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In this paper, we obtain optimal uniform lower tail estimates for the prob- 
ability distribution of the properly scaled length of the longest up/right path 
of the last passage site percolation model considered by Johansson in [12]. 
The estimates are used to prove a lower tail moderate deviation result for 
the model. The estimates also imply the convergence of moments, and also 
provide a verification of the universal scaling law relating the longitudinal and 
the transversal fluctuations of the model. 

1    Introduction 

In [12], Johansson considered directed last passage site percolation on Z^_ = {(m, n) : 
m,n G N} with geometric random variables. More precisely, for (i,j) € Z+, let 
w(i,j) be independent, identically distributed geometric random variables with 

lP(t«(t,j) = fe) = (l-*2)(*2)*,        fc = 0,l,2,---, (1.1) 

and 0 < t < 1. An up/right path TT from (1,1) to (M,N) is, by definition, a 
collection of sites {(ik,jk) : fc = 1,2, • • • ,n}, n := M + N — 1 such that (ii,ji) = 
(1,1), (in,jn) = (M,A0 and (ik+ujk+i) - {hjk) = (1,0) or (0,1). Let (1,1) Z1 

(M,iV) be the (finite) set of all such up/right paths from (1,1) to (M,N). Now 
define the maximal 'length', 

G(M,N) := max{ £  w(i,j) : TT e (1,1) / (M,N)}. (1.2) 
(*,i)G7r 

Fix 7 > 1 and set M = [yN], the integer part of 7iV. The main result in [12] is 
the following: for any x e M, 

/G([7iV],iV)-f N       \ 
^T{      LN'»       s.)-rw. 0.3) 

where 

and 

ao = t((7 + 1^+2/7)' (1-4) 

b0 = *^I^l(t + >/7)2/3(l + tV7)2/3. (1-5) 

and where F(x) is the Tracy-Widom distribution [23] for the largest eigenvalue of 
a random matrix chosen from the Gaussian unitary ensemble (GUE). In addition 
to (1.3), Johansson also proved large deviation results, 

lim  -llogP(G([7iV],iV) < N(--y)) = -l(y), (1.6) 

lim  -J-logP(G([7iV],iV) > N(-+y)) = -i(y), (1.7) 
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for some explicit positive functions £(y) and i(y), y > 0. 

The result (1.3) parallels an earlier result in [1] on the length of the longest 
increasing subsequence £N(^) of a random permutation a of N letters. The main 
result in [1] is the following: for any x £ M, 

where again F(x) is the Tracy-Widom distribution appearing in (1.3). The authors 

in [1] also proved the convergence of moments: if Xiv(cr) :— i^^i/QN and X is a 
random variable with distribution function F(x), then for ra = 0,1,2, • • •, 

Km E0$) = E(xm). (1.9) 

In earlier work other authors proved large deviation results for £/v, 

lim   ^ logP(^ < VN(2 - y)) = -H(y), (1.10) 
JV-»oo iv 

lim  -L]ogV{lN > VN(2 + y)) = -I(y), (1.11) 
N-¥oo YiV 

for y > 0, where H(y),I(y) are certain explicit positive functions. The result 
(1.10) is due to Deuschel and Zeitouni [9] and the result (1.11) is essentially due to 
Seppalainen [21]. 

In two recent papers, [18] [17], the authors have considered £N in the moderate 
deviation regime. More precisely, for 0 < a < |, they showed [18] that for y > 0 

7V->oo y3j\fl-3a 12 V ' 

and [17] 

1.      logF(£N>(2 + yN-«)VN) _    4 
iV^o yS/2N(l-3a)/2 "      3' ^-^J 

These moderate deviation results can be motivated by noting that 

F(x) - ex3/12       as x -> -00, (1.14) 

and 

l-^)-6^^ as x -^+00. (1.15) 

Thus from (1.8), one anticipates that as N -> 00, 

P(^Ar < (2 - yN~a)y/N) = P(lN < 2VN - (yTV1/3-")^1^) 

~ log^-J/TV1/3-") ~ -l2/3ivl-3a) (1-16) 
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and 

P(^v > (2 + yN-a)VN) = P(tN > 2y/N + (yN^^N1^6) 

~ log(l - FiyN1'3-")) ~ -tyWNl1-3""2.     (1'17) 

Of course, when a = 0, we are in the large deviation regime, and when a = |, we are 
in the GUE central limit theorem regime. The above moderate deviation results can 
also be motivated by estimating the functions I(y) and H(y) for the large-deviation 
regime. In [17], the authors proved (1.13) by refining certain estimates in [1] and 
using a careful summation argument. In [18], the authors utilized an analogous 
summation argument together with the estimate Lemma 6.3 (ii) in [1], 

Calculations similar to (1.16), (1.17), motivate the following moderate deviation 
results for G{[jN],N): for 0 < a < f, 

logP(G([7iV], AT) < (i - yboN'a)N) 1 
lim —ri^V ^- = -7^ (1-18) 

and 

logV{G{[>yN],N)>{±+yboN-°)N) 4 
jfe, yB/ajyi-sa/a = -3- (L19) 

One of the principal goals in this paper is to prove (1.18). Relation (1.19) is slightly 
simpler and can also be approached using the techniques in this paper. We hope to 
return to this problem in the future. 

Relation (1.18) is a consequence of the following result. 

Theorem 1.1. Fix 0 < t < 1 and 70 > 1. Then there exist a (large) constant 
L > 0 and a (small) constant S > 0, such that for large N, 

logP(G([7iV], JV) < —N - xboN1/3) = -^-x3 + 0(x4iV-2/3) + O(logz)   (1.20) 
QJQ ±2, 

uniformly for all L < x < 5N2/3 and 1 < 7 < 7o- In particular, for the variables 
£,7 in the same range, 

F(G([7iV], N) < —N - xboNl/3) < e-c^3 (1.21) 
do 

for some constant c > 0. 

Setting x = yN2/3~a in (1.20), we immediately obtain (1.18) together with error 
estimates. 

Corollary 1.2 (Estimate for lower moderate deviation). ForO < a < | and 
y > 0, as N -> 00, 

logF(G([7JV],iV)<(^-i/boJV-)iV) __!_,„, „_„. , n(log{yN*"-°U 

(1.22) 
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Theorem 1.1 can also be used for other applications. 

Corollary 1.3 (Convergence of moments). Forj > 1, setOw := b ^1/3°°— 
and let x be the random variable with distribution function F(x) as above.   Then 
for m = 0,1,2, • • •, 

lim E((9^) = E(xm). (1.23) 

Proof By Remark 2.5 of [12], (1.23) follows from the estimate (1.21). □ 

In particular, setting m = 2, we see that the fluctuation y/Var(G([yN], N)) of 
G is of order N11 where 77 = |. It is believed (see e.g., [16]) that the transversal fluc- 
tuations of G have order iV^ where £ and 7] are related by a dimension-independent 
universal scaling law 2£ = 77 + 1. In other words, it is expected that in our case 
f = f • In [13], Johansson considered transversal fluctuations for the Poissonized 
version of the longest increasing subsequence problem and showed in that case that 
the scaling law 2£ = 77 + 1 is satisfied. By [1], 77 is again 1/3, and Johansson [13] 
verified the scaling law by showing directly that £ = 2/3. A key role in his analysis 
was again played by Lemma 6.3 (ii) of [1]. This Poissonized problem can be viewed 
as a continuum version of the above site percolation problem and in Remark 1.2 
of [13] Johansson notes that the scaling law 2£ = 77 + 1 for the site percolation 
problem would follow from an estimate of type (1.21) above. The modifications in 
the argument in [13] that are needed for the site percolation problem are detailed 
in [14]. We thus have 

Corollary 1.4 (Transversal fluctuations). For any 7 > 1, the above coeffi- 
cients 77 and £ for longitudinal and transversal fluctuations of the site percolation 
model obey the scaling law 

2f = fj + l. (1.24) 

In order to prove Corollary 1.3, 1.4, weaker bounds than (1.21) suffice. Indeed, 
using an observation of Harold Widom [24] (see in particular Lemma 2), it is possible 
to prove the bound 

IP(G([7iV]5 N) < —N - xboN1'3) < e-c,l*l3/2 (1.25) 
ao 

for £,7 in the range of Theorem 1.1, for some constant c' > 0. As opposed to 
the proof of (1.21), which requires a steepest-descent Riemann-Hilbert analysis (see 
below), the proof of (1.25) uses only classical steepest-descent methods. A key role 
in [24] is played by a special case of a beautiful conjecture of Widom for the spectral 
properties of a class of singular integral operators (see [24]). Although the general 
conjecture is still unproved, in our case, as in the case considered by Widom in [24], 
the conjecture can be verified by using an elegant formula of Borodin and Okounkov 
[4] (see identity (4.9)). The method in [24] is itself motivated by earlier calculations 
in [2]. The estimate (1.25) is enough to prove Corollary 1.3, 1.4, but does not suffice 
to prove Corollary 1.2. 
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Remark 1. The bound in Lemma 6.3 (ii) of [1] was also used by Seppalainen [22] to 
control fluctuations for the "stick process" introduced in [20]. In [22], Seppalainen 
also mentioned that a similar result could be obtained for a certain continuous-time 
totally asymmetric simple exclusion process, provided the appropriate analogue of 
Lemma 6.3 (ii) could be established. The same should be true for a discrete-time 
version of this process. The above estimate (1.25), and of course also the stronger 
estimate (1.21), then suffices to control the fluctuations as in the stick process. 

Remark 2. Our results are given for G{M,N) where M — [^N] > N, but as the 
statistics of G(M, N) are clearly the same as for G(N, M), it is immediate that our 
results, suitably scaled, also apply to G([7iV], iV) for 0 < 7 < 1. 

