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Abstract 

In the paper, we study entire solutions of the difference equation tp (z+h) = 
M (z) il>(z), z G C, ?/> (z) € C2. In this equation, h is a fixed positive parame- 
ter, and M : C \-t SL (2, C) is a given matrix function. We assume that M(z) 
is a 27r-periodic trigonometric polynomial. The main aim is to construct the 
minimal entire solutions, e.i. the solutions with the minimal possible growth 
simultaneously as for z —> —zoo so for z —»• -Moo. 
We show that the monodromy matrices corresponding to the bases made of 
the minimal solutions are trigonometric polynomials of the same order as the 
matrix M. This property relates the spectral analysis of the one dimensional 
difference Schrodinger equations with the potentials being trigonometric poly- 
nomials to an analysis of a finite dimensinal dynamical system. 

1    Introduction: Some definitions and main results 

The paper is devoted to the study of entire solutions of the equation 

il>(z + h) = M(z)1>(z),    z£C,    iP(z)eC2. (1) 

In this equation, h is a fixed positive parameter, and M is a given matrix.   We 
assume that the matrix M satisfies the following two conditions. First, 

M(z) E5L(2, C),    zGC, 

secondly, the matrix M is a 27r-periodic trigonometric polynomial. 

e-print archive:   http://xxx.lanl.gov/hep-th/98111131 
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Since equation (1) is invariant with respect to the multiplication of the solutions 
by the /i-periodic functions, one can construct its entire solutions growing as for 
z -> —zoo so for z -»• -Hoo as quickly as wanted. The main aim of this paper is to 
construct the minimal entire solutions, e.i. the solutions with the minimal possible 
growth simultaneously as for z -» -too so for z -> -Moo. 

The set of solutions of (1) is invariant with respect to the operator of 27r-translation: 
f(z) i-)» f(z + 27r), and there are natural objects, monodromy matrices, describing 
the transformations of the bases in the space of solutions of (1) under such trans- 
lations, see subsection 1.10. The notion of the monodromy matrix for difference 
equations with periodic coefficients is a natural generalization of the classical no- 
tion of the monodromy matrix for ordinary differential equations with periodic 
coefficients. For the differential equations, the monodromy matirces are constant, 
i.e. independent of the variable of the equation. For the difference equations, the 
monodromy matrices are periodic functions of the variable. We show that the mon- 
odromy matrices corresponding to the bases made of the minimal solutions have 
the most simple analytic structure: they are trigonometric polynomials of the same 
order as the matrix M. 

The monodromy matrices appear in the spectral analysis of one dimensinal Schrodinger 
equations with periodic potentials. The spectral analysis of a differential Schrodinger 
equation with a periodic potential reduces to the study of the spectrum of a (con- 
stant) monodromy matrix. This leads a simple "discret" band structure of the 
spectra of the periodic differential equations. For difference equations, the mon- 
odromy matrices being periodic, instead of the spectral analysis of an individual 
monodromy matrix, one arrives to an infinite sequence of the monodromy matrices 
and has to study properties of an infinite sequence of finite difference equations of 
the form (1). This reflects the cantorien structure of the spectra of difference equa- 
tions with periodic coefficients. The above property of the monodromy matrices 
corresponding to the minimal entire solutions is important for the spectral analy- 
sis of the difference Schrodinger equations with the potentials being trigonometric 
polynomials. It relates their spectral analysis to an analysis of a finite dimensinal 
dynamical system. 

This paper is a natural continuation of the articles [7] - [5] devoted to Harper 
equation 

ip (z + h) + ip (z - h) EI / / \ /o\ 
—   0  + cos z I/J (z) = Eip (z) (2) 

and was inspirated by the papers of B.Helffer and J.Sjostrand, and of Wilkinson 
(see, for example, [1, 10]). They have suggested an asymptotic renormalization 
method to study the spectrum of the Harper equation (2). Our works are related 
to an exact renormalization procedure, the monodromization method. 
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1.1    Notations and agreements 

1.   To simplify the notations, we let 

a{z) = Mll{z),    b(z) = M12(z),    c(z) = M21(z),    d(z) = M22(z). 

2. If either b(z) = 0, or c(z) = 0, then the vector equation (1) reduces to two 
scalar equations which can be solved explicitly. In this paper, we always assume 
that 

&(*)£0, (3) 

and let 

p(z)=b (z)/b {z-h),        v (z) = a(z) +p{z)d(z-h). (4) 

These two functions play an essential part in our constructions. Elementary calcu- 
lations show that if ^ is a vector solution of (1), then its first component satisfies 
the equation 

^i(* + h) + p (z) ^{z - h) = v {z) ^(z). (5) 

3. When describing the vector solutions of (1), we describe only their first compo- 
nents: if the first component of a vector solution is known, the second one can be 
reconstructed by the formula 

= Mz + h)-a(z)Mz)t (6) 
b{z) 

4.    Throughout the paper, we use also the following notations.   Let / be a 27r- 
periodic function. If 

f(z) = f-me-imz(l + o(l)),    /-m#0,    z->+zoo, 

we put 
n+(/) = m,    /+ = /_m, 

and if 
f(z) = fle

ilz(l + o(l)),    /,#0,    z-f-too, 

we let 
n_(/)=/,    /.=/!. 

1.2    Set of analytic solutions of (1) 

List some elementary properties of the set of analytic solutions of equation (1), see, 
for example, [5]. 
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Fix a, P e M,   a < /3. Let 5 be the strip 

S = {zeC: a<lmz < (3} 

and let M(5) be the set of the vector solutions of (1) analytic in this strip. Denote 
the ring of all /i-periodic functions analytic in S by K(S). 

For any two solutions ipi, ^ £ M (5) the wronskian 

{^(^.^(z^Hdet^iW.^W) (7) 

is an element of K(5). The solutions ^i, -02 are linearly independent over the ring 

Let two solutions ^i, fo € M(5) be linearly independent over the ring K(S). Then 
any solution ip E M (5) can be uniquely represented in the form 

^ = a^i+/3^2,    a,/?eK(S). (8) 

Thus, the set M(5) is a two dimensional module over the ring K(S), and the 
solutions ipi, ip2 form a basis of M(5). 

In the case of S = C, we write simply M and K 

1.3    Bloch solutions 

The set M(5) is invariant with respect to the 27r-translations. We call / G M(S) a 
Bloch solution if 

f(z + 27r)=u(z)f(z),    uEK(S). (9) 

The factor u is called the Bloch multiplier of the solution /. Bloch solutions play 
an important role in the theory of (1). 

1.4      Singular points of equation (1) 

The 27r-periodicity of the matrix M makes natural to consider H-zoo and — ioo 
as two singular "points" of the equation. For any fixed Y G M, call the half- 
plane C+ = C+(Y) = {z G C : Imz > Y} a vicinity of -B'oo, and the half-plane 
C_ = C-(Y) = {z G C : Imz < Y} a, vicinity of the -ioo. For brevity, we shall 
write 

M± =M(C±)>    K± =K(C±). 

The minimal entire solutions of equation (1) can be characterized as the entire 
solutions having the "simplest" asymptotic behavior as for z -t —ioo so for 

z -> -B'oo. 
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1.5      Canonical bases in vicinities of the singular points 

We shall define the minimal solutions in terms of the "simplest" solutions living and 
analytic in some vicinities of the singular points ±200. They appear to be Bloch 
solutions. One has 

Theorem 1.1a. Let 6^0, and let v —>• 00 as z —> +zoo. There exist two 
vector Bloch solutions fi^ of (1) analytic in a vicinity C+ of -Hoo with the first 
components admitting the representations 

(A2) (z)=e
±2toTR(n+M^ + ^+)2+i(n+(';)-n+(&))f + 0(1))       (10) 

as z -¥ +ioo. Here, 

<t>+ = i\nv+-%n+(b). (11) 

These two solutions are linearly independent over the ring K+, 

det(/i(z)l/2(z)) = Jt. (12) 
0+ 

Theorem 1.1b. Let 6^0, and let v -> oo as z -> —zoo. There exist two 
Bloch solutions of (1) analytic in a vicinity C_ of —zoo with the first components 
admitting the representations 

(<hj2)i(z) = e±5^) {n-{v)z + 0-)2 " *(n-(w) " n-(6)) i + o(1), (13) 

as z -> —zoo. Here, 

</>_ = -tlnt;--|n_(6). (14) 

These two solutions are linearly independent over the ring KL, 

det(g1(z),g2(z)) = -'^. (15) 

Remark 1. Note that the numbers (/)± are defined only modulo 27r. Fixing, for example, 
the parameter 0+ in two different ways, we obtain two different pairs /i,2. 

Remark 2. The asymptotic formulas for fi^ and g± immediately imply the asymp- 
totics of the corresponding Bloch multipliers. For /i^ the Bloch multipliers admit the 
representations 

Oil ,2(z) = a;,2e
±27rn+Wi^(l + 0(l))>    z^+ioo, (16) 
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and, for #1,2, the Bloch multipliers have the form 

/3i.aW = /3f,ac
±2'rn-(,')iz/ft(H-o(l)),    z->+ioo, (17) 

here a?^ and fii^ are nonzero constants, 

a??2 =exp f ±— (0+ + 7rn+(v)) + t7r(n+(i;) -n+(6))j , 

/^i,2 = exp ( ±—- ((/)_ + 7ra_(i>)) — 27r(n_(i;) — n_(6)) ] . 

We see that the pair /i^ is a basis of M+, and the solutions gi^ form a basis of 
M_. We call these bases canonical. We call the number 0+ the parameter of the 
canonical basis fi^ and the number </>_ the parameter of the canonical basis gi^- 

1.6 Consistent canonical bases 

Let 
E = {±(27r + /i + 2/iZ + 27rm),  Z,ra€N}. 

We call two canonical bases /i^ and gi^ consistent if their parameters satisfy the 
condition 

(/>+-</>_ £ E. (18) 

Since the numbers 0± are defined modulo 27r, the consistent bases always exist. 

1.7 Minimal entire solutions. Existence 

Let the assumptions of Theorems la - lb be fulfilled. Fix two canonical bases /i,2 
and <7i52 analytic in some vicinities C± of ±ioo. Any entire solution of (1) admits 
the representations 

il>(z) = A(z)f1(z) + B(z)f2(z),    z6C+,    A,BeKi., (19) 

tl>(z) = C(z)g1(z) + D(z)g2(z),    zeC-,    C.DeK.. (20) 

Note that the periodic coefficients in these representations are uniquely defined. 

We call a nonzero entire solution of (1) minimal, if 

(   i)    its coefficients A, B are bounded in C+; 

( ii)    the coefficients C and D are bounded in C_; 
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(m)    at least, one of these four coefficients tends to zero as Im^ tends to the 
corresponding infinity. 

Note that this definition depends on the choice of the canonical bases. For a given 
pair of canonical bases, the definition singles out at least four minimal solutions. 

One of the main results of the paper is 

Theorem 1.2.   Let b(z) ^ 0, and 

n+(v) =n-(v) =n>0. (21) 

Then, for any two consistent canonical bases, there exist all the four corresponding 
minimal entire solutions. 

Note that under the assumptions of this theorem, there exist all the canonical bases. 
We have already explained the condition on the coefficient b. Discuss the assumption 
(21). We shall see that among the equations (1), there is a nontrivial one which can 
be solved in terms of certain contour integrals. This is the equation with 

a {z) = -2A cos(n^),    b (z) = -1,    c{z) = 1,    d{z) = 0, (22) 

where n G N, and A is a complex number. The proof of the existence theorem is 
based on this observation. In the case of (22), v (z) = 2Xcos(nz). This leads to 
(21). 

Now, we shall discuss the basic properties of the minimal solutions. 

1.8    Asymptotic coefficients of the minimal solutions 

Consider the representations (19) for a minimal solution. The coefficients A, B, C 
and D can be represented by the converging Fourier series 

oo oo 

J4(z) = £V!7r^//\    B{z) = YJBle
2™lzlh,    *eC+, 

z=o z=o 
oo oo 

C{z) = YsCie~2™lzlhi    D(z) = Y,Die~27rilz/h>    zeC-' 
1=0 1=0 

One of the coefficients ^lo, #0, Co and Do is zero. 

Assume that the Fourier coefficient AQ equals to 0.   In this case, we denote the 
minimal solution by I/JA, and call the Fourier coefficients 

Ai,    BQ,    Co    and    Do 

the asymptotics coefficients of this minimal solution. 
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If AQ ^ 0, but Z?o = 0, we denote the minimal solution by ipB, and call the Fourier 
coefficients 

AQ,    Bi,    Co    and   Do 

the asymptotics coefficients. 

Continuing in the same way, we define the minimal solutions ipc and I^D, and their 
asymptotic coefficients. 

In the sequel, we denote the asymptotic coefficients of the minimal solution T/U by 
AA, BA, CA, DA, the asymptotic coefficients of the minimal solution IJ)B by AB, 

BB,  CB,  DB and so on. 

The asymptotic coefficients play a crucial part in the analysis of the minimal entire 
solutions. Let us describe some elementary observations. 

1.9      Wronskians of the minimal solutions 

Let there exist two canonical bases /i^ and gi^ in some vicinities of ±ioo. Denote 
the wronskian of /i^ by Wf and let Wg be the wronskian of gi^- Assume also that 
there exist all the corresponding minimal solutions. In Section 6.1, we prove 

Proposition 1.3. The wronskians of any two of the minimal solutions are con- 
stant. One has 

{^A, IPB} = -WfBAAs, 

{ipA, ipc] = -wf BA Ac = wg CA Dc,       {^A, ^D) = -^f BA ^D = -wg DA CD, 

{^B, ^c} = Wf AB Be = Wg CB DC,       {ips, IPD} = Wf AB BD = -Wg DB CD, 

fyc, ^D} = -Wg Dc CD. 

This statement immediately implies 

Corollary 1.4.   If all the asymptotic coefficients are nonzero, then any two of the 
minimal solutions form a basis of M. 

In Section 6.2, we obtain also 

Corollary 1.5.   (Uniqueness Theorem)   // all the asymptotic coefficients are 
nonzero, then any of the minimal solutions is unique up to a constant factor. 

The existence theorem is the central result of this paper. Remind that the matrix 
M is a trigonometric polynomial. In the next publication, we shall study a family 
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of the equations (1) parametrized by the constant coefficients of M. In particular, 
we shall prove that the minimal solutions and their asymptotic coefficients can be 
considered as meromorphic functions of these parameters, and that these functions 
are not identically zero. Thus, we shall see that the asymptotic coefficients are non 
zero for any typical matrix M. 

1.10    Monodromy matrices 

The notion of the minimal solution is the first of the main notions of this paper, and 
the second one is the notion of a monodromy matrix. We begin by recalling the gen- 
eral definition of a monodromy matrix and the description of the monodromization 
procedure, see [4]. 

Now, we do not need to assume that the matrix M is a trigonometric polynomial. 
In fact, we have to suppose only that it belongs to SL (2, C) and is a 27r-periodic 
matrix function. 

