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Abstract 

We investigate the spectrum above the kink ground states of the spin J 
ferromagnetic XXZ chain with Ising anisotropy A. Our main theorem is that 
there is a non-vanishing gap above all ground states of this model for all values 
of J. Using a variety of methods, we obtain additional information about 
the magnitude of this gap, about its behavior for large A, about its overall 
behavior as a function of A and its dependence on the ground state, about 
the scaling of the gap and the structure of the low-lying spectrum for large 
J, and about the existence of isolated eigenvalues in the excitation spectrum. 
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By combining information obtained by perturbation theory, numerical, and 
asymptotic analysis we arrive at a number of interesting conjectures. The 
proof of the main theorem, as well as some of the numerical results, rely 
on a comparison result with a Solid-on-Solid (SOS) approximation. This SOS 
model itself raises interesting questions in combinatorics, and we believe it will 
prove useful in the study of interfaces in the XXZ model in higher dimensions. 
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1    Introduction 

The subject of our paper is the ferromagnetic XXZ model. The XXZ model is one of 
the best studied quantum spin systems, benefiting from both algebraic and analytic 
techniques. But, while the mathematical techniques that have been applied to the 
XXZ model are impressive (c.f. in [14]), many of the most basic physical questions 
remain open [22]. We address an unresolved issue of the one-dimensional XXZ 
model, which is the following. It is known, by rigorous methods [16], that there is 
a spectral gap above the infinite volume ground state for spin 1/2, but the proof 
relies on an algebraic tool which is not present for higher spins. How does one prove 
the existence of a spectral gap in the more general setting? We answer the question 
in the present paper. Our methods are somewhat more general than those of [16] 
since we do not rely on the quantum group symmetry. On the other hand, it is 
essential for our proof that we know the spectral gap exists for the spin 1/2 XXZ 
model. Still, we believe our techniques may be applied to other spin models, as well 
as shedding light on this corner of the general knowledge of the XXZ model. 

The XXZ spin chain is a generalization of the Heisenberg model where one allows 
anisotropic spin couplings. The Hamiltonian for the spin J model is 

H{
3)
--  £ (slsj, + sls% + ASlS%), (1.1) 

<a,/3>GA 

where S^'2,3 are the spin J matrices acting on the site a, tensored with the iden- 
tity operator acting on the other sites. (a,/3) denotes a pair of nearest neigh- 
bors. The local Hilbert space is Ua = C2J+1, and HA is a Hermitian operator on 
T-iA = (2)a6A Ha> For now we think of A as a finite subset of Z, though we are also 
interested in the case that A = N or Z. The main parameter of the model is the 
anisotropy A G M. By choosing A = ±1 we can obtain the isotropic ferromagnet or 
antiferromagnet. Alternatively, by taking A -» ±00 we recover the spin J Ising fer- 
romagnet and antiferromagnet. In this paper we restrict A > 1, which corresponds 
to a ferromagnet with the strongest coupling along the 53-axis. We note that HA(A) 

and —HA{—&) are unitarily equivalent. It is useful to introduce two other forms 
of A: q — A - \/A2 - 1 and r] — - \ogq. Observe that A = \{q + q'1) = cosh.(r]). 
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The parameter q is the one which labels the quantum group SU9(2) when J = 1/2. 
As A increases from 1 to oo, q decreases from 1 to 0, and rj increases from 0 to oo. 

For A > 1, it is widely known that there are two infinite volume ground states 
which correspond to all spins up, |+J) and all spins down, |—J). It is considerably 
less well known that there are in fact many more infinite volume ground states. 
These extra ground states come in two families: the kink states and the antikink 
states. The kink states are an infinite family of ground states all with the same 
GNS space, which break discrete translation symmetry as well as the continuous 
U(l) symmetry associated to the XXZ model. They have the property of being 
asymptotically all down spins at -oo and all up spins at +oo. They clearly also 
break left-right symmetry: their reflected counterparts are the antikink states. Our 
main results concern the spectral gap above these kink ground states. The kink 
states are physically interesting for several reasons: They exhibit domain walls, 
an important feature of real ferromagnets (see [25] for an application of the XXZ 
model to spin droplets in one dimension); For J > 1 the kink ground states of the 
XXZ model are more stable than the Ising ground states, which is a new result and 
subject of the present paper. Also, the XXZ spin chain plays an important role in 
explaining the phenomenon of negative resistance jumps and hysteresis in recent 
magnetoresistance experiments [18, 29]. 

Although our main subject is the XXZ model for J > 1/2, let us briefly recall 
some important facts about the spin 1/2 model. What is probably most well known 
is that the spin 1/2 model is Bethe ansatz solvable. This is not applicable to our 
case however, and we will not use the Bethe ansatz in any way. A second interesting 
feature of the spin 1/2 XXZ model is that it possesses a quantum group symmetry. 
Specifically, in [26] it was shown that adding a boundary field 

B = J^A2 - 1(5? - 52) (1.2) 

makes the Hamiltonian commute with SUg(2) on 7i\. (Actually there are two repre- 
sentation of SUg(2) corresponding to the two opposite linear orderings of its tensor 
factors; H\ + B^ commutes with one representation and H\ — B^ commutes with 
the other. We will only consider H^-\-B^.) For 0 < q < 1 the representation theory 
of SXJq(2) is equivalent to that of SU(2) (c.f. [15]), and it plays the same role in the 
analysis of the XXZ model that SU(2) plays in the analysis of the isotropic model. 
For example, the ground state space corresponds to the highest-dimensional irre- 
ducible representation of SUg(2). In [16], Koma and Nachtergaele used the quantum 
group symmetry to calculate the spectral gap for the XXZ model by proving that 
the lowest excitations of the XXZ model form a next-highest dimensional irreducible 
representation of SUg(2). There are still open conjectures relating to the represen- 
tations of SUg(2) and the XXZ model such as: Prove the lowest (highest) energy 
of i^A + ^A restricted to the spin s representations in HA is lower than the lowest 
(highest) energy of the spin s — 1 representations. This is almost certainly true, and 
would generalize the Lieb and Mattis result [20], but remains open. 

We now turn our attention to the spin > 1/2 models. The first important fact 
is that the ground states have been explicitly calculated for all finite volumes, in 
all dimensions, all choices of spin, and even allowing different values of anisotropy 
along bonds in the different coordinate directions [1]. In [12] the ground states were 
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independently dicovered for J = 1/2 and one dimension, and these ground states 
were generalized to infinite volume ground states. They have the property of being 
frustration free, which means that they not only minimize the expectation of the 
infinite volume Hamiltonian, they minimize every nearest neighbor interaction, too. 
Gottstein and Werner found all the frustration free ground states, and conjectured 
that there were no other ground states. In [21], their conjecture was proved correct, 
and the analogous statement for J > 1/2 was proved in [17]. Thus, one has a 
complete list of ground states for the one dimensional XXZ model with any choice 
of J. Unfortunately, the results on infinite volume ground states are valid only in 
one dimension. Finding the complete set of ground states in dimensions two and 
higher is an important open problem. 

In this paper we prove that there is a nonvanishing spectral gap above the infinite 
volume ground states for every J, thus extending the results of [16]. We mention 
that the existence of a spectral gap is generally believed to follow from the fact 
that the quantum interface of the kink ground states is exponentially localized. Our 
results verify the conventional wisdom, and our proof does rely on the exponentially 
localized interface. However there are other important elements to our proof: most 
notably, a rigorous comparison of the spin J chain with a spin 1/2 ladder with 2J 
legs. The spin J XXZ chain is a quantum many body Hamiltonian. The Hilbert 
space for the L-site spin chain is (2J+1)L, its dimension grows exponentially with L. 
The dimension of the spin ladder is even larger, at 22JL. But an important bound, 
Lemma 4.1, allows us to restrict attention to an (I/+1)2J dimensional subspace. This 
allows the proof of the existence of the spectral gap, and also allows more efficient 
numerical methods for studying the XXZ model. The reduced system resembles a 
quantum solid on solid model for the spin ladder. We view the present problem as 
a warm up for the QSOS method, which we believe will play an important role in 
proving stability of the 111 interface for the XXZ model. We also expect the spin 
ladder technique will be useful in proving the existence of a spectral gap for other 
spin chains where a gap is known in J = 1/2 but not for J > 1/2. In this paper, in 
addition to giving a rigorous proof of the existence of a gap, we present a new type 
of numerical method for studying the XXZ model. We also present an asymptotic 
model for the low lying spectrum of the XXZ model as J —> oo, in terms of a free 
Bose gas. The asymptotics explain new qualitative features of the XXZ model for 
J > 1/2, and is in excellent agreement with numerical data for J sufficiently high. 

The remainder of the paper is organized as follows. In Section 2 we present our 
main theorem, as well as a number of conjectures which are supported by numerical 
evidence and asymptotic analysis. In Section 3 we introduce some background 
material which is useful for our proof. In Section 4 we derive the spin chain / spin 
ladder reduction. In Section 5 we finish the proof of the main theorem. In Section 6 
we combine the lower bounds for the spectral gap with numerical methods to obtain 
data for the spectral gap. In Section 7 we derive a boson model for the XXZ spin 
system which explains the asymptotic behavior of the gap as J -> oo. This boson 
model is similar to [13, 9, 10], but without the need for a large external field (other 
than the boundary field which vanishes in the thermodynamic limit). 
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2    Main Result and Conjectures 

(The notation [a, b] will always refer to the discrete interval {a, a 4-1,..., b}. It is 
not necessary that a and b are integers as long as the difference b — a is.) 

The Hamiltonian we will use is the following spin J XXZ Hamiltonian: 

H{=      £      h3(a,a + l) 
{a,a+l}cA 

h3(a,a + 1) = (J2 - SlS*a+1 - A-HSlS1^ + ^52
+1) 

+ Jv/l-A-2(5^-5^+1)). 

(2.3) 

In comparison to the Hamiltonian (1.1), we have just added the boundary fields 
(1.2), scaled by A-1 and added a constant. One can easily check that the interac- 
tion /iJ(a,Q; + 1) is nonnegative. For finite volume A, it is an easy but important 
observation that the Hamiltonian commutes with S\ = ^aGA^a- We use this 
symmetry to block diagonalize H^. In particular, we let ?^(A,J) be the spin J 
Hilbert space, and we define H(A, J, M) to be the eigenspace of S\ with eigenvalue 
M G { — J|A|,..., J|A|}. We call these subspaces "sectors". They are invariant 
subspaces for H^. 

For finite volumes A, the ground states of H^ may be expressed in closed form, 
as was pointed out in [1]. We will give a formula for these ground states in the next 
section. For now we merely mention the fact that for each sector there is a unique 
ground state 1Sro(A, J, M), and it has the property that its energy is zero. We define 
the ground state space Q(A, J,M) to be the one-dimensional span of *o(A, J,M), 
then the spectral gap is given by 

7(A,J,M)=       inf 1M(HlU (2.4) 

ip±g(A,J,M) 

where (• • -^ = (#--'0)/fa/#). 