As indicated above, the proof of Theorem 1.1 is based on the steepest-descent 
method for Riemann-Hilbert problems (RHP's) introduced by Deift and Zhou [8], 
and further developed in [7]. The method has been used to solve a wide variety of 
asymptotic problems in pure and applied mathematics (see, for example, [5, 6] and 
the references therein). The steepest-descent calculations in this paper are closely 
related to the calculations in [5, 6] and particularly [1]. Our analysis is based on 
the algebraic formula (2.7) below, which relates P(<3(M, N) < n) to the solution Y 
to an associated RHP on the unit circle E = {\z\ = 1} (see (2.6)). It follows then 
that our problem reduces to the asymptotic analysis of a RHP with large oscillatory 
parameters. The steepest-descent method in [8] was introduced precisely for this 
purpose. The key step in the method is to identify the leading order asymptotics for 
the solution of the RHP and this is done following [7], [5, 6] and [1] by introducing 
a so-called ^-function with certain specific properties on an appropriate contour 
Pi ur2 (see Proposition 4.1 below). Using g, one transforms the RHP for Y as 
follows: U := e~12ki<T3Ye~k^9~^^a3 where £ is a specific constant to be determined 
and as is the Pauli matrix 03 = (J -1) • A simple calculation shows that U solves 
the RHP 

fU(z) is analytic in z E C \ E, and continous up to the boundary, 
fe-k(g+-g-) k(g++9--W-£)\ M  26) 

U+(z) = U-{z)[e      0 ^...j     J>        *€E, 

where W is given (2.18), and g± denote the boundary values of g. In addition, one 
requires g(z) = logz + 0(z~1) as z -> oo, so that the RHP for U is normalized at 
infinity, 

U(z) = I + 0(l/z),        asz->oo. (1.27) 

The choice of the properties of g mentioned above is made precisely such that the 
leading contribution to the RHP (1.26) is immediate. Further information on the 
steepest-descent method can be found, for example, in [7], [5, 6], [1]. The discussion 
in [5] Section 4, in particular, should be helpful to the reader in providing motivation 
for the calculations that follow. 

In [7], [5, 6], the RHP's are given on the real line E and the analogues of Fi, 
r2 are subintervals of R: in [1], the RHP is given on the unit circle E = {\z\ = 1} 
and the analogues of Fi, T2 are again subintervals of E. The main new technical 
feature of the RHP in this paper is that Fi and r2 cannot be chosen as subintervals 
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of the original contour E, and the central problem is to discover the shape of Fi, r2. 
The situation is similar to the problem confronted by Kamvissis, McLaughlin and 
Miller in [15], where the authors considered the semi-classical limit of the solution 
of the Cauchy problem for the focusing nonlinear Schrodinger equation. Motivated 
by the calculations in [15], we show that the construction of Fi, r2 is equivalent to 
the problem of determining the global structure of the trajectories Q(z)(dz)2 > 0 
and orthogonal trajectories Q(z)(dz)2 < 0 of a particular quadratic differential 
Q(z)(dz)2 (see (3.54) below). 

The outline of the paper is as follows. In Section 2, we derive the basic algebraic 
formula (2.7) relating P(G([7iV],iV) < n) and the RHP (2.6), and state our basic 
asymptotic estimate, Proposition 2.2, for l2i(0; k). In Section 3, which is the heart 
of the paper, we construct Fi and r2 using the theory of quadratic differentials and 
verify the desired properties of h = g'. In Section 4, the constant £ mentioned above 
is defined (see (4.2)) and the desired properties of g = Jz h are verified (Proposition 
4.1). In Section 5, we use the ^-function to analyze the RHP and eventually give the 
proof of Proposition 2.2. Finally, in Section 6, we use the estimate in Proposition 
2.2 together with a careful summation argument as in [18] to prove the main result 
Theorem 1.1. 

Acknowledgments. The authors would like to thank Nick Ercolani for useful 
discussions and Kurt Johansson for making available to us his calculations in [14]. 
The authors would also like to thank Harold Widom for providing us with his 
preprint [24]. The first author would like to thank Anne Boutet de Monvel for 
kindly inviting him to Universite Paris 7, where a part of work is done, and also 
acknowledge that a part of work is conducted while he is visiting Korea Institute 
for Advanced Study for 2 weeks of August, 2001. The work of the first author was 
supported in part by NSF Grant # DMS 97-29992. The work of the second author 
was supported in part by NSF Grant # DMS 00-03268. The work of the third 
author was supported in part by NSF Grant # DMS-9970328. The work of the 
fourth author was supported in part by NSF Grant # DMS 01-03909. The work of 
the fifth author was supported in part by NSF Grant # DMS 0071398. 

2    Basic relations and formulae 

For M,iV> 1, let 

ZM,N:=(l-t2rMN. (2.1) 

Set 

^) = (1 + ^(1 + ^, (2.2) 

and consider the n x n Toeplitz determinant 

Dn(p) = Dn := det(<^_fc)o<;,fc<n, (2.3) 
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where <pj is the jth Fourier coefficient of (p: 

<Pj 
J\z\=l 

z j(f{z) 
dz 

27Tiz' 
(2.4) 

Here and below the integration contour \z\• = 1 is assumed to be oriented in the 
counter-clockwise direction. Let G(M, N) be the maximal length introduced in the 
Introduction. From earlier result of Gessel [11] an Johansson [12], Baik and Rains 
[3] extracted the relation 

P(G(M,N) < n) = -J—Dn(<p), (2.5) 
ZM,N 

which plays the basic role in our analysis. 

Let E be the unit circle \z\ = 1 in the complex plane, oriented counter-clockwise 
and let Y(z) — Y(z\k) = iXij{z\k))i<ij<2 be the solution to the following 2x2 
matrix RHP: 

'Y(z) is analytic in z 6 C \ E, and continuous up to the boundary, 

.Y(z)z~ka3 =I + 0{l/z),        asz^oo, 

Y+(z)=Y-(z) (2.6) 

where 0-3 = (J -i) is the standard third Pauli matrix, and Y+(z), (resp., Y-(z)), 
z e E, are the boundary values of Yiz') as z' -> z from the inside (resp., outside) 
of the circle. 

Lemma 2.1. The solution Y to the above RHP (2.6) exists and is unique. More- 
over, 

P(G(M,N)<n) = l[(-Y2i(0;k + l)). (2.7) 
k=n 

Proof. We will construct the solution Y explicitly using computations similar to [10]. 
First note that from the equality (2.5), Dn((p) ^ 0 for n > 0 since the probability 
V(G(M,N) = 0) = V{w{i,j) = 0,1 < Vi < M,l < Vj < N) = (1 - q)MN, and 
hence P(G(M,iV) < n) > F(G{M,N) = 0) > 0 forn > 0. Consider for k > 0 the 
polynomials of degree k 

^W := ^rdet 

^W==ltdet 

<P-i 

Vk-2 
Z 

^0 

(2.8) 

(2.9) 
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A direct check shows that TT^ and 7r£ satisfy the following orthogonality conditions: 

L 
dz 

z-'nk(z)(p(z)—-    =    Nk6jk        0<j<k, (2.10) 
\z\=l IKIZ 

f dz 
/       z-^iizWz)-—    =    NkSjo       0<j<k. (2.11) 

y|Z|=i 27™z 

where 

Nk = ^±i. (2.12) 

Let (Ch)(z) = 2^7 /s 'Jz^ds, z 6 C \ E, denote the Cauchy transform of ft. Let 
(C±/i)(z) = limz/_>z(C,/i)(2/) where z' approaches 2; from the ± side respectively, 
denote its boundary values as in the Introduction. We claim that 

Y(z;k) = [_N^J._i{x)    -A^CUrvLx*)) ' (2-13) 

is a solution to (2.6). The analyticity of Y in C\E is clear, while the jump condition 
follows from the relation C+ — C_ = 1. The asymptotic condition follows from the 
orthogonality (2.10), (2.11). On the other hand, the uniqueness of the solution to 
the RHP (2.6) is standard (cf. for example, Lemma 4.1 of [1]). Hence (2.13) is the 
unique solution to the RHP (2.6). 

For the proof of (2.7), first note that by taking n ->> 00 in (2.5), 

lim Dn(ip) = ZMtN. (2.14) 

(This can also be seen directly from the Szego strong limit theorem for Toeplitz 
determinants.) Thus we have, using (2.12), 

00     j-. 00 

F(G(M, N) < n) = H ^- = H Nk1 t2-^) 
k=n k=n 

Finally, from (2.8) and (2.13), we observe that Y2i(0; k) = —Nj^x, which completes 
the proof. □ 

Remark 3. From (2.7), 

^  /A 7     ix        P(G(M,iV) <k) .      . 

and hence we have -l2i(0; A;) > 0 for k > 1. 

There are three parameters in the RHP (2.6): M, iV, k. We regard t,0<t<l, 
as a fixed number throughout this paper. For convenience we introduce the following 
notation: 
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Instead of M, N, fc, we now regard 7, a, k as our parameters in the RHP (2.6). Using 
this notation, the jump condition for Y takes the form 

y+^) = y_(z)fj j      ),        W(^):--7«log(l + ^)-alog(l + t/2;)+logz, 

(2.18) 

where logw is defined to be analytic in C \ (-00,0], and logw = log \w\ for ^ > 0. 
We are interested in the asymptotics of Y as k -> 00, while 7 and a remain in 
appropriate bounded regions. The main technical result we are going to prove in 
the rest of this paper is the following: 

Proposition 2.2. Set 

1 - t2 

an = LJ . (2.19) 

Fix 0 < t < 1 and 70 > 1. T/iere are LQ, SQ, ko > 0 5ixc/i that for 7, a, fe satisfying 

ao + ^<a<(l + So)ao, (2.20) 

k>ko and 1 < 7 < 70, we have 

log(-y2i(0; k)) = -c2k(a - ao)2 + 0{k\a - ao|3) + 0(|a - ao|) + 0(fc|fl,flo|)» 

(2.21) 

ty/iere 

_ t2(^ + t7 + 2V7)3V7 (2 22) 
C2-4(H-tV7)2(t + V7)2' 

In particular, for the variables in the same range, 

\og{-Y2l (0; k)) < -c0k(a - ao)2 (2.23) 

for some constant Co > 0. 

3    The /i-function 

As noted in the Introduction, we seek a ^-function and associated contours Ti U T2. 
Rather than analyzing g directly, we first seek an h-function, h = g'. We start from 
an ansatz, to be verified_a posteriori, that Ti, V2 has the shape indicated in Figure 
1 with the endpoints f, £. Recall from (2.18) 

W(z) = -7olog(l + tz) - olog(l + t/z) + log z, (3.1) 
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and recall from (2.19) 

Notation for differentials (see e.g., [19]): Given a meromorphic function f(z) and 
a simple oriented curve C lying outside the zeros and poles of /, the notation 
f(z)(dz)2 > 0 means that f(z(t))(^)2 is real and positive for all t G (a, b) where 
z(t), t G (a,6) is the arc length parameterization of C. Similarly, f{z){dz)2 < 0 
means that f(z(t))(^)2 is real and negative. Similarly for linear differentials, the 
notation f(z)dz > 0 means that f(z(t))^ > 0 (cf. Proposition 3.1 (c), (d) below). 

