 2. In this situation there is little hope for proving 
that the rescaled metrics yield non-negative rescaled Ricci scalars. For this 
reason we believe that the assumption that the conformal factors depend 
only on the target space variables is quite reasonable in general. 
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K VBH is smaller than V, the factors obtained from Theorem 2 on VBH 

have to be extended to V, which involves "guesswork". In each of the three 
special cases of EMD theory considered above, VBH has codimension one in 
V, and guessing the "right" factors is easy (with or even without using The- 
orem 2) after the simple structure of the symmetry group of V is recognized. 

In the general EMD case with a ^ 1, the isometry group of V is aff(l) 
x aff(l) where aff(l) is the group of affine motions of the line. However, 
we are not aware of explicit forms of the spherically symmetric BH and we 
have no knowledge of VBH (not even of its dimensionality). Thus we have 
here neither a systematic way for determining, nor even for guessing good 
conformal factors. In fact, it is plausible that solving the general EMD case 
could give interesting clues on how to extend the conformal factors off VBH 

for general harmonic maps. 
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