1. Let ^ is a matrix solution of (1). We call this solution fundamental if det ^ (z) = 
Const 7^ 0. Note that ^(z + 27r) is a solution of (1) together with ^(z). We define 
the monodromy matrix corresponding to a given fundamental solution ^ by the 
relation 

*(z + 27r) = y(z)Ml(z), 

where * is the transposition. The function Mi has the properties: 

det Afi(*) = 1,    Afi(* 4- h) = M^z). (23) 

Let ijj^ and ip^ be two vector solutions of (1). Compose of them the matrix 
(t/^1), ipW). If its determinant is a nonzero constant, then this matrix is a fun- 
damental solution. We define the monodromy matrix for such ipi and V,2 as the 
monodromy matrix corresponding to the fundamental solution (^1), ip^). 

The notion of a monodromy matrix is well known in the theory of the ordinary 
differential equations with periodic coefficients. For a differential equation 

y,(z) = M(z)y(z) 

with a 27r-periodic matrix M, the monodromy matrix also defined by \I> (z + 27r) = 
* (z) Mf, but, it is independent of z. 

2.  Recall the description of the monodromization procedure. Consider the sequence 
of the numbers hj,  j — 0,1,..., defined by the relations 

ho = 27r,     hi = /i, 

hj-i = pjhj 4- ftj+i,    0 < ftj+i < /ij,    pj 6 N. 
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The pj are the denominators of the continued fraction 

1 
hi/ho = 

Pi+       ,    1   i  
Pi + W+TT- 

Let \I>o be a fundamental solution of equation (1), and let Mi be the corresponding 
monodromy matrix. Bring into the consideration the equation 

■*i(z + /i2) = Mi(z)tfi(*). (24) 

In view of (23), this equation is of the same type as (1). 

The passage from (1) to (24) is the first step of the monodromization procedure. If 
there exists a fundamental solution of (24), the monodromization procedure can be 
continued. In result, one obtains the suite of the monodromy matrices satisfying 
the relations: 

detMjiz) = 1,    Mjiz + hj) = Mj(z). 

If the number hi/ho is rational, the procedure is finite, In general case, the mon- 
odromization procedure is infinite. 

The spectral analysis of a differential equation with periodic coefficients reduces to 
the study the spectrum of a (constant) monodromy matrix. Trying develop similar 
ideas for the difference equations, arrives to the infinite sequence of finite difference 
equations (23). In [3]-[4], we have seen that spectral properties of (1) with respect 
to the parameters of M are tensely related to certain properties of the sequence 
Mi,  M2,  M3, etc. 

1.11      Family of matrices invariant with respect to the mon- 
odromization 

Denote by rm>/,  m, Z G N, the set of the trigonometric polynomials of the form 

/ (z) = e-imzf-m + e-*(m - !) V-m+i + • • • + e*1" ^ft-i + Jlzfu 

e.i. such that n_(/) < /,  n+(/) < m. 

Fix n 6 N.  By fi (n) or, briefly, by fi, denote the set of matrix functions M {z) G 
5L(2,C) such that 

& € Tn^m 0 6 Tji^n—i, 

C G Tn—l,nj_ ^ G 7"n_i)n_i, 

and 
714. (a) = n_(a) = n. 
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Note that the conditions (3) and (21) of the existence theorem are fulfilled for any 
matrix from the family Vt. 

One has 

Theorem 1.6. Let M G fi (n). Consider two canonical bases fi^ andgi^- Assume 
that the corresponding minimal entire solutions ipD and I^B exist and that their 
wronskian is nonzero. Then the corresponding monodromy matrix as a function of 
the variable z\ — 2TTzjh also belongs to fi (n). 

This theorem can be used as the base for a program for the spectral investigation of 
the difference Schrodiner equations with the trigonometric polynomial potentials: 
the equation 

V> {z 4- h) + ij) {z - h)        , v  , , , 
^ '-^ J-+p(z)*P(z)=Eil;(z) 

is equivalent to (1) with the matrix f "  P\z)    ~     j   in ^ casej M G fi (n), 

and the monodromization procedure leads to a sequence of equations (1) with the 
matrices from the family Q (n). And thus, it is equivalent to a finite dimensional 
dynamical system. In this paper, we do not consider any spectral problems, and note 
only that the monodromization procedure is close to the asymptotic renormalization 
approach suggested for (2) by Helffer and Sjostrand [1] and Wilkinson [10] under 
some semiclassical assumptions on the number h. 

We finish this discussion by listing the asymptotic formulae for the coefficients of 
the monodromy matrix from Theorem 1.6: 

Mniz 

Mn(z 

Mniz 

Mi2(z 

M2i(z 

M2i{z 

M22(z 

M22{z 

-Me 

ao e-27ri n z/h (1 + 0 (1))) z ^ +io0j(25) 

00 e+27ri n z/h (1 + 0 (1))j z _> _ioo^26) 

,o e-2m nz/h^+0 (1)J ) z _+ +io0o{27) 

-ft e*2™ (n - 1) */* (ga + o (1)) , z -> -2oo,(28) 

ao e-27ri (n - 1) z/h ^H/h |^ + 0 (1)J > 2 ^ +iooX29) 

00 e+2m nz/h^ + 0 (1)J > z _> _ioO)(30) 

-aS e"2^ (n " 1) z/h (e^^ ^ + o (1)) ,        z -► +ioo,(31) 

"/?? e+2^ (^ - 1) ^h (gag. + 0 (1)) > , _, _ .^(gjj 

Here aj^ and /?i,2 are the constants from the asymptotic representations (16) 
- (17) for the Bloch multipliers of the solutions /i^ and gly2. Note also that, 
since the wronskian of ^D and ^B is nonzero, then, in view of Proposition 1.3, 
ABIDBIBD,CD±Q. 
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1.12      Typical properties of the minimal solutions 

Above, we have described the main results of this paper. We shall continue it in 
the next publication. There, we shall study some typical properties of the minimal 
solutions and, in particular, of their asymptotic coefficients. In fact, the second part 
will be devoted to the study of the dependence of the minimal solutions and their 
asymptotic coefficients on the parameters of the matrix M. Let us formulate here 
the central results of this second part. 

Together with the set ft (n), we consider also its subsets Qmi, —n < —m < I < n—1, 
singled out by the conditions 

n+(b) = m,    n_(6) = /. 

Clearly, 

ft = |jfimz,        and       ftmjnftm/z/=0,    (ra,Z) ^ (ra',Z'). 
m,l 

It appears that the elements of ft can be uniquely parametrized by the constant 
coefficients of the trigonometric polynomials a (z) and b(z). Denote by LJ the set 
of constant coefficients of the matrix M. One can consider a; as a point in C8". 
With this, the set f£m/, — n < —m < I < n — 1, appears to be a connected analytic 
submanifold of C8n of the dimension 2n + m + / + 2, and the set fi (n) itself is a 
connected analytic submanifold of C872 of the dimension 4n + 1. 

Let V be a simply connected domain of fim/. Fix some continuous on V branches 
of the functions 

</>_ = —lh/2 — 2lna+n,    0+ = —mh/2 + 2lna_n. 

Assume that, for any point u E P, these functions satisfy the condition (18), e.i. 
that the canonical bases with these parameters are consistent for all u; G V. One 
has 

Theorem 1.7. For the above set V and the above canonical bases, the minimal 
entire solutions can be normalized so that they would be meromorphic in u> G V 
together with their asymptotic coefficients. In this case, the asymptotic coefficients 
are not identically zero. 

This theorem and formulae (27) - (28) immediately imply 

Corollary 1.8. In the case of Theorem 1.7, the monodromy matrix corresponding 
to the minimal solutions ipD and ipB is meromorphic in UJ G V. Moreover, this 
matrix typically belongs to fin)n_i. 
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Here, we have used the usual terminology of the analytic set theory: one says that 
a property of a function defined on an analytic set is typical if it takes place outside 
some analytic subset of a smaller dimension. 

1.13 The plan of the paper 

In section 2, we prove Theorem 1.1. Also, we study some additional properties of 
the Bloch solutions. 

Section 3 is devoted to the scalar equation 

lj,(z + h) + ii(z - h) + 2\cosz fi(z) = 0,    z G C, (33) 

where h > 0 and A G C are two fixed parameters. We construct and study minimal 
entire solutions of this equation. The solutions are explicitly described in terms of 
certain contour integrals. Note that the case of A = — 1 was already treated in [8]. 

Section 4 is devoted to the analysis of the equation 

f(z + h) + f(z-h) + 2\coszf (z) = w(z)f (z),    zeC, (34) 

where w is a meromorphic function satisfying the estimates 

\w (z)\ < Const e-(1-€) lIm*l,    e > 0, 

for sufficiently big |Imz|. In terms of the minimal solutions of (33), we invert the 
operator in the left-hand side of (34), and obtain an integral Fredholm equation 
on a contour in the complex plane. This allows to construct and investigate some 
meromorphic solutions of (34). 

In Section 5, we reduce the matrix equation (1) to the form (34), and then prove 
Theorem 1.2. 

In the first part of Section 6, we study basic properties of the minimal en- 
tire solutions assuming that their asymptotic coefficients are nonzero. In particu- 
lar, we prove their linear independence over the field of /i-periodic function, their 
uniqueness (up to independent of z factors), and justify Theorem 1.6. Recall that 
the monodromy matrices corresponding to the minimal solutions ipp and I/JB are 
trigonometric polynomials of 2irz/h. Formulae (25) - (32) allow us to calculate only 
some of the constant coefficients of these polynomials. In the end of the section, we 
describe a way to calculate all the other coefficients. 

Section 7 is devoted to some remarks for the case where M is a trigonometric 
polynomial of the first order. 
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2      Bloch solutions in a vicinity of the infinity 

In this section, we construct Bloch solutions fi^ of equation (1) described in The- 
orem 1.1a. Subsections 2.1 - 2.5 are devoted to the proof of this theorem. 

In subsection 2.6, we discuss the set of all the solutions analytic in C+    (C_) 
and having there the same asymptotic representations as fi^   (#1,2)• 

2.1      The plan of the proof 

Consider equation (5) for the first component ipi of a vector solution I/J of equation 
(1). Setting 

*(*)=^i(* + /0M(s), (35) 

we see that 

$ (z) + p (*)/* (z-h)= v(z). (36) 

We call (36) a difference Ricatti equation. 

To construct a Bloch solution of (1) analytic in a vicinity of +200 we use the ideas 
of [4]. The first step is to prove the existence of an analytic 27r-periodic solution 
$ of the difference Ricatti equation in a vicinity of +ioo. Then we introduce the 
function 

0(z)=ln$(s) (37) 

and consider the equation 

\(z + h)-\(z) = (l>(z). (38) 

Having solved this equation we reconstruct the first component of a vector solution 
of (1) by the formula 

V>i(z) = eAW (39) 

after that the second one can be recovered by (6).   Finally, we check that the 
27r-periodicity of $ implies that the constructed solution is a Bloch solution. 



V.Buslaev and A.Fedotov 1119 

2.2      Analytic solutions of the Ricatti equation 

Proposition 2.1.   In the case of Theorem 1.1a, there exist two 2ir-periodic solu- 
tions $1,2 of (36) analytic in a vicinity of -Hoc and having the asymptotics: 

$2=v(z)+o(i),    z-±+ioo, (40) 

and 

*l{z) = 7(^Th){1 + 0{1))'   ^-H'00- (41) 

Proof.   Consider the sequence of the functions 

v (z — h)' 

*(,,)w = "W-^-i)(g-^)' n-L 

The limit of this sequence (if exists) is a solution of (36) represented by the contin- 
uous fraction 

*»<*> =*<*>-    ,       M ^Piz-h) • ^ viz -h) £-* f n^rr 
/      iu\     p(z-2h) v (z - 2/i) - ^-^—...   J 

This continuous fraction was investigated in [4]. 

Recall that the coefficients of the matrix M are trigonometric polynomials, and that 
b ^ 0. Both the functions v and p are analytic in a vicinity of 4-zoo. Moreover, for 
z -> -Hoo, the function p tends to a finite limit, and v (z) ->• oo. Let 

My)=   inflvtol,    P+(n=   sup   |pW|,    /i^-^—. 
Imz>y lmz>Y (^-/2) 

As in [4], one can easily check that if p, < 1, then 

|$(»+i)(*) - $W(^)| < ^ |$(»)(*) - $(n-1)(z)|,    Imz > r. 

This estimate implies that all the functions <&(n\ n = 1, 2, ..., are analytic near 
the "point" -Moo, that the continuous fraction in (42) converges uniformly in z in 
the half-plane C+(F) for sufficiently big Y, and that $2 satisfies the estimate (40). 
Since any of the functions $(n) is 27r-periodic, the limit is also 27r-periodic. 

The solution $1 can be represented by the continuous fraction 

p (z + h) 
*i(z) = 

(    ,  *,\ p(z + 2h) 
V(z + h) *i2» /    ,   0TN 

/    , OM     p(^ + 3/i) v (^r 4- 2/i) - ^-^—...   / 

It can be investigated in the same way as (42). q.e.d. 
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2.3 Logarithms of the solutions of the Ricatti equation 

Let 

^i|20O = ln*lf2(s), (43) 

where $1,2 are the solutions of the Ricatti equation constructed in Proposition 2.1. 
Asymptotic representations (40) - (41) immediately imply 

Lemma 2.2. In a vicinity of -Moo, the functions (fri^iz) are analytic and can be 
represented in the form 

01,2(2) = ±in+(v) z + alt2 -f 91,2(2), (44) 

where 

a2=lnv+,    ai = -In v+ — in+(b) h + in+(v) h, (45) 

and #1,2 are 2/K~periodic analytic functions decaying as z -» -Hoo. 

2.4 Homological equation 

Here, we collect some facts on the homological equation 

<p{z + h) -(p(z) =g(z),    zeC, (46) 

where g is a 27r-periodic function. 

1.   First, prove 

Lemma 2.3. Let g be a 2'K-periodic function analytic in a vicinity of+ioo decaying 
as z —> +ioo, then equation (46) has a solution analytic in a vicinity of +ioo and 
decaying as Imz -> -foo uniformly in Rez if |Rez| is bounded by a constant. 

Proof. The solution ip can be constructed by explicit formulas. Fix a point z0 in 
the domain of analyticity of the function g. Let 

rz0+2n -1        rz0-t-Jn 
G{k) = h lz 

e S{z)dz, 

and 

vM'hfw^ffik*' (47) 

Here 7 is a contour in the complex plane of k. Describe it. 
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The integrand in (47) has poles only at the real line. One of the poles is at k = 0. 
One is situated at the point fc0 = min{l, 27r/h}. All the other are located outside 
the interval [0,A;o]- Fix two constants Ci and C2 so that Ci > 0, 0 < C2 < k0. The 
contour 7 is a contour coming from +00 along the line Imz = ci, going from the 
upper half-plane of the complex plane along the line Rez = C2, and coming back to 
+00 along the line Imz = — ci- 

If Imz > Imzo, the integral for tp converges absolutely. Moreover, 

\<p(z)\< Const e-C2lmz. 

