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Abstract 

We study the Hopfield model with pure p-spin interactions with even p > 4, 
and a number of patterns, M(N) growing with the system size, AT, as M(N) = 
aN73'1. We prove the existence of a critical temperature /Sp characterized as 
the first time quenched and annealed free energy differ.   We prove that as 
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p t oo, ftp -)• \/a21n2. Moreover, we show that for any a > 0 and for 
all inverse temperatures /3, the free energy converges to that of the REM 
at inverse temperature P/y/a. Moreover, above the critical temperature the 
distribution of the replica overlap is concentrated at zero. We show that for 
large enough a, there exists a non-empty interval of in the low temperature 
regime where the distribution has mass both near zero and near ±1. As was 
first shown by M. Talagrand in the case of the p-spin SK model, this implies 
the the Gibbs measure at low temperatures is concentrated, asymptotically 
for large N, on a countable union of disjoint sets, no finite subset of which has 
full mass. Finally, we show that there is ap ~ l/p\ such that for a > ap the 
set carrying almost all mass does not contain the original patterns. In this 
sense we describe a genuine spin glass transition. 

Our approach follows that of Talagrand's analysis of the p-spin SK-model. 
The more complex structure of the random interactions necessitates, however, 
considerable technical modifications. In particular, various results that follow 
easily in the Gaussian case from integration by parts fromulas have to be 
derived by expansion techniques. 

Keywords: spin glasses, Hopfield models, phase transition, overlap distribution 
Mathematics subject classification:   82A87, 60K35 

1    Introduction and Results 

In a recent paper [T4] (see also [T6] for a more pedagogical exposition) Talagrand 
has presented for the first time a rigorous analysis of a phase transition from a high 
temperature phase to what could be called a "spin glass phase". This was done 
in the context of the so called p-spin Sherrington-Kirkpatrick (SK) model [SK] for 
p > 3. From the heuristic analysis on the basis of the replica method (see [MPV]), 
it is known that this model should have a spin glass phase that is much simpler 
than in the case p = 2, the standard SK model. This important new result has 
highlighted the p-spin interaction model as an important playground to develop 
new techniques and to gain more insight into the fascinating world of spin glasses. 

The Hamiltonian of the p-spin SK model can most simply be described as a 
Gaussian process Xa on the hypercube <SJV = { — 1,1}^ with mean zero and covari- 
ance function 

EXaXal =NRN(<T,a,)p (1.1) 

where RN^.G
1
) = -^ YuZ^i = * _ dHam{v,v') where dnam denotes the Hamming 

distance. Seen from this point of view, the distinction between different values of p 
is in the speed of decrease of the correlation of the process Xa with distance. 

Talagrand's methods use heavily the Gaussian nature of the SK model, and in 
particular the fact that the X^ can be represented in the form 

l<il<22<---<ip<N 
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where Ji^,...,^ is a family of i.i.d. standard Gaussian random variables. It is there- 
fore natural to ask whether and to what extent his approach can be generalized to 
other models that have similar correlation decay properties as processes on SN, but 
that are not Gaussian and do not have the simple structure as 1. A natural can- 
didate to test this question on and whose investigation has considerable interest in 
its own right, is the so-called p-spin Hopfield model which we shall describe below. 
These models have been introduced in the context of neural networks by Peretto 
and Niez [PN] and Lee et al. [Lee] as generalizations of the standard Hopfield 
model [Ho] which corresponds to the case p = 2. This latter case has been studied 
heavily and since its first introduction by Figotin and Pastur [FP1,FP2] has be- 
come, on the rigorous level, one of the best understood mean field spin glass models 
[Nl,ST,Ko,BGPl,BGP2,BGl,BG2,BG3,BG4,T3,T7]. It should be noted, however, 
that all the results obtained for this model so far concern the high-temperatures 
phase and the so-called retrieval phase, while next to nothing is known about the 
supposedly existing spin glass phase. The investigation of this phase in the p > 4 
version of the model is the main concern of the present paper. 

We now give a precise definition of the models we will study. Let (fi, JF, P) be 
an abstract probability space and {£f };,MeN a family of i.i.d. Bernoulli variables, 
taking values 1 and -1 with equal probability. 