One passes to the thermodynamic limit, by considering the infinite volume 
Hamiltonian as the generator of the Heisenberg dynamics on the algebra of quasilo- 
cal observables .4o- The definition of a ground state is a state on Ao such that for 
any local observable X G V4A, |A| < oo, co satisfies 

u(X*8{X)) > 0 (2.5) 

where S(X) = lim^^ziH^ X]. As in the case of finite volumes, there is a collection 
of ground states whose GNS representation is explicit. These ground states were 
discovered in [12], and they were proven to be the complete list in [17]. The infi- 
nite volume ground states are the following: a translation invariant up spin state 
determined by the equation ^(S^) = +J for all a; a translation invariant down 
spin state uA; an infinite number of kink states which we label u;jj; and an infinite 
number of antikink states, u]^.   The kink states have the property that, if T is 
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the translation to the left one unit (so T 15^r = 5^+1), then for any quasilocal 
observable X 

lim a;#(T-n.XTn) = uA(X), 

lim uj${TnXT-n) = w^(X). 
n—too 

The label M is any integer and is determined as follows. All the kink states are 
also local perturbations of one another, which we will see in the next section when 
we write the explicit GNS representation. So there is only one GNS Hilbert space 
for all the kink states, and only one GNS Hilbert space for all the antikink states. 

For any ground state CJ, the infinite volume Hamiltonian can be represented as 
the generator of the Heisenberg dynamics for the algebra of observables on HGNS, 

the GNS Hilbert space of u. This means that there is a densely defined, self adjoint 
operator iJcNS with the property that for any X G AQ, 

^GNSTTpO^GNS = 7r((5(X))fiGNS , 

where HGNS is the representation of the ground state as a vector, TT is the represen- 
tation of the quasilocal observable algebra on the observable algebra of HGNS ? and 
S(X) = lim^^zlH^X] is the derivation defining the Heisenberg dynamics. The 
bottom of the spectrum of ifoNS is 0. The spectral gap above u is defined to be 
the gap (if one exists) above 0 in the spectrum of HGNS- Note that there is one 
spectral gap for each of the four classes of ground states: all up, all down, kinks, 
and antikinks. 

We can now state the main result of [16]: 

Theorem 2.1. [16] For the SUq{2) invariant spin-1/2 ferromagnetic XXZ chain 
with the length L > 2 and A > 1, the spectral gap is 

7([l5L],l/2,M) = l-A-1cos(7r/L), 

in any sector 7i([l,L], 1/2, M), —L/2 < M < L/2. Above any of the infinite-volume 
ground states (all up, all down, kink or antikink) the spectral gap is 

-i 7 = 1 - A 

The previous theorem is the starting point of our own analysis. Our main result 
is an analogous theorem, extending the existence of the spectral gap to all J instead 
of just J = 1/2. 

Theorem 2.2. For any J G |N;  and any A > 1, the gap above the translation 
invariant ground states is 

lup = Idown = 2 J(l - A"1) . 

The gap above the kink states satisfies the bounds 

0 < Jkink < lup • 

Specifically the spectral gap above the kink ground state is nonvanishing. 
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Remark In the theorem, the formula for 7Up is well-known, The inequality 7kink < 
7Up is also well-known and easy to deduces. We include proofs of these facts for 
the convenience of the reader. Our main result, which is new, is that 7kin is strictly 
positive. 

We can say something more specific about the low excitation spectrum by con- 
sidering an extra symmetry of the Hamiltonian. Since H^ commutes with 5^ for 
each finite volume A, we would like to define an infinite volume analogue of S\. For 
the GNS space above the kink ground states the correct definition is the following 
renormalized version 

S3 = $>2-sigii(a-l/2)J), 

which is a densely defined self adjoint operator on the HGNS- The ground state 
space of i^GNS is spanned by the orthogonal family of vectors {$0(2, J, M) : M £ Z} 
which are determined up to scalar multiplication by the properties that 

We define a version of the spectral gap for Hamiltonian restricted to the sectors of 
53 in the following way. Let 7(Z, J, M) be the largest number such that for any 
local observable X G AA commuting with 5^ we have 

OMZ, J, M)|7r(X)*ifgNS7r(X)*o(Z, J, M)) 
>7(Z,J,M)(^o(Z,J,M)|7r(X)*ij2Ns7r(X)^0(Z?j?M)). 

An arbitrary local observable does not commute with S\.    However, one may 
define XM for -J|A|  <  M <  J|A| so that each XM commutes with 5^ and 
7T(X)^O(Z, J,M) = J2M' 7r(^M')*o(Z, J,M + M').   This is just due to the fact 
that the GNS representation (HGNSIK^OC^, J, M)) is cyclic for any choice of M. 
From this we see that 

7kink = inf 7(Z,J,M). 
Mez 

Let T be translation to the left, as before. We have T^&T = 23 + 53, which 
implies 

T#o(Z,J,M) = tfo(Z,J,M + 2J), 

since T clearly commutes with the Hamiltonian. Hence, 

7(Z,J,M)=7(Z,J,M + 2J). 

Another symmetry of the Hamiltonian is obtained by taking a left-right reflection 
of the lattice about the origin, and simultaneously flipping the spin at every site. 
This is a unitary transformation of HGNS to itself. Calling this symmetry 1Z we 
have^53^ = -53. So 

7(Z>J>M)=7(ZJJ>-M). 

To prove that the gap above the infinite volume kink states is nonzero, it suffices 
to check that 

7(Z,J,M)>0 
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for M = 0,1,..., |"J], where |"J] is the least integer greater than J. This fact does 
not actually simplify the proof, but the symmetries above are an important part of 
our proof. 

In Figure 1 we show the spectrum for some small spin chains, as calculated by 
Lanczos iteration. Even though the lengths are finite, one sees that the gap is an 
even function of M, and is nearly periodic of period 23. As one takes L -> oo, the 
gap for any finite region of M values is periodic and even. 

Our main theorem proves existence of a spectral gap, but it is obviously just as 
interesting to know what the gap is. Unfortunately, the most information we can 
gain from our proof is that the spectral gap can be well approximated by calculating 
the gap in a finite volume, L, with an error which decreases like qL. This still leaves 
the problem of calculating the gap in a finite volume L oc I/77. We do not have any 
rigorous bounds for the spectral gap valid for all q G (0,1). However we have studied 
the problem in three ways: numerically, by perturbation series, and asymptotically; 
and we propose the following conjectures based on our findings. 

2.1    Numerical results 

We performed two types of numerical methods. The first, and more efficient method 
is based on the spin ladder reduction from our proof. In Theorem 4.1 below, we 
obtain a rigorous lower bound for 7([1, L], J, M) as 

7([1, L], J, M) > 2J(1 - A-^Q. - <J([1, L], J, M)) 

where 1 — <5([1, L],J, M) is the spectral gap for a reduced model resembling a quan- 
tum solid-on-solid model for the spin ladder. What is important about the bound 
is that the reduced model has dimension (L + 1)2J as opposed to the original system 
with dimension (2J + 1)L. We then numerically diagonalized the reduced system to 
find the spectral gap for some values of J and L. The second numerical method was 
simply to numerically diagonalize the original Hamiltonian for some small values of 
L and J. We did this primarily to check the qualitative results of the lower bound. 
In Figure 2 we show the results of the lower bound calculation, and in Figure 3 
the result of the Lanczos iteration. What emerges qualitatively is that for J > 1 
there is a local maximum for the spectral gap with 1 < A < 00. This is other than 
expected based on the spin 1/2 results. Based on our numerical evidence we make 
the following conjecture. 

Conjecture 2.3. We have defined 7(Z, J, M) above for fixed A. Let us rewrite this 
as 7(Z, J, M, A"1) to take account of the anisotropy 0 < A-1 < 1. We conjecture 
that 

min7(Z,J,M,A-1)=7(Z,J,0,A-1), 
M 

and that for each J there exists a Aj    such that 

7(Z,J,0,A-1)<7(Z,JI0)A71) 
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whenever 0 < A-1 < 1, equality holding only if A-1 = Aj1.   For J = 1/2, the 
conjecture is a known fact following from Proposition 2.1, and one sees Ar^ = 0. 

We conjecture that A^1 = 0 as well, but that, for J> 3/2, 0 < AJ1 < 1. 

2.2    Ising Perturbation 

If we write the Hamiltonian as an expansion in A-1, we can make a perturbation 
expansion off of the Ising model. The Ising model spectrum is well known, but some 
interesting facts arise. One fact which is useful is that the Hamiltonian obtained 
by changing A-1 to —A-1 is unitarily equivalent to the original: just rotate every 
other site by TT about S3. This means that A-1 = 0 is either a local minimum 
or a local maximum of 7(Z, J, M, A-1). For J = 1/2, the first excitation above a 
kink ground state in the Ising limit is infinitely degenerate. This is why the slope 
of 7(Z, 1/2, M, A-1) = 1 - A-1 is not zero at A"1 = 0. Similarly for J = 1 and 
M odd. However, for all other choices of J and M, the first excitations are at most 
finitely degenerate, and for J > 1 and M = 0 the first excitations are nondegenerate. 
This means that the first derivative of 7(Z, J, M, A-1) vanishes for all other values 
of J and M. For J = 1, M = 0 the second derivative is negative, while for J > 1 and 
M = 0 the second derivative is always positive, indicating that the Ising limit does 
not maximize the spectral gap, but minimizes it locally. This argument, which will 
be expanded in Section 6, illuminates part of Conjecture 2.3. The nondegeneracy 
of the first excitations suggests a second gap. Based in part on this evidence, we 
make the following conjecture: 

Conjecture 2.4. 1) For 1 < A < oo, J> 3/2 and any M G Z; the lowest excited 
state is an isolated eigenvalue, i.e. there is a nonvanishing gap to the rest of the 
spectrum. 
2) For J = 1 and M any odd integer, the lowest excited state is the bottom of a 
branch of continuous spectrum. For J — 1 and M even, the lowest excited state is 
again an isolated eigenvalue. 

2.3    Asymptotics 

From the numerics it became clear that for M = 0 and A fixed, the gap 7(Z, J, 0, A-1) 
scales like J. Also, a careful analysis of the exact formula for the ground states of [1], 
which will be presented in the next section, shows that for large J, the wave vector 
has Gaussian fluctuation on the order of J1/2. These two facts together suggest a 
scaling analysis of the bottom of the spectrum of Hj^ in the limit J -^ oo. Consis- 
tent with the Gaussian form for the ground states, our asymptotic analysis leads 
to a free Boson gas model for the bottom of the spectrum, at least to first order in 
J-1/2. We derive a boson model for the XXZ spin system analogous to [13]. (See 
also [9, 10] for a better introduction to spin waves. Unfortunately our treatment is 
not as well developed.) This is not the same analysis as was done in [19], nor in 
any other coherent states approach. We analyze the eigenstates whose energy scales 
like J, whereas coherent states give rigorous bounds on the bulk spectrum which 
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scales like J2. The higher energy states are much greater in number, so typically 
they control the thermodynamic behavior. However, the low energy states may be 
more important for dynamical properties (cf [9]), since that part of the spectrum 
is separated by spectral gaps. Also note, the asymptotic model is that of a free 
Bose gas, with a nontrivial dispersion relation for the energy of each oscillator. In 
fact, the energy is such that excitations which give least energy are exponentially 
localized about the interface. We believe that this makes it plausible to prove the 
Boson gas estimate is correct with small errors for large but fixed J < oo, because 
even as one takes L -^ oo, the low excitations are "essentially finite" and we can 
more or less prove the large J asymptotics for the finite system. Of course J would 
have to depend on the number of excitations that you wanted to estimate by the 
Bose gas picture; as the number of excitations goes to oo so must J. Our boson 
model has a quadratic coupling, but a Bogoliubov transformation diagonalizes it. 
The spectrum of the coupling matrix, then gives the value for the limiting curve 
of the spectral gap, and other information about the low spectrum. Based on our 
analysis we make the following conjecture: 

Conjecture 2.5. 1 There is a function joo : (1, oo) x E -* M. with the property that 

lim J-17(^,^MA)=700(/i,A). 
J—>oo 

This function satisfies 

jooifi 4- 2, A) = 700^, A)        and       7oo(-/i, A) = 700(/x, A). 