In order to understand the motivation for the properties of h in the Proposition 
that follows, and to understand the role of the quadratic differential Q(z)(dz)2 

below, the reader may find it helpful to read ahead to the text following (5.7) and 
also to the text between (5.11) and (5.12). 

Proposition 3.1. Fix 0 < t < 1, j > 1, a > CLQ. Then there exist (cf. Figure 1 
below) 

• a point £ with /ra(£) > 0, 

• a simple open curve Fi connecting £ and £, oriented from £ to £ such that (i) 
it does not intersect (—00,0] and (ii) Ti is symmetric with reflection about 
the real line, 

• a simple open curve Y2 connecting £ and £, oriented from £ to £ such that 
(i) it does not intersect (—00,— l/t] U [—£,00) and (ii) Y2 is symmetric with 
respect to reflection about the real line, 

• a function h(z) analytic in C \ Fi and continuous up to the boundary 

such that the following properties are satisfied: 

(a) h+(z) + h-(z) = Wl(z) forzeT^ 

(b) h{z) = \ + 0{z-2) as z -* 00. 

(c) i{h+{z) - h-{z))dz > 0 for z £ Fi. 

(d) (2h(z) - W'iz^dz < 0 for z G T2 fl C+  and (2h(z) - W'(z))dz > 0 for 
z G Fs fl C- . 

In addition, we have the following properties: 

(i) The function h has the form 

hiz) = m f   w'js) 
K '       2in   L  R+(S)(S - z) 

= IW'(Z) + iRiz)(,    . ,  ?„,   ,  „ + .       a..    . - ^\ (z + t-^Ri-t-1)      (z + t)R(-t)     zR(0)J' 
(3.4) 
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where R(z) = \/(z — £)(z — ^) is defined to be analytic in C\r1 and R(z) ~ z 
as z -» oo. 

(ii) (Endpoint condition) 

(in) Set 

where 

Then 

f    W'is)^ n 1       f    3Wt(8)J 

«Mg (l^a)^;;^,, „C\r1, (3.6) 

* - -R(0)(l + 70)' (3'7> 

/n particular, 

2h{z) - W\z) = $(2?),        z e C \ Ti. (3.8) 

/i+(z)-/i_(z) = $+(z)5 zGTi, (3.9) 

2/i(z) - WW = *(*), ^ € r2. (3.10) 

(iv) The curve T2 intersects the real axis at —ZQ. 

Figure 1: Sketch of the contours Fi and r2. 

Idea of proof: 

Suppose that the curve Fi is known. Let 

R(z) = \liz-0iz-l), (3-11) 
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which is defined to be analytic in C\ri, and R(z) ~ z as z —> oo. From the Plemelj 
formula, it is easy to check that 

hiz) = m [   *;;(«)  „, (3.12) 
v ;       2Tri JTl R+{s)(s-z) v       ; 

satisfies condition (a). By a residue calculation, h can be written as 

«.) - !""<«> + |i«W((TFF^IR) + cT^fl " ^)'   (3-13» 
For this /i to satisfy (b), the following two conditions are necessary and sufficient, 

/mb-O,        i /£$*-!. (3.14, 

or equivalently by residue calculations, 

7a a a +1 7a at _ x 

^(-r1)     iJ(-t)     i?(0)'       tRi-t-1)    R(-t) 

As we will see, these conditions determine the endpoint £. 

Now for z € Fi, from (3.13), 

i(h+{2) - M*)) - .-^ w ((TTF^FF^)
+j^rmD - ^m) ■ (3-16) 

Substituting i?(—1_1) and R(—t) in terms of i?(0) using the endpoint conditions 
(3.15) we obtain, after some algebra, for z G Fi, 

i(h+(z) - M*)) = i(l+7«)fi+(^)^^0
+

)^1), (3.17) 

where 

Hence we have 

z°= -urn+-ray (3-18) 

which is meromorphic in C. We then use the theory of the quadratic differentials 
to find the trajectories for Q(z)(dz)2 > 0 and this leads us to the determination of 
the contour Fi for which condition (c) is satisfied. 

The contour r2 for which condition (d) is satisfied turns out to be obtained 
by finding the so-called orthogonal trajectories corresponding to Q(z)(dz)2 < 0. 
Clearly if a trajectory and an orthogonal trajectory meet at a point z in the plane 
where Q(z) is analytic and nonzero, they do so at right angles to each other. 

The rest of this section consists of a proof of the above Proposition. 
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3.1    The endpoint £ 

In this subsection, we are going to prove that there is a unique £, /ra(£) > 0, for 
which the following two conditions (cf. (3.14)) are satisfied, 

[^1^ = 0, *    [%&* = -!, (3.20) 
yr R+(S) 2ni Jv R+(s) ' v       ; 

where F is any simple oriented curve connecting £ and £, oriented from £ to £ such 
that (i) it does not intersect (—oo,0] (ii) it is symmetric under reflection about the 
real line, and 

R(z) = y/i*-£)(*-£), (3.21) 

which is defined to be analytic in C \ F with R(z) ~ z as z —> oo. 

Remark 4- A priori we should look for a pair of unrelated points £i, £2 such that 
(3.20) is satisfied for any contour F connecting them as above. It turns out, however, 
that it is sufficient to look for £1 and £2 in the form £1 = £ and £2 = £• The reason 
for this symmetry lies in the form of the equations (3.20). Indeed, both W(s) and 
sW^s) are real analytic functions, and in each integral the path of integration can 
be doubled along the "minus" side of the branch cut for R(s) and then deformed 
into a closed loop containing £1 and £2 and the branch cut F connecting them but 
no singularities of W(s); this loop is otherwise arbitrary. If we take the loop to be 
symmetric with respect to reflection in the real axis, then it is easy to see that the 
only way for both integrals to be purely imaginary as required by (3.20) is for R(s) 
itself to be a real analytic function, which forces £2 = fi- 

As in (3.15), these conditions become 

7a a a +1 7a at ,„ . /n n. 
Ri-t'1)     R(-t)      i?(0)'        tRi-t-1)     R{-t) 

Set 

r := K| - -#(0), x := I*"1 + £| = -iJ(-r 1)> y := |t + £| = -R(-t). 
(3.23) 

Then conditions (3.22) have the form 

7a     a     a +1 7a     at /n^,s 
+- + - = ,        f- + — = 1 + 7a. (3.24) 
x      y r tx      y 

Set 

ri := TT^'     r2 ■= ^TT^)' (3-25) 

The conditions (3.24) are now, after simple algebra, equivalent to 

£2(L^)    =   t{1 + ri){l-±)t (3.26) 

<L^1    =   t(l+7a)p-l). (3.27) 
2/ r 
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Also from the definitions, r, x, y satisfy the relation 

r2=l + 4^- (3-28) 
Inserting x, y of (3.26), (3.27) into (3.28), we obtain an equation for r: 

^     a-fW(_l ^^-o (329) 

Since x,y > 0, from (3.26), (3.27), we must have ri < r < r2- Thus we seek x,y,r 
satisfying 

a:>0,        2/>0,        n < r < 7-2. (3.30) 

Lemma 3.2. For each fixed 0<£<l;7>l,a>ao, ^/iere 25 a unique solution r 
to (3.29) satisfying 7*1 < r < r2. 

Pnw/. Set 

F(r):"r2+ (I + T^)
2
 U(r2-r)2      (r-ri)2j     L (3-31) 

Clearly, H(r) -> -00 as r 4- ri, and £r(r) -> +00 as r t ^2. Thus there is n < 
rc < r2 satisfying iy(rc) = 0. We want to show that such an rc is unique. By direct 
calculation, for ri < r < r2, 

H(r) + -If (r) -       (1 + 7a)3       ^3(r2_r)3 + (T^T^J - 1-        (3-32) 

The minimum of this function on (ri,^) is obtained at 

_r1+r2v/7* 
r*-    1 + V7i   ' (3-33) 

and for 7*1 < r < r2, 

*(r) + IlTW > ff(,.) + ilTfr.) - ((.t^ff))' " I- (3-34) 

But since a > ao, 

Therefore, if #(rc) = 0 for 7*1 < rc < 7*2, we must have H'frc) > 0. A simple 
calculus argument then proves the uniqueness of the solution. □ 

Thus if we define x, y by (3.26), (3.27), we have obtained the unique solution 
(r,x,y) to the equations (3.26), (3.27), (3.28) subject to (3.30). Now we need to 
prove that the (r,x,y) defined in this way determines £, /m(f) > 0, uniquely from 
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(3.23). In order for £, Im(£) > 0, to satisfy (3.23), we must have £ = reie for some 
0 < 6 < TT satisfying 

Conversely, if there exists 9 G (0,7r) satisfying (3.36), then ^ := re1,6 and ^ = re'10 

are the desired endpoints. However, the second inequality follows from (3.28) and 
so it is sufficient to prove that for (x,y,r) satisfying (3.26), (3.27), (3.28), (3.30), 
we have the relation 

^•2 _ ^2 _ J.—2 

-1 < -^F^- < '■ <3-37> 

In order to prove (3.37), we first prove the following Lemma. 

Lemma 3.3. For each 0 < t < 1, j > 1, a > CLQ, the solution (r,x,y) to (3.26), 
(3.27), (3.28), subject to (3.30) satisfies 

4.-1 x + y > r1 - t. (3.38) 

Proof. From (3.26), (3.27), we have 

X + y   -     a     S-l + Jn- + _l!_). (3.39) 
t~l —t      1 + 70 \ r — 7*1      r2 — r 

The minimum of the right-hand side, regarded as a function in r, is again obtained 
at r — r*, where r* is defined in (3.33), and hence, by evaluating the minimum, we 
obtain 

x + V '(* + /*>' '(3.40) 
<-i-t - (l + 7a)(l-t2)' 

But since a > ao> we have 

_x + V_ >     ^\f)2     = L (3.41) 
t-i-t      (l+7ao)(l-t2) 

D 

Now we prove (3.37). 