Define for each N G N a (finite) random Hamiltonian, that is, a function HN '• 
fi x SN -> E by 

/      r>!      \ 5  M{N) P 

V
 /        fjL=l   i1<...<ipl=l 

The value of p is considered a fixed parameter of the model, and will in the following 
be even and > 4. While this model can be analyzed rather easily along the lines 
of the standard Hopfield model if M ~ N (see [BG1]), the results of Newman [Nl] 
on the storage capacity suggest that the model should have a good behavior even 
if M(N) scales as A^"1, i.e.3 

,.     M(N) ,     x lim   Ar    / = a < oo. . (1.4) 

In this paper we will always be concerned with this case. The limit a will also 
turn out to be a crucial parameter for the behavior of the system. In the stan- 
dard Hopfield model, it has been proven that for small values of a, the model at 
low temperatures is in a retrieval phase, where there are Gibbs measures that are 
concentrated on small neighborhoods of the stored patterns. It is believed that for 
large values of a (or smaller values of /?) this property fails and that in fact the 
model should then be very similar to the SK-model; however, there exist no rigorous 
results to that effect. While in the present paper we do not present results concern- 
ing the retrieval phase in the p > 4 case, the results we shall present show that for 
reasonably large values of a a phase transition occurs from the high-temperature 
phase to a "spin glass phase" that is strikingly similar to those of the corresponding 
SK models. 

3In the sequel, we will write with slight abuse of notation M(N) = aiVP-1 even for finite N. 
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We will use the following multi-index notation. For finite subsets I of the natural 
numbers, and real numbers (xn)ne^, let by xx = Y[iexXl' -^ furthermore VN be 
the set of subsets of J\f — {1,... , N] of cardinality p. The Hamiltonian equation 
1.3 can then be written as 

V /      ^=1 xevN 

These Hamiltonians define random, finite volume Gibbs measures GN,(3[W] by as- 
signing each configuration a G SN a weight proportional to its Boltzmann factor, 
that is 

-PHN[uj](a) ff«M<"=2""^sr^ (1'6) 

Consider now the Hamiltonian as a random process indexed by a 6 SN- Simple 
calculations allow to verify that the mean of HN with respect to P vanishes for all 
a, that is EH^ (a) =0, Vcr £ SN, whereas the variance satisfies (for some number 
C depending on p only) 

f       M(N) 

aN(l - CN-1) < EHN(a)2 = ^g^ £    ^ vxg < aN, (1.7) 
/x=l   Z€VN 

which motivates our choice of normalization in the definition of HN- The covariance 
is given as 

f       M(N) 

EHN(a)HN(af) = 1^Yl   E Wz = "NB?{fT>o>)(l + ^iV"1)),     (1.8) 

where RN^^') = ^ ]Cf=i ^^i ^s ^be (normalized) replica overlap. Note that this 
covariance is in leading order and up to the factor a the same as the covariance for 
the p-spin SK-model ([T4]). 

The normalizing factor ZN£ in equation 1.5 is called partition function and it 
is given by 

Z^[a;]=l^c-^^MWj (1.9) 

where E^- is the expectation with respect to the uniform distribution on SN- We 
will call the mean of ZN,(5 under P the annealed partition function. 

We define the free energy FNJIU] = ^InZjv^H- 4 Customarily one calls the 
mean of the free energy, EFN,P , the quenched free energy, while the normalized 
logarithm of the annealed partition function is called the annealed free energy 
Ff^Q = JJXHEZN^- Observe that by Holder's inequality, both the quenched free 
energy and the annealed free energy are convex functions of /?. 

4Note that physicists often use a different normalization, FJV,/? = -wfi lnZjv,/3. We use Tala- 

grand's choice convention to facilitate comparison with [T4]. 
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Let us briefly mention a variant of the above model. On the same configuration 
space and with the same random variables £, we define macroscopic random order 
parameters 

m'M<7) = i£3V (1.10) 
i=l 

These parameters are considered as components of a vector in EM(JV) with M(N) 
as in equation 1.4. New Hamiltonians are now defined through 

HN[w]{a) - f (||m[a,](a)||Z - E||mM(a)||£) , (1.11) 
Sp 

where s = Sp > 0 is defined such that the covariance of H is in leading order in 
iV equal to aN. The interaction H is a straightforward generalization of the usual 
p = 2 case. However, computing the resulting covariance function one sees that it 
decreases only quadratically with the Hamming distance. Therefore it will not share 
the special features of the p-spin SK model. An analysis of the high-temperature 
phase for H has been presented in [Nil]. 