Moreover 7OO(A^ A) is equal to the spectral gap of a bi-infinite Jacobi operator A 
(really A(A,/J,)) defined on Z2(Z) 

Aen = [2en - sech(r})en-.i - sech(7y)eri+i] 

 4sinh2(77)  (2.7) 
cosh(2^(n — r)) -j- cosh(27y) 

Above, r = r(/z, A) is a phase defined implicitly by the equation 

fi = lim    7    tanh(77(n — r)). 
n—too 

-n+1 

Remark 1. The implicit formula for 7oo(/^ A) has a specific consequence that 

lim A71 = 0.49585399 ± HT8 , 
J-^-oo 

which is obtained by numerical diagonalization of large Jacobi matrices. 

Remark 2. Equation (2.7) has a simple physical interpretation. The bracketed 
term on the RHS is the usual matrix for a one-magnon spin wave, which by itself 

1Note Added in Proof: Since the submission of this paper to the arXiv, Caputo and Mar- 
tinelli have obrtained further results which prove part of Conjecture 2.5. In [7] they obtain a lower 
bound for the gap of the form J x constant. 
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would give the energy 2(1 — sechry) for the spectral gap, just as in the transla- 
tion invariant ground states. The second term on the RHS of (2.7) represents the 
attractive potential due to the domain wall with center r. 

In Figure 4 we show the function 700 (r, A"1) as obtained by numerically diag- 
onalizing the Jacobi operator for 50 sites. Note that the number of sites reflects 
the extreme simplicity of the Bose model over the true XXZ model; we could not 
numerically diagonalize a spin chain of 50 sites even for spin 1/2. 

3    Ground states of the XXZ model 

In this section we give formulas for the ground states of the finite volume XXZ 
model as in [1]. We show how the ground states of the spin J chain can be derived 
by looking at the ground states of a spin 1/2 ladder with 2J legs, which is essential 
for our proof. We also recall the explicit GNS representation of the infinite volume 
ground states in a Guichardet Hilbert space (also called incomplete tensor product) 
[12, 17]. This concrete representation is convenient, especially for proving that 
certain sequences of finite volume ground states have unique limits. 

We begin by rewriting (2.3) for spin 1/2.  It is easy to check that for the two 
site interaction /i1/2(l,2), the three vectors 

,    1      1.       ,11,       ,    1      lv       ,11, 
^r + 2h    l-*-^'    |-2' + 2> + g|+2'-2) 

are ground states, while |+l/2, —1/2) — q\—1/2, +1/2) is a state with energy one. 
In other words, we may view /i1/2(l, 2) as 1 - C/(r(l, 2)), where r(l, 2) G 62 is the 
transposition, and U is the (non-unitary) action of S2 defined by 

C/(r(l,2))(^(mi,m2) = 0(m2,mi), 

where the </>(mi,ra2) are the (non-normalized) basis vectors 

A,
1

   
1^      i1   lv AA      

1^        -1/2.I      1. 
^2'2) = l2'2>' ^2'~2) = 9       ^'"^ 

In other words, the ground states of the two site Hamiltonian are the symmetric 
tensors with respect to the nonunitary action U. We can generalize this result to 
linear chains of any length, and to many other domains as well. Specifically, what 
we need to properly define the XXZ Hamiltonian with boundary fields is a collection 
of sites A and a collection of oriented bonds among those sites i3, in other words a 
digraph. Then we define 

(We write iJ^ when B is obvious.) We define a height function to be any function 
I : A -> Z such that Z(/3) — 1(a) = 1 for all (a,/3) G B. The condition to have such 
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a height function is that for any closed loop, where a loop is defined as a sequence 
ai,a2,..., an = ai € A such that for each i either (a;, ai+i) E B or (ai+i, a^) G B, 
there are equal numbers of bonds with positive orientation (ai,ai+i) G B as with 
negative orientation (ai+i,ai) G B. The following lemma is an interpretation of a 
result in [1]. 

Lemma 3.1. // (A, B) is a connected digraph such that a height function I exists, 
1 /2 

then there is a unique ground state of H^B in each sector H(A, 1/2, M) for M G 

HA|/2,|A|/2]. 

Proof: The proof is like the analogous statement (without the requirement of 
a height function) for the isotropic model. Suppose that I exists. Define a (non- 
normalized) basis of vectors 

Then define an action of 6A on H(A, 1/2, M) by 

17(7r)<£({ma}) = <K{™7r-Mc0}) • 

As we have already seen, for any (a,/?) G i3, /I
1//2

(Q;,^) = 1 — C/(r(a,j8)), where 
T(a,P) is the transposition. Thus, the unique ground state vectors are those vectors 
which are symmetric under the action of [/(6A), 

*o(A,l/2,M)= Y, #{"*«})> 
{ma}e[-l/2,l/2]A 

one for each sector. 

We note that one can trivially prove the converse of this lemma, that if there 
exist ground state vectors in any sector other than M = ±|A|/2, then there is a 
height function (as long as 0 < q < 1). We now mention a second lemma (which 
is also implicit in [1]) which gives the construction of the spin J ground states by 
using spin ladders. 

Lemma 3.2. Suppose that (A, 23) satisfies the hypotheses of the last lemma.  Then 
for any spin J G |N, there is a unique ground state ofH^ B in each sector ?^(A, J, M). 
Moreover, this ground state is associated to the ground state of the spin 1/2 spin 
ladder 

A = {(a,j):aGA,jG[l,2J]}, 

B = {((a, j), (/3, *)) : (a, 0) G 5, (j, k) G [1,2J]2} . 

Define Qa : H({a} x [1,2J], 1/2) -»• Ti({a}\ J) to be the projection onto the unique 
highest spin representation in the decomposition of H({a} x [l,2J],l/2) into ir- 
reducibles, so that Q^Qa is the projection onto symmetric tensors. Then Q\ = 
ELeA Q<x 9^ves an isomorphism of ground states 

*o(A, J, M) = QA*O(A, 1/2, M),    $o(A, 1/2, M) = QX*o(A, J, M). 
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Proof: Most of the proof is self evident, the point being just to introduce the 
notation necessary for later work. We note that we can define a height function / by 
[(a, j) = 1(a). Then the ground states of H~'- are in the range of QXQA because for 

any permutation TT which preserves the rungs of the ladder, i.e. n({a} x [1,2J]) = 
{a} x [1,2J] for all a, Ufa) coincides with the normal action. So 

QIQA^O(A, 1/2, M) = *o(A, 1/2, M). (3.1) 

On the other hand QAH~'
2
Q*A equals #;{. So <5A^O(A, 1/2, M) is a ground state of 

iJ^, in fact all the ground states are obtained like this by an easy Perron-Frobenius 
argument. Rewriting (3.1) with \I>o(A,J,M) in place of (3A*O(A, 1/2,M) finishes 
the proof. I 

In the particular case of A C Z, one can take 1(a) = a. Let us for future 
notational ease define M(A, J,M) to be the set of all {rria} G [—J, J]A with the 
property that ^2ama = M. Then the formula one derives for the spin J ground 
states is 

/     OT     \1/2 

*O(A>J,M)=      £       iKi+t,)   <ram-lW>. 

We now turn our attention to the infinite volume ground states. We will merely 
define the ground states, the proof of completeness was done in [17]. Given a 
countably infinite set of sites Aoo, and a finite dimensional Hilbert space Ha and 
unit vector na at each site, one can define the Guichardet Hilbert space 

(00 n 00 

® [((§)?*«, ® 0 cn0i) 
n=l      j=l j=n+l 

n—1 00 

nf®?^®®^.)^], 

where #1,0:2,... is any enumeration of A^, and cl means the usual L2 closure. If 
A is any finite subset of A^ then we can define the finite dimensional Hilbert space 
MA = ®aeA ^a, as usual, and an obvious inclusion 

U.Aoo  :^A-+    (g)   (Wcfta). 
aGAoo 

This is the proper framework to discuss the one dimensional infinite-volume ground 
states of the XXZ model, because of the following 

Definition 3.3. For any J G |N we make the following definitions. Consider 
AQO = N. For each a G AQQ let Ha = C2,7"1"1 and Qa = \J). Denote the Guichardet 
Hilbert space so obtained by 

H(N,J,up) = (g)(Ha,na). 
a6N 
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Now let AQQ = Z instead. For each a £ AQQ let Ha = C2J+1 as before, but let 
^a = |-0 /or a ^ 1 and ^a = \ — J) for OL<Q. Define 

H{Z,J,kink) = (^{Ha^a) - 

Then 

Lemma 3.4. (a) If Lk is a sequence of integers with Lk -> oo, and N G N, then 
the normalized sequence 

\\**([lM],J>JLk-N)\\ 

converges in norm. 
(b) If Mk = Lk J- 2Jrk + N where N e [0, J- 1], r^ G N and both rk and Lk - rk 
tend to oo, then the normalized sequence 

T-r»illtLh]tZ9o([l,Lk],J,Mk) 

\\9o([l,Lk],J,Mk)\\ 

converges in norm, where T is the translation one unit to the left. 

Proof:    We prove this for spin 1/2. Then the analogue follows for ground states 
1 /2 of H-'  , and by the last lemma this proves it for arbitrary spin. 