Lemma 3.4. For each 0 < t < 1, i > 1, a > do, the solution (r,x,y) to (3.26), 
(3.27), (3.28), subject to (3.30) satisfies 

7-2 _ r2 _ f-2 

-l<-if^-<l- <3-42) 

Proof. Suppose that 

x2 _ r2 _ t-2 

2rt -i 
> 1. (3.43) 
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Then x2 > (r + r1)2, and thus from (3.28), 

y2 = t2x2 + (r2 - 1)(1 - t2) > t2(r + r1)2 + (r2 - 1)(1 - t2) = (r + t)2.    (3.44) 

Hence we have 

x^r + t"1,        y>r + t. (3.45) 

Inserting (3.45) into (3.26), (3.27), we have 

2az£l>,(i + 1.,(,-a),    ^^o+^a.,)    (3.46) 

We multiply the first inequality by r(r + tf-1), and multiply the second inequality 
by r(r + t). Then by adding the two inequalities, we obtain, after some algebra, 
0 > 2, which is a contradiction. 

Now suppose that 

This implies that (tx)2 < (1 — rt)2. Since r < r2 < j for 7 > 1, we have 

to < 1 - rt, (3.48) 

and from (3.28), 

y2 = t2a:2 + (r2 - 1)(1 - t2) < (1 - rt)2 + (r2 - 1)(1 - t2) = (r - t)2.       (3.49) 

Hence we have 2/ < |r — t\. We distinguish two cases r >t and r < t. For the first 
case when r > t, from (3.48) we have 

x + y < (t~l -r) + (r-t) = r1 - t, (3.50) 

which contradicts Lemma 3.3. For the second case when r < t, 

y<t-r. (3.51) 

Inserting (3.48), (3.51) into (3.26), (3.27), we obtain 

23llzp<i + 70_*(i±l),        fci!)<^±i-*(l + 7a).        (3.52) 
1 — rt r t — r r 

Multiply the first inequality by (1 — rt)r, multiply the second inequality by (t — r)r, 
and add the resulting two inequalities. Then after some algebra, we find a < 0, 
which is a contradiction. This proves the lemma. □ 

It now follows from the preceding discussion that there is a unique solution £, 
Jm(0 > 0, to (3.22), or equivalently (3.20). 
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3.2    The contour Ti 

As in (3.7), set 

Z0 := -Bm+TaV (3-53) 

where R(0) is given in (3.23). We emphasize that ZQ is uniquely determined by the 
endpoint £, and is independent of the curve T in subsection 3.1, as long as F does not 
intersect (—oo,0], Note that t < ZQ < t-1 from the condition n <r ~ —R(0) < r2 
of (3.30). 

Now define 

Q(z) ._ -(1 + ja)    z2{z + t)2{z + t-1)2   , (3-54) 

and we consider the quadratic differential Q(^)(d^)2. In this subsection, we are 
interested in the trajectories Q(z)(dz)2 > 0. In the next subsection we consider 
the orthogonal trajectories Q(z)(dz)2 < 0. A general reference for quadratic dif- 
ferentials is Chapter 8 of [19]. Note, in particular, that if two trajectories (or two 
orthogonal trajectories) meet at a point z where Q(z) is analytic and nonzero, 
then they must be identical. The quadratic differential Q(dz)2 has double poles at 
0, — t, —t-1 and oo, a double zero at — ZQ and simple zeros at £,£. We first consider 
the local structure of the trajectories near the poles and the zeros. 

3.2.1     Local structure 

• Near 0: Q(dz)2 ~ =^-{dz)2, where c = (1 + 7a)|f |zo > 0. Thus we want 
trajectories z = z(t) satisfying jjfi^ci for some real constant ci. The 
solution is given by z ~ C2e_^Cl/c^, and hence the trajectories near z = 0 are 
circular. 

• Near -t: Q{dz)2 ~ ^^(dz)2, where c = <1+7a
t
)

(lffill~t+zo1 > 0. As in the 
z = 0 case, the trajectories are circular. 

Near -t"1: Q(dz)2 ~ ^^{dz)2, where c = ^^^'^L"/)"'^01 > 0- 
Again, the trajectories are circular. 

Near oo, Q(dz)2 - ^-(dz)2 = =^{dw)2, where c = 1 + 70 > 0, w = \. Thus 
once again the trajectories are circular. 

Near -ZQ: Q{dz)2 ~ -c2(z + z0)
2(dz)2, where c = ^g^^-t!1^) > 0' Thus 

we seek trajectories z = z(t) satisfying ic(z-\-zo)^ ~ ci for some real constant 
ci. The solution with ^(0) = -ZQ is given by (2 -I- ZQ)

2
 ~ —i(2ci/c)t, thus 

we have arg(z + ZQ) = j + ^, k = 0,1,2,3. Hence there are 4 trajectories 
starting from — ZQ, all making an angle j with the real line. 
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Near £ Q(cfe)2 c(z — 0(dz)2 for some c G C. Thus we seek trajectories 
2 = z(t) satisfying cy/z — £^| ~ ci for some real constant ci. The solution 
with z(0) = Misgiven by (z-gfl2 ~ {ci/c)t, and hence arg(z-t;) = C2 + ^|2L

) 

& = 0,1,2. Thus there are 3 trajectories starting from f, making an angle ^L 

between themselves. 

• Near £: Q(dz)2 ~ c(z-£)(dz)2 for some c 6 C. Again, there are 3 trajectories 
starting from f, making an angle ^ between themselves. 

The local structure of the trajectories of Q(dz)2 near the poles and the zeros are 
summarized in Figure 2. 

Figure 2: Local structure of the trajectories of Q(dz)2 near the poles and the zeros. 

3.2.2    Global structure 

Note that as Q(z) = Q(z), if {z(t) : a < t < /?} is a trajectory of Q(dz)2 > 0, then 
{z(t) : a < t < /3} is also a trajectory. Also from (3.19), we see that Q(z) < 0 for 
z € E\ {—ZQ , 0, —t, —t 1}, hence all trajectories that cross the real axis do so at 7r/2, 
and if {z(t) : a < t < (3} is a trajectory that satisfies Im{z(t)) > 0 for a < t < /?, 
and Im(z{p)) = 0, Re(z(P)) # -r1, -^o, -*,0, then {^(2/3 - t) : /? < t < 20 - a} 
gives a smooth continuation of {z(t)} into Im(z) < 0. 

We need the following lemma. 
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Lemma 3.5. £e££,£ be as in subsection 3.1. LetT be a simple curve with endpoints 
£,£ which does not intersect (—oo,0] and is symmetric under reflection about the 
real axis. Choose the branch of yQ{z) to be analytic in C\r; and satisfy \/Q{z) ~ 
^1~^7a^ as z -> oo. For any real number x satisfying —t~l < x < —t, let C be a 
smooth curve in C+ with endpoints £ and x, oriented from £ to x, which does not 
intersect F (see Figure 3).  Then we have 

Re [ y/Qdz = 0. 
Jc 

(3.55) 

Figure 3: The contours C and C". 

Proof. Let C be the closure of C U C, oriented from £ to £. Hence C" is a curve 
which has endpoints f, £, intersects the real axis at —t-1 < x < —t, and satisfies 
C' = U* (see Figure 3).   Let C* = {z : z € C}, oriented from £ to x.   Using 
y/Q(z) = —y/Q(z) and the realness of a;, we have 

Re f y/Q^)dz = ^  I ^/Q{z)dz + j ^Q{z)dz   =^\f y/Q{z)dz-h J ^^Q^)dz 

= l\f VQ&)dz+ f      y/Q{z)dz] =l[   y/Q&dz. 
* Uc J-c* J      z ^c 

(3.56) 

Hence we want to prove that the last integral is 0. 

Set (cf. (3.12), (3.13)) 

R(z)   f       W'(s) 
h(z) 

2m JrR+ 

= 1W'(Z) + \RW( 
(s)(s-z)ds 

70 a a +1 \ 
(z + t-^Ri-t-1) + (z + t)R{-t) ~ zR(0)) 

(3.57) 

irrr//   s 1 ,-. ^       R(z)(z + ZQ) 

-2W^ + -2{l + ^z(z + t)(Z + t-r 
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where the second equality follows from a residue calculation, while the third equality 
follows from the endpoint conditions (3.22). Thus from the definition (3.54) of Q 
and the choice of y/Q, we have y/Q = i(2h - W). Now 

i I VQ^)dz= f (2h-W,)dz= [ ^-dz f p ^
S) ds- f Wl(s)ds 

i Jc> Jc> Jc>   ™       JrR+{s)(s-z)        Jc, 

m Jr R+(s)     Jc'S-z        Jc, 
(3.58) 

By a residue calculation, for s G F, 

f   ^-dz = lim I f      ^-dz - mR+(s) = ni (^- - s - #+(5)^ • (3-59) Jc, s-z        r->™2jlzl=rS-z +w V   2 +wy   v      ; 

Hence using the endpoints conditions (3.20), we have 

= 27ri- f W,(s)ds- [  Wl(s)ds (3.60) 

= 21x1- I W'(s)ds, 
Jr 

where F', the closure of T U C, encloses —t, 0, but not — f"1, and is oriented counter- 
clockwise. But a direct calculation shows Jr, W

f(s)ds = 27ri, and we obtain the 
lemma. □ 

Remark 5. The authors are indebted to Nick Ercolani who suggested that a formula 
such as (3.55) should be true. 

3 4 

Figure 4: Local structure of the trajectories of Q(dz)2 near — ZQ. 

The following general results for the trajectories of quadratic differentials are 
given in Lemmas 8.3, 8.4 of [19], and are used in several places in the arguments 
that follow. 

Lemma 3.6. Let Q(z)(dz)2 be a quadratic differential in a simply connected do- 
main G. 

(i). If there is at most one pole of Q(z) in G and this pole is simple, then there 
is no closed Jordan curve in G consisting only of trajectories (or orthogonal 
trajectories) and their endpoints. 
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(ii). Suppose that Q(z) has no poles in G and let T be a trajectory (or an orthogonal 
trajectory). Then in both directions, T ends at a zero of Q or converges to 
dG. 

Remark 6. At various points in the argument that follows, we will use Lemma 3.6 
(i) in a slightly extended form. Specifically, we will want to consider Jordan curves 
consisting of trajectories of the form in the first picture of Figure 5 for which the 
hypotheses of the Lemma are not fully satisfied, because of the self-intersection 
of the trajectories. However, if we make the change of variables z *-} £ = z1"6, 
0 < e < 1, then the figure takes the form as the second picture in Figure 5 and as 
the change of variable takes trajectories to trajectories, it follows directly that the 
hypotheses of Lemma 3.6 (i) are now satisfied. We will use this extended form of 
the Lemma without further comment below. 

Figure 5: Unfolding of "closed" trajectories meeting at a point. 