We will now state our results. They will always concern the model with Hamil- 
tonian equation 1.3 and p > 4. 

The first result we prove for both choices of the Hamiltonian is that for small 
ehough ft the limit of the annealed free energy exists. 

Theorem 1.1. If ft < |(p!)2 = ft', then the annealed free energy corresponding to 
H satisfies 

_af32 

% = -^-(l + 0(iV-1)). (1.12) 

Note that for larger values of /?, the annealed free energy diverges. Our analysis 
will be limited to the case when (3 < ftp where a comparison to the SK model is still 
possible. It is nice to see that this value tends to infinity with p very rapidly. More- 
over, we shall see that this value becomes much larger than the critical temperature, 
as a gets large. 

Jensen's inequality implies that the quenched free energy is less then or equal 
to the annealed free energy, 

lElnZ^l EFNtp = -E ]nZNi0 < -InEZ^ - Ffy. (1.13) 

We define the critical temperature to be the infimum of values for which equality 
holds in 1.13, i.e. in terms of /3, 

0P = sup {/? > 0 : limsupEFiv,/? = limsupFfrn
p}. (1.14) 

iVtoo iVfoo 
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By 1.8, as a random process on SN, Hwicr) has (up to an overall factor) essen- 
tially the same covariance structure as the p-spin SK Hamiltonian. This suggest 
that as in that case, for p large the model should be similar to Derrida's random 
energy model (REM) [D1,D2]. Recall that in this model, HM((T) = VNXa, where 
{Xa}aesN are i.i.d. standard normal random variables). Defining the corresponding 
partition function Z^J^ = Ea ef3y^Xcr, one easily sees that the free energy satisfies 
[D2] 

/#- =  lim  IE in Z*™ =    ^A- ^ ^ 7^ (1-15) 

We will show that as p tends to infinity, ^/a/dp tends to the critical value \/21n2 of 
the REM. Moreover, pointwise in a, /?, 

in analogy to the situation in the p-spin SK model [T6]. While this may not be 
very surprising, it is also not totally obvious and will require some non-trivial com- 
putations. 

Our next two theorems make these relations precise. We will denote by I(t) the 
Cramer entropy function, 

lit) = ^(1 - *) Wl - t) + i(l +1) HI + t). (1.17) 

Theorem 1.2.  The critical value (3P = (3p(a) satisfies 

I3p(a)2 > min f^M^m^} = $p(a)\ (1.18) 

Furthermore, if a > e 2\n2 = ap then 

I3p(a)2<^=0(a)2. (1.19) 

Remarks: 
(i) One can show that the inequality 1.2 is actually strict. In [B2] it is shown 

that for the SK case, (3P > v^In2(l-cp) with cp = 2-P(
4
+
0

(
1
/P)). This follows from 

a corresponding upper bound on the supremum of i?iv(or) which can be obtained 
using standard techniques. These estimates can presumably be carried over to our 
case. 

(ii) The bounds on the critical temperature are essentially (up to a factor ^/a) 
the same as for the p-spin SK-model ([T4], Theorem 1.1). 5 

5Observe that in [T4], the normalization of the Hamiltonian contains an extra factor 2   1/2. 
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By elementary analysis one finds that, as p tends to infinity, 

oinf ^(1 + t-tp)!®)1'2 = %/2to2 (l - ^pj + Otf2-2*). (1.20) 

This, together with the convexity of the free energy in /3, will allow us to prove the 
following statement. 