For (a), note that defining 

%([I,L},I/2,N)=      ^      <r+-+ows-1---s-NnN) 
l<Q:i<---<aiV<-£' 

where 0,^ is the all up spin vector, we have 

ill3L]tfBo{[l,L]9l/29±L-N) =   9'0([1,L],1/2,N) 

||*o([l, L]t 1/2, |L - N)\\ \\%([1,L], 1A N)\\ ' 

Then (a) is proved if we prove that the sequence \I>Q([1,L], 1/2, N) converges. But 
this follows by the Monotone Convergence Theorem, thinking of the coefficient of 
Sai ''' SaNtt>N as a function /L(C*I, ..., ajv)- We still need to check that the limit 
is finite, i.e. that 

l<ai<"'<aN 

We can evaluate the series explicitly; it is grjV(iV+1)/ {"{^(l ~ Q2^)- 

For (b), we do a similar thing. We define Oz to be the vector (S^ez^a. Since 
J = 1/2, now Mk = ±Lk - rk where rk,Lk - rk -> oo. Then 

T-rH[hLkhM[hLkU/2,Mk) =   %([l~rk,Lk-rkl 1/2,0) 

||*o([l, Lki 1/2, Mk)\\ \\%{[1 -rkM- nl 1/2,0)|| 
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where 
oo n 

*{,([-a,&], 1/2,0) = J2 E IK*"0*5^ fiz- 
n=0 -a<cn<---<an<0</31<---<(3n<b k=l 

The lemma will follow by the Dominated Convergence Theorem if we prove that 
\I/o(Z, 1/2,0) is summable. This is equivalent to 

oo 

Z = V V 92[i01 + ...+i9n-(ai + -+a«)] < ^ . 

n=0 «!<•••<«„<0</?i<-..</3n 

We can also evaluate this explicitly 

o^ qn(n+l) qn(n-l) 

z=s^ni
n=i(i-9ao"ni

n=i(i-^) 

~ 2^ nn 
.272^ 

i 
1^= 

by Heine's theorem (c.f. [11]). In particular it is finite. I 

Let 

*0(Z,J,M)=lim  nw!"^!'^^?..' 7       L->oo||^o([-i + l,i],J,M)|| 
The limit exists by the lemma. We claim that this vector gives an infinite vol- 
ume ground state. The representation of quasi-local observables on H(Z, J, kink) 
is clear: the local observables AA are operators of HA which includes by iA,z into 
^(Z, J,kink). Take the weak-* completion and we are done. The state is then 
Uj{$(X) = (#o(Z,J,M)|X*o(Z,J,M)). All one needs to check is that for any 
local observable X, 

lim (tfo(Z,J,M)|X*[frA,*]*o(Z,J,M)) >0 
A-»oo 

Suppose X G AA- Define Ai to be the union of A with all nearest neighbors. 
Then for A' D Ai, [HA',X] = [i^A^X]. Using the frustration free property of 
\I/o(|— L,L], J, M), we see that as soon as A2 C [—L,L], we have 

Taking the limit, we see that tJj1^ is an infinite volume ground state. We define 
the 7(J3 M) to be the gap above zero in the spectrum of the Hamiltonian acting on 
the GNS space of the ground state cjj|S^. 

There are three other classes of ground states. The antikink ground states 
are the states Uj^Jfr = Wjjft o T where T is uniquely determined by the formula 
jr(5+) — 5~ for all k G Z. There are also the all up spin states and all down spin 
states, which are well known and characterized by UJ^' 

own(5^) = ±J for all a. 
We mention that the GNS space for them is also a Guichardet Hilbert space where 
fiup,down _. ^j) for all a^ and f^p.down ^ ^ vector representing the ground state. 
That these are all the ground states is proved by Koma and Nachtergaele [17]. 
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4    Spin ladder reduction 

We now elaborate on the spin ladder construction introduced in Lemma 3.2. Let 
us define H^ = H-^ g introduced in the lemma. Then, defining (?(A, J, M) to be the 

one dimensional ground state space of H^ in the sector ?{(A, J, M), and </(A, M) 
to be the one dimensional ground state space of ^(A, M), the lemma tells us that 

QAa(A, M) = g(A, M),    Q*Ag(A, M) = Q(l, M) = 0(A, M). 

The spectral gap in the sector ?{(A, J, M) is defined 

7,A,J,M)=  i»f  m». 
^±g(A,J,M) 

In view of the lemma, defining PA = Q\QK, we can rewrite the spectral gap 

7(A,J,M)= ^inf (P^\HKP^) 

^en(A,M)\^vPA    (-PA^I-PA^) 
<ip±g(A,M) 

We now introduce a second Hamiltonian on ^(A, M) which is 

where _ 

B = {({a,j),(P,j)):{a,l3)eB,je[l,2J\}- 

This is clearly equivalent to 2J disjoint copies of HA' . So, if A = [1,L], Theorem 

2.1 guarantees that the spectral gap of HA is equal to 1 — A-1 cos(7r/L) > 1 - A-1. 

Let us introduce some notation: Let 'Ho (A, M) be the ground state space of HA in 

the sector H(A, M), and let ?^exc(A, M) be its orthogonal complement in the sector 
H(A,M). Then 

inf.      <*!M>l-A-i. (4.2) 
^eWexc(A,M)    wm 

Defining Pa = Q^Qa to be symmetrization in the rung {a} x [1,2J], we observe 
that 

1   2J 

k=l 

From this it follows that 

^ 2J 

^      '    k,l=l 
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and finally that 
1 

Then we can rewrite the spectral gap formula once more 

PAHXPA = —PAH^PA . 

7(A,J,M)=2J inf ^Tff . (4.3) 
V€H(A,M)\kerPA      (PAV\PKW) 

V>-LS(A,M) 

This is useful because we have a spectral gap for H-^. Also note that it is now trivial 
that 0(A,M) c fto(A, M). We define 

H^A M) = Wo(A, M) H &(A, M)x . 

Then 
^(A, M) = ^(A, M) 0 Ho,±(A, M) 0 ftexc(A, M). 

We now state the main lemma of this section, which is the key to our theorem 

Lemma 4.1. If ^ G W(A, Af) and ^ _L S(A,M), ^/ien /or some ^ E Wo,±(A,M) 
and I/J" G T-Lexc{k^M), we have 

P^ = ^ + ^" . 

Moreover, 

(PAIP\H~APAIP) f _ mp^') 

w;/iere ^Zie mho is interpreted as zero if I/J' = 0. Hence 

7(A,J,M)>2J(l-A-)fl-       sup       M^fV 

Proof:     First note that PA£(A,M) = £(A,M), so ifj/> ± £(A,M) then PAV' -L 
^(A, M), which proves that PA^ € '^o,±(A, M) ©?^exc(A, M). Now suppose PA^ = 

t/;' + tp". Then H-^ip1 = 0. Hence, by Theorem 2.1 

(PAVI#A^> = ^"1^x0 > (i - A-1)^"!^") • 
So 

(PA^|HXPAV>) ,   /        |mi2 \ 
(PAVIPV^)   - ^ ; I     IIPA^HV ' 

By Cauchy-Schwarz and the fact that (ip'lif)") = 0, we have 

(v-'iv') = mPAi>) = (P\4>'\Ptfi>) < WPMP'W ■ \\PAH . 

\m\ < iiiwu 
II^AV-II -   ll^'l 
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Thus we may define 

*(A,J,M)=        sup        M^f. 

The positivity of a gap 7(A, J, M) is then equivalent to 5(A, J, M) < 1. We will 
numerically estimate J(A, J, M) in Section 6, directly from its definition. For now, 
we use the lemma to prove the main theorem. 

5    Proof of Theorem 2.2 

We begin this section with the trivial part of the theorem, namely the calculation 
of the spectral gap above the state cjj which is the translation invariant all up spin 
state. This is a well-known result, but we include it for completeness. To prove 
that there is a spectral gap, we have to prove that there is a number 7J > 0 such 
that for any local observable 

u>](5(Xr8(8(X))-<yj6(X*)8{X)) > 0, 

where S(X) = limA^oofiJ^X]. If X e AA is local, we can take 5(5(X)) = 
[H^ , r_2 2i, [H^,T_1 ^X]] and so on. We observe that the boundary terms of H3 

are equal to zero, i.e. 

lunu;l(S(XnS3_L-Sl)S(X))=0. 
L—>oo 

So we may rewrite the Hamiltonian in the GNS space of Uj 

ir^A-^+a-A-1)^, 
oo 

#iso= 2^ (J ~ Sx - sx+i), 

^Ising —     2-*t   ^ Sx^x+l) * 
x=—oo 

Clearly H3
S0 > 0, so 7J is bounded below by the spectral gap of Hising. It is 

important that LJ] is a ground state of both H3
S0 and i^ing. It is easy to see that 

the first excitations for His{ are the one magnon states. The one magnon states 

are those obtained from LO] by conjugating with observables of the form 

where {cx} is any complex, square-summable sequence. Then one observes that 

wl(X) = 0, ul{X*X) = 1, and wJpsT*'H^X) = 2J. We claim that it is easy to 
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see that among all quasilocal perturbations, satisfying the first two equalities, these 
minimimize the Ising energy. So the spectral gap of Hf- is 2J, and the spectral 
gap of H3 is at least (1 — A~1)2J. It is also very well known that the Heisenberg 
model acts as the discrete Laplacian on the space of one magnon states. We can 
see this since 

ru-J y] _ V^ (Cx ~ Ca;-1)^-i + \cx - cx+l)Sx^1 

xez v2J 

which implies 

oo 

v](X*HiotTopicX) = J  ]r  c^(2cx - cx+1 - cx-i). 
x= — oo 

We can choose a sequence of one magnon excitations 

such that uj](X*LH?sotrop.lcXL) - 23/L. Therefore, 

23(1 - A"1) < 7J < u](XiH3XL) = 23(1 - A"1) + 2JA-1L-1, 

for all L, which shows that 7J = 23(1 — A-1). 

The other trivial facts in the theorem are that for the gaps above the kink 
7(J,M) = 7(J,M 4- 2J), which follows by translational symmetry, and 7(J,M) = 
7(J, — M), which follows by spin-flip reflection symmetry. 

We now begin the proof of the nontrivial parts of the theorem. Fix J G |N and 
A-1 in the range 0 < A-1 < 1. 

Definition 5.1. We say that a sequence of triples (Lk,Mk,ipk) satisfies hypothesis 
(HI) if for all k E N the following holds: Lk £ N>2, Mk G [—JLk,JLk], ipk in 
Ho^iWiLk] x [l,2«7|,Mjfe), and H^H2 = 1. We note that the most important part 
of (HI) is that ipk £ 'Ho,±- In particular, this means that P^^L^k 7^ ipk- We say 
that a sequence of triples (Lk,Mk,ipk) satisfies hypothesis (H2) if additionally 

lim 11^,^^11 = 1. 
k—>oo 

The main component of our proof is the following 

Proposition 5.2. No sequence satisfies both hypotheses (HI) and (H2). 

We observe of both (HI) and (H2) that if any sequence (Lk.Mk^k) satisfies 
(HI) or (H2), then every subsequence does as well. Using this fact and the previous 
proposition, one can deduce that there is a constant 6 > 0, depending on A-1 and 
J, such that for any sequence (L&,Mfc,^fc) satisfying (HI), one has 

limsup||P[ijLfc]^|| < 1-6. 
k—>oo 
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Hence by Lemma 4.1 and the discussion following it, 

inf inf       7([l,i],J,M)>2J(l-A-1)J. 
-£/EN>2 — JL<M<JL 

All the finite volume spectral gaps have a uniform lower bound. Since the kink 
ground states are frustration free, this gives the following corollary, which is a 
reformulation of our main theorem 

Corollary 5.3. ForO < A-1 < 1 and any JG |N; there is a nonvanishing spectral 
gap above all of the infinite volume kink states. 