This estimate is uniform in Rez if it is bounded by a fixed constant. 

One checks that if satisfies equation (46) by means of the residue theorem: 

ip (z + h) - (p (z) = ^ / G (k) eikzctg (irk) dk = Yl **** G (*) = 9 (z)' 

q.e.d. 

2. Note that if ip is a solution of (46), then the function g {z) = (p (z + 27r) — (p (z) 
is ^-periodic: 

g(z + h) -g(z)    =    (p (z + 27r + ft) - <p (z + h) - ip (z + 2IT) + cp (z) = 

=    g(z + 27r)-g(z) = 

=    0. 

2.5      Bloch solutions in a vicinity of +zoo 

Now, we have all the ingredients to construct two Bloch solutions of (1) analytic in 
a vicinity of the point -B'oo. 

2.5.1    First solution 

Let $2 be the solution of the Ricatti equation (36) described by Proposition 2.1 
and let fa be the logarithm of $2- Consider the equation 

\(z + h)-\(z) = <h(z)' (48) 

Remind that </>2 admits the representation (44). Therefore, any solution of (48) can 
be represented in the form 

2 

X(z) = -in+{v) |^ + tn+(t;)| + lnt;+ | + <p(z), (49) 

where (p is a solution of the homological equation with #2(2) in the right-hand side. 
We construct a solution ip of this equation as in Lemma 2.3, and then, we construct 
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a solution ^ (z) of (1) by formulae (39) and (6). The result can be written in the 
form 

^W = eAW (   *2M-a(z)   ). (50) 

Note that since b (z) is a trigonometric polynomial, the function ^y is analytic in 
a vicinity of -Hoo, and, therefore, tj; is also analytic in some vicinity C+ of +ioo. 

Check that I/J is a Bloch solution. Since the vector in the right hand side of (50) is 
27r-periodic, 

^{z + 27r)=j{z)^(z),    ZGC+, 

where 
7^) = eX{z + 27r) - X(z) ^ 

Thus, it suffices to show that 

7(* + /0=7(*)- (51) 

By (49), 

7(z) = Conste-n+W ^e^ + 27r) " ^W. 

But, in view of section 2.3.2, the function ip(z 4- 27r) — (p(^) is /i-periodic.   This 
implies the /i-periodicity of 7. 

Denote the constructed solution by /2. We have come to 

Lemma 2.4.   There exists a Bloch solution f2 of (1) analytic in a vicinity of +ioQ 
with the first component admitting the representation: 

(f2)1(z)= e-in+W ^ +lnv+ f +*n+(i;)f + 0(1)^     imz ^ +oo. 

Note that, here, o(l) is just the function ip decaying as Imz ^ H-zoo. 

2.5.2    Second solution 

Starting with $1 and repeating the above arguments we obtain 

Lemma 2.5.   There exists a Bloch solution fi of (1) analytic in a vicinity of +100 
with the first component admitting the representation: 

(/l)i(;z) = e*n+(«)fJ-lnt;+f+ m+(t;)2/2-tn+(6)z + o(l)i    Imz_>+00. 
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2.5.3      Linear independence 

Calculate the determinant of the matrix F(z) = (fi(z),f2(z)). Take advantage of 
formula (8). This gives 

detF{z) = (/i)iW(/a)iW (*a(z)_*lW). 
b{z) 

Substituting in this formula the asymptotic representations for /i,2 and $1,2, we 
come to the representation 

detF(z)=v+/b+(l + g(z)),        g(z)->0,    z -> +ioo. (52) 

Here g is an /i-periodic function, analytic in a vicinity of -Moo. Note that formula 
(52) implies that /1 and /2 are linearly independent over the field of /i-periodic 
functions in a vicinity of +ioo. 

Now, we redefine the Bloch solutions fi and /2: 

/1 := q hi {I + <?),    /a := /2/(Z,    9 = exp(i^ / (2/in+(t;))). 

The new /1 and ^ are also Bloch solutions of equation (1), but their wronskian is 
constant. They are the solutions described in Theorem 1.1a. The proof of Theorem 
1.1b is absolutely similar. q.e.d. 

2.6    Uniqueness of the Bloch solutions 

1.   First, we answer the question: " Are the Bloch solutions described in Theorem 
1.1 uniquely defined by their asymptotics for z -> ±ioo ?" 

Lemma 2.6.    Let f be a Bloch solution of (1) analytic in some vicinity C+  of 
-B'oo and, as the solution fi, having the asymptotics (10) for z —> -Hoo.  Then 

f(z) = c(z)f1(z), 

where c (z) is an h-periodic function analytic in a vicinity of +200, and having the 
asymptotics 

c(z) -t 1,     z -> +zoo. 

Proof Since the solutions fi^ are linearly independent in some vicinity of -Hoo, 
/ can be represented by their linear combination with some h-periodic analytic 
coefficients 

f(z) = a(z)f1(z)+p(z)h(z). 
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The coefficients a and fi can be expressed explicitly in terms of the solutions: 

= det(/,/2) det(/i,/) 
a     detUuhY    P     detihJzy 

Since both /i and / are described by (10) as z -> +ioo, 

a(z) -^ 1,    z -> +ioo. 

Now, show that /3 = 0. Since / and fi are Bloch solutions 

iV-l 

det (/!,/) (z + 27riV) = det (frj) (z)  JJ ti^s + 27r/) ti (z + 2^),    V iV € N, 
/=o 

where i/i and u are the Bloch coefficients of fi and /. The asymptotics (10) (see 
also Remark 2 to Theorems 1.1) imply that, for sufficiently big Imz, 

\ui(z)l \u(z)\ < Ce-2™+Wlmzlh. 

This formula is uniform in Re z since (10) is uniform in Rez if |Re^| is bounded by 
a constant, and since ui and u are /i-periodic. In result, for sufficiently big Imz, 

|det(/i,/)(zH-27rJV)|<Ce-47rArn+^Imz^|det(/i>/)(z)|,    V N G N, 

uniformly in Rez.   Since the determinant is /i-periodic, this is possible only if it 
equals to 0. Thus, f{z) = a (z) fi(z) which proves the lemma. q.e.d. 

We have investigated the uniqueness of the solution /i. For the solutions /2, gi and 
#2 one can prove the similar statements. 

2. In constructing the Bloch solutions, we have fixed the parameters (j)± defined 
by formulae (11) and (14) only modulo 27r. The choice of the parameter 0+ (0_) 
influences the asymptotics of /i,2 (01,2) as z -> -Moo (z -> -zoo). Fixing this 
parameter in two different ways, we obtain two different bases fi^ (91,2)- Let us 
study relations between these bases. We shall indicate explicitly the dependence of 
/i,2 on 0+. On has 

Lemma 2.7. 

/li2(*,0+ + 2*) = c1,2e
±2lrizfhf1,2(zi<l>+), (53) 

where ci^ — £1,2(2, 0+) are some analytic h-periodic functions tending to nonzero 
constants as z —> -Moo. 
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The proof of this lemma is similar to the proof of the previous one. Again, one can 
prove the same statement for the Bloch solutions #1,2. 

The most interesting case is one where we change </>+ by 27rn+(^). In this case, one 
comes to 

Corollary 2.8. 

/if2(^0+ + 27rn+(t;)) =^2/1,2(^ + 2^,^+), (54) 

where Ci^ — ^1,2(^5 0+) are some analytic h-periodic functions with the asymp- 
totics 

C1,2(z,(/>-f)-e-7ri(n+(v)-n+(&))+o(l),    *->+ioo. 

3      Minimal solution of the auxiliary equation 

The next three sections are devoted to constructing of the minimal solutions of 
equation (1). Let us agree on the terminology and the notations we shall use there. 

For z £ C, we call the set 

{CeC : Imz = ImC, -6<Re(z-() < 5} 

the horizontal 8-vicinity of z. We call the horizontal S-vicinity of a curve 7 C C 
the union of the horizontal 6-vicinities of the all its points. We call the horizontal 
distance between a curve 7 and a point z the maximal 6 for which the horizontal 
S-vicinity of 7 does not contain z. 

We call a curve 7 C C vertical, if it intersects all the lines Im z = Const only 
at nonzero angles. If all these angles are strictly bigger than some fixed positive 
constant, we call the curve strictly vertical. 

Furthermore, in the sequel, we use the letter C as a symbol denoting constants 
independent of z. 

In Section 3, we construct and investigate minimal entire solutions of the model 
equation 

rrniz + h) \      / -2e^cosz    -1 W mi(z) \ - f    . 

where £ is a complex number.   Note that the first component mi of its vector 
solutions satisfies the equation 

m (z + h) + m (z - h) + 2e* coszm(z) = 0, (56) 
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and the second component is related to mi by the formula 7712(2) = mi(z — h). The 
main results are formulated in Theorem 3.2. When describing the results, we use 
the special function described in Section 3.2. 

In [8], we have considered the case where £ = 0. Here, we discuss in details only 
the new elements of the proof. 

3.1      Reduction to a first order difference equation 

We shall construct a solution m(z) of (56) in the form: 

m (z) = e-iz2/2h I e-izPlh " #74/l + ™Pl2h v (p) dp, (57) 

where F is a contour in the complex plane of p. Substituting (57) into (56), we 
formally get 

e-iz I e-izp/h - ijP/Ah + nip/2h ^-ip-ih/2 + e^ v (p) dp+ 

e+iz f e-izp/h - ip2/4h + irip/2h ^ip-ih/2 + e^ v (p) dp = 0) 

or, after having changed the variables, 

f     e-izp/h -i(p- h)2/4h + ni(p - h)/2h L-ip+ih/2 +  A v{p_K) dp+ 

Jr+h ^ ' 

f     e-izp/h - i{p + hf/Ah + 7ri(p + h)l2h feiP+ih/2 + eA v(p+h)dp = Q, 
JT — h 

where F ± h are the contours obtained of F by ±/i-translations. Assuming that 
v is analytic in a sufficiently large vicinity of F, and that there are no problems 
of convergence of the integrals, we deform the integration contours back to F and 
obtain 

f   e-izp/h-ip1lAh^TTipl2h ne-ip/2+ih/2 _|_ eZ+ip/2\ v(p _ fy 

_ (eip/2+ih/2 + eS-ip/2} v(p + h^ dp = o. 

So, if v satisfies the first order difference equation 

v(p + h) = Q(p)v(p-h), (58) 

with 
eih/2 + eip + t 

6{P)= eZ + eih/2 + ip> 

then m is a solution of (56). Now, our aim is to construct a solution of (58). 
To get a detailed information about this solution we shall need a special function 
playing an important role in the analytic theory of difference equations with periodic 
coefficients. 
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3.2     a-function 

Here, we construct a meromorphic solution of the equation 

(7(z + h) = (l + e-iz)a(z-h),    zeC. (59) 

A similar function was used also in the diffraction theory [2] , so we carry out the 
construction omitting elementary details. 

1.   Let Qr be the complex plane cut along the real line from —oo to — TT, and from 
TT to 4-oo. Fix on C^ a branch of the function ZQ (Z) = In (l-f- e~lz) by the condition 

lo(z) -> 0,    z -> -zoo. (60) 

Define 

Lo(z)= /      lo(z')dz',    2€Q, 
J — ioo 

where the integration contour belongs to C^. Let 

6o(z) = ^[ ^  ,,, dz'. (61) 
(^r1) 

Here, 7 C C^ is a strait line Re z = Const passing between the points z ±h. The 
function 60 is analytic in the strip So = {z G C : —TT — h <Rez < TT + h}. 

By means of the residue theorem, one can easily check that 

0o{z + h)- 9o(z -h) = lo(z),    z±heSo. 

Therefore, the function 

a(z) = e0o(z) 

is a solution of (59) in the strip So- By means of (59), one can continue it meromor- 
phically in the whole complex plane. Let now a denote this meromorphic solution. 
Investigate its analytic properties. 

2. Discuss the set of poles and zeros of the function a. By construction, the 
function a is analytic and has no zeros in So- In result of the continuation, each 
zero z = TT + 27rZ, I = 0, 1, 2, ..., of the function \ + e~%z produces a chain of zeros 
of a at the points 

TT + h + 27rZ + 2ftfe,    A; = 0, 1, 2, ... , 

and each its zero z — — TT — 27rZ, Z = 0, 1, 2, ..., produces a chain of poles of cr at 
the points 

-7r-h-27Tl- 2hk1    k = 0, 1, 2, .... 

3.   The pole z = —TT — h is simple. One can calculate explicitly the residue of cr. 
Omitting long elementary calculations, we write down the result 

Jl     iir2     i7T_   ijh 

Resz^-n-ha =-ia (-TT + h) = d - e   12/1      4      12. (62) 
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One can also get the following explicit formula 

cr(_7r) = _Le-^
2/12/H-^/24. (63) 

V2 

4. Let us describe the asymptotics of a for Imz —> :B'oo. Clearly, 

Lo(z) = O (e~M),    Imz -> -too. 

On the other hand, 

Lo(z) = -iz2/2 + z7r2/6 + O (e"N),    Im^ -^ +200. 

This implies the asymptotics 

a(z) = 1 + o(e-/ilImzl),    Imz -> -too, (64) 

and 
2 2 L 

a (z) = e"% + ^ + % (1 + o(e-^lmz\)),    Tmz-> +200, (65) 

where // is a positive number such that /i < min{l, ir/h}. As before, we omit 
elementary calculations, noticing only that the leading terms in (65) can be obtained 
by the substitution in (61) instead of the function LQ the leading terms of its 
asymptotics for z -> -Moo. 

5. The solution a of equation (59) is uniquely determined by its asymptotics (64) 
- (65), and by the fact that it is analytic and has no zeros in the strip SQ. 

Indeed, let ai be another solution of (59) possessing these properties. By (59), the 
ratio (Ti(z)/a(z) a 2/i-periodic function. It is analytic in So, and thus, due to the 
periodicity, it is entire. On the other hand, it tends to 1 as z -> ±ioo. Therefore, 
this ratio is identically equal to 1. 

6. The cr-function satisfies the functional relations: 

a (z + TT) = (1 + e~f z) a(z- TT), (66) 

i   -2   i    in2    i    ih       1 
a(-z) =e-4hz +I2- + I2—- 67 

a (z) 

a(z) = ai-zY 

These three relations can be proved by using almost one and the same argument. To 
justify, for example, formula (66), first, one checks that the ratio r (z) = a (z)la (z- 
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27r) is a 2/i-periodic entire function. Really, both the functions a(z) and a(z — 27r) 
satisfy (59). This implies that r is 2/i-periodic. The function a(z) is analytic in the 
half-plane -ir — h < Rez, and l/a(z — 27r) is analytic in the half-plane Rez < Str+h. 
So, r is analytic in the strip -TT - h < Rez < Sir 4- h. Thus, being 2/i-periodic, 
it is entire. Furthermore, the asymptotics of a imply that r (z) -> 1 as z —)• —zoo, 
and r(z) = e-inz/h + iir /h^ + 0(i)) as z _^ +ioo.   This is possible only if 

in      in 7 
r (z) = 1 + e h       h    5 which proves (66). 