Theorem 1.3. As p -> oo, the lower bound Pp t /3.  Moreover, for all (3 > 0 and 

lim hm lEF^ = f™Jf/2. (1.21) 
ptoo -/Vfoo iv M 

An important point in the study of disordered models is the question of self- 
averaging of the free energy. While in many cases this follows from general principles 
[MS,T1] of mass concentration, due to the failure of certain convexity properties, it 
turns out to be surprisingly difficult to prove the following result6 

Theorem 1.4. For all /3,n,T,e > 0 there exists Cn < oo (depending only on n and 
/3)j and N < oo such that the free energy satisfies, for all N > N, 

F [\FNt0 - EFN,p\ > T/9i\ri+*] < CN'71 (1.22) 

In particular, linijvtoo l-^iv,/? — E-F/v,/? | = 0,    P — a.s. 

While the critical temperature is defined in terms of the behavior of the free en- 
ergy, it turns out that this phase transition goes along with a change in the behavior 
of the replica overlap parameter, i2./v(cr, cr'). This will eventually lead to rather de- 
tailed insight into the properties of the Gibbs measures at low temperatures. 

The crucial link between the two will be provided by the next theorem. 

Theorem 1.5. Assume that (5 < \P'V.  Then the replica overlap Rj^^ja') satisfies 

dF 
E -^ =al3(l- EgN,0 0 gNt0[RN(a, a')*]) (1 + ©(iV"1)), (1.23) 

Note that in the case of the Gaussian SK models, this relation is a trivial con- 
sequence of the integration by parts formula 

E[gf(g)}=E[g2}Elf'(g)], (1.24) 

which holds for any centered Gaussian random variable g and any function / not 
growing faster than some polynomial at infinity. To establish this result without 
the help of this formula turns out to require a considerable effort. 

We then have the following consequence to Theorem 1.2 and Theorem 1.5. 
3A sharper estimate can be proven with much less effort for the interaction H^, see [Nil]. 
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Theorem 1.6. Assume that a > otp. If ft < (3p, then 

limsupE£iv,/3 (8) GNARN^^'Y] = 0. (1.25) 
iVtoo 

dFN,0 Conversely, if lim sup^ E   ^i,p < afi, then 

liminf E^iv,/? 0 QNA
R

N{^ <J')
P

) > 0. (1.26) 
Arfoo 

In particular, 1.26 holds for all f5 G [^, \P') 

Remark: It seems reasonable that 1.26 should hold for all /? above the critical /3p, 
but there seems to be no general principal that would prohibit a reentrant phase 
transition. 

Inequality 1.26 expresses in a weak way that below the critical temperature, the 
Gibbs measure gives some mass to a a small subset of the configuration space. This 
result can be strengthened. As in [T4], we show that the overlap between replicas 
is either very close to one, or to zero: 

Theorem 1.7. For any e > 0 there exists po < oo such that for allp > po> OL > oip, 
and for all 0 < 0 < f3'p 

lim E^yii^a')! <E [c, 1 - e]) = 0 (1.27) 
iVtoo 'M 

//, moreover, ft < $p, then for any e > 0 there exists po < oo such that for all 
p>Po, such that for some S > 0, for all large enough N, 

W%H\RN(<r,a')\e[e,l])<e-SN (1.28) 

Remark: Note that we prove this result without any restriction on the temper- 
ature, while Talagrand requires some upper bound on f3 both in [T4] and in the 
announcement [T5], even though the bound in [T5] is greatly improved. We stress 
that the our result is also valid for the p-spin SK-model. The same applies for all 
subsequent results. 

The information provided by Theorems 1.6 and 1.7 allow to gain considerable 
insight into the nature of the Gibbs measures in the low temperature phase. This 
observation is due to Talagrand. 

In [T4] he showed that whenever 1.26 and 1.7 hold, it is possible to decompose 
the state space SM into a collection of disjoint subsets Ck such that 

• (i) lim Eg%2 {{((7)a
,)\\RN(a,a,)\>e}\UkCkxCk)=0 (1.29) 

(where the Ck depend both on N and on the random parameter!), and 
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• (ii) If a,cr' G Ck, then RN^.G') > 1 - e. 

Note that because of the global spin flip symmetry of our models with p even, 
these lumps necessarily appear in symmetric pairs. 