Proof: (of Corollary 5.3 given Proposition 5.2) Let ujj M be the ground 
state of the kink. To prove that there is a spectral gap, we have to prove that there 
is a number 7(J, M) > 0 such that for any local observable 

^M(5(XyS(d(X))-7(J,M)5(X*)6(X)) > 0, 

where S(X) — Yimh/*oo[HK,X]. On the other hand, by Lemma 3.4, for any local 
observable X 

it  ,vx      r      (*O(AL,J,M)|X$O(A£,J,M)) 

WJIMP0 - ^lim ||*0(AL,J,M)|P ' 

where Ax, = [—L + 1,L]. If X is a local observable with support in A then one 
can take 8(5(X)) = [iIAliJ[ffAlf,X]], for any AL D A + [-2,2]. Also for AT G 
[-J|AL|,J|AL|], 

<*o(AL,J,M/)|(ffAL-X:--YffAJ*o(AL,J,M)>=0 

because ^O(AL, J, M1) and \I>o(Az,, J, M) have the same energy. Hence (J(X)*O(AL, Jj M) 
is orthogonal to all ground states. Thus, we see that in this case the infinite volume 
gap corresponds to the naive guess, i.e. the liminf of all finite volume gaps. To be 
more explicit, let 7(M, J) be a positive lower bound on all the finite volume gaps 
7([—L + 1,L], J,M), which exists by Proposition 5.2. Define UL and uo^ to be the 
states on ^4AL corresponding to \I>O(AL, J, M) and (5(X)1Jro(AJL, J, M), respectively. 
Then 

u#M{6{Xy6{&{X)) - 7(J, M)8(X*)6iX)) 

=  lim CJL((5(X)*J((5(X))-7(J,M)(5(X*)5(X)) 
L—>-oo 

=  lim U'L{HKL ->y(J,M))«>L(S(Xr8{X)) 
L->oo 

>0. 

We will show that (HI) and (H2) are incompatible in a series of lemmas. 
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Lemma 5.4. If (Lk.Mk^k) satisfies (HI) and (H2), then Lk -> oo. 

Proof: (of Lemma 5.4) Suppose not. Then there is some sequence satisfy- 
ing (HI) and (H2) and such that Lk = L < oo for all k. But Ho([l,L],J) = 
0M__jL?^o([l5L], J,M) is a finite dimensional space. The finite matrix obtained 
by restricting and projecting P[I,L] to this space is Hermitian, and its largest 
eigenvalue is 1. Moreover, the eigenspace corresponding to 1 is £([1,L],J) = 

©M=-JL £([!> -^L J? M). All the vectors ipk are orthogonal to £([1, L], J) by hypoth- 
esis (HI). Since finite matrices have discrete spectra, this contradicts hypothesis 
(H2). | 

Lemma 5.5. If (Lk,Mk^k) satisfies (HI) and (H2) then JLk — \Mk\ -> oo. 

Before giving the proof of this easy lemma, we need to define some new notation. 

Definition 5.6. For L G N, letM(L, J,M) be the set of all vectors m = (mi,... ,m2j) G 
[-L/2,L/2]2J whose sum is M, i.e. YJJ 

mj — M. For each m G M(L,J,M), define 

2J 

*o([l,£] x [l,2J],m) = 0*o([l,i] x {j}, 1/2,m,-). 

Related to this, let J\f(J,N) be the set all vectors n = (ni,... ,n2j) G W"J satisfying 
V. nj = N. Let e — (1,1,..., 1) G N2,7. Recall a previous definition 

%{[l,L},ll2,n)= Y, qXl+-+x"S-1---S-nnn. 
l<Xi<X2<-'-<Xn<L 

Define 
2J 

%([1,L] x [1,271,71) = 0 *{,([!,£] x {ij^An,) 

Let 7i(N x [1,2J], up) be the Guichardet Hilbert space 

(g)      (^,1+1/2)^,,)). 
(ajJeNll^J] 

Define £>([!, I/] x [1,2 J], A/") ^o &e ^/ie projection on H(N x [1,2.7], ^j?) i(;Wc/i projects 
onto vectors ijj such that 

E     (!-s?,j)W = w, 
(^J)G[l,L]x[l,2J] 

anrf ^^^ = |^ /or (x, j) G (N\ [1,L]) x [1,2J]. Fma//?/; tet 

^([l,L]x[l,2J],iV) 

be the unique normalized ground state of #[1,1,]x[1,2.7] ^ ^e range ofV([l,L] x 
[l,2«7|,iV).   Specify the phase to that ^'0([1,L] x [l,2J],iV) ftas rea/ coefficients in 
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the Ising basis. This ground state exists and is unique (and has real coefficients) 
since i?[i,L]x[i,2j] acting on the range V([1,L] x [l,2J],iV) is unitarily equivalent 

to the finite matrix .#[1,1,]x[1,24 acting on ?{([1,L] x [1,2J],M). (We apologize for 
the abuse of notation : the same notation is used for the operator acting on two 
different, but isomorphic, Hilbert spaces.) 

The following are easy and useful observations. The set 

{*o([l,i] x [l,2J],m) : m e M(L,J,M)} 

is an orthogonal basis for 'HoQl, L] x [1,2J], M). The set of indices N(J, n) is finite, 
while if one defined the analogue of M(L, J, M) replacing L by N it would not be 
finite. There is a simple translation between the two vectors defined above: 

*{,([!,£] x [l,2J],n)   = i[ltL]iM[l,L] x [1,20], \Le - n) 

\\%{[l,L) x [l,2J],n)|| ||*o([l,i] x [l,2J],|Le-n)||     ' 

By Lemma 3.4, the following strong limit exists 

%{n x [l,2J],n) =  lira %{{l,L} x [l,2J],n). 
L—>oo 

One has the following simple formula for the action of P([1,L] x [l,2J],iV) on 
^o([l,£']x[l,2J],M): 

D([l, L) x [1,2J], A0*o([l, L'] x [1,2J], n) = ^([1, V A L] x [1,2J], n). 

By Lemma 3.4, again, the following limit holds for all n G Af(J,N): 

TO.qxpmy.tiiivil.iiil,,)! _ j 
L^ooL/^oo JI^QljL'] x [l,2J],n)|| v     y 

By Lemma 3.4, again, the following strong limit exists 

%(N x [1,2J], iV) =  lim *{,([!, L] x [1,2J], iV). (5.5) 
L—>oo 

We note for the reader that for large enough L 

^([1,L] x [l,2J],iV) ex     £     ^([1^] x [l,2J],n), 
n€^(J,iV) 

and that 
^(N x [l,2J],iV) oc     ^     ^(N x [l,2J],n). 

nGAf(J,N) 

The proportionality constants are necessary because both *o([l, L] x [1,2J], iV) and 
\I>Q(N x [l,2J],iV) are chosen to be normalized. 

Proof: (Lemma 5.5) We will verify that JLk - Mk -* oo; the fact that JI/^ + 
Mk -> oo then follows by spin-flip/reflection symmetry. If it fails for some sequence, 
then some subsequence, also satisfying (HI) and (H2), has the property that JL/fc - 
Mik — M is a finite constant. We assume that this subsequence was taken at the 
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beginning to avoid double subscripts. Since each ipk £ 'Ho,±([l,Lk] x [1,2J], M), we 
can write 

^ *o([l,£*]x[l,2J],iLfce-n) 

So 

new^w .l*o([l,^]x[l,2J]>jLfcc-n)|| 

^ ^([l,i&]x[l, 201,71) 

We know L* -> oo by the last lemma. So *{,([!, L^x [1,2J],n) -^ *o(Nx [l,2J],n) 
as fc ->- oo for each n. Furthermore, {cfc(n) : n G Af^.N)} is a unit vector in 
the finite-dimensional space C'^^'^^, for each fc. So there is a subsequence with 
Cifc(n) ->• c(n) for each n. Again, we assume this subsequence was chosen at the 
beginning to avoid double subscripts. Thus, ip^ converges to the vector 

^=      £     c(n)^(Nx[l,2J],n). 
Ti€Ar(J,iV) 

For L < oo and /c large enough, ^[i^] > ^[i.L/ ]• Hence, by (H2) 

WLLHW = lim (^l^[i,L]^> > Um (^l^[i,Lfc]^> = 1 

for all L. Also, #[i,Lfc]x[i,2J] > ^[i^lxfi^j], so ^i.Ljxli^j]^ = 0- Recall 

P[l,L]H[ltL]x[l,23]P[l,L] =  2j^[l,L]^[l,L]x[l,2J]^[l,L]. 

So 

-ff[i,L]x[i>2j]^ = 0 (5.6) 

for every finite L. 

Notice, 

lim |p([l,L] x [l,2J],iV)</;|| =  lim   lim ||Z>([1,L] x [1,2J],iV)^fc|| = 1     (5.7) 
L—too L—>oo /c—>oo 

by (5.4). Together, (5.6) and (5.7) imply that 

lim m%([l,L}x{l,23],N))\ = l, 
L->oo 

i.e. that V = e^^(N x [l,2J],iV). Since ip'k -> ^, 

toIWir0(N,p,M|,w))i.1- 

On the other hand, we know (^[^([l, LA.] x [l,2J],iV)) = 0, because fa ±g([l,Lk}x 
[1,23],N). So, by (5.5), this implies 

^|<^{,(Nx[l,2J],i>0)|=0- 
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Clearly, (5.8) and (5.9) are incompatible and we have a contradiction. | 

Proof:    (Proposition 5.2) 

Let 'M(3, M) be the set of all (mi,...,m2j) with J]. rrij = M. Define for any 
m e Z, 

^([-a>6]>l/2Jm) = 2 ^ 
n    -a<ai<--.<Q!n<0</?i<---</3rTl+n<6 

■9 ^1 ^n^r-'^m + n^Z- 

2J 

n([-a,6] x [l,2J],m) = ® *i([-ai6] * {ij^Am,). 
i=i 

Suppose that (LklMk,ipk) is a sequence satisfying (HI) and (H2). By Lemmas 5.4 
and 5.5 we may assume that Lk -> oo and JL^ — |MA;| -4 oo. We may choose a 
subsequence so that JLk - Mk = 2Jrk - N for all fc, where r^ G N>o is arbitrary 
and A^ e [0,23 - 1] is fixed. Let 

let Aft = [1 — r*;, Lfc — r^]. Then we can write 

^(A*x[l,2J],m) v; =   2   ^M 
^^(J.N, 1|*{,(A*x[l>2J]>m)r 

Now, for each fe, {^(m) : TTI G A1(J, iV)} is a normalized I2 sequence, instead of a 
finite dimensional vector. So we only know that a weakly convergent subsequence 
exists, not a strongly convergent one. We need some kind of tightness result, which 
is given in the following lemma. 

Lemma 5.7. Let MR(J,N) be those m G M(J,N) such that all components lie 
in the range [—R+ 1,R]. Then we have 

lim liminf       Y"       |Cjb(m)|2 = 1. 
R—too   k—too ^—' 

Tn€MR(J,N) 

We give the proof of this technical but important lemma at the end of the 
section. First, we see how Proposition 5.2 follows. 