Denote the four trajectories emerging from — ZQ by 1,2,3,4 as shown in Figure 
4. First, consider the trajectory emerging from —ZQ along the ray 1. Since there 
are no poles in €+, which is a simply connected region, this trajectory must either 
go to £, the zero of Q in Cf, or escape from C+. Suppose that the ray 1 does not 
escape from C4.. Then from the definition of a trajectory, J^ \fQdz £ M \ {0}, and 
hence the ray 1 (and similarly the ray 2) can not go to £ due to Lemma 3.5. So 
the ray 1 must exit from C+. Now it can not exit through —z§ because then by the 
local structure of the trajectories, the ray 1 comes back to ZQ through ray 2, and the 
interior of the loop has no poles of Q, contradicting Lemma 3.6 (i). Also, again by 
the local structure of the trajectories, the ray 1 can not exit through — f"1, -£, 0 or 
00. Now there are five possibilities: the ray 1 exits from C+ through (—00,—t-1), 
(—t"1, —20)> (—^OJ —*), (-*>0), or (0,oo). We examine each case. 

(i) The ray 1 can not exit through (—t~x, — ZQ), for if it does, the trajectory can 
be continued by complex conjugation as remarked before, and the interior of 
the loop contains no poles of Q(dz)2, contradicting Lemma 3.6 (i). 

(ii) By the same argument, the ray can not exit through (—ZQ, —t). 

(hi) Suppose the ray 1 exits at zi G (—£, 0). Then extending the ray by conjuga- 
tion, we obtain the closed loop (see the first Picture in Figure 6). Now the 
trajectory along ray 2 from — ZQ also can not go to £ and hence must exit C-f. 
Also the ray 2 can not cross the trajectory emerging from the ray 1. Hence it 
must cross the real axis between (-£0, —t) or (—t,zi). The first case can not 
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0 

Figure 6: Ray 1, case (iii). 

hold as the closed loop obtained by extending the ray 2 by conjugation has 
no poles inside. In the latter case, the simply connected region formed by the 
two loops has no poles, which is again a contradiction (see the second picture 
in Figure 6). Thus ray 1 can not exit through (—t, 0). 

(iv) Suppose that the ray 1 exits at Z2 € (0,oo). Then by arguing as in case 
(iii), the trajectory along the ray 2 from — ZQ must exit C+ at some point 
zs G (—£,0).  We denote the open regions in Cj. divided by the trajectories 

-i/t 

Figure 7: Ray 1, case (iv). 

emerging from — ZQ by I, II, III as shown in Figure 7. Now the zero £ of Q 
lies in one of the regions I, II, III. (Note that £ can not be on the trajectory 
emerging from —ZQ due to Lemma 3.5.) 

(iv-1) If £ G ///, then as before, each of the three trajectories emerging from 
£ exit through (—ZQ, —t) or (—£,£3). Hence at least two of the trajecto- 
ries exit through the same interval. Then the simply connected region 
bounded by these two trajectories has no pole, which is again a contra- 
diction. 

(iv-2) If £ G //, we reach a contradiction by a similar argument. 

(iv-3) If £ E /, the three trajectories emerging from £ must exit, one through 
(—00,—^~1), one through z^ E (-£~1,— ZQ), and one through (22,00). 
But this in turn gives a contradiction, because Re J?4 y/Qdz = 0 by 
Lemma 3.5. 
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Hence in each case, we have a contradiction. 

Thus we conclude that the trajectory along the ray 1 emerging from — ZQ exits €+ 
through £5 G (-00, -t-1). 

Now we consider the trajectory along the ray 2 emerging from -ZQ. AS before, 
it must exit C+ through either of (—00,25), (—zo,—t), (—1,0) or (0,oo). 

(i) If it exits through (—00,25), the two trajectories from the rays 1 and 2, ex- 
tended as in the remark above to Cf, form a simply connected region which 
does not contain poles, this is again a contradiction. 

(ii) Suppose that the trajectory along the ray 2 exits through (—ZQ,— t). Then 
the (C_-extended) loop of the trajectory 2 contains no poles, and again we 
have a contradiction. 

*\-i/t     J'L:\       -t        0   .•* 

Figure 8: Ray 2, case (hi). 

(hi) Suppose that the trajectory along the ray 2 exits through ZQ € (0,oo). Then 
£ lies either in the region I, II or III as of Figure 8. If £ G /, at least two of 
the trajectories from £ exit together through (—00,25) or (ZQ, 00). This yields 
a contradiction as in (iv-1) above. The case £ G /// leads to a similar contra- 
diction. If £ G //, then the three trajectories exit, one through (—ZQ, —t), one 
through (—t, 0), and one through (0, ZQ). But this gives in turn a contradiction 
by Lemma 3.5 as in the case (iv-3) above. 

Therefore the trajectory along the ray 2 emerging from — ZQ must exit C+ through 
z7e(-t,o). 

Figure 9: Rays 1 and 2. 

Thus £ lies either in regions I, II or III of Figure 9. But by a now familiar 
argument as above, £ can not lie in II or III. Hence £ € /. Then the three tra- 
jectories emerging from £ exit at some points Z$,ZQ,ZIO where zs G (—00,25),29 G 
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Figure 10: Global structure of the trajectories of Q{dz)'1 

(2:7,0),zio G (0,oo).   This shows that the global structure of the trajectories of 
Q(dz)2 is given in Figure 10. 

The above considerations prove, in particular, that there is a trajectory emerging 
from £ and ending at £ which crosses the real axis to the right of 0. We take Fi 
to be this curve, oriented from £ to £.   Define h by (3.57) with the choice of the 

contour F = Fi: let R(z) = J(z - £)(z — £) be analytic in C \ Fi, R(z) ~ z as 
z -> 00. Thus 

h(z) = R{z) 
2-Ki LR+ 

W'{s) 
{s){s-z) 

= l-W'{Z)+l-R{z)^ 

= \w'^ + Vl^z{z + t){z^y 

ja a a + l\ 
(z + t-^Ri-t-1) + (z + t)R(-t) ~ zR(0)) 

R{z){z + z0) 

(3.61) 

Condition (a) of Proposition 3.1, h+(z) + h-.(z) = W'(z) for z G Fi, now follows by 
properties of the Cauchy operator, and the condition (b) by the endpoint condition 
(3.20). 

Now we consider condition (c). Define y/Q(z) = z(l + ja) z^l\z^t
0-i), so that 

it is analytic in C \ T\, and y/Q - iiktl^L as ^ -> 00. Then 

i(h+(z) - h-(z)) = y/Q(z)+, zeFi. (3.62) 

Along the trajectory Fi, we must have y/^dz G E \ {0}. Let zio G (0,00) be 

the point at which Fi crosses the real axis. As R(z) = J(z - fi){z - £) > 0 for 

z G (^10,00), it follows that for all upward-oriented trajectories that cross the real 
axis at points x G (210,00), ^/Qdz\z=x < 0. It particular, for Fi, y/Q_dz\Zl0 < 0, 



1232 BAIK, DEIFT, MCLAUGHLIN, MILLER, AND ZHOU 

and hence ^Q(z)_dz < 0 for all z G Fi. Now since y/Q+ = 

v
/Q+dzGl+,    onFi, 

and hence from (3.62), 

i(h+(z) - h-(z))dz > 0,    z G Fi, 

which proves condition (c). 

—\fQ- on Fi, we have 

(3.63) 

(3.64) 

3.3    The contour r2 

Again we choose the branch of \fQ so that \fQ is analytic in C\ri and ^JQ ~ n1+7Q/ 
as z ->• oo. Now we consider the orthogonal trajectories Q(z)(dz)2 < 0. As before, 
the local structure is easy to determine. We summarize the local structure of the 
orthogonal trajectories near the finite poles and the zeros of Q{dz)2 in Figure 11. 
Near oo, any straight rays emerging from oo are orthogonal trajectories. We note 

K 

-i/t 

_AV_ 
*—% -Mr" 

-Zo 

Figure 11: Local structure of the orthogonal trajectories near the finite poles and 
zeros of Q(dz)2. 

that the real axis is an orthogonal trajectory. Hence the orthogonal trajectories can 
cross the real axis only at 0, -£, ZQ, —t-1 or oo. 

Now we consider the global structure. Again by the symmetry Q(z) = Q(z), the 
orthogonal trajectories are symmetric under reflection about the real axis. There 
are three orthogonal trajectories, denoted by 1,2,3, emerging from f, each of which 
bisects the angle between two trajectories emerging from £ (see Figure 12). Now 
we show that the orthogonal trajectory 1 can not cross either of the two adjacent 
trajectories emerging from £. If so, there is a closed loop of the form shown the 
Figure 13 consisting of a part of a trajectory and a part of an orthogonal trajectory, 
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^   1 

Figure 12: Orthogonal trajectories and trajectories emerging from £. 

z 9 0 z10 

Figure 13: Orthogonal trajectories emerging from £. 

and by analyticity of A/Q? the integral of \fQdz is zero around the loop. But 
the integral of y/Qdz along the trajectory is in M \ {0}, and along the orthogonal 
trajectory, the integral of \fQdz along the orthogonal trajectory is in z'R \ {0}. 
Hence the sum can not be zero, which is a contradiction. Therefore the orthogonal 
trajectory 1 must exit C+ between z§ and ZIQ. But then from the local structure, it 
must exit at 0. Similarly, the orthogonal trajectory 2 must go to oo. The orthogonal 
trajectory 3, by a similar argument, must exit C+ either through — t~x,z§ or —t. 
Suppose it exits through —t. By the local structure, the orthogonal trajectory 
approaches along an angle; indeed it is easy to show that z{s) ~ — t + e^eT08 

as s -» oo for some 0<(/><7r,c>0. Also by the definition of an orthogonal 
trajectory, we have 

r*W 
lim Re 

s—»oo 
[      ^/Q{z)dz = 0 (3.65) 

along the orthogonal trajectory 3. For 5 large, but fixed, write z(s) := —t + ee19 for 
e>0,0<#<7r, and consider the curve Co from f to z(s) along the orthogonal 
trajectory 3. Let C5 be the curve {—t + ee1^ : 9 < {3 < TT}, oriented from z(s) to 
—t — e. Thus Co U Cs is a curve from £ to a point in (—1_1, — t). Then by Lemma 
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3.5, we have Jc uC Re^/Qdz = 0. Hence we have 

lim Re [   jQdz = lim Re \ jQdz - Re I    jQdz 
s-¥00        JCo ^0o        JCoUCs Jc3 

i /    \/Qdz 

,Cfi(l+1a)R^Z + ^   dZ 

Jc, 

— lim Re 
s—>oo 

(3.66) 
= — lim Re 

ziz + t-1)   z + t 

This contradicts (3.65), and hence the trajectory 3 cannot exit €+ through —t. 
Similar argument shows that it cannot exit C+ through — t"1. Hence the trajec- 
tory 3 exits C+ through —ZQ. Thus we have obtained the global structure for the 
orthogonal trajectories of Q(dz)2 emerging from the zeros £, £, — ZQ as shown by 
the solid curves in the Figure 14. The dotted curves in the Figure 14 denote the 
trajectories already displayed in Figure 10. 