3.3 Meromorphic solution of equation (58) 

Now, we come back to equation (58). One of its solution can be constructed by the 
formula 

v (p) = e~l2hP(j{p - po)/a {p + po), (68) 

where 

p0 = i£ + h/2. (69) 

Describe analytic properties of v. 

First of all, note that (67) implies that 

v(-p)=v(p). (70) 

The function v has two chains of poles: 

M-Po + TT + h + 27rj + 2/ifc),    j, A; G N U {0}. 

If these two chains do not intersect, then the poles ±(— po + TT -I- h) are simple, and 

Respo-n-hvip) = -Res-pQ+n+hV (p) = 

- 4 /^ J^2 /2h-7rZ/2h- in2 / 12h + ih / 24 1 /71 x 
"VTT (7(2i£ -TT)*       

U; 

The asymptotic formulae for a imply 

v (p) = e±ipop/2h(i + 0 (i))5    p _> ±ioo. (72) 

3.4 Minimal solution of the model equation for Repo < TT 

In this section we assume that 

Imf >-7r + /i/2. (73) 
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This condition is equivalent to the inequality Repo < TT- It implies that the poles 
of v are outside the strip 

-h < Rep < h. (74) 

1. Construct an entire solution of the auxiliary equation (56). Let Y be a vertical 
curve going along the imaginary axis from p = — iRe£ to p = +zRe£ and having as 

the asymptotes for p -> ±ioo the line e~Z7r/4M. Since v has the asymptotics (72), 
the integral in (57) converges and defines an entire function m (z). 

This function m is an entire solution of the auxiliary equation (56). To check this, 
we make the calculation from subsection 3.1. As the convergence of the integrals is 
obvious, then, to justify this calculation, one has only to note that the horizontal 
distance from the contour F to the poles of v is bigger than h. 

2. Let us turn the attention to the asymptotics of m for z -> ±ioo. One has 

Proposition 3.1.   Let Im£ > —'ir + h/2. Then the function m has the asymptotics 

m (z) = aoe^h (z " ^ + ^ + ¥ (i + 0 (1))+ 

+6oe~27r^~7r + ^)   +f (l + o(l)),    z-^+too,       (75) 

m(z) = coe^h<<z~7r~i^   -T(l + o(l))+ 

+e-27rzz//idoe-^(^-7r-z02-f (1 + 0(1)),    z -> -too,   (76) 

where ao, bo, CQ and do are independent of z. The asymptotics are uniform in Rez 
if \Rez\ is bounded by a fixed constant. The asymptotic representations for m' can 
be obtained by differentiating the asymptotic representations for m. 

When proving the proposition, one checks also that the constant coefficients in the 
above asymptotics are given by the formulae: 

ao = 2i^/:Khe~"ih (^ " 7r)2 - 4^ + xe , (77) 

bo = —-r- re     4/1^       lS) 4S        nh       48, (78) 
a (2lZ; — TT) 

= -2V^e-rh(« + i02-tt+%> (79) 
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do =       ,  re       /i 4/i 1^ + *$; 4^^    12/i 48. (80) 
(7 (2^ — TT) 

For the case where f = 0, we have proved this proposition in [8]. In the case under 
the consideration, one can use the same arguments and, even, almost the same 
estimates and calculations. So, we shall not repeat them here, and give only some 
comments on the proof. 

Begin with the case of z -> +ioo. Then, the asymptotics contains two leading 
terms. The first one is defined by the behavior of v as p —> —zoo, and the second 
one is related to the pole of the function v situated at po - TT — h. Describe the first 
one. 

Remind that as p -» ±ioo, the integrand in (57) has the asymptotics 

iz „ i   ^2   i    iir „   i    ipo ^ 
e^TP-JKP  +2hP±MP(l + o(l)). 

If z —» -i-zoo, the integrand has a saddle point. It satisfies the equation 

dp V      h P       AhP    ^ 2hP        2h P)        U' 

and thus, the saddle point is pi = — 2z + TT — PQ. The first of the leading terms 
equals to the contribution of this saddle point to (57), e.i. to 

i    ^2     r-—    3ni i  ^^ 1-2   i   iZL 
e-^z  V^i^e^ e-t^1 " ^K + ^Pi " ^PoPi = 

= aoe^^-^ + <Oa + ^> 

where ao is given by (77). 

The second leading term of the asymptotics of m (z) equals to the contribution of 
the pole po — TT — h to (57), e.i. to 

boe   2/1 

with 6o from (78). 

= fc.*-5k(*-* + *02 + 4*. 

The asymptotics (75) of m (^) for z -> +ioo can be described as the sum of the 
contributions of the above two terms. 

In the case where z -» —zoo, the asymptotic (76) of m again contains two leading 
terms. The first one is due to the saddle point p2 defined by 

dp \     hP       4/i P    ^ 2/i P ^  2/i P)        U' 
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i.e. P2 — —2z + TT + po. The contribution of this saddle point to (57) is given by 

e-& z2 V^he3-? e-K zp2 " A^ + IsP2 + ^P0P2 = 

= coei-h(z-«-i02-f, 

where Co is given by (79). This is the first leading term, and the second one equals 
to 

-e-£z22*iReSp=-P0+w+h ^-izp/h-i^/Ah + mp^h^^ = 

= e-2™/hdoe-i-h(z-«-i02-f. 

q.e.d. 

3. Recall that we can reconstruct the components of a vector solution of (55) by 
the formule mi (z) = m(z) and 7712(2) = m(z — h). This vector solution is a minimal 
entire solution. Let us discuss this in detail. 

The theorems 1.1a and 1.1b imply existence of the canonical vector solutions /i^ 
and #1,2 of (55). The asymptotics of their first components have the form 

(/i,2)i (*) = e±^ (* + *+)2 + *! + 0 (!),    z-> +ioo, (81) 

</>+ = ifi - n, 

and 

(9l,9)i(*) = e±^(* + *-)a-if+0(1),    z^-ioo, (82) 

0_ = —ifi — TT. 

Here, we have chosen some of the possible values of the parameters (j)±. Comparing 
the asymptotics of mi(z) — m (z) (described by Proposition 3.1) with (81) - (82) , 

we see that the vector f      1 \ I   ) is really a minimal solution of (55) corresponding 

to the chosen canonical bases. 

Below, we shall refer to m as to a minimal entire solution of (56). 

3.5      Minimal solution in the general case 

In the previous section, we have constructed the minimal entire solution m(z) for £ 
being in the half-plane (73). It is analytic in f in this half-plane. Now, we are going 
to continue it meromorphically on the whole complex plane of £ and, in result, to 
prove 

Theorem 3.2. Equation (56) has a solution m (z,€) entire in z and meromorphic 
in £. It has the following properties: 
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(i)    m is analytic in £ in the upper half-plane of the complex plane £, and the 
function a (2z£ — TT) m (z, £) is analytic in the half-plane Im£ < 0. 

(ii)    If a (2z£ - TT) 7^ 0, then the behavior of m for z -* ±ioQ is described by 
formulae (75) - (76) with coefficients ao, fco, Co and do given by (77) - (80). 

Above, we have indicated explicitly the dependence of m on £. The rest of the 
section is devoted to the proof. 

1. Let us study analytic properties of m as a function of £. As we have already 
noted, it is analytic in £ if Im£ > —TT 4- h/2. Continue meromorphically m (z, £) 
into the whole complex plane of £. The idea is to find a relation connecting the 
functions m(z, £),m(z, £ + in) and m (z, £ 4- 2i7r) for Im£ > —TT 4- h/2, and to use 
this relation for the continuation. Such a relation exists since all the three functions 
m (z, £), e27r;z//l m (z, £ + ^TT) and m (z, f + 2z7r) satisfy (56), and since the space of 
solutions of the equivalent to (56) equation (55) is a two dimensional module over 
the ring of ft-periodic functions. Prove 

Lemma 3.3.   Iflm£> —TT 4- h/2, then 

a (2if - TT) m (z, f) = a (2if - Sir) [am(z, £ 4- in) 4- /3m (z, £ 4- 2i7r)],        (83) 

w/iere a and /? are entire functions of £ and enfa're and h-periodic in z. 

Proof As equation (55) and (56) are equivalent, then the space of solutions of 
(56) is also a two dimensional module over the ring of /i-periodic functions K, and, 
moreover, for any two solutions / and g of (56), the expression 

{/(*),0(*)} = /(* + h)g(z) - f(z)g(z + h) 

is /i-periodic, and / and g are linearly independent over K iff {/(^),5'(^)} ^ 0. We 
call {/(^),5,(^)} the wronskian of / and g. 

Assuming additionally to the hypothesis of the lemma that £ satisfies the condition 

l/o- (2if - 37r) ^ 0, (84) 

e.i. that 
£ ^ -ITT + ihl2 4- 27r/ 4- iftfc,    /, k = 0, 1, 2, ... , 

we check that e™2!*1 m(z, £ + in) and 771(2:, £ 4- 2i7r) form a base in the space of 
entire solutions of (56). For this, we calculate their wronskian. We shall write f ~ g 
if / differs from g by an entire in £ factor having no zeros. 

First, we study the asymptotics of the wronskian for z -» ±ioo. They can be 
easily calculated by means of the asymptotics of m. Assuming that &o(£ 4- in) and 
ao(£ + 2in) are nonzero, we get 

{einz/h m(z^ + in), m(z,£ + 2in)} - &o(f + "0 aoK + 2»7r) (1 + o (1)).     (85) 
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Z -¥ -f ZOO 

But, in fact, formula (77) shows that ao(0 ^ 0 for all £ G C, and formula (78) 
implies that &o(£ + in) ^ 0 under the condition (84). This justifies (85). Similarly, 
one shows that 

{ei7rz/h m(z, £ + ITT), m (z, £ + 2z7r)} - db(f + tV) co(^ + 2i7r)(l + o (1)).      (86) 

z -> —zoo 

Since the wronskian is an entire /i-periodic function of z, (85) and (86) imply that 
it is in fact independent of z, 

{eilTZ/h m(z,Z + ITT), ro (*, £ + 2z7r)} - db(f + ZTT) CO(^ 4- 2z7r). 

Furthermore, taking into account (79) and (80), we see that 

{einz/h m (*, f + ITT), m (z, f + 2z7r)} - 1/a (2if - STT), (87) 

and thus, under the condition (84), eiirz/h m (z, ^-J-ZTT) and m (z, ^ + 2z7r) are basis 
solutions. Therefore, in this case, m (z, 0 is their linear combination, 

m(z, 0 =aei7rz/hm(z, £ + in) + 0m(z,'€ + 2in) 

with the coefficients 

a = {m (zy 0,m(z,Z + 2i7r)}/{ei7rz^ m (z, f + ZTT), m (z, f + 2z7r)}, 

£ - {e*"/* m (z, f + <7r), m (z, 0}/{eW* m (z, f + ITT), m (z, f + 2z7r)}. 

One can calculate the wronskians in these formulae in the same manner as above, 
which gives 

{m(zyt),m(z^ + 2i7r)} = w1(0+W2(Oe     h z, 

{e™zlhm(z, e + zV), m(z, 0} = ^(Oi 

^-l/t7(2z^-7r),    j = l, 2, 3. 

This and (87) imply the desired relation (83) under the condition (84). But, then it 
is valid for any f in the half-plane Im f > -7r+h/2 as an equality of two meromorphic 
functions. 

q.e.d. 

2. Now, we note that the integral (57) remains analytic in f and entire in z while 
the pole po—7r — h = i£-7r — h/2 of the function v remains in the left half-plane of 
the complex plane, and its pole -po + TT + h = -z£ + TT + h/2 remains in the right 
half-plane. Thus, m is analytic in £ if Im£ > —TT — h/2. 

The above result implies that Lemma 3.3 remains valid for all £ in the half-plane 
Imf > -7r-h/2. 
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3. Consider the function 

*(zlO = tr(2^-7r)m(z>0. 

Since the poles of a (2i£ - TT) are in the half-plane Im£ > h/2, $ is analytic in £ in 
the strip —TT — h/2 < Im£ < h/2. Lemma 3.3 immediately implies 

Lemma 3.4. The function $ can be analytically continued in the half-plane Im£ < 
h/2. 

Proof. The right hand side in (83) is analytic in f if —27r — h/2 < Im £ < —TT + /i/2. 
Therefore, $ is analytic in the strip -27r - /i/2 < Im£ < h/2. By means of (66), 
one can rewrite formula (83) in the form 

$ (z, 0 = a (z, 0 $(z,t + in) + p {z, 0 (l + eX tt + ^A #(*,£ + 2^), 

and this relation allows to continue $ analytically from the strip —2^ — hj2 < 
Im£ < h/2 in the whole half-plane Im£ < h/2. q.e.d. 

The lemma implies that m (z, f) can be meromorphically continued on the whole 
complex plane. We shall not distinguish between m and its meromorphic continua- 
tion. The m is analytic in £ in the upper half-plane of the complex plane, and the 
product a (2i£ — TT) m (z, £) is analytic in the half-plane Im£ < 0. 

4. Remind that m is entire in z for Im£ > —TT + h/2. As the meromorphic 
continuation of m into the whole plane of £ was obtained by (83), m is entire in z 
for all £ different from the zeros of cr(2i£ - TT), i.e. outside the poles of m. 

5. Since m(z + h, £), m (z, f) and m(z - h, £) are meromorphic in f, equation 
(56) remains satisfied for all £ G C as a relation for meromorphic in £ functions. 

6. To complete the proof of the theorem, we have to check only its statement (n). 
Consider the canonical Bloch solutions of (56) described by (81) - (82). One can 
represent $ (2, £) = cr (2z£ - TT) m (z, £) by their linear combination with /i-periodic 
coefficients. In a vicinity C+ of -Moo, 

#(*, 0 =A(z, 0/i(«, 0+B(z, 0/2(2, 0,    2 € C+. 

The coefficients A (.,£)> ^ (•>£) can be expressed in terms of the wronskians of $ 
and fix- 

A={*,/2}/{/l,/2},     B = {/i>$}/{/1,/2}. 

Thus, they are analytic in £ in the same part of the complex plane as $. Also, all 
the Fourier coefficients of A and B are analytic in £ in the same domain as $, and, 
therefore are described by the same analytic formulae as for Im£ > —TT + h/2, so 
everywhere outside the poles of a. The asymptotics (75) - (76) show that 

A -+ 00(0 a (2if - TT),    B -> 60(0 0" (2if - TT), 
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Im£ > —TT + h/2,    z —>> +ioo, 

outside the poles of a (2i£ — TT). SO, the zero-th Fourier coefficients of A and B 
are equal respectively to aoa and boa for all £ outside the poles of cr(2i£ — TT), and 
all the Fourier coefficients with the negative indices are zero on the whole complex 
plane of £. This implies the statement of the Lemma concerning the representation 
(75). The applicability of (76) can be extended in the same way. q.e.d. 