Lemma 5.8. Define TR to be the -projection onto those vectors with all down spins 
at sites (a,j) when a < —R, all up spins at sites (a,j) with a > R -f 1, and 
S[-R+i,R)x[iM equal to N.  We have 

lim liminf H^R^H = 1. 
R—»oo   fc—>-oo 
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Proof:    By lemma 5.7, for any e > 0, we can choose R large enough that 

liminf       V        |Cfc(m)|2 > 1-e. 
k-*oo *-^ 

meMR(J,M) 

By Lemma 3.4, the following strong limit exists 

*o(Zx [l,2J],m) = lim %(Ak x [l,2J],m). 
k—>co 

Furthermore, 

fliTcx)     \\%{1 x [l,2J],m; 
lim   11^^(2 x [1,20]^)!^^ 

Thus 
hminfU^^ll^l-e. 
Ri->oo 

Since e was arbitrary, we are done. I 

We know that H^ tp^ — 0 and limit II^Afc^ll — 1- As before, these two facts are 
sufficient to guarantee that for any finite A C Z, 

lim £x^=0. 

In other words, letting <2A be the projection onto the ground state space of iJ^, 
that 

lim ||GAV4 11 = 1- (5-10) 

We note that for A = [—R +1, i?], the projections TR and GA commute, and in fact 
their product is the projection onto the normalized ground state vector 

*{,([-.R+l>.R]x[l)2J],.lV). 

By Lemma 5.8 and equation (5.10) we see that 

lim liminf \(%{{-R+\,R\ x [1,2J],;VM}|2 = 1- 
R-^oo   k-±oo 

Since *o([-i?+l,-R]x[l,2J],JV) converges in norm to %(Zx[l,2J\,N) as R -> oo, 
we have 

liminf \(%(Z x [l,2J],iV)|^)|2 = 1. (5.11) 
k—too 

Now comes the contradiction. We know, by virtue of the fact that ip^ E 
^o,±([l,^] x [l,2J],Mfc), that ^ _L %{[l,Lk} x [l,2J],iV). But on the other 
hand, we know that *o([l, Lk] x [1, 2J], N) converges strongly to ^^(Z x [1, 2J], N), 
so 

limSup|(^(Zx[l,2J]!iV)|^)|2=0, 
k—too 

clearly contradicting (5.11). I 
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Proof: (of Lemma 5.7) We define DR to be the projection onto all those 
vectors in H(Z x [l,2J],kink) with at most 2J — 1 down spins shared between the 
sites (—/?+!,!),...,(—i?H-l, 23), and at least one down spin shared between the 
sites (i?, !),...,(#, 2 J). Let 

*0(A>m)=-*^^- in(A,m)|| 

Let AR = [-R +1,R]. It is clear that if 

il>=      Y,      C(m)$o(Ai?,m) 
mGA4(J,M) 

then 

MDRI/,) = J2 \C(m)\2\\DRMAR,m)\\2 

m 

> J2 \C(m)\2\\DRM^R,m)\\2 

rrteM(J,M)\MR(J,M) 

m6A^(J,M)\A4R(J,M) 

the second line owing to the fact that DR commutes with S}L^YL^^ for each leg 
2 and all L € N. The last inequality is the result from to the following consideration: 
if one of the m^ is greater than R or less than — R + 1, then with probability at 
least 1/2 one finds the state with at least one down spin at R, or at least one up 
spin at — it! + 1, respectively. Thus 

£       |C(m)|2>l-2(^*V>>. 
Tn€A4fi(J,M) 

Now suppose that ^ is a ground state vector of iJ^ • Then, because DR commutes 

with Sz~ we have 
AR 

WPB$) <        max      A*o$R, M)\DR*O(&R, M)). 
M G[—2Ji?,2Ji?] 

We can make the following crude but simple estimate 

max       ||^^O(AE5M)||
2
 <       J ^        . (5.12) 

MG[-2Ji?,2JJR] 1 - 43 Rq2R 

We prove this estimate for M < 0, and the M > 0 follows by spin flip/reflection 
symmetry. Of course if M — -23R, then the estimate is trivial because \I>o has all 
down spins, so the expectation with DR is zero. Suppose -23R < M <^0. Then 
there is at least one down spin and at most 23R down spins. We write M(A#,n) for 
all the classical Ising configurations on the lattice A^ with exactly n down spins. 
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We write M(Aje,n, j) for all the configurations with the extra constraint that the 
number of down spins on the sites (R, 1),..., (R, 23) is j. The normalized ground 
state #o(Afl, 23R - n) is 

M^R^R-n) = Z-1 ^ W({m(a9j)})\{m(aJ)}), 
{m(a,i)}€M(Afi,n) 

where 
W({m(a,j)})= [J q-aTn{aJ) 

and 
Z2= E W({m(aJ)})2 

{m(a,j)}eM(AR,n) 

On the other hand, defining ERJ to be the projection onto those states with exactly 
j down spins on the sites (R, 1),..., (R, 2J), we have 

Z2 

\\ERtj9o([-R+l,R] x [l,2J],2JiJ-n)||2 = -£ 

where Zj is the same as Z but with the sum over classical configurations restricted 
toM(AR,n,j). 

The inequality comes from recognizing that Z?+1 < 4:32Rq2RZj. This is a 

straightforward estimate. Define a lexicographic order on AR by (ai,ji) < (012ij2) 
if either ai < a2 or ai = 0*2 and ji < J2- Define a map / : M^Au^n^j + 1) -> 
M(AjR,n,<7) where the down spin at the greatest site (a, j) with a down spin, is 
exchanged for the up spin at the least site (/3, fe) with an up spin. Note that 
since there are at most 23R down spins, the point (/?, fc) must lie in the subset 
[-R + 1,0] x [1,2J], so there are at most 23R choices of (/?,&). Similarly, since 
j + 1 > 1, we know there is at least one down spin in the sites (i?, 1),..., (i?, 23). 
So there are at most 23 choices for (a, j) = {R,j). Thus, #f~1{{'m(aj)}) < 4J2

JR 
for any configuration {m(a, j)}. We see that 

W(f({m(x,jm > q-RW({m(x,j)}) 

because the down spin at site {a,j) — (R,j) has moved at least R units to the left 
to(P,k),0<O. So 

Zj+i = E W({m(a,j)})2 

{m(aJ)}€M(AR,nJ+l) 

<q2R E ^(/(M«,J)}))2 

{m(aJ)}€M(AH ,n,j+i) 

<4J2i?g
2i{ E W({m(a,j)})2 

{m(a,j)}GM(AH,n,j) 

= 432Rq2RZ]. 

The crude estimate is proved. 
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Now we know that^as k -> oo, the vectors tftk come closer and closer to the 
ground state space of H^  . So our estimate implies 

liminf       Y       |Cfe(m)l2>l-     Sj2R/R    . 
meMR(J,M) ^ 

Hence 

8J2^2i? 

l^fc^^l   ^ i -   inn   7 
mEA4R(J,M) 

and this concludes the proof. 

lim liminf       V       \Ck(m)\2 > 1 -  lim      OJ   ,g   oD = 1, 

6    Numerical Approximation 

We now find an explicit representation of 

Proj(fto(A, M))PAProj(Ho(A, M)). 

From this we numerically calculate 1 - S(L, J, M). We begin with some definitions. 
First of all, we will always have A = [1,L] in this section, and hence A = [1,1,] x 
[1,2J]. ForiVe [0,2JL], define 

P(A, N) = ProjOMA, JL - iV))PAProj(^o(A, JL - N)). 

Also, define the "classical Ising configurations" to be 

M(L,23,N) = {Ae[0,l}X:    £   A(x,j)=N}. 

(x,j)eA 

These are {0, l}-matrices with 2J rows, L columns, and iV ones. For any A G 
M(L,2J,A0 we define 

^= nj5w))A(s,i)n 

(x,j)eA 

where 0 = (^(^^GA l1/2)^,.?)- T1:ien it is clear that H(A,3L - N) has an or- 
thonormal basis {^A • A e M(L,2J,iV)}. For any matrix A, we define two vectors 
rA G C2J and cA G CL by 

L 23 

a;=l j=l 

Finally we define 

MrjC = #{AeM(L,2J,N) :rA=r, cA = c} . (6.13) 

Note that by its definition Mr^c is unchanged if one permutes the components of r 
or c. We mention that there is no known formula for Mr>c although it has useful 
characterizations in terms of generating functions. (C.f. [27] §7.4 for more details.) 

The definitions immediately lead to the following result. 
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Lemma 6.1.  The following are true identities: 

*o(A,J)^e-n)=       £       0A«-
CA (6.14) 

AeM(L,2J,N) 
rA=n 

||*o(A,J,iLe-n)||2=      £      q2xcMn,c (6.15) 
cG[0,2J]L 

E, c(x)=N 

PA^A=n (Ji))   E  ** (6-16) 
CB=CA 

(*o(A, J, -Le - m)|PA*o(A, J, ^Le - n)> 

= E «~.^"°nQ  (6'17) 
c€[0,2J]L 35=1   X   V   " 

E,c(x)=N 

We can define an action of 62J on 7io(A,JL — iV) by U(7r) • 0^ = 0^^, where 
irA(x,j) = A(x,7r~1(j)). By (6.17), we know that the range of P(A:N) is a trivial 
representation of 62J- We define Po(L, 2J,iV) to be the set of all sequences /i = 
(/ii,..., /X2j) such that 

L > /il  > 1^2 > ' ' ' > 1^23 > 0 

and fii H h /i2J = N. These are restricted partitions, but allowing parts equal to 
zero. (We mention this fact for consistency. The interested reader can consult [2], 
[11], or [27] for more information about partitions.) Then the range of P(A,iV) is 
spanned by the linearly independent vectors 

^ = 72JV   E   tf M*(A, J£ " M),        A^ € Po(L, 2J, iV). 

We note that we can define an action of 62j on Z2J in the obvious way, with the 
outcome that 

*(A, JL - vrn) = 17(7r)*(A, JL - n). 

The orthogonal basis {^ : /x G IPo(£,2J, A7")} is not yet orthonormal. We 
observe that 

||VM||2 = ((2J)!)-2||*(A,JL-M)||2 

x #(orbit of fj) x #(stabilizer of /x)2 . 
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Since #(stabilizer) x #(orbit) = #S2j = (2J)!, we have 

HWII2 = #(orbit of M)-
1
!!*^, JL - ^)||2 

2J 
no(lJ.),n1(fj,),n2(fJ,),... ,nL(iJ,) E      ^Mn.c (6-18) 

ce[o,2j]L 

where rikifJ,) is the number of parts of fi equal to k. 

By (6.17), and the fact that the inner product is invariant under permutations 
of m and n, we obtain 

(VVI-PAVV) =      E      Mm,cMn,cq2*c f[ ( 2\) . 

for all fi,v e lFo(L,23,N).  Therefore P(A,N) is represented, on its range, by a 
matrix P = (V(ji, v) : /x, v £ Fo(L, 2J,iV)), where 

?(/*,") = 
2J 1/2 2J 1/2 

/ L       \ 

[0,23]L x=l   v   v   ^ 

/ 

VlL c('«)=Ar 

cGlO^J]1, 

(6.19) 

,2a5C Mn 

) 

This is quite a complicated looking formula. There are two nice features about 
it. First, the powers of q grow quite rapidly. Second, the matrix [M^y : /z, v G 
IPo^SJ, iV)) is upper triangular with respect to dominance order, where v1 is the 
transpose of the partition v. (Dominance order is the natural partial order on parti- 
tions.) These two facts insure that the matrix components of V decay exponentially 
with the distance from the diagonal. (More details and an equivalent expression 
are found in [28].) 