Figure 14:   Global structure for the orthogonal trajectories and the trajectories 
emerging from the zeros £, £ and — ZQ. 

In particular, we have shown that there is an orthogonal trajectory (more pre- 
cisely, a union of two orthogonal trajectories, one in C+ and the other, its conjugate, 
in C_, meeting at the point —ZQ which is a zero of Q(dz)2) emerging from £ and 
ending at £ and which crosses the real axis at —ZQ. We denote the curve by r2, and 
take the orientation from £ to £. Since r2 is a union of two orthogonal trajecto- 
ries, we have y/Qdz e iM. \ {0} for z G r2 \ {0} and an explicit computation using 

\[W) = *(!+ia)£+t)z(Xz^)showsthat 

^/Qdz € iM_,        on Fa D C+ (3.67) 

(3.68) 



OPTIMAL TAIL ESTIMATES.. 1235 

with the orientation from £ to £. From (3.61), i(2h - W) = y/Q. Thus we have 

(2h-W')dz<0,   ^€r2nc+, 
(2/i - W^dz > 0,    2? € Fs H C_. 

(3.69) 
(3.70) 

This proves condition (d). The reader will observe that the remaining conditions 
and formulae in Proposition 3.1 have been proved en route in this section, and this 
completes the proof of the Proposition. 

These facts can be illustrated by numerical computations of trajectories and 
orthogonal trajectories associated with the quadratic differential Q(z) (dz)2. The 
(orthogonal) trajectories can be obtained simply with a Runge-Kutta scheme. For 
(orthogonal) trajectories that emerge from zeros or poles of Q(z), which amount to 
singularities of the vector field in the complex plane, the only additional difficulty 
is to determine the initial direction, which is not unique. But the possible initial 
directions are easily determined by the sort of local analysis that has already been 
presented above. An example of the results of such a calculation is presented in 
Figure 15. 

All Trajectories:    0=4.00000, 7=2.00000, t=0.707107 

Figure 15: The trajectories and orthogonal trajectories of the quadratic differential 
Q(z) (dz)2 emerging from the points z = f, z = £, and z = — ZQ. The parameter 
values are a = 4, 7 = 2, and t = l/y/2. The trajectories where Q(z) (dz)2 > 0 are 
shown with thick curves and the orthogonal trajectories where Q(z) (dz)2 < 0 are 
shown with thin curves. 

A computer program for generating numerical approximations to the contours Fi 
and Fa is of course useful because it allows one to explore/illustrate the dependence 
of the contours on the parameters o, 7, and t. As an example, Figure 16 illustrates 
the deformation of the contours as a is varied while 7 and t are held fixed. Here, 
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r, onj r,:    o-O.liOOOO, y-;.ooooo, l.Q, 

Figure 16: The dependence of the contours Fi and r2 on the parameter a. As a 
tends to ao from above, the endpoints £ and £ coalesce on the negative real axis. 

we see clearly what happens as a is decreased to ao, its minimum value which 
depends on 7 and t. Namely, the two endpoints converge to a common point on the 
negative real axis, and at the same time, the contour Fi closes without collapsing, 
while r2 disappears. Similarly, as a increases without bound, the opposite situation 
prevails, with the endpoints £ and £ coalescing on the positive real axis, while r2 
closes without collapsing and Fi disappears. It is also possible to see in these 
pictures that the closed curve Fi U r2 deforms somewhat throughout this process; 
the endpoints £ and £ do not simply slide along a fixed closed curve as a is varied. 

4    The ^-function 

Proposition 4.1. Fix 0 < t < 1, 7 > 1, a > ao.   Let £, Ti, T2 be as in the 
Proposition 3.1. Let \nz denote the principal branch of logarithm, In 2: G M. for 
z > 0, and set 

g(z)~ f (h{s)--)ds + lnz,        z € C\ (TTu (-oo.ft]), (4.1) 
./oo s 

where pi > 0 is the intersection point of Fi and R, and the integral is taken over a 
curve from oo to z which does not intersect Fi U (—oo,pi]. Let $(z) be as in (3.6) 
of Proposition 3.1. Also set 

e := 29(0 - Wtf). 

Then g and I satisfy the following properties: 

(4.2) 

(1) g(z) is well-defined and analytic in C\ (Fi U (—oo,pi]), and e9^ can be ana- 
lytically extended to C \ Fi. 

(2) e9^ = z(l + 0(1/2)) as z -> oo. 
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(3) e^z^9-(z)-w(z)-£ _ 1 for z e Ti 

(4) e«+W-p-W = e*i+(*) /or ^ e Fi, where e91^ = exp{f* $(s)ds}, z £ C\ 

Fi U E_ with the integral taken along any curve not intersecting Ti U M_. 

(5) e2^z)-w(z)-£ = e^2^) /or z G ^ tx;/iere ^2^) = // $(s)ds with the integral 
taken along T2. 

Remark 7. It follows from (3.4) that h(z) = h(z) for z G C \ Ti, and hence from 
(4.1), we see that g(z) = g(z) for z eC\ (Fi U (—oo,pj)). 

Proo/. Since /i is analytic in C \ Fi and continuous up to the boundary, we have g 
given by (4.1) is well-defined and analytic in C\ (Fi U (-00,pi]), and continuous up 
to the boundary. Now let C be a simple closed curve, oriented counter-clockwise 
enclosing Fi. Using the formula (3.4) for ft, 

Jc   w Jc 2*1      JTl R+{s)(s-z) 2mJr1R+(s)     Jcs-z 
(4.3) 

Using the residue at infinity, we then have 

l/5&U = ._i+I, (4.4) 
ZTTZ JQ S — Z 2 

and 

Lh{z)dz=LW){'-i^)d"-'ii,i       <4'5) 

from the endpoint conditions (3.5). Now from the definition of p, for z G (—00,p*), 
g+(z) - g-(z) = Jc h(s)ds = -2m, where g±(z) = lime4.o5r(^ ± 6z). Therefore e9^ 
is analytic in C \ Fi and continuous up to the boundary. This proves property (1). 

Since h{z) — \ -h 0{z~2) as z -> 00, we have 0(2) = Inz + 0(z~l) as z -^ 00, 
which proves property (2). 

For z G Fi fi C+, 

feW=ff(0+ r(/i±W--)^ + ln2?-lnf = ^)+ [Zh±(s)ds, (4.6) 

where the integral from f to z is taken along Fi. Hence from h+(z)+h-.(z) = W^z), 
2? G Fi, we have, using (4.2), 

g+(z) + g.(z) = 2<7(0 + J* W'(s)ds = W(z) +1, (4.7) 

for z € Ti n C+. For z € Ti n C_, 

9±(z) = 9(0 + /  h±(s)ds = 9(0 + J_ h±(s)ds + j  h±(s)ds, (4.8) 
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where the integrals are again taken along IV But from (4.5) (recall that h is analytic 

jf (Ms) - /»_(»))<** = 27ri and g® - g(0 = J* in C \ Ti), Jj(h+(s) - h-(s))ds = 2m and gfc) - gfc) = /4 /i_(s)ds.  Hence for 
z 6 Tin 

ff±(z) = 5(0 - / /i-(s)ds + / h±{s)ds + f h±(s)ds, (4.9) 

and hence 

g+{z) + g_(z) = 2^(0 + / (Ms) - h-(s))ds + f' W'(s)ds = W(z) + £ + 2m. 

(4.10) 

Therefore, since e9+, e9- and W are continuous for z G Fi, we have e9^^^9-^'1^^^1 

= 1 for all z ETi, which verifies property (3). 

From (3.9), (4.6), (4.9), and the above relation /|(/i+(s) - h-(s))ds = 27ri, we 
have for z E Fi, 

= expj jZ{h+{8) - Ms))dsj = e^^^^^, (4.11) 

and hence the property (4) follows if we prove that exp{J? $(s)d5}, z E C\Yi U E_ 
does not depend on the choice of the integration path. For this purpose, it is enough 
to prove that 

/ $(z)dz E 2niZ (4.12) 
Jc 

for any simple closed contour C which encloses Fi and does not intersect (—oo,0]. 
From (3.8) and the fact that W^z) is analytic away from —t"1, — £,0, we have 

f ${z)dz =  f (2h(z) - W'(z))dz = 2 f h(z)dz. (4.13) 

Using (3.4) for /i, the above integral is equal to 

imdj ^Jm-,s = if %&*(!&* 
Jc   m       JTl R+{s)(s - z) m JVl R+{s)     Jcs-z 

But this is equal to 47ri from the endpoint condition (3.5), and so (4.12) is estab- 
lished. 

For z E r2 D C+, as in (4.6) 

g(z) = 9(0 + f Ks)ds (4.15) 



OPTIMAL TAIL ESTIMATES... 1239 

and 

2g(z) - W(z) -1 = 2 f h{s)ds - W(z) + W(0 = / (2h{s) - W'(s))ds.   (4.16) 

For ze r2nC_, asin (4.9), 

<?(*)    =    9(0 + J_ Hs)ds 

=   9(0 - / h-(s)ds + f h+(s) + I  h(s)ds 

=    9(0 + I  h(s)ds + 2iri, (4.17) 

and hence for z € T^, 

e2g(z)-wiz)-i = exp| f
Z(2h(s) - W'is^dsV (4.18) 

and property (5) follows from (3.10).   This completes the proof of Proposition 
4.1. □ 

5    RHP analysis 

Set 

r = r1ur2j (5.1) 

oriented counter-clockwise. It is a simple closed curve which has 0 and —t inside 
and -t*1 outside. Since the jump matrix Vy = (J z~ ^W) for Y in (2.6) is analytic 
in C \ {0}, we can deform the contour I! for Y to F, as follows. Set 

Y(z)       for z inside both F and S, and for z outside both F and S, 
Y(z) = < Y(Z)VY(Z)       for z inside F and outside S, 

Y(Z)VY
1
(Z)       for z outside F and inside E. 