3.6      Estimates of the solution m 

Here, we just list some estimates for m (z) and m^z) immediately following from 
the asymptotic representations (75) and (76). These estimates will be used in the 
next section. One has 

\m{z)\<CP{z),    \m'(z)\<C{l + \y\)P{z), (88) 

where 
pM_p-M/2j        e\*-«-<P\vl\ y>0, 
PW-e { elx + vUyUhe-nM/h,   y < Q, 

where x = Rez, y = Imz and ip = Im£. These estimates are uniform in Rez if 
\Rez\ is bounded by a fixed constant. 

4     Minimal solutions of a perturbed auxiliary equa- 
tion 

In this section, we consider the equation 

il>(z + h)+il)(z-h) + 2e* cos z'4){z) = w (z)^ (z), (89) 

assuming that £ is complex number, and w is a meromorphic function satisfying 
the estimate 

MsJI^Ce^-^M,    o<ju,    \y\>Y, (90) 

for sufficiently big Y. Here, as below, in this section, we use the notations 

x = Re z,    y = Imz. 

Our aim is to prove the existence of a meromorphic solution of (90) having the 
asymptotics representations of the same form as ones of the minimal solution m of 
equation (56). 

Remind that m has poles if cr(2i£ — TT) = 0, e.i. if 

2if = 27r + h 4- 2hl + 27rm,    /, m = 0, 1, 2,  
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Let 
E = {±(27r + /i + 2/iZ + 27rra),  Z,m = 0, 1, 2, ...}. 

In this section, we assume that 

2*f jZ? S. (91) 

One can try to invert the operator being in the left-hand side (89). As we shall see, 
this leads to an integral equation of the form 

</> (z)=m(z)+ [K(z,Q1>(QdC9    zer (92) 

Here 7 is a vertical curve, and n is constructed in terms of m and m two linearly 
independent solutions of (56), 

K ("' C) - 2ift *(z' C) {^^} ^(C)' (93) 

where 

«(z)0 = ctg^-^+i, (94) 

and {m, m} = m(^ 4- h)m(z) — m(z)rh(z 4- ft) is the wronskian of m and m. This 
integral equation is our main tool. Note that the kernel K can be considered as a 
difference analog of the resolvent kernel arising in the theory of differential equa- 
tions: now, instead of the canonical ^-function, 0(y — 77), which equals to zero if 
y > rj and to 1 if y < 77, one encounters the function (93). 

First, we shall study the integral equation (92), and then we shall study its 
solutions and, in particular, check that they satisfy (89). The analysis of the integral 
equation is quite similar to one we have carried out in the case of Harper equation 
ip (z + h) + I/J (z - h) + 2 cos z ij) {z) = Eip (z), E — Const, in [8]. So, we describe 
in details only its new elements. 

The main results concerning (89) are formulated in subsection 4.4. 

4.1      Operator K 

Now, we are going to describe precisely the construction of the integral operator 
from (92) (the solutions m and m, the integration contour), to describe the func- 
tional space and to discuss properties of this operator. 

4.1.1    The solutions m and m 

Let m be the minimal solution of (56) constructed in Section 3, put 

m(z,0=™M- (95) 
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Here, we indicated explicitly the dependence of m on £. Together with m, rh is an 
entire in z solution of (56). 

Remind that m is analytic in f outside the set of zeros of a (2z£ — TT).  Thus, 
both m and m are analytic under the condition (91). 

The new solution has the asymptotics 

mW = (Q,(?) + o(l))c-^^-7r + ^)2 + lL + 

+6^ z(d0 (0 + o (1)) e^h (z - * + ^)2 + f j (96) 

Z —> +200, 

and 
m (z) = (ao(0 + o (1)) e"^ (^ " * " ^)2 " f + 

(6o(0 + o(l))e2k^-7r-^)2-f, (97) 

z -> -zoo. 

Here, ao, 6o5 CQ and do are the coefficients from the asymptotic formulae for m. 

4.1.2 The wronskian of m and m 

When proving Lemma 3.3, we have already discussed the space of solutions of 
equation (56), the linear independence and the wronskians of its solutions. We 
calculate the wronskian of m and rh as we have calculated wronskians in the proof 
of Lemma 3.3. We recall that the wronskian is ft-periodic and get its asymptotics 
for z -> ±ioo (using the asymptotics of m and m). This leads to the result 

{m (z), rh (z)} = e* co(£) ao(0- 

This and formulae (77) - (79) imply 

{m(z),rh(z)} = -Anihe^2. (98) 

Note that this result means that the solutions m and rh are linearly independent 
over the ring of /i-periodic in z functions. 

4.1.3 The integration contour 

Let ip = Im £. The contour 7 is a strictly vertical curve which does not pass through 
any pole of w, comes from —ioo along the line 

x = -(p,    , (99) 
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and goes to +ioo along the line 

x = TT + (p. (100) 

To motivate this specific choice of the asymptotes of 7, note that the estimates (88) 
show that, \m\ is minimal along 7: 

|m (z)\ < Ce-\y\l2 —i-T,    ^ G 7, (101) 

^»={e*K"<o: (io2) 

Note also that 

\m {z)\<Ce-\y\l2po{z),        ze1. (103) 

4.1.4      The functional space 

We define the operator K as the integral operator with the kernel (93) acting in the 
space I/2 (7, p), where p is the weight reflecting as the behavior of m and fh along 
7, so the one of w, see (90), 

P{z) = e^-^\y\pl{z). (104) 

4.1.5      Compactness of the operator K 

The kernel of the operator K is quickly decaying along the contour 7: using the 
estimates (87) for m and m', one can show that 

pl'2{z)\K{z,0\p-1/2{0<C{l^\v\)e-2\y\-^\,    T^ImC,    z, C G 7- 
(105) 

The estimate (105) implies that £/ie operator K is a Hilbert-Schmidt operator in 

L2{l,P)> 

4.2      Solutions of equation (89) in a vicinity of the curve 7 

Note that, m £ £2(7,^). Therefore, at least, one of the equations 

ip = m + Kip    and    I/J = Kip, (106) 

has a nontrivial solution ip e £2(7,^). In the sequel, ip denotes this nontrivial 
solution. If both the equations have nontrivial solutions from L2(7,p), then ip is 
one of them. Show that ip can be analytically continued into a vicinity of 7 up to 
a solution of equation (89). 
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4.2.1      Analytic continuation 

One has 

Proposition 4.1.    There exists a positive 5, such that I/J can be analytically con- 
tinued in the horizontal (h + S)-vicinity of 7. 

Proof. For £ G 7, the kernel K,(Z, C) is analytic in z in the horizontal ft-vicinity 5^ 
of 7. The integral, representing Kifr, converges uniformly in z being in any compact 
subset of Sh- Therefore, the function Kip can be analytically continued in 5^. But 
then, -0, being a solution of (106), can be also analytically continued in 5^. 

Let 8 be the horizontal distance from 7 to the closest to it pole of the function 
w. If 5 < h, then having proved that ip is analytic in the horizontal h-vicinity of 7, 
one can deform the integration contour in the formula for Kip inside its horizontal 
8-vicinity, and check that, in fact, ip can be analytically continued in the horizontal 
h 4- 8-vicinity. If 8 > h, then one deforms the contour inside its horizontal h-vicinity 
to check that ip is analytic in 2h-vicinity of 7 and so on. 

q.e.d. 

For brevity, we shall not distinguish ip and its analytic continuation. 

4.2.2    ip and equation (89) 

Note that the horizontal width of the horizontal (h -\- <5)-vicinity Sh+d of 7 is bigger 
than 2h. Show that ip satisfies equation (89) for z — h, z, z + h G Sh+5 • 

Let (Ho f) {z) = f {z + h) + / (z - h) + 2e* coszf {z). Then, % </> = % Kip, 
but 

(Wo K iP) {z) = 27rzRes c=2 K (Z + ft, C) </> (0 = 

(m(z + h)m(z)-Tn(z)m(z + h))     ( .    , . / \ ,/ \ 
- ^ i i yi -l-i i ii K; (2) lp(z) =W (Z) Ip (Z). 

{m, mj 

Thus, we come to 

Proposition 4.2.   The solution ip satisfies equation (89) in the strip Sh+s- 

4.2.3      Asymptotics of ip for z —> -Moo 

Let us describe the asymptotic behavior of ip in a vicinity of 7. We begin by proving 
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Proposition 4.3. Fix positive Si and 62 so that Si < 2h and 62 < min{/i, 27r/ft}. 
In the horizontal ei-vicinity of j, the solution ip admits the asymptotic representa- 
tion 

^(z) = m (z) (A + Aiiz)) + fh(z) (B + B^z)),    z -> +200, (107) 

where 

(108) 

and the functions Ai and Bi satisfy the estimates 

|Ai(z)|>|JB1(z)|<Ce-ea,'>    y>Y, (109) 

for sufficiently big Y, finally, W = {m, m}; and 

Remark.       iVo^e that the form of the above asymptotic representation depends on 
the integral equation for I/J. 

The proof of this statement is almost the same as the proof of Proposition 3.6 from 
[8]. Here, we just outline the main idea of the proof. The function tp satisfies 
one of the equations from (106). Thus, on the contour 7, one can estimate it by 
estimating the right hand side of the equation. Using the inclusion ip G L2(7>JP) 

and the estimate (105), one obtains 

|^(^)| <Constc-ly/2l/po(^). 

The integrals 

f m (C) w (C) </> (0 dC,     / m (0 " (C) 1> (0 dC 

quickly converge as ( -> +zoo, and one can obtain the asymptotics of Kip {z) for 
z ->• +200 inside the horizontal /i-vicinity of 7 by replacing in the kernel of K the 
function 0 (z, ()  with 2i. This leads to the answer 

^ (z) ~ Am(z) + Bm(z). 

We omit the elementary estimates leading to (109). To prove (107) outside the 
horizontal h-vicinity of 7, one has to write down a convenient representation for 
the analytic continuation of K^ outside 7. For example, if z is to the right of 7, 
and the horizontal distance between z and 7 is between h and 2/i, one can use the 
formula 

(Kil>) (z) = 2m Res c=z-hn (z, Q i> (0 + / K (*, 0 i> (0 dC- 
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q.e.d. 

Using the representation (107) for i/; and the asymptotics (75) -(76) for m, one 
finally obtains the asymptotics of ift for z being in the horizontal ei-vicinity of 7: 

^(z) = (a + o(l))e^(z -7r + i02 + T + 

+(b + o{l))e~vl^~7r + i^2 + 2z,    z->+ioo, (111) 

with 

a = j4ao(0,    b = Abo(0+Bco(0, (112) 

where ao, bo and CQ are the coefficients from the asymptotic representations (75) - 
(76)form(z). 

4.2.4      Asymptotics of ip for z —> —zoo 

Describing the behavior of ip for z —> — ioo, one proves first the representation 

2iri 
ip(z) = (C + Ci(z))m(z) + (D + D1(z))e    h zm(z),    z G Sei(j),    lmz^-00. 

(113) 

Here, Ci and Di are functions satisfying the estimates of the form (109), and C 
and D are constant coefficients given by 

C = Sty),    D = -^J e+2^m (C) w (0 * (C) dC- 

Remark. Let us emphasize that, now, the asymptotic representation strongly 
depends on the integral equation for I/J: if I/J is a solution of the inhomogeneous 
equation, then C = 1; if ip is a solution of the homogeneous equation, then C = 0. 

The representation (113) implies that, in the horizontal ei-vicinity of 7, 

^(z) = {c + o(l))e2h^-n-^)   ~T + 

e-2rz(d + o{l))e~5h(z~7r~i®2~%z,    z->-ioo,      (114) 

with   
c = Cc0(0,    d = Cdo(0 + Dao6)- 

where ao, CQ and do are the coefficients from the asymptotic representations (75) - 
(76) form (2?). 
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4.3      Solution i/; outside the vicinity of 7 

4.3.1     Analyticity near ±ioo 

Being analytic in the horizontal h + 5-vicinity of 7, the function ip can be meromor- 
phically continued into the whole complex plane just by means of equation (89). 
Since w is analytic in some vicinities C± of ±ioo,  ip is also analytic there. 

4.3.2    Asymptotics in C± 

Discuss the asymptotics of ip as y -»- ±00 for arbitrary fixed x. Begin with the case 
of z -» -fioo. As for equation (56), see subsection 3.4.3, one can construct for (89) 
the canonical basis solutions /i^ analytic in a vicinity C+ of +zoo. This can be 
carried in the same way as in the proof of Theorem 1.1. One obtains 

/1|2(z) = e^ (* - * + ^)2 + f * (l + o (1)),    y -+ +zoo. (115) 

In C+, one can represent tp by their linear combination with ft-periodic analytic 
coefficients 

iP(z) = A(z)f1(z) + B(z)f2(z). (116) 

Now, we recall that the asymptotic representation (111) is valid in the Si -vicinity 
of 7 and that as Si one can be choose any number from (0,2h). In particular, this 
representation is valid in a horizontal vicinity of the horizontal length bigger then 
ft, i.e. the period of A and B. Therefore, comparing this representation with (111), 
we see that the periodic coefficients A and B are bounded as z -¥ 4-ioo, and 

A(z)->a,    B(z)->b,    z->+ioo. (117) 

Now, as A and B are ft-periodic, (115) - (117) imply that the asymptotic represen- 
tation (111) remains valid and uniform in Re z if Im z -» +ioo and |Re^| is bounded 
by any fixed constant. 

Reasoning in the same way one proves that the asymptotic representation (114) 
for ip as y -» —ioo remains valid and (locally) uniform in Re z too. 

4.4     Results of the section 

The main results of this section can be formulated in the following form. 

Proposition 4.4. Let 2z£ ^ E. Let also w be a meromorphic function satisfying 
the estimate (90). Assume that 7 is a strictly vertical curve not passing through any 
pole ofw. Then equation (89) has a meromorphic solution ip (z) with the following 
properties: 
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1. ^ is analytic in z in some vicinities C± of ±ioo; 

2. there is a positive S such that ip has no poles in the horizontal (h-\-5)-vicinity 
ofi; 

3. ^ admits the asymptotic representations of the form 

1> (*, 0 = (a + o (1)) e^h (z - * + ^)2 + T + 

+(& + o(l))e-^-7r + ^)2 + H    y-^-f-oo, (118) 

and 

$ {z, 0 = (c + o(1)) e2h yz - * - *?r " T + 
i   (z_7r_^)2_M_ 

e"ir^(rf + o(l))e-27r^-7r-^   -2^,    2/->-oo,       (119) 

where a, b, c, and d are independent of z. The error estimates are uniform in x if 
\x\ is bounded by a constant. 

Remark. The solution ifi satisfies one of the integral equations (106), if it satisfies 
the homogenous equation, then the coefficient c in the asymptotic representation 
(119) is zero. 

5      Minimal entire solutions of equation (1) 

In this section, we construct the minimal entire solutions of the matrix equation (1) 
and prove Theorem 1.2. 

5.1      The plan 

We start with the equation (5) for the first component of a vector solution of (1). 
We represent ifii in the form 

Mz) = t(z)Mz), (120) 

where t satisfies the equation 

t(z + h) = p(z)t(z-h). (121) 

This transforms (5) to 

Mz + h)+Mz-h) = v1(z)f0(z) (122) 

with 
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We find a solution t of (121) such that t (z) /1 (z+h) tends to some nonzero constants 
as z -> ±200. 