We have not attempted a rigorous analysis of P, but we have obtained very 
convincing numerical data, by simply numerically diagonalizing the matrix. The 
main qualitative feature of the lower bound for the spectral gap is that it is not 
always maximized at the Ising limit. In particular, if J > 3/2 and the number of 
down spins iV satisfies iV = 2J |_|A|/2J, then the local maximum for the lower bound 
of the spectral gap occurs somewhere other than the Ising limit. The Ising limit is 
a classical model, whose energy levels can be calculated explicitly, and doing so it 
is easy to see that the lower bound for the spectral gap is actually equal to the true 
spectral gap at the Ising limit. So the true spectral gap of the XXZ spin chain with 



The Spectral Gap for the Ferromagnetic Spin-J XXZ Chain 1077 

J > 3/2 has a local maximum somewhere other than the Ising limit in finite volumes 
as long as the number of down spins satisfies N « J|A| and N = 0(mod 2J). One 
can take N w J|A| and A^ = 0(mod 2J) because of the approximate periodicity 
of the spectral gap in iV. This same result is also obtained by Ising perturbation 
series, where we show that the curve for the spectral gap is concave up at the Ising 
limit. Also, the asymptotic analysis of Section 7 verifies the qualitative picture of 
the spectral gap when J ^> 1. 

We now give an alternative description of V in terms of representations. Recall 
that the ground state space of the spin 1/2 XXZ model is the highest dimensional ir- 
reducible representation of SUg(2). On the other hand, the symmetric tensors form 
the highest dimensional irreducible representation of SU(2). Consider the array 
A = [1, L] x [1,2J]. At each site put a two dimensional representation of SU(2) and 
SUq(2). Note that this is possible because the two dimensional representations of 
SU(2) and SUg(2) coincide. Now tensor all the representations in a single row, con- 
sidering them as representations of SU9(2). For each row, define an operator Rj{q) 
which projects onto the highest dimensional irreducible representation of SU9(2). 
Next tensor all the representations in a single column, considering them as repre- 
sentations of SU(2). Define Cx to project onto the highest dimensional irreducible 

representation. Then the operator J2N ^(^J N) is identical to rL=i ^ 11^=1 ^'(tf)? 
modulo null spaces. If one turns the procedure around, first projecting on columns 
then on rows, one almost (but not quite) recovers the original problem of the spin 
J XXZ chain. 

6.1    Perturbation Series about Ising Limit 

We now perform a perturbation analysis for 7([1,L], J, M, A-1) about the point 
A-1 = 0, i.e. the Ising limit. We write 

H(A-1)=H^+A-1H^ 

^(o)=g(J + 53)(J_53+i) 
x=l 

We have left out of H^ the first order corrections to the boundary terms. How- 
ever since all our vectors are local perturbations of an Ising kink, the first order 
corrections to the boundary terms will act as a multiple of the identity. We will 
include these trivial corrections after we perform the perturbation theory with H^ 
as above. We note that f^A-1) is unitarily equivalent to H(—A"1), where the 
unitary transformation is 

/     r^/21        \ 
U = exp    2m ]£ Sf^     . 
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This proves that the point A-1 = 0 is always either a local maximum or a local 
minimum of 7([1,L],J,M, A"1). If 7([1,L], J,M, A"1) is differentiable near A-1 = 
0, the first derivative is zero, and we proceed to second order perturbation theory. 
The reason 7([1,L], J, M, A-1) may not be differentiable near A-1 = 0 is that the 
first excited state may be infinitely degenerate in the Ising limit. This is the case 
for spin 1/2 and for J = 1 when M is odd. For J = 1/2 and any x G Z there is an 
Ising ground state 

*o(a0= (®|-l/2>„]® (   <g)   IV^ 
\y<x J \y>x-\-\ 

It is easy to see that there are infinite families of first excitations, for example 
IIJU St+\-jSy+j-\^*(x) for any L > 1 and 7/ > x + 2 - L. For J = 1 and M odd, 
the ground state is 

*o0c) = ((g) l-i)i/) ® lo), ® ((g) |i)A , 
\v<x ) \y>x        / 

and there are two classes of excitations, each infinitely degenerate: S^'S~1^o(x) for 
any y < x; and 5+5"*o(^) for any y > x. These are the only cases where the 
first excitations are infinitely degenerate. The only cases where there is a finite 
degeneracy for the first excited state are J = 2,3,4,... and M congruent to J 
modulo 23. Then the ground state is 

*<>(*) =   ((g) |-J)„ )  ® |0)x ® (® |J>y )   , 

and the two first excitations are S^_1S~^o(x) and S^S~+1^o(x). The other most 
interesting case, which has unique first excitations are J > 1 and M divisible by 
2J. Then 

*(>(*)= (®|-J>y)®(®|J>y) 
\y<x )        \y>x        / 

and the unique first excitation is S^SX+1^Q(X).   There are ground states with 
infinitely degenerate second excitations, and so on, but this does not interest us. 

We now consider the results of second order perturbation theory, assuming the 
first order excitation is non-degenerate. The kink ground states of the Ising model 
are all of the form 

*o(s,n)= ((g)|-J)yU|-J + n)x f0|J>yJ , 
\y<x / \y>x        / 

where one can assume that 0 < n < [3\. The first excited state is then 

*i(3,ra)= (0 |- J)y) ®\-J + n + l)x®\J-l)x+i (   0   |J)y] , 
\y<a; / \y>z+l / 
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n = 0 1 2 3 

J = l/2 — 00 

1 -1/3 -00 

3/2 11/12 -9/4 
2 7/3 -1/4 -46/5 

5/2 97/24 4/3 -39/20 
3 91/15 3 0 -26/3 

Table 1: Some values of the curvature of the gap in the Ising limit. For J = 1/2, 
n = 0,and J = 1, n — 1, the excited state is infinitely degenerate, and the curvature 
is infinite as well. 

which has energy E^ = n ■+ 1. We now expand to determine the corrections for 
small but nonzero A-1. In particular we write E(A-1) = J5(0)+A'"1E(1) + .... The 
perturbation series is standard, so we omit details. The results are that E^ = 0 
and 

E^ = 2J(J-l)+n 
n + 3 

+ 
2J-n-l 

This is not an accurate description of the kink Hamiltonian because we have not in- 
cluded the correct boundary fields. To fix this situation we must add J(\/l — A-2 — 
l)(Si —SL). It is obvious that for a long enough spin chain, and excitations which are 
localized at the interface, the extra boundary fields act just as —2J2(\/1 — A-2 — 1) 
times the identity. Note that this is A-2 J2 + o(A"2). So for 0 < M < J, 

d2 

^(A-1)2 TCMUM.A-
1
) 

=        M      (J + 1)(2J-1) 
2 M + 3 

2J2 
(6.20) 

2J - M - 1 

The finitely degenerate case is J G Z and M = J mod (2J), as mentioned before. 
Then the first excitation of the Ising ground state is doubly degenerate, and we 
perform degenerate perturbation theory. As soon as A-1 > 0, the degeneracy lifts 
and there are two branches. It is easily verified that the curvature of both branches 
is negative, but we are only concerned with the lowest branch which gives 

d2 

^(A-1)2 7([l,L],J,J,A-1) = -8- 
A-^0 iM+m-    ("« 

We list some values for the curvature of 7 in Table 6.1. In the Ising limit, the 
minimum gap occurs for n = 0. One can see from this table that for M = 0 and 
J > 1, the gap is concave up at A-1 = 0. This is the basis for Conjecture 2.4. 

7    Boson Model 

We now give a heuristic derivation of the free Bose gas model for the XXZ spin 
system in the limit J -> 00. This is an approximation to the full XXZ Hamiltonian 
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if A on a finite chain A = [1, L]. Our approach is similar to that of [13], although we 
would suggest to the reader to look at [9,10] and [8] instead. We are interested in the 
classical limit, J —> oo. Lieb, [19], proved that for the Heisenberg model one obtains 
the classical partition function as a scaled limit of quantum partition functions. 
Lieb's method used coherent states to obtain rigorous upper and lower bounds on 
the partition function. In [8], the same result was derived without coherent states, 
and then it was shown that with a sufficiently large external magnetic field the 
large J limit of the XXX model can be viewed as a free Bose gas, which verified 
predictions of Dyson in [9, 10]. A more recent proof of the Bose gas limit has been 
obtained by Michoel and Verbeure [23], where the spin J operator is viewed as a 
sum of 2J spin 1/2 operators, (using a spin ladder), and then a noncommutative 
central limit theorem is applied. 

The physical requirement of a large external field to obtain the Bose gas limit 
in the isotropic case is easy to understand. All the approximations (including our 
own) rely on a spin wave description of the elementary excitations. In order for 
this to be valid, the ground state must be very nearly saturated, i.e. the ground 
state should satisfy |(5^)| — J <€. J. To accomplish this for the isotropic Heisenberg 
model, one must place a rather large external magnetic field. This is an important 
difference between the isotropic and anisotropic ferromagnets. The XXZ model 
with A > 1 possesses kink ground states, which the isotropic model does not. For 
the kink ground states, there is a quantum interface separating two regions, which 
we can assume to be located at a = 1/2. For sites a < 0 one has (3%) < — J + Cq~a 

and for a > 1, (3^) > +J - Cqa. Thus the spin is saturated well away from the 
interface, with exponentially small corrections. The XXZ model exhibits saturation 
with just a boundary field, and the boundary field vanishes in the thermodynamic 
limit. Moreover the boundary field is known to give the correct ground states (cf 
[16]). So the boson picture is quite natural for the XXZ model. 

The energy-momentum dispersion relation is different for the XXZ model than 
for the isotropic model, as one would expect. The most important difference is that 
the lowest energy spin wave is not actually localized in momentum space, but in 
position space. It is localized at the interface, instead of being spread out uniformly 
over a large region. (There is one other spin wave with lower energy, in fact zero 
energy. But this is the spin wave which simply moves one ground state to the 
other, owing to the fact that all ground states in all sectors of total S3 have equal 
energy. We remove this boson by restricting to a single sector.) Moreover, there is 
a spectral gap between the lowest spin wave, and the others. The next independent 
spin wave boson does have a well-defined momentum, and from there on the usual 
picture of spin waves prevails. These are the results for one dimension, but the 
Bose gas model also holds for excitations of the (1,..., 1) interface ground states in 
dimensions d > 2. In dimensions higher than one, the low lying spectrum is more 
complex, having a continuous band of interface excitations at the bottom, as proved 
in [5, 4]. An interesting recent result by Caputo and Martinelli [6] gives a rigorous 
lower bound for the spectral gap in a large but finite system A, whose power law is 
lAI-2/^ in agreement with [5]. This gives strong evidence that the only excitations 
beneath a certain energy are interface excitations. The Bose gas approximation 
implies more, that for large J the interface excitations are separated from all other 
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spin wave excitations by a s; >ectral gap of order J. The d > 2 results will be 
elucidated in a forthcoming paper [24], as will be the rigorous proof of the spin 
wave Boson model for the XXZ model. For now we provide a heuristic argument. 