(5.2) 

Then Y is analytic in C \ F and continuous up to the boundaries, satisfies Y+(z) = 
Y-VY(Z) for z £ F, and Y(z)z-k'T3 =I + 0(z-1) as z -* oo. 

Now (see the Introduction) we define 

M(z) = e-?ek°3Y(z)e-(!>(z)-se)k°3. (5.3) 
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Then from Proposition 4.1 (1), (2), M satisfies 

fM(z) is analytic in z G C \ T, 
e-k(g+(z)-g-(z))      ek(g+(z)+g-(z)-W(z)-£) 

0 

.M^) = / 4- 0(1/z),        as z -* oo. 

M+(z) = M_(z) uf     / \        ^^^ h ^ G T, 

(5.4) 

From the Proposition 4.1 (3), (4), the jump matrix V for M is now 

v(z) = [e 0    efc*;+(2))>   ^ri' (5-5) 

and from the Proposition 4.1 (1), (5), we have 

V(z)=(0    e   1      J,        ^r2. (5.6) 

For the jump matrix on z G Fi, note that ^^(z) = --$(z)i_ and 

T// ^ _ /e-fc*'+W 1       \ _ /       1 0\ / 0     1W       1 0\ 
V{z> - {      0 e-^-Wj ~ Ve-fc*i-W    ij V-1    Oj ^e-fe*>+^)    ij ' 

(5.7) 

Clearly ^1+ has an analytic continuation to the (H-)-side of the contour Fi. Now for 
z G Fi, it is easy to see that Re(^i+(z)) = 0, and hence from the Proposition 3.1 (c) 
and (3.9), the derivative of the imaginary part of \I>i+ along the contour Fi satisfies 
£lm(*1+(z(t))) = Im(^*1+(z(t))) = Im(*'1+{z(t))%) = Im($+(z(t))%) < 0. 
Thus the Cauchy-Riemann condition for the analyticity implies that Re(^i(z)) > 0 
for z on the (H-)-side of Fi and close to the contour. Therefore we can take a contour 
F^ with endpoints f, £ for which Re(9i(z)) > 0 for z G int(T^). Similarly, *i_ 
has an analytic continuation to the (—)-side of Fi and its real part is positive for z 

on the (+)-side of Fi close to the contour Fi and we take a contour F^ ^ for which 

Re(^(z)) > 0 on its interior. We take the orientation of F^ , j = 1,2 to be from £ 

to £. See Figure 17 for the general shape of the contours F^, F^   . 

Define M(z) to be M(z) for z in the region bounded by r2 and Ff) and also in 

the unbounded region. For the region bounded by Fi and F^ ', define 

M = M(       ,1 ?V (5.8) 
e-**iW    i 

and for the region bounded by Fi and F^ ^, define 

M = M{e_kll{z)    fj. (5.9) 
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Figure 17: The contours T^ and r^2). 

Set F' = Ti U T^ U rf) U r2. Then M satisfies the new RHP 

M(z) is analytic in z € C \ I", 

M+(z) = M-(z)V{z)       zeT1, 

{M(z) = I + 0(l/z), 

where the jump matrix V is 

V(z) 

as z -> oo, 

^CTi, 

zerWuif), 

zeTs. 

(5.10) 

(5.11) 

Now we take the limit k -> oo with 7 > 1 in a compact set and ao < a < a*, 
for some a*. From the signature of Re(il!i(z)) on 1^ , j = 1,2, we see that the 
jump matrix V -> /. For .z G r2, we have $2(2) < 0 from the Proposition 4.1 
and 3.1. Indeed #2 (2) is decreasing as z follows from £ to —ZQ along r2, and then 
increasing as z follows from —ZQ to £ along r2.   On the other hand, ^2(0 = 0 

-$(5)^, and the negativity of 

$2(2) on r2 follows. Hence as k -> 00, V ->• I on r2. Therefore we have V -> F00 

where 

and $2(0 = // ${s)ds = 0, as $(5)^5 = $(s)d* 

1/°° = < 

zGr[1)urf)ur2. 
(5.12) 
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Let M00 be the solution to the RHP with the jump matrix V00 and normalized at 
infinity. The solution is given by 

M~(z)=l_ ^V    ^^    , (5.13) 
2i 

where 

z-Z 
1/4 

I3(z) = \—i) (5.14) 

which is defined to be analytic C \ Ti and satisfies 13(z) ~ 1 as z -> oo. We expect 
that M ~ M00 as k -> oo, and hence by tracking the algebraic transformations 
Y -¥ M -> M, we expect that 

l2i(0)e-fc^(0)-£) - M2~(0),        k -> oo, (5.15) 

for 7 > 1 in a compact set and ao < a < a*. 

Indeed we have: 

Proposition 5.1. Let 1 < 7 < 71 /or an?/ jfixed 71 > 1. T/iere are LiySi > 0 ^c/i 
i/ia^ /or 

ao + -^<a<(l + <Si)ao, (5.16) 

tye ftave 

y2i(0)c-*^(0)-') = MU (0)(1 + 0(,,   1     ,)), (5.17) 

for sufficiently large k. 

The convergence V -* V00 is not uniform on V and this considerably complicates 
the analysis. As in [6] in order to obtain the above error bound, we need to introduce 
local parametrices for the solution of the RHP near each of the endpoints £ and £. 
As in [1], a suitable local parametrix near each endpoint can be obtained in terms 
of Airy functions. Also since a is not fixed, but is allowed to approach ao, we need 
to vary the magnitude of the parametrix according to the size of a — OQ- A similar 
situation arises in Lemma 6.2 (ii) of [1]. The proof of the above Proposition is 
parallel to that of Lemma 6.2 (ii), [1] (7, q in [1] play the same role as a, k in this 
paper, respectively), and we do not repeat the argument here. 

Lemma 5.2.  We have A := #(0 + iO) -£ € M. In particular, e9^'1 = e^0+i0)-^ > 
0. 

Proof. For x G M \ {pi}, by Remark 7, g{x -f- iO) = g{x — iO), and hence by Propo- 
sition 4.1 (1), e^3^0) = e^x-i0) = e^+i0), and so e^x) = eg<<x+i0>) = e9^'^ is 
real.  In particular, it follows that Im(g(x + iO)) G ZTT, and hence by continuity, 



OPTIMAL TAIL ESTIMATES... 1243 

Im(g(x + iO)) is constant for x < pi. From (4.2) and the proof of Proposition 4.1 
(3), I = g+(£) + £_(£) - W(0 - g+fa + tO) + P-fe) - Wfe).  Hence e^0)"^ -       , 
eg(o+io)-g+{pi+a)e-9-to<)+w(pi)m But by the above5 /m(p(o+tO)) = Jm(p+(pi+tO)). 

Hence g(0 + iO) - ^+(pi + Oi) G K. Clearly g-{pi) and W(pi) are also real, and this 
proves the lemma. □ 

If we set f = \Z\ei0% 0 < 9C < TT, then we can check /?(0) = e*^/2 and M2
C?(0) = 

— ^T(/?(0) — /^(O)"1) = — sin ^■. Hence the above proposition yields that 

-yai(0) = e" sin |(1 + 0(^1^)). (5.18) 

Note that —l2i(0) is indeed real and positive from Lemma 2.1. This is consistent 
with Lemma 5.2. 

Now we compute e9^~i. Let 

a=^^ = \^\cos9c. (5.19) 

From the formula (3.4) for /i, one can check directly that an anti-derivative of 
2(h(z) - I) is 

- 7a log(s 4- *'"1) - a log(s 4- *) + (a - 1) log(z) 

 + )R(z) -    -±-(a + t'1) - -(a 4-1) + a   log(^ - a + #(*)) 
x      y r    J \    x y r      ) 

(z + R(z) + t-l-x\ (z + R(z) + t-y\ (z + R(z) - r 
-70log       ,  -.   ;,,_-,  ,        -alog       ,  p; ; , , ,        +(a + l)log/ 

(5.20) 

where the logarithms are taken to be the analytic in C \ (—00,0] and logz = log \z\ 
for z > 0, and r = -i?(0), x = -JR(-^-1), y = -R(-t) as in_(3.23). It is 
straightforward, but tedious, to check that (5.20) is analytic in C \ (Fi U (—00,p^]) 
as in the definition of g in (4.1). Using the endpoint conditions (3.5), or(3.24), 
(5.20) is equal to 

- 7alog(2; + r"1) - alogO? + t) + (a - 1) log(^) + (1 + 7a) log(* - a + R(z)) 

.     {z + R{z) + t-l-x\ (z + R(z)+t-y\  | , f z + R(z) - r 

(5.21) 

Evaluating the asymptotics as ^ -> 00, we see that 

2^(^) = - 7alog(2; 4-1-1) - alog(z 4-1) 4- (a 4-1) log(z) 

+ (! + ,.) M(« " « + «(•»/>) - T*(fTlSTF^f)    (5.22) 
-«log('' + y; + '-''N|+(.+ l)log^ + JiW-r 

z4-JR(2:)4-^4-2/y e>V^ + ^('^;)+r/, 
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and 

2i?e(£(0 + iO)) =(7 - l)alogt + (1 + -ya) log((a + r)/2) 

—r -f t — y 
ja log 

—r + t 1 — x 
-r + t-1 +: 

-a log 
-r + t+ 2/ 

4- (a + 1) log 
2r 

Also from (5.22) and (4.2), we have 

t, =7alog* + (1 + 7a) log(f - a)/2 

^ 7alogf 1±S^£ V alogf |±^)+ (fl + „ log^ " r 

By (3.37), 

f+ t-1+a? 

COS0r 

^ + ^ + 2/ ^ + r 

x2 - r2 - t-2      y2 - r2 - t2 

2r£-1 2rt 

1 + a/r 
(5.23) 

(5.24) 

(5.25) 

Thus using (5.23) and (5.24), we can express A in terms of r,x,y.   After some 
algebra, we find 

A = - 7alogt + (2 + a + 7a) log2 + (1 + a) logr - - log(r + t'1 - x) 

- -(1 + 27a) log(r + r1 + re) - - log(r + t - y) - -(1 + 2a) log(r +14- y). 

(5.26) 

To emphasize the dependence on a, we write A = A (a), etc. 