Then, we accept assumption (21). In this case, 

vi (z) ~ vi_einz +vi+e~inz,    z ->• ±zoo, 

and, by a linear change of the variable, one transforms (122) to equation (89) 
investigated in the previous section. This allows to construct some analytic solution 
^i of equation (5). This function can be considered as the first component of a 
vector solution -0 of the original matrix equation (1). The second component can 
be reconstructed by formula (6). 

To be sure that ij) is really entire in z, we check that it is analytic in a sufficiently 
wide horizontal vicinity a vertical curve 7. Really, since det M {z) = 1, the formulae 

iP(z + h) = M (z) ij; (*),    ijj(z-h) = M-l(z -h)il> (z) (124) 

show that, in this case, T/J can be continued up to an entire function of z. 

5.2      Meromorphic solution of equation (121) 

Let 7 be a strictly vertical curve. Here, we construct a meromorphic solution of 
(121) analytic in a vicinity of 7. We shall use the following notations: 

• we denote by 7 + 27r the curve obtained of 7 by the 27r-translation; 

• we denote by S1 the strip bounded by 7 and 7 + 27r so that 7 C S1 and 
{7 + 27r} H 57 = 0; 

• we let n± = n±(b) and iV = n_|_ + n_; 

• we denote the zeros of b(z) situated in 57 by z/,  / = 1,2,... N. 

Proposition 5.1. Let 7 be a strictly vertical curve not passing through any point 
where either b(z) = 0 or b(z — h) =0. There exists a meromorphic solution t of 
equation (121) and a positive number S such that 

(i)    t is analytic in the horizontal (h -t- 8)-vicinity 0/7; 

(ii) if ZQ is a zero ofb (z) situated in this vicinity to the left of 7, then t (ZQ) = 0; 
in addition, the multiplicity of the zero of t equals to the multiplicity of the zero of 
b(z) at z = ZQ; 

(in)    the function vi defined by (123) is analytic in the horizontal 5-vicinity of 

7/ 
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(iv)    the function t admits the asymptotic representations 

t(z) = ein-z/2 (1 + T_(*)),     Imz^ -oo, (125) 

where 

t (z) = ^ e-in+z/2 (1 4- T+(Z)),    Imz^ +oo, (126) 

(. n++n- \ 
l-   J2   zi - i7rN/2 + ihN/4 I , (127) 

and T± are functions satisfying the estimates 

\T±(z)\<Ce-^Imz^ (128) 

where fi is a positive number. This formulae are uniform in Kez if\Rez\ is bounded 
by a fixed constant. 

Proof.   1.   Construct a solution of (121) in terms of the cr-function introduced in 
subsection 3.2. The function p (z) = b (z)/b (z — h) can be represented in the form 

p{z) = ein-hT[pi{z),    Pi^=^:^I^h)- (129) 

Substituting this representation in equation (121), and comparing the result with 
(59), one immediately finds out that the function 

i(*)=e»»-*/2nt,(*), ^=l{z
+V~z

zl)hY     (130) 
_^ <7 \z + TT — Zl — tl) 

is a solution of (121). Clearly, it is meromorphic in z. 

2. To prove the proposition, we have to recall some properties of the tr-function. 
First, we note that the zeros of the cr-function are situated at the points TT + h + 
2hl + 27rm, /, m € NU {0}, and that its poles are at the points —n — h — 2hl — 27rm, 
/, m e N U {0}. Secondly, we remind that as the pole at z = —TT - h so the zero at 
z = TT + h are simple. Moreover, if 27rm < 2ft, m 6 N, then all the poles and zeros 
situated at the points z = —TT — ft — 27rZ, and z = n + h + 27rZ, / = 0, ... m, are 
simple. 

The ratio    Tj-^^ has poles only at the points 

z = 2h + 2hl + 27rm,    and    - 27r - ft - 2ft/ - 27rra,    Z, m G N U {0}. 

The zeros of this ratio are at the points 

z = h + 2hl + 27rm,    and     -2ir- 2hl - 2irm,    Z, m G N U {0}, 
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the zeros at z = h and at z = — 27r are simple. Moreover, if 27rm < 2h, m € N, then 
all the zeros situated at the points z = h + 27rl and z = —27r — 27rZ, Z = 0, ... ra, 
are simple. 

Now, we shall show that the described properties of the ratio T^*^ imply the 
first three statements of the proposition. 

3. Show that there is a positive number S such that the constructed t is analytic 
in the horizontal h + J-vicinity of 7. 

Denote by Si the horizontal distance between the set of the points zi, I = 1, ... , N, 
and the curve 27r + 7. The poles of the factor ti(z) closest to 7 are at the points 
zi + 2h and zi — 27r — h. So, it is analytic in the horizontal h + S-vicinity of 7, where 

S = min{(Ji, h}. 

This implies the first statement of the proposition. 

4. Let us prove the second statement. Let ZQ be a zero of b (z) situated to the left 
of the curve 7 inside the above horizontal h 4- S-vicinity of 7. Show that t (ZQ) = 0. 

All the factors ti are analytic in the vicinity of 7.  Inside this vicinity, to the left 
of 7, the factor ti equals to zero only at the points zi - 27rm, m = 1, 2,  This 
proves the first part of the second statement. Prove the second part. 

The choice of S implies that a point of the form zi — 27rra, m = 2,3,4,..., can be 
situated in the horizontal (h + (S)-vicinity of 7 only if 27rra < h. So, all the zeros of 
ti being in this vicinity to the left of 7 are simple. In result, the multiplicity of the 
zero of t (z) at any of these points being in the vicinity equals to the number of the 
factors ti which are equal to 0 there, e.i. to the multiplicity of the zero of 6 at this 
point. 

5. The function vi (z) defined by (123) is clearly meromorphic. It can be also 
represented in the form 

-(" = i^««<*>+?^o*-*»- <131) 

Formula (131) shows that the poles of vi situated in the above horizontal vicinity 
of 7 can be only at the points where t (z + h) = 0 or (and) t (z — h) — 0, e.i. at the 
points 

z = zi + 2hl + 27rm,    and    z = zi - 27r 4- h - 2hl - 27rm,    Z, m £ N U {0}. 

Among them, only the points 

zi + 27rm    and    zi — 27rm + h,    m — 0, 1, ..., 
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can be in the above vicinity. So, they can be only the points where either b (z) = 0 
or b (z — h) = 0. However, the curve 7 does not pass through any of these points. 
Thus, there is a positive 82 such that the function vi is analytic in the horizontal 
(52-vicinity of 7. If this 82 is smaller than the previously defined 5, we simply redefine 
8 = 82. 

6.   The asymptotics of t for z -» ±ioo follow immediately from formula (130) and 
the asymptotics (64) and (65) of the cr-function. 

q.e.d. 

5.3      Entire solutions of (1) 

Here, following the plan described above, we shall construct a set of entire solutions 
of (1). 

1. Let 7 be a strictly vertical curve do not passing through any point where either 
b(z) — 0 or b{z — h) = 0, and let t be the solution of equation (121) described in 
Proposition 5.1. Let us study in more details the function vi defined by (123). 

By Proposition 5.1, vi is analytic in the J-vicinity of 7. In the case of (21), the 
asymptotic representations for t imply that 

Vl(z) = -ei(nz + 0- + TT) _ e-i{nz + 0+ + TT) + w ^ (132) 

where 

0_ = -n_ (b) h/2 - i In v.,    0+ = -n+ (6) h/2 + i In V+, (133) 

and w is a function satisfying the estimate 

\w(z)\<Ce(n-ri\lmz\,    |Imz|>y, 

where /z is the same number as in (128), and Y is a sufficiently big positive number. 
This estimate is uniform in Rez if |Re2;| is bounded by a constant. 

2. Let 

0 = (0+ + 0_)/2,    2if = 0+-^- (134) 

Equation (122) can be rewritten in the form: 

fo(z + h) + fo(z-h)+ 26* cos(nz + 0 + TT) f0(z) = w (z) f0(z). (135) 

The change of the variable 

z1 = nz + 0 + TT, (136) 
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transforms (135) to the equation 

il> (zi + hx) + il> (zx -h1) + 2eZ cos(zi)^(^i) =^1(^1)^(^1), (137) 

where 
ip{zi) = fo(z),    wi(zi)=w(z),    fn^nh. 

This equation was investigated in the previous section. 

3.   Now, we can construct a solution of (135) by means of Proposition 4.4. 

Check that the coefficients of (137) satisfy its assumptions. The estimate of w (z) 
implies that wi satisfies an estimate of the form (90) as a function of zi. Note 
that the branches of the logarithms in (133) are fixed modulo 27r. To ensure the 
assumption on £, we fix them so that the parameters 0± satisfy condition (18). 

To apply the proposition, it rests to choose a vertical curve mentioned in it. We 
denote this curve 71 and choose it so that it be the image under the transformation 
z H* zi of the curve 7 used for constructing of the function t. To apply the proposi- 
tion, we have to check that 71 does not not pass by any pole of w. But this follows 
from the statement (iii) of Proposition 5.1. 

Now, we construct the solution ip of (137) by means of Proposition 4.4. Note that 
this solution is analytic in the horizontal (hi H--Si)-vicinity of 71, where Si is a 
positive number. This number is determined by the horizontal distance between 
the poles of wi and the curve 71. We can assume that Si = nS ( if Si > nS, we 
redefine it letting Si = nS] if Si < nS, we redefine S). 

Indicating explicitly the dependence of ij) on £ and /i, we let 

/o(*) = </> {TIQZ + 0 + TT, £, nh). (138) 

The function /o is a solution of (135). It is analytic in the horizontal h + S-vicinity 
of 7. 

4. The function ^ = t fo is a solution of equation (5), and, thus, can be considered 
as the first component of a vector solution * of the matrix equation (1). Its second 
component can be reconstructed by formula (6). 

5.   Let us discuss the analytic properties of ^i. 

First, note that the asymptotics of fo (following from Proposition 4.3), and the 
asymptotics for t described by (125) and (126) imply the representations 

^1(z) = (Ao + o(l))e2^(n* + ,^)2 + lf(n-n+) + 

+(Bo + o(l)) e- it (nz + <t>+)2 + f (n-n+)>    Im^+00) (139) 
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+ e'^T z(D1+o(1)) e-2t (nz + <t>-)2 - f (n - n.)^    Imz ^ .^^      (140) 

where n± = n±(b), and AQ, BQ, CO, and Di are coefficients independent of z. 

Secondly, note that since both t and /o are analytic in the horizontal h + 5-vicinity 
of 7, the function I/JI is also analytic there. 

6.    Discuss the analyticity of the second component of the vector ^ 

For any e > 0, we denote by L7(e) the part of the horizontal e-vicinity of 7 situated 
to the left of 7. Clearly, ipi(z + h) — a (z) ^1(2;) is analytic in L7(/i + 5). So, if & 
has no zeros in this domain, ip2{z) = (ipi(z + h) — a(z)'0i(^))/6(z) is also analytic 
there. 

7. As the horizontal length of L7(h + 5) is greater then h and ^ is analytic here, 
then we can continue \I/ in the whole complex plane by means of equation (1): we 
continue * to the right just by means this equation itself, and we continue it to the 
left by the formula V(z - h) = M"1^ - h)V(z) (remind that detM = 1). 

We have proved 

Proposition 5.2. Assume that b ^ 0 and that v (z) satisfies condition (21). 
By means of formulae (133), choose some numbers (j>± satisfying (18). Let 7 be 
a strictly vertical curve not passing through any point where either b(z) =0 or 
b(z — h) = 0. If the curve can be drown so that there would be no zeros of the 
function b in the domain Ly(h), then equation (1) has an entire solution ^ with the 
first component admitting the asymptotic representations (139) - (140). 

In fact, the solution * described in Proposition 5.2 is one of the main personages 
of this paper. In subsection 5.5, we shall see that it is a minimal entire solution of 
equation (1). 

5.4     Modified approach 

In the previous subsection, we have constructed a (minimal) entire solution of equa- 
tion(l) under a hypothesis on the geometry of the set of zeros of b(z). We were 
assuming that there is a strictly vertical curve 7 such that b(z) and b(z — h) have 
no zeros on 7 and b(z) has no zeros in I/7(/i), i.e. in the left part the horizontal 
h-vicinity of 7. Now, we shall remove this geometric condition. We begin with the 
case where b has only one simple zero ZQ G L7(h). Let us outline the idea. 
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5.4.1 The idea 

Any solution of (5) can be considered as the first component ipi of a vector solution 

^ = f i ) of equation (1). Its second component can be recovered by (6). If ipi 

is analytic in the horizontal (h + <5)-vicinity of a vertical curve 7 and such that 

^1 (20 + h)-a{zo) fa (zo) = 0, (141) 

then the corresponding vector solution ^ is analytic at least in L7(ft + 5) and, so, 
it can be analytically continued up to an entire function just by means of (1). 

In the case of Proposition 5.2, we have constructed (minimal) entire solutions 
of (1) in terms of a solution /o of equation (122) analytic in the horizontal (h + 
#)-vicinity of 7, using the formula ipi(z) = t(z) fo(z). Now, by Proposition 5.1 
(statement (ii)), 

*(*o)=0. (142) 

So, ipi = t fo appears to be analytic in the horizontal (h + S)-vicimty of 7 even if /o 
is replaced by a solution of (122) having there one (simple) pole situated at ZQ. For 
the "old" analytic at ZQ solution /o, the condition (141) is not satisfied. The idea is 
to satisfy this condition by considering instead of the "old" fo linear combinations 
of the "old" fo and a "new" solution of (122) having one simple pole at ZQ. 

Of course, the meromorphic solutions of (122) we are looking for have to possed 
asymptotic representations for z -» ±200 of the same analytic structure as fo so 
that I/JI would have the asymptotics of the form (139) - (140). 

To construct such solutions of (122), we shall consider a solution m(z, ZQ) of 
the model equation (56) possessing the analogous properties. Then, we shall plug it 
into the integral equation (92) in the place of m (z) (the integral operator remains 
the same as before) and study its solutions. 

5.4.2 The solution m(z,zo) 

We shall use the variable z of the input matrix equation (1). Let 0 and f be as in 
(134). Consider the equation (compare it with (135)) 

g(z + h) +~g(z - h) -1- 2e^ cos(zi) g{z) = 0,    Zi = nz 4- 4> + n. (143) 

The functions m(zi, £, hi) and m(zi, £, hi), hi = nh, are solutions of (143). Here, 
we have indicated explicitly the dependence of these functions on h and £. 

Let 

m (*, z0) = 6 (z, zo) ["(«iW*i + *0 - "fri + *i W«i)] (144) 
{m, m) 
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where {m, m} is the wronskian of 771(2) and m(z), see subsection 4.1.2, 

ZQI = UZQ + (j) + TT, 

and, as before, 

g(^^o) = ctg   VO
fe +t. 