We begin by considering the simplest case, namely A = [1,2]. It is convenient 
to work in the dual space to 7^(A, J). Namely, for ip : [—J, J] x [—J, J] —> C, define 

W=        ^2       il>(mlim2)\mi,m2). 
roi,m2E[—J,J] 

Then ^1^) = |Gj^) where Gj is an operator on C[_J'J] 

Gj^ra 1,7712) = (J2 - 77117712 + A(A)J(mi — 7712))tp(7711,7712) 

-^[^ + l)-^i(mi + l)]1/2 

[J(J + 1) - m2(m2 - I)]17V(mi + 1, m2 - 1) 

-2k[J(J+1)-mi(mi-1)]1/2 

[J(J + 1) - m2(m2 -I- l)]1/2il>(mi - 1, m2 + 1) 

where A(A) = y/l — A-2, and we define V,(mi5m2) = 0 for any (7711,7722) not in 
[—J, J] x [—J, J]. All we have done is to explicitly write down the action of the spin 
matrices. Next, for any real numbers — 1 < /i; < 1, i = 1,2, let us define a linear 
operator TMliMafj : C00^2) -> C[-J>J]2, where TMliMafj$ = ^, 

^(mi,m2) = ^(J"1/2(mi - /zi J), J~1/2(m2 - frJ))- 

This operator has a very large null space.  But if for fixed ^1, ^2 one knows that 
^zi,/x2,J^ — 0 for ev^ry J? then ^ must obviously also be zero. 

There are many choices of operators 3ij on C00(M2) which satisfy GJT^^^^J — 
T^^zjJij. One particularly good choice is the following 

ttjtf (xi, X2) = 32fl- (MI + xi J"1/2)(M2 4- ^2 J~1/2) 

+ A(A) ((/xi - /i2) + (xi - X2)J"1/2) J^(a;i,X2) 

1 / r -.1/2        (7-22) 
-okE   11 j(j + i)-(^j+^J1/2)(^j+^J1/2 + (-ir+1^j 

£ = ±1      \ 1=1,2 

*(;Cl+£J-1/2,;r2-eJ-1/2)y 

which is the same as the definition of Gj, but now allowing the operator to act on 
smooth functions instead of discrete functions. One can formally expand 

Wj = J2
:K(

2
> + J3

/
2

 MW + jftd) +... 

considering the shift by ij-1/2 as e±J      a, and expanding in the small parameter 
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j-i/2   rpj^ resu^ing expressions for 3-C(2\ J{(3/2) and 'K^ are as follows 

W^ = 1 - Ml/x2 + AMim - M2) - A-^l - /x?]1/^! - /4]1/2 , (7.23) 

^(3/2) _ A(A)(X1 - X2) - (11X2 - H2X1 

+ A V-^|A*1^1 + Y7==^X2       , 

^     _ F>    V _        ^l ^2 ,        2^^2X1X2 
{0X1     aX2)       (1_^)2      (1_/i2)2 + (1_/x2)(1_M2) (7.25) 

1 1 
+ Z o   + 

1 - Mi    1 -14 

Let us now use the parameter 77 = \og(l/q), which is related to A by 

A-1 = sech(7?),        A(A) = tanh(T?). 

Then (7.23) shows that Oi^ is a multiplication operator, multiplying by the non- 
negative constant 

sechirj) (e^V(l + w)(l " to) - e-^2y/(l + fjL2)(l - f^))2 . 

Therefore, JiWV = 0 iff 

3r G R s.t. \fa € A , /za = tanh(7y(a - r)). (7.26) 

The number r is determined by //i + ^2, implicitly. Note that IK^3/2^ is also a 
multiplication operator, but given (7.26) we know that it vanishes identically, as 
well. So the first non-vanishing term is Ji^. We use (7.26) to rewrite (7.25) 

M(1) = -J- sech^l - r)) sech(77(2 - r)) 

x (| - d^ + cosh4(r?(l - r))xl - d2
X2 + cosh4(7?(2 - r))x22 

+ 2dXldX2 - 2 cosh2(77(1 — r)) cosh2(r?(2 — r))xiX2 

- [cosh2(77(1 - r)) + cosh2(77(2 - r))] ] . 

Now we notice the following: 0i^ is a second order differential operator which 
is homogeneous in dXl, dx2, £1 and #2 except for a constant (the zero point energy). 
Therefore, Ji^ can be regarded as the Hamiltonian for a two-mode Boson system 
with quadratic interaction. Thus, for a — 1,2, we define 

aa = -z= (cosh(^(a - r))xa 4- sech(7y(a - r))^) , 
Y (7.28) 

0,1 = — (cosh(r)(a - r))xa - sech(rj(a - r))dXa) , 

(7.27) 
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which satisfy the Canonical Commutation Relations 

[aa, ap] = [a^5 a£] = 0 ,        [aa, a^] = S^p , (7.29) 

and also 

aiaa = l- (cosh2(f,(a - r))^ - sech2^ - r))a2
Q - l) . (7.30) 

One sees that 
an + a^ = >/2 cosh(^(n - r))xn 

and 
an - a^ = \/2sech(77(n - r))^    . 

These relations imply 

2 cosh(77(l - r)) cosh(77(2 - r))xiX2 — (ai + a{)(a2 + aj) 

and 
2sech(77(l - r))sech(77(2 - r))dXldX2 = (di - a[)(a2 - fij), 

respectively. Hence 

2dXldX2 - 2 cosh2(77(1 — r)) cosh2(77(2 - r))xiX2 

= —2cosh(r7(l — r))cosh(r/(2 - r))(a{d2 + ajai). 

All of these algebraic manipulations allow us to rewrite (7.27) as 

(7.31) 

ft(1) = - 
A 

cosh(77(l — r)) ^+^       cosh(7?(2 — r)) „+-       -t-        -t- 
cosh(77(2 - r)) cosh(77(l - r)) 

(7.32) 

One can verify that one of the two eigenmodes of this system has zero energy, while 
the other is positive. The zero mode is a direct consequence of the infinitely many 
ground states, corresponding to different values of M, the third component of the 
total spin. If one considers the canonical picture, restricting the total magnetization 
to have a fixed quantity, then that boson disappears. 

The above results extend directly to a chain of arbitrary length. One has 
/ii,..., /if, satisfying (7.26). This is required for Di^ to vanish, and sufficient 
for J{(3/2) to vanish. The definition of the single site Bosons is just as in (7.28), for 
each a e A = [1, L], and the definition of ^K^1^ becomes 

^ =   E  ^pS^ap , (7.33) 

where Ja>/? = 0 if \a - /?| > 1, Ja,p = -A"1 if \a - 0\ = 1, and 

_1cosh(77(l — r)) 
JiA = A 

JL,L = A"1 

cosh(r/(2 - r)) 

cosh(77(L — r)) 

Jala = A-1( 

cosh(7y(L — 1 — r)) 

cosh(^(Q: — r)) 
cosh(^(a + 1 — r)) 

cosh(77(a - r))    v 

cosh(7y(a — 1 - r)) > 

cosh(77(a - r))    \ 
+      ,, )       ,   ;\x), forl<a<L. 

cosh Inla — 1 — r))/ 
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The single site Bosons are coupled, but the coupling matrix can be diagonalized. 
We obtain new Bose operators 6n, in terms of which the Hamiltonian is diagonal 
quadratic: 

L-l 

tt(1) = EA^n, 
n=0 

where bn = ^a Va 'aa with v^ the eigenvector of J corresponding to the eigen- 
value An. Again there is one zero-mode, Ao = 0, and A; > 0, for 1 < i > L — 1. Ai 
remains isolated in the limit L-^oo, for0<</<l. 

By considering only the leading order terms for the bottom of the spectrum, we 
have exchanged a quantum many body Hamiltonian H^ to an L body Hamiltonian 
J. For sufficiently high spin this drastic simplification describes the physics at low 
energies very well. 

In Figure 5 we compare our predictions to the spectrum of i^A as obtained 
through numerical diagonalization. The comparison is good, particularly along the 
first excited state and near the isotropic limit. The reason that the Ising limit 
compares poorly is that the quantum fluctuations have the effect of regularizing the 
eigenstates V^ whereas for the Ising model these states are definitely not smooth. 
However, for any q > 0, if J is made large enough, then we believe that these 
asymptotics eventually dominate. In Figure 6, we have plotted the spectrum of J 
for fifty sites and r = 0, which corresponds to the magnetization for which one has 
a minimal gap. It is clear that there is only a single isolated eigenvalue beneath 
the branch of (what would in infinite volumes be) continuous spectrum. Of course, 
to recover the spectrum of ^K^1^ one must take all (nonnegative) integer valued 
linear combinations of these lines, since each line corresponds to the first excited 
energy of an independent boson. In Figure 7, we have plotted several multiples 
of the eigenvalue line, to show how many eigenvalues lie beneath the continuous 
spectrum. There is also interesting behavior for other values of r. In Figure 4 we 
have plotted the spectral gap of ^7 as a function of r and A-1 Finally we mention 
that this analysis can be done for any dimension, not just one. Thus one may obtain, 
at least heuristic, information about the low spectrum of quantum spin systems in 
higher dimensions by analyzing JA, which is the first order quantum correction to 
the classical ground states for large but finite J. The higher-dimensional case, where 
the low-lying spectrum is known to exhibit additional structure [5], is the subject 
of a separate paper [24] 
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Figure 1: The spectrum of the XXZ spin chain for various finite spin chains. The 
horizontal axis is the total magnetization 5^ot of a sector: the lines above each 
number show the eigenvalues in that sector. The spin systems are, from left to 
right and top to bottom, (J, L, A) = (1/2,10,2); (1,7,4); (3/2,6,4); (2,5,8). 
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Figure 2: Plot of 1, 1 — <5 (left) and 0, 7 (right) versus A 1
) for (J,n,L) equal 

to: First column (7/2,1,4), (2,0,6), (4,1,4), (5/2,0,5); Second column (3,0,4), 
(7/2,0,4), (4,0,4), (9/2,0,3) 

Spectral gap vs A"' lor {J.L) = (1.11). (312$). (2.8). {512.7), (3,6). (7/2.6) 

Figure 3:  Some plots of the spectral gap using Lanczos iteration.   For all three 
curves, n = 0  mod 2 J. 
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J -> oo spectral gap, y , as a function of anisotropy and filling factor 

Interface position: r -0.5     o 
Inverse anisotropy: 1/A 

Figure 4: Surface and contour plot for the function 700 versus r and A -1 

Low Spectrum la XXZ: L=3. J=20 Low Spectrum lor XXZ: L=4, J=l ft downspins = 40 

Figure 5: Solid lines are the predicted values of spectrum according to Boson gas 
model, circles are actual values of the spectrum for full XXZ as obtained by Lanczos 



1090 Koma, Nachtergaele, and Starr 

Spectrum for L=51,r=fl.5 

Figure 6: The spectrum of the Boson coupling matrix versus anisotropy 

Low Spectrum for XXZ:L=51 

Figure 7: The spectrum of the Boson coupling matrix, with multiples of the lowest 
boson energy included 