It is interesting to note that rather simple arguments allow one to deduce that 
the total mass of the Gibbs measure is not concentrated on just a very small number 
of these lumps. We will prove: 

Theorem 1.8. Assume that |/3p > j3 > f3p. Let C& be ordered such that for all k, 
GN,p(Ck) > GN,{3(Ck+i)- Then for all k G N, there exists pk < oo such that for all 
P>Pk, 

lim ¥0N,p (uf=1Cz) < 1 (1.30) 
iVtoo 

except possibly for an exceptional set of (3 's of zero Lebesgue measure.  Moreover, 
2 Ink 
3 ln2* fork large, pk - f£f 

In [T5] Talagrand has announced a proof of an even stronger theorem in the p- 
spin SK model that makes use of general identities between replica overlaps proven 
by Ghirlanda and Guerra [GG]. He also analysed the nature of the Gibbs measure 
conditioned on a single lump. It is likely that these results can also be extended 
to our model. However, this will require a considerable amount of work and we 
therefore leave this to further investigation. 

A final result is particular to the Hopfield model and concerns the storage prop- 
erties of the model. Newman has proven in [Nl] that for small a, the Hamiltonian 
has deep local minima in the vicinity of each pattern. Here we show a somewhat 
converse result, stating that if a is not too small, then small neighborhoods of the 
patterns have asymptotically mass zero. In other words, none of the patterns falls 
into one of the 'lumps'. This gives the final justification to call the phase transition 
we have observed a transition to a genuine spin glass phase. 

Theorem 1.9. Suppose that a satisfies aPp(a) > (p!)-1/2. Then there exists a 
5 G (0, i) and N G N such that for all N > N, 

M(N) 

P[axgsup|ffAr((7)|e   U  B5{^)]<N-m
9 (1.31) 

where Bsi^) is the N6-ball around £M in the space RN with respect to the Hamming 
metric. In particular, there exists an aSp = aSp(p) such that 8PR.23) holds for all 
a > asp.     Furthermore, 

M(N) 

axgsup|ff^(o-)| g   (J   B6(^)] eventually    P - a.s. (1.32) 

The proof of this result is based on the comparison between the ground state energy 
of the system and an estimate on the values of the Hamiltonian in the balls around 
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the patterns. While the former increases as Nyfa, the latter is almost constant and 
with high probability close to ^(p!)-1/2. 

The remainder of this paper is organized as follows. In Section 2, we explain 
the ideas behind the proof of the bounds on the critical temperature by calculating 
the corresponding quantities in the REM. In Section 3, Theorem 1.1 is proved. 
Section 4 is devoted to the lower and the upper bound on the critical./? (as well 
as the proof of Corollary 1.3. In Section 5 we prove Theorem 1.4 In Section 6 we 
prove the results on the distribution of the replica overlap, Theorems 1.5 to 1.8. In 
Section 8 we prove Theorem 1.9. 

2    The Annealed Free Energy. 

In this Section we compute the annealed free energy. Apart from the intrinsic 
interest this can be seen as the computation of the log-moment generating function 
of the Hamiltonian and this will be a basic input in the sequel. While in the SK 
models this is a two line computation, here this will require a little effort. The idea 
is to use Taylor expansions and to exploit the fact that the Hamiltonian is a sum 
of a very large number of independent random variables. Namely, 

E Zjsrfi    — 

i M(iV) 

Ee-^H(CT)=Eexp    ,*(    *    )     £   E# 

M(JV) 

n E exp   /? 

E exp   /3 (2.1) 

where we introduced the abbreviation Y = iV   2 J^ieVN &'  ^e now exPand the 

exponential function according to the bound l-s-%- < \x\3eW. Thus, 

E exp   0 NP-2 Y 

<   E /33 
NP- 

f32N2- 

llfexp   /? 
pi 

NP-
2 \Y\ + 0(Nl-p).    (2.2) 

Observe that the quadratic term is in fact just iVp 1 times the variance of H^. 
We will show in a moment that the expectation on the right-hand side of 8A.2) is 
bounded by a constant times N3"^. Assuming this and recalling that p > 4, it is 
evident that 

In EZN    =M{N)]n(l + &£Z(l + 0(N-1)) = 2£Z(l + 0(N-1)).    (2.3) 
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which is what we want to prove. We now turn to the non-trivial part of the proof, 
the estimate of the remainder on the right-hand side of 2.2. To to this, we decompose 
the exponent into two factors, and use on one the obvious bound |F| < (p!)-1iVp/2. 
This yields 

E 

<    E 

|r|3exp (/%!)iivV|y|f |y| V)| 

|y|3exp(/?(p!)i-^|r|f)]. (2.4) 

The point is that the term |y|2//p should behave almost like the square of a Gaussian. 
More precisely, we have the following bound. 