Since the wronskian {m, m} is constant, and 6 (z, ZQ) is ft-periodic in z, the function 
777,(2, ZQ) satisfies equation (143). 

Let us discuss analytic properties of m(z,zo). It is analytic outside the points 

z = Zo + lh, I e Z. As [rnizox) m (201 + hj - m {ZQX + Ai) m (ZQI) ] = {m, m}, the 
solution m(z, ZQ) has a simple pole at z = ZQ, 

^        h 

Resz=Zom{z,zo) = -. 
TT 

At the point 2 = ZQ + /i, the numerator in (144) equals to zero, and, thus, in 
fact, m(z,zo) is analytic here. So, for some positive 8, m(z, zQ) is analytic in the 
horizontal h + 8-vicinity of 7 if z ^ ZQ. 

The asymptotics of m(z) and rh{z) for z -> ±ioo imply the asymptotic representa- 
tions for m(z,zo): 

, (z, z0) = A (z0) e^ti^ + ^ + ^il + o (1))+ 

+B(zo)e-2k(nz + (l)+)2 + i!r (l + o(l)),    Imz->+ioo, (145) 

m (z, zo) = e-2™/h (C (z0) e^t (« + ^ " ¥ (1 + o (1))+ 

+ JD(zo)e"2^(nZ + ^-)2_^(l + o(l)))1    Iinz->-ioo,       (146) 

where A, B, C and D are independent of z. 

5.4.3    The integral operator 

To construct the meromorphic /o, we shall again use the integral operator from 
(92), but now, it will be convenient to write it in terms of the variable of the input 
equation (1). So, now, 7 is a strictly vertical curve going to +ioo along the line 
Rez = -Re<j!>+/n, and from -too along the line Rez = -(TT + Re<A-) /n. We 
define the weight P(z) = e^-^MpSfa), where y = Imz,   ft is the constant from 
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the estimate for w(z) from (132), and po is defined by (102). Both the functions 
ra(.) and m (., ZQ) b^ong to L2 (7, P)- 

The kernel of the integral operator takes the form 

2in {m, raj 
(147) 

Here, w is the same as in (137). The kernel satisfies the estimate 

i'1/2(«)|/c(z,C)|P-1/2(C)<C(H-|r,|)e-fl»|-fl,'l>    y = Imz,    77 = ImC,    z,Cer 
(148) 

The integral operator K with the kernel (147) is compact in the space L2 (7, P). 

5.4.4    Auxiliary construction 

To construct the meromorfic /o, we use an operator equation slightly different from 
(106). Before writing down this equation, we shall prove an auxiliary statement 
motivating this equation. Note that, since detM = 1, the equality 6(^0) = 0 
implies that a (ZQ) y£ 0. We put 

v uy      ht'{zo)a(zo) V      ; 

One has 

Lemma 5.3.     Assume that there exists a function f E £2(7? P) which can be 
analytically continued in a vicinity of the point ZQ + /i; and satisfies the relation 

f(z) = Kf(z) + s (z0) m (z, ZQ) f(zo + h)+m (z),    z G 7, (150) 

where either ra (z) = ra (zi) or m {z) = 0. Let ipi(z) — t [z) f(z). This function has 
the following properties: 

(i)    it is a solution of (5) analytic in the horizontal (h + S)-vicinity of 7, where 
S is a positive number; 

(ii)    ifti satisfies the relation (141); 

(Hi)    for Imz —> ±ioo, it admits the asymptotic representations of the form 
(139) - (140). 

Remark.    .As we shall see from the proof if the function f satisfying (150) ex- 
ists, then it satisfies equation (122). It is the needed meromorphic solution of this 
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equation.  Furthermore, the function ipi = tf is the first component of the desired 
(minimal) entire vector solution of equation (1), 

Proof a. Since / G 1/2(7, P)i an(i the kerenel of K satisfies the estimate (148), 
then the term Kf is analytic in the horizontal ft-vicinity of 7. Therefore, the right 
hand side of (150) is analytic in this vicinity except the point z = ZQ. This implies 
that / itself is also analytic there. At the point z = ZQ, this function has a simple 
pole, 

res2=20 f(z) = - s {zo) f{zo 4- h). (151) 

Let £1 be the horizontal distance from ZQ to 7. Deforming the integration contour 
in the definition of K, one checks that, in fact, / is analytic in the horizontal 
(h + (5i)-vicinity of 7 without the point z = ZQ. 

b. Using a calculation analogous to one from subsection 4.2.2, by means of the 
residue theorem, we check that the relation (150) implies that, in the above vicinity 
of 7, / satisfies the equation (135) which is just a different form of writing of (122). 

c. Remind that t is analytic in a horizontal (h + 5)-vicinity of 7, and t (ZQ) = 0. 
If S > Si, we redefine it letting S = 61. Let ifri = tf. This function is analytic in 
the whole horizontal (h + J)-vicinity of 7. Since / satisfies (122), ^1 is a solution 
of equation (5). 

d. Check that ipi satisfies the relation (141). Using (151) and (149), we see that 

Mzo) = t' (zo) resz=Z0 f(z) = t^ + /t) f(Zo + h) = -J— ^ZQ + h). 

e. Finally, applying the methods of section 4 to equation (150), one obtains the 
asymptotics of / for z ->• ±ioo which leads to (iii). 

q.e.d. 

5.4.5    Operator equation 

Now, we turn to constructing a function / satisfying the hypothesis of Lemma 5.3. 
Since (150) can not be used directly as an equation for a function from £2(7, -P)J 

we 

change the functional space to V, = L2 (7, P) 0 C. For F G W, we use the notation 

F = ( O ,    / € L2 (7, P),    seC. 

Then we define the operator /C acting in W by the formula 

jCF= (        Kf m{z,zo)s      \ 
\ Kf(zQ + h)    m (ZQ + h,zo)s ) ' 
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For / 6 1/2 (7, P), the function Kf(z) is analytic in the horizontal /i-vicinity of 7, 
and thus the number K f(zo + h) is well defined. 

One can easily check that the application / —> K f(zo 4- h) is a linear bounded 
operator from L2 (7, P) to C, which implies that /C is a compact operator together 
with K. 

The new integral equation is 

KF + Fo-F,    *(*) =(*£%). (152) 

We let rri(z) = m (zi) if 1 0 spec/C and m (z) = 0 otherwise. 

Clearly, (152) always has a nontrivial solution. For F being a solution of this 
equation, 

/ (z) = Kf (z) + m (z, ZQ) s + m (z), (153) 

s = Kf (ZQ + ft) + m (2:0 + ft, 2:0) ^ + m (ZQ + ft). (154) 

Discuss properties of the function /. 

5.4.6 The solution of the operator equation and the hypothesis of Lemma 
5.3 

Since / G £2(7? P), it can be analytically continued in a vicinity of ZQ -f ft just by 
means of (153). 

Letting in (153) z = ZQ + ft and comparing the result with (154), we see that 

s = f(zo -t-ft). 

Substituting this expression for s in (153), we come to (150). 

Thus, we see that / satisfies the assumptions of Lemma 5.3. This means that we 
have constructed the desired (minimal) entire solution. 

5.4.7 Several zeros of b 

We have proved the existence of the minimal solution in the case where b has only 
one simple zero in the domain L7(ft). The case of several zeros (even multiple ones) 
can be treated similarly. In particular, if, in L7(ft), there are J simple zeros of 6, 
then instead of (150) one considers the relation 

J 

f(z) = Kf(z) + J2 s (*i)m (*> *i) f(z3 + V + A (*)>    ^ € ^ 
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and instead of H one has to introduce the space L2 (7, P) ® CJ. We omit the details 
and formulate the result: 

Proposition 5.4. Assume that b ^ 0 and that v(z) satisfies condition (21). 
By means of formulae (133), choose some numbers <j)± satisfying (18). Equation 
(1) has an entire solution ^ with the first component ipi admitting the asymptotic 
representations (139) - (140). 

Remark. Note that ifl€ spec/C then, in the asymptotic representation (140) for 
ipi, the coefficient Co is zero 

5.5      Minimal entire solutions 

1. Now, let us discuss in more detail the behavior of the solution described in 
Proposition 5.4 for z -> ±ioo. We shall use the canonical basis solutions /i^ and 
#1,2 analytic in some vicinities C+ and C_ of -Hoo and —zoo correspondingly, see 
Theorems la and lb. 

Remind that any entire solution i/; of (1) admits the representations (19). Consider 
these representations for the solution \I> described in Proposition 5.4. 

Remind that the asymptotics (10) of the basis Bloch solutions fi^ contain param- 
eter 0+. This parameter is defined by (11) modulo 27r. The choice of the value of 
the parameter is a choice of two particular solutions /i^. 

Formulae (11) and (133) coincide, and thus, 0+ from (10) can be chosen equal to 0+ 
in (139). In this case, comparing (139) and (10), we see that in a vicinity of +200, 
\I> admits the first of the representations (19) with A and B bounded as z -» +ioo. 

Choosing the canonical basis #1,2 in a vicinity of -200 with the same values of </>_ 
as in (140), one also sees that \I> admits the second of the representations (19) with 
C and D bounded as z —> — ioo, and that, moreover, D (z) -» 0 as z —> —zoo. 

Now, we recall the definition of the minimal entire solutions of (1), and see that the 
solution ^ is one of them. It is the solution I/JD- 

2. The proofs of the existence of the other three minimal solutions are similar 
to the above one. So, we shall discuss only a place where they essentially differ. 
This is the integral equation being the starting point for the analysis of Section 4. 
Consider for example the case of the solution for which B (z) -> 0 as z -» -H'oo. 
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For this solution, equation (92) has to be replaced by 

il> (z) = m (27r - z) + / K (2TT -z,2ir- Qip (() d(. (155) 

with the same kernel K as in Section 4. The contour {27r — 7} is obtained of the 
contour 7 from Section 4 by the mapping z ->• 27r - z. As in Section 4, constructing 
a minimal solution of (1), we have used as the first term in the right hand side of the 
integral equation the minimal solution of equation (56) having the same form of the 
asymptotics for z —> ±ioo as the solution we construct. The analysis of equation 
(155) is similar to one of equation (92). 

3. We have described how one can construct four minimal entire solutions corre- 
sponding to the canonical bases with the given parameters <f>±. The only condition 
on these to numbers is given by (18). In fact, it means that the canonical bases 
have to be consistent. This remark finishes the proof of our Theorem 1.2. 

6 Asymptotic coefficients of minimal entire solu- 
tions and the basic properties of these solutions 
and of the corresponding monodromy matrices 

Choose two canonical bases fig and gi^- Consider the corresponding minimal 
solutions. Assume that these solutions exist and that their asymptotic coefficients 
are non zero. In this section, we study some basic properties of the minimal solutions 
and of the corresponding monodromy matrices. We shall use the notations from 
the section "Asymptotic coefficients" of the introduction. 

6.1      Wronskians of the minimal solutions 

Here, we study the wronskians of the minimal entire solutions and check Proposition 
1.3. One has 

Lemma 6.1. The wronskian of any two of the four minimal solutions corresponding 
to the bases fi^ and gij is independent of z. 

Proof. Consider the minimal solutions ipn and ips- Study their wronskian. Remind 
that it is an /i-periodic entire function. 

In a vicinity of -Hoo, 

(iMz), TPB(Z)} = {A^\z)f1(z) + B^(z)f2(z), A^(z)f1(z) + B^(z)Mz)} = 

= xvf (A.™ (Z) BW(Z) - A^ (Z) BW(z)) . 
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Here, we have marked by the letters B and D the functions A (z) and B (z) from 
the representations (19) for the solutions VD and ipB> The obtained formula for 
their wronskian implies that 

{IPD{Z), IPB{Z)} -> -Wf AB BD,    Z ->> +ioo. (156) 

Similarly, one proves that 

{II)D(Z), ^B{Z)} -^WQCDDB,    z-^-ioo. (157) 

Thus, the wronskian is a bounded entire function, and, therefore, it is independent 
of z. 

The cases of the other pairs of the minimal solutions can be treated in the same 
way. q.e.d. 

Asymptotics (156) and (157) imply the formulae 

{</>£>, ^B} = wg CD DB = -Wf AB BD. (158) 

In fact, this is two of the formulae described in Proposition 1.3. The other formulae 
can be derived similarly. 

6.2     Uniqueness of the minimal entire solutions 

Here, we deduce from Proposition 1.3 its Corollary 1.5. It suffices to check 

Lemma 6.2. Consider two of the minimal solutions corresponding to the canonical 
bases fi^ and gi^- If their wronskian is nonzero, then each of these solutions is 
unique up to an independent of z factor. 

Proof Consider the case of the solutions ipp and ips- The other cases can be 
treated similarly. 

Let ijj be a minimal solution for which, as for ^p, D (z) tends to zero as z -> —ioo. 
Show that ip(z) = Const^D(2)- By Lemma 6.1, the wronskian w = {I^D^B} is 
independent of z, and by the assumption, it is nonzero. Thus, ipn and ifts form a 
base in the space of entire solutions of (1), and, so, V7 can be represented in the 
form 

ip(z) = a(z)ipD+(3(z)ipB, 

where the coefficients a and /? are entire and /i-periodic, 

a(z) = 1{VW,VBW},    /?(*) = ^{^D(Z)^(Z)}. 



V.Buslaev and A.Fedotov 1159 

Since all the three solutions are minimal solutions corresponding to one and the same 
pair of canonical bases, a and (3 are constant. Let C (z) and D (z) be the periodic 
coefficients from the representations (20) for the solution ip, and let C^ (z) and 
D(D) (Z) be the ones for the solution ^D- AS in the proof of Lemma 6.1, we check 
that 

0 (z) = ^ (C(D) (z) D(z)-C (z) DM (Z)), (159) 
w 

in a vicinity of —zoo. As D(z) and D^D\z) tend to zero as z —> —zoo, formula (159) 
implies that /J->0as^->— ioo, and, thus, (3 = 0. So, the minimal solution I/JD 

is unique up to a constant factor. In the same way, one proves the same statement 
for ipB- 

q.e.d. 

6.3     Monodromy matrices corresponding to the minimal en- 
tire solutions 

We begin this subsection by proving Theorem 1.6. 

Let 
w = {II>D,II>B}. 

By the hypothesis of the theorem the wronskian w is nonzero. It is given by formula 
(158). 

The monodromy matrix corresponding to ipp and ipB is defined by 

(il>D(z + 2IX),II>B{Z + 27r)) = (<M*),lM*)) MT{z). 