Lemma 5.3. Fix 1 < 72 < 00.   Then there exists 82 > 0 such that for CLQ < a < 
(1 + #2)00 and 1 < 7 < 72; we have 

where 

A (a) = -c2(a - ao)2 (l + 0(|a - ao|) 

_ t2(t + t7 + 2A/7)3V7 
C2 

4(l + y7)2(t + v^)2, 

(5.27) 

(5.28) 

and t/ie order term 0(\a — ao|) «5 uniform for a and 7 as a&owe. 

For the proof, we need the following lemma, which considers the case when 
a = ao- This case is specifically excluded from Lemma 3.2. 

Lemma 5.4. For fixed 0 < t < 1, 7 > 1, and a = ao = t//7+
1

1T/+2 /^\, there is a 

unique solution r to (3.29) satisfying ri < r < r2, fliuen 62/ 

r = r(ao) = ro:=TT^- 
T/ie function a H-> r(a) is smooth for all a > ao and 

3(7-l)(i7 + i + 2V7)2i2 

r'(ao) = 
4(l + iV7)(* + ^)3 

(5.29) 

(5.30) 
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Proof. When a = GQ, we have ri = tr^ and r2 = JVQ. Since i < ro < j, ro satisfies 
ri < ro < T2. It is then a direct calculation to check that ro satisfies the equation 
(3.29). Now we want to show the uniqueness of the solution. Let H be as in (3.31) 
in the proof of Lemma 3.2. Now when a = CLQ, the value r* of (3.33) is ro- Thus we 
have 

H(r) + ^'(r) > H(r0) + |tf'(ro) = 0, (5.31) 

for ri < r < r2, and the inequality is strict for r ^ ro. Hence if there is a zero 
^c 7^ Hh it should satisfy H'^c) > 0. On the other hand, by direct calculation, we 
have 

H-W-H-W-O,        ^»M = ^§i^=F>0, (5.32) 

and hence H is also increasing at the zero r = ro. As in Lemma 3.2, there is no 
other zero rc ^ ro in (ri,r2). 

Now consider H = H(a,r). By direct calculations, we find 

H(ao,ro) = Hr(ao,ro) = Ha(ao,ro) = Hrr{ao,ro) = 0 (5.33) 

and 

Hr«{ao,ro)    = (1 + ^3(1,ta) ^0' (5-34) 

\4+4 6(7-l)(t7 + ^ + 2V7)^4 

aa(O0'r0)    _    (l + iy7)4(t + V7)2(l-t2)' 

Hence near (CLQ, ro), the power series of H(a, r) has the form 

(5.35) 

H(a,r)    =    iJra(ao,ro)(r-ro)(a-ao) + -^aa(ao,^o)(a - aa)2     (5.36) 

+ -iJrrr(ao,ro)(r - ro)3 + • • • . (5.37) 

Motivated by this expansion, we set 

»?:=£-^' (5-38) a — ao 

and substitute r = ro + r}(a — QQ) in H, and define 

H(a,rQ + 7/(a- ao)) 
(a - ao) 

Setting 

F(a,^):=     ^7""^"uo^. (5.39) 
' 'r"  — /7.n I -^ 

ffaa(ao,ro) 3(7-l)(t7 + ^ + 2A/7)^2 

7,0 '       2Fra(ao,ro) 4(1 + ty^C* + ^7)3     ' V-W) 

a direct calculation shows that F{a^rj) is a smooth function near (ao^o) and 

F{ao,r)o) = 0,        ^(00,7/0) = Hra(ao,ro) # 0. (5.41) 
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Therefore by the implicit function theorem, there is the smooth function 77 = 77(a), 
ao < a < GQ(1 + 5) for some 5 > 0 such that F(a, 77(a)) = 0. Then H(a,ro + r)(a)(a- 
ao)) = 0, and by the uniqueness of the solution, r = 7*0■ + rj(a)(a — ao) is smooth in 
a for ao < a < ao(l 4- 5). But for a > ao, Ha(a,r{a)) > 0, and the smoothness of 
r — r(a) is elementary. Hence r(a) is a smooth function for a > ao. □ 

Let 

A/KI-*
2
) 1-t2 

*° := afo) =  tit + v^y        y° ■■= y^ = ^/=> (5-42) 

which are obtained by setting a = ao, r = r(ao) = ro in (3.26), (3.27). Then 

and hence from (3.36), the point £ is on the negative real line. Thus when a = ao, 
the two endpoints £ and £ collapse to the point —ro on the real line. This is an 
extreme case of the deformation illustrated in Figure 16. 

Proof of Lemma 5.3. When a = ao, we have r = ro, x = xo, y = yo, and we can 
direct check from (5.26) that A(ao) = 0. We have 

A'(a) =-7logt + (l+7)log2 + logr-7log(r-M~1 + x) - log(r 4-1 4- y) 

x r'      1     r' -x' 1 ^     rt    x     r
7 + x7 1   r' -1/' 

+ (l + a)--- —: -(1 + 270)- y 

r      2r + t-1-x     2V IJr + t-l+x     2r + t-y 
1 r1 +v' 
-(l + 2a):     

+2/ 

2V yr + t + 2/" 
(5.44) 

At a = ao, from from (5.29), (5.42), we have 

-7logt + (1 + 7) log 2 + log 7*0 - 7log(ro + t'1 + XQ) - log(ro + t + yo) = 0 
(5.45) 

and hence again from (5.29), (5.42), after some algebra, 

A>») '-(J^xi+W'1+,^)'''<oo)+,^'(ao)" !''<oo)1- 
(5.46) 

Now from the relation (3.28) between r, x, y, we have 

rr^^-^jd/y'-iW). (5.47) 

This implies by (5.29), (5.42), 

(1 + iV7)r'(ao) = y'(a0) - t^yx'^o), (5.48) 
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and hence 

^(00) = 0. (5.49) 

Now we compute A"(ao). We have 

A/I/ N    o^      „       Jr"      ,r'2\      If   r"-x" ,    r'- x1     .2 A"(a) =27 + (1 + a) f - - (7)  J - - ( ^ ,_, _ . - (^..^J 

r' + x' l^     „    J   r" + x" ,    r' + x' 
- 27 : -(1 + 27a) ( ) 

r + t-l+x     2V /  J\r + t- 1+x     V + t^+a;7 

l{r"-y"       ,J^z]L)2)-2-r'+y' 

v2 

(5.50) 

2\r + t — y      Kr-\-t — y/ J       r + t + y 

First consider the terms with double derivatives. At a = ao, 

xr"      1    r" -x" 1.,     „    .    -" ' »" 
(1 + a)- - -——-. -(1 +2ja) 

r      2r + t-1-x     2V 'r + t^+x 

\r" /   -\{l+2a)r"+/i   I (00) (5.51) 
2r + t-y     2V r + t + j/ ' K       ' 

(7-l)(l-i2) 

4(i + ^ + 2V7)(l+*V7) 

From (5.47), 

[(1 + VTKM + t^x"{a0) - y"{a0)\. 

rr" - x~^^" - ^ra") = -(r')2 + -^T^'f - *2(a;,)2), (5-52) 

and hence the right-hand side of (5.51) is equal to 

-|^TW^) Hr'(°°))2 + irpW*"" -<VW)!>]- (5-53» 
Thus A"(ao) is given by (5.50) at a = ao where the terms with double derivatives 
are replaced by (5.53), which involves only the first derivatives of r, x, y at ao. From 
(5.30) and (3.26), (3.27), we have 

14.2 

(5.54) 
,,    , =       3(7-l)(*7 + t + 2vAy)^ 

r^o; 4(l + ^V7)(i + ^)3 

,,    v (^ + 4^7 +3^)^ + ^ + 2/7)^ 

'^ =     4(l + iV7)(i + V7)3  ^^ 
,/    v (4V7 + 7 + 3)(* + f7 + 2v/7)2f2 

^^ =     4(l + ^)(t + VT)3 ' ^^ 

and we obtain, after some calculation, 

A„,    x t2(f + t7 + 2V7)3V7 .. ... 
A (ao) = -WTTW^^?- (5-57) 
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By Taylor's formula, for a > ao, 

A(a) = ^A"(ao)(a - ao)2 + ^A"'(5)(a - ao)3, (5.58) 

for some ao < a < a. For S > 0 and 1 < 72 < 00, set 

C := sup{|A,,,(a,7)| : 1 < 7 < 72,00(7) < 5 < ao(7)(l + ^)}5 (5-59) 

where we have made the dependence on 7 of A"' explicit. It follows from the smooth 
dependence of A(a,7) on 7, as well as on a, that given 72, we can choose 5 = 62 
such that C < 00. Therefore 

A(a) - ^A"{ao){a - ao)2(l + 0(|a - ao|), (5.60) 

where 0(\a - ao|) is uniform for 1 < 7 < 72 and ao < a < ao(l + ^2)- Indeed 
O(|a-ao|) <C|a-ao|. D 

In order to prove Proposition 2.2, we use (5.18). As 

x(a)2-r(a)2-t-2 

C0S*C = Ma)Fi ' (5-61) 

and cos#c -> — 1 as a -> ao, we see that sin ^ = w1  c°sec is a smooth function 

of a in [ao, 00). Thus sin ^ = 1 -j- 0(|a — ao|) for a near ao, a > CLQ. Inserting this 
information into (5.18) and using (5.27), we obtain (2.21). 

6    Proof of Theorem 1.1 

Take 

a^ bo aobo{l + do) 

where LQ, SQ are given in Proposition 2.2. Let 

n = —N-xboN1'3. 
ao 

Set 

&:=-tf-4ar"1/3- 

(6.2) 

(6.3) 

Then for L < x < 5N2/3, the condition (2.20) for a = f in Proposition 2.2 is 
satisfied for any k in the range n < k < 6, Following [18], we consider 

P(g([7M,*0<n) (6.4) &r(G([jN],N)<b) K    ' 
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which equals 

b 

Y,  \og(-Y21(0;k)) (6.5) 
k=n+l 

by (2.7). Inserting (2.21) into (6.5), we obtain (cf. (2.2)-(2.13) of [18]) 

"~hx3 + 0(a;4-/V"2/3) + 0(logx) 
(6.6) 

as C2ao&o — 4 • But by the result of Johansson [12], as N -> 00, 

F(G([jN},N) <b) = Fi-Loa^'X1) + 0(1), (6.7) 

where F(x) is the Tracy-Widom distribution. This proves Theorem 1.1. 
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