Lemma 2.1. Let {Xi}i=i^^N be a sequence of i.i.d. Bernoulli variables, taking 
values +1, —1 with equal probability. Then, for any 5 >, there exists a constant 
C < oo E'Q < oo (depending also on p) and an N G N such that, for all e > 1 

N-P/2 £ Y[xl 
ZGVN lex 

> 6 < 2exp 
1 

2 

2 + S (p!)F 
+ Cexp(-C-1eFT2). 

(2.5) 

Proof: The proof of this estimate is based on the following lemma. 

Lemma 2.2. Let {Xi}i=i^^^ be a family of variables taking values —1 and 1. Let 
rp,jv = N~p Y2i:\i\=zpXz, and m = iV_1 J^Xj. Then for each even p there exist 
constants Cp,q such that 

9=0 

(2.6) 

Moreover, CPJP = l/p\. 

Proof: The result is obvious in the case p — 2. The general result is easily proven 
by induction.□ 

Using Lemma 2.2, the proof of Lemma 2.1 is a straigtforward exercise and that 
we will not reproduce here. □ 

To finish the proof of the theorem, let us go back to 2.4. To get the claimed bound, 
it is enough to show that the integral on the right-hand side is bounded uniformly 
in N. Indeed, since the variable Y satisfies the bound 2.1 of the lemma, we get that 

E[|y|3exp(/3(p!)?-5|y||)]    <    £E[|y|3lI{m€[M+1)}exp (/3(p!)^|y|f)] 
Z>1 

<    £(* + l)3P[|y| > l] exp (/?(p!)*-*(Z + i)i) 
l>l 
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<        (x + I)3exp {Pipl)?'*(x + l)i 

0 

-(2 + 5)-1{p\)ixi)dx 
oo 

+C f(x + I)3exp (/3(p!)i-5(x + 1)< 

i 

(2.7) 

The second integral is always finite, and for any (3 < ^(pl)*, we can choose 5 > 0 
such that the first integral is also finite. This proves the theorem. □ 

We observe that we could have equally well replaced HN by in — Hjy in the proof of 
Theorem 1.1, without changing the result (since only the square of the Hamiltonian 
does enter). We therefore have readily the following result, which we state for 
further use. 

Corollary 2.1. If \P\ < Pp, then 

EE.e^^^e^^0^"1)). (2.8) 

Proof: Completely analogous to the proof of Theorem 1.1. □ 

We also put a result here, that will be used in the next chapter, but whose proof 
is very similar to the above. 

Lemma 2.3. // |/3| < \(3,
p, then there exists a constant C > 0 such that 

E re-/^;v(<r)-/?*M<7')j < eaNp2(l+R((7,a,y+C)^ ^.9) 

for all N large enough. 

Proof: The proof is actually almost identical to the proof of Theorem 1.1. Setting 
Y»(a) = N-*'2 Zxcj*&*i, we get 

InE [exp(-pHN(a) - 0H„(</))] 

M(N) , 2   , 

exp^OsATi-ll^^+r^cr')!)]). (2.11) 

Applying the triangle inequality and Cauchy-Schwarz to the error term yields 

E \y»{a) + yM((T')|
3e'3(p!)1/2Arl"p/2ly''^+y'x^')ll 
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< Eli (E [l^Wl^exp (2i8(p!)i^1-f 1^(^)1)])* 

x (E [|y^((T')r-2jexp(2/3(p!)5iV1-§|y''((T')|)l)5 ^Ci,        (2.12) 

if (3 < \(3'p and AT large enough, by the result in the proof of Theorem 1.1 (cf. the 
remark after corollary 2.2. 