The coefficients of the monodromy matrix admit the representations: 

Mii(z) = - {ipoiz + 2v), VB(«)},    MM = - {ipoiz), i>D{z + 2v)}, 

M2i{z) = - {rpB(z + 2-K), TPB{Z)},    M22(Z) = - {IPD(Z), ^B{Z + 27r)} 

(160) 

As in the proof of Lemma 6.1, one can easily calculate all the wronskians in (160) 
using the canonical bases /i^ and gi^- Consider, for example, the coefficient Mn. 
By means of the representation (19), we get 

Mn = £ (A(i3)(2 + 27rM<B)(z){/1(z + 27r), /1^)}+ (161) 

+,4(-D>(z+27r) B^\z) {/i(z+2*r), h{z)}+B^D\z+2TT) A^B\z) {/2(z+27r), /1(z)}+ 

+ B(D\z + 27r) B^\z) {f2{z + 2*), /2(z)}) . 
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Now, we recall that fi^ and gi^ are Bloch solutions, 

flt2(z + 27r) = ai,2(^) /i^ W,    01,2(2 + 27r) = iSi^W 51,2(2), 

where 0:1,2 and ^1,2 are /i-periodic functions. This allows to continue the calculation 
began in (161): 

Mn = ^ {a1(z)A(D\z + 27r)BW(z)-a2(z)BW(z + 2iT)A(BHz)). 

The last formula allows to get the asymptotics of .Mn for z —> +ioo. Using the 
representation (16) and recalling that n+(v) = n, we get 

Mn=-a%-1-ABBDe     h   ^(l + o(l)),    z -> +ioo. 

Here, AB and BD are the asymptotic coefficients of I^B and I^D- NOW, using the 
formula (158) for w, we get finally: 

M11=ale     X1^ (l + o(l)),     z->+ioo. (162) 

Remind that the constant a^ from (16) is nonzero. 

Similarly, one can obtain 

_      1 2-Kin „ 
Mn = Pi e+~ir z{l + o(1)),    z -> -too, (163) 

with the nonzero constant ffi from (17). Formulae (162) - (163) imply that the 
entire ^-periodic function .Mn is a trigonometric polynomial. Considering it as 
function of the variable zi = ^ z, we see that 

n±(Mii)=n. (164) 

Formulae (162) - (163) are, in fact, the first two of the formulae (25) - (32) for 
the coefficients of the monodromy matrix corresponding to the solutions ipn and 
T/JB- In the same way, one investigates all the other coefficients of the monodromy 
matrix. This leads to the formulae (25) - (32). For M considered as a function of 
21 = ~ z, they obviously imply that 

n-(Mi2) <n-l,    n+(Mi2)<n, 

n-(M2i)<n,    n+(M2i) <n — l, 

n±(M22) < n — 1. 

These inequalities, and formulae (164) mean that the monodromy matrix, as a 
function of the variable zi — ^ z, belongs to.fl(n). This completes the proof of 
the theorem. 

q.e.d. 
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We finish this section by formulating one more theorem generalizing Theorem 1.6. 
As we have seen, any two of the minimal solutions form a basis in the space of entire 
solutions of (1). We call these bases natural One has 

Theorem 6.3. Let, the matrix M satisfy condition (21). For any natural ba- 
sis, the coefficients of the corresponding monodromy matrix M are trigonometric 
polynomials of the variable 

and for any of these polynomials the numbers n± satisfy the inequality 

—n <n±<n. 

The proof of this theorem is similar to the proof of Theorem 1.6. It can be said that 
Theorem 6.3 describes the characteristic property of the minimal entire solutions. 

6.4      Canonical factorizations of the monodromy matrices 

For M € Q, (n), n > 1, one can reconstruct in terms of the asymptotic coefficients 
of the minimal solutions only a part of the constant coefficients of the monodromy 
matrix. For example, formulae (25) - (26) allow to recover only the coefficients 
(-Mii)-tn of the trigonometric polynomial Mn, 

Mn(z) = (Mi)_n e"2™*/* + (MiU+x e"2^" " 1)z/h+ 

+ ... +(Mn)ne
2ninz/h. 

Trying to get an efficient description of the other coefficients, we come to the fol- 
lowing construction. 

Let fi,2 and gi^ be two consistent canonical bases with the parameters (f>±. Con- 

sider canonical bases /{ g and #12 with the parameters equal to 0± + 27rj, j = 

0, 1, 2, ... n. Note that all the pairs /{^ and gfy are consistent. By definition, 

r(0) r (0) 
/l,2-/l,25      01,2=01,2, 

In view of the analysis of section 2.5.2, we can assume that 

fi
iy(z) = s+fh2(z + 27r),    g[^(z) = s.g1,2(z-h27r), 

where s± are two numbers, each of them can be equal either to +1 or to —1. For 
the sake of definitiness, we consider the case where s+ = s_ = 1. 
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Denote by i/jp' and i/^ the minimal solutions corresponding to the canonical bases 

/iS and 9i% Let 

In view of Lemma 6.2, we can assume that 

il>%)(z) = tl>D(z + 2ir),    ^)(z)=i;B(z + 27r). 

Let, for any j = 0, 1, 2, ... n-1, the solutions i/jjg' and ^  be linearly independent 
over the ring of /i-periodic functions. 

Denote by 9^ the 2 x 2-matrix composed of the vectors i/tf/ and i/jg. Any of the 

pairs il))y and -0^ is a basis in the space of entire solutions of (1). Therefore, one 
can define the transition matrices Sj(z) relating \I>^ to ^r^~1), 

*W(z) = &j-V(z)St
j(z), 

where "* " denotes the transposition. 

The monodromy matrix corresponding to the basis tp^, tpB is represented in the 
form 

M{z) = Sn-xiz) Sn-2(z) ...5i(z). 

We call this factorization of the monodromy matrix canonical The main feature 
of this factorization is related to the standard (canonical) form of the transition 
matrices Sj. One has 

Theorem 6.4. Any of the transitions matrices is an h-periodic trigonometric 
polynomial of the form 

aie2niz/h +ao+ a_ie-2niz/h      ^ + b_ie-2*iz/h 

co + c_1e
2™/'1 do 

where a±i50; ^-1,0; ci,o and do are constant coefficients (depending onj), and a± ^ 
0.  The detSj are nonzero and independent of z. 

The theorem shows that any of the transition matrices coincides up to a constant 
factor with a matrix from 0,(1). The proof of this theorem is similar to one of 
Theorem 1.6. The constant coefficients of Sj can be expressed in terms of the 

asymptotic coefficients of the minimal solutions i/^y, ip^ , an(^ ^D > ^B by 
formulae similar to (25) - (32). 
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7      One dimensional difference Schrodinger equa- 
tions 

Consider the difference Schrodinger equation 

nZ + h)+
2
fiz-h)

+v{z)f(Z) = Ef(z), (165) 

where v is a given trigonometric polynomial, and E is a spectral parameter. It is 
equivalent to equation (1) with the matrix 

M=^2E-2v(z)    -iy (166) 

Assume that n+(v) = n-(v) = n E N. Then, this matrix belongs to the set finn. 
Thus, one can apply Theorem 1.6 to investigate the spectrum of (165) by means of 
the monodromization procedure. 

In this section, we concentrate on the Harper equation 

/(* + *)+/(s-*)+Ac0B,/(z)=JS,/Wt (167) 

in which, A is a fixed positive parameter. Let us study for this equation the mon- 
odromy matrix described in Theorem 1.6 in more detail. 

7.1      Monodromy matrices for Harper equation 

1.   First, discuss the choice of the bases f\^ and gi^- The formulae (11) and (14) 
allow to choose the corresponding parameters (j)± so that 

(/>_ = -i£ - TT,    <£+ = ^ - TT,    f = In A G M. (168) 

Since £ E R, these canonical bases are consistent, and there exist all the four minimal 
entire solutions. 

2. Consider the minimal solutions ^D and IJJB corresponding to these canonical 
bases. Assume that these solutions are linearly independent. 

The solutions ^D and ipB are defined up to independent of z factors. Describe a 
convenient choice of these factors. Since the wronskian {IJJD, ^B} ¥" 0? the asymp- 
totic coefficient Cp is nonzero, see Proposition 1.3. Normalize the solution i/jp by 
dividing it by its asymptotic coefficient CD- We use for the new minimal solution 
and its asymptotic coefficients the old notations. In particular, now, CD = 1. 

3. To fix uniquely the second minimal solution, we note that the matrix (166) with 
v = cos z satisfies the relation 

M(2ir-z) = aM-1(z)(T,    a=( J   J  J (169) 
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This implies that the vector 

^(;s) = <7^M27r-z + /0 (170) 

satisfies (1) together with T/^D. Show that, up to a constant factor, ij) coincides with 
ipB- Begin with 

Lemma 7.1   For z being in a vicinity of — ioo, 

af1(2ir-z + h) = -91(z)c1(z),    a foCln - z + h) = -02(2) £2(2), 

where Ci and C2 are analytic h-periodic functions tending to 1 as z —>• dzzoo. 

Proof Let us prove the first of the above relations. Note that, for the matrix (166) 
corresponding to Harper equation, the general asymptotic formulae for fi and gi 
take the form 

f M-P+^-^ + ^ + T  f i + ^W ^ (171) hW-e   2^ 2   ^ _Ae-zz(1 + o(1)) J, (171) 

Imz —> +00, 

and 

aW-.+*<-"-«)2-* (_,e-ii^0(i,))-       ^ 

Im^ —> —00. 

Substituting (171) in the expression -cr/i(27r - z 4- ft), we check that it does have 
the representation (172). Moreover, one can easily see that if fi is a Bloch solution, 
then a fi(27r - z + h) is also a Bloch solution of (1). Now, Lemma 2.6 implies the 
desired result. The second relation can be derived similarly. 

q.e.d. 

This lemma immediately leads to 

Lemma 7.2.   The solution I/J coincide with ^B up to a constant factor. 

Proof   The representations (19) for ipn imply that, in a vicinity C_ of -ioo, 

^ (z) = A^^TT -z + h)(jf1(27r-z + h)+ B(D)(2ir -z + h)a /2(27r -z + h). 

Therefore, in view if Lemma 7.1, 

il>(z) = C(z)g1(z) + D{z)g2(z), (173) 
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where 

C (z) = -ci (z) A^ (27r - z + h),    L> (z) = -c2 (z) B™ (27r-z + h). 

Similarly, one shows that in a vicinity C+ of H-ioo, 

i,(z) = A(z)f1(z) + B(z)f2(Z), 

where 

A (z) = -c" 1(27r - * + ft) C(D)(27r - z + h), (174) 

B (z) = -c^1(27r - z + ft) DW(2iv -z + h). (175) 

These representations show that ip is a minimal solution for which B (z) -» 0 as 
z —> +ioo. Therefore, by Corollary 1.5, it coincides with ipB up to a constant factor. 

q.e.d. 

4. In the sequel, we shall normalize the solution ips so that 

^B (z) =ailjD(27r-z + h). (176) 

Note that, in this case, (173) and (175) imply the relations 

AB = -CD = -1,    BB = -DD e-^l*1,    CB = -AD,    DB =. -BD.     (177) 

5. Discuss now the monodromy matrix corresponding the chosen I/JD and I/JB- 

Theorem 7.3.    The constructed minimal entire solutions ipo and I/JB and their 
asymptotic coefficients are meromorphic in E, 

and the corresponding monodromy matrix has the form 

a - 2Ai cos(27rz/h)    s + t e-2iriz/h 

M = | | , (178) 
-s-te27riz/h ist 

A 

where 

and 

1  _ e2 _ f2 

st 

s = -\i—-,        t = -\iAD. 

Proof.    First, pjove that I^D and IJJB and their asymptotic coefficients are mero- 
morphic in E. Consider the solution ^D before its normalization by the condition 
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CD = 1. It can be constructed by means of the integral equation (92). For the 
matrix (166) with v (z) = cosz, this equation takes the form 

<ip(z)=m(z)+ EK^(z) 

where K is the integral operator with the kernel 

ih {ra, m) 

This equation describes the first component of the vector I^D. The integral operator 
is compact in the suitable function space, and the solution ^ together with ^ 
appears to be meromorphic in E. 

Furthemore, the solutions /i^ and #1,2, being constructed as in Section 2, are entire 
in E. 

Finally, the asymptotic coefficients of -0 can be expressed in terms of the wronskians 
of the canonical basis solutions /i^ and #1,2, and of ^ itself, for example, C is the 

zeroth Fourier coefficient of the function /l * } - Thus, the asymptotic coefficients 
are meromorphic in E. 

Note that we have already calculated these asymptotic coefficients for E = 0 in 
Section 3: formulae (77) - (80) imply that these meromorphic functions are not 
identically zero. 

All this shows that the normalized minimal solution ?/>£>, the minimal solution ^B 

related to it by (176), and the asymptotic coefficients of these solutions are mero- 
morphic in E. Moreover, since the asymptotic coefficients of ^^ are nontrivial 
meromorphic functions, the wronskian {IJJD, IPB} is not identically zero. 

Now obtain the representation (178) for the monodromy matrix corresponding to 
the chosen minimal solutions ipo and ips- First, consider the coefficient Mn. By 
Theorem 1.6, it is a trigonometric polynomial of the form 

a_ie-2mz/h + ao + aie2mz/\ 

Formulae (25) - (26) imply that 

0,-1=0%,    ai=/3j, 

where a® and /Jj are the first Fourier coefficients of the Bloch multipliers 0:2 and fli 
of the Bloch solutions /2 and gi, 

f2(z + 27r) = a2(z) f2(z),    gi(z + 2n) = pi(z) g^z). 

The solution gi admits the representation (172) which implies that /3J = -A27r/^ = 
-Ai. Similarly, a® = -Ai, and, thus, 

Mii(z) = OQ - 2Ai cos (27rz/h). 
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Formulae (27) - (32) and relations (177) imply the desired representations for M12, 
Mzi, and M22- Formula for the coefficient ao follows from these representations 
and the equality det M = 1. q.e.d. 

7.2      Family of matrices generated by Harper equation 

Fix a positive A. Define a family Iffi(A) C 0,(1) of matrix functions. This family 
consists of a two dimensional manifold HP and four one dimensional linear manifolds 
h^ and hf. The MP is the set of the matrices M{., A, w) defined by 

(a-2Acos2;    s + £e~2Z 

I , (179) 
-s-teiz \st 

where 
1 - s2 - t2 

a = A , 

^ = (5^)eC2,   s,t^o. 

The /i^ is the set of the matrices 

and hf is the set of the matrices 

a - 2A cos z    ±e %z 

Mf(z, A, a) = [ ) ,    a G C. 
Teiz 0 

Apply Theorem 1.6 to equation (1) with a matrix M € HL Choose the bases /i^ 
and #1,2 so that 

0- = -if-7r- -n_(6),    0+ =^-7r- -n+(6),    ^ = lnAG M. 

These canonical bases are consistent, and there exist all the four minimal entire 
solutions. Assume that the asymptotic coefficient CD is nonzero. 

We normalize the solution ipo by the condition CD — 1 and define ^B by formula 
(176). Since the matrix M satisfies the relation (169), ^B is really the desired 
minimal solution. 

Assume that ipo and I^B are linearly independent over the ring of /i-periodic func- 
tions. Instead of Theorem 7.3, one can prove 
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Theorem 7.4.   .As a function of the variable 27rz/h, the monodromy matrix M 
corresponding to the constructed minimal entire solutions belongs to IHI(Ai) with 

In particular, if Ai € HI0, then it has the form 

M(27rz/h, Ai, wi),    wi = (si,ti), 

si 
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