The quadratic term in 2.10 is evaluated easily. One obtains (observing that the 
covariance of H^ appears) 

E (yV) + ^V))2]   - SEfy{a)2) + 2E[Y«(<7)y'V)] 

p'- 
(l + Ri^a'W + OiN-1) (2.13) 

Hence, 

lnEe-/3(^(.)+^(.'))      < EM(N) ^ ^ + _J^{1 + ^^/jp) + ^ + _^_) 

< M(Ar)(^2^2-P(l + iJ(cr, cr'^) + CsN1-?), * (2.14) 

that is, 

Ee-PHN(or)-0HN(a') < ea02N(l+R(a,a')p)+C4t 

This proves the lemma. □ 

Finally, we have as an application of Corollary 2.2. 

Lemma 2.4.  The Hamiltonian satisfies 

(2.15) 

sup | HAT (CT) | >iiV <C 
'exp (-#(£-In2)), 

exp(-iV(^i-f£-ln2) 

if^^1 
^        e*      > 

otherwise. 

(2.16) 

Proof: 

Standard arguments together with Corollary 2.2 yield that 

swp\HN(a)\ >tN <    C^1    inf    e-^e^V 
ge(o,0') 

C2< 
'exp(-JV(|i-ln2)), if t < ^ ^ e2        , 

exp   -N(®g-t - 0 - In 2)) ,    otherwise 
(2.17) 

This proves the lemma. □ 
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3    Critical (3 and Convergence to the REM 

3.1    Estimates on the Truncated Partition Function. 

To get the lower bound for the critical temperature, we will use Talagrand's method 
of truncated second moments (see [T4,T6]). We would like to compare EZjy^ and 
(EZJV,/?)

2
. However, it is essential to do this comparison for a truncated partition 

function. Define therefore 

ZN,0(c) = E, [e-^M^l^H^^Ny] , (3.1) 

for c > 1. The key observation is that the truncation has no influence on the 
expectation of the partition function if c is chosen appropriately. This is the content 
of the following lemma. 

Lemma 3.1. For all (3 > 0, c > 1 such that fie < /?£ there exist K, K' > 0 such 
that 

EZNip(c) >(l- Ke-K^c-l^N^ EZNip. (3.2) 

Proof: Let us set q = q(N) = aP2N. Note that 

EZNip - EZN^ = E [e-pHNia)l{.0HNi<r)>cq}\ (3.3) 

and thus by the exponential Chebyshev inequality 

EZN,p - EZNt0 < Ea inf e-tcqE Je-W+OJM*)] . (3.4) 

We now use Theorem 1.1 with ft replaced by (1 + t)P to estimate the expectation 
to get 

infe-^E fe-«w)^Wl <        inf       e-tcq+U±pi+qCN-\ {3^ 
t>0 L J        O<t<0//3'p-l 

The exponent is minimized for t = c - 1. By assumption, fie < (3^ so that this 
value falls into the interval over which the inf on the right is taken. Thus, 

inf e-tcqE 
t>o 

e-l3(l+t)HN(<r) 

(3.6) 

This implies the statement of the lemma. □ 

We now turn to the square of the truncated partition function. We bound EZ^^ 
by two different functions. When calculating the expectation with respect to a and 
cr', we use one bound for small values of the replica overlap i?(cr, cr'), and the other 
for the rest. Define therefore 

5(6) = E^ [e-W^+W^RMw] (3.7) 
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and 

T(cb,b') = K„ 

Then 

e-/J(HN(<r)+tfjv(<r'))l {\R(<r,l7')\elb,b'}}^{-0(HN(^+HN(e'))<2ca02N}\ ■ 

(3.8) 

^iv,/3(c)2<5(6) + r(c,6,l), (3.9) 

for all b € (0,1). We now control each of the terms separately. We start with 5(6). 

Lemma 3.2. Suppose f3 < -&, and b is such that 

7 = at32bp-'i < -. 

Then for all e € (0, | - 7) there exists Ne € N such that for all N > NE, 

ES(b) < 
>/l-2(7 + e) 

0a/32Af 

(3.10) 

(3.11) 

Proof: If /? satisfies the above condition, we can apply Lemma 2.3 to the integrand 
of the right-hand side of 3.1. One obtains 

E e-/?(//iv(^)+^7v(<7,))1I 
i\R(a^)\<b} < ^{IRia.a^Kb}^ 

aP2N(l + (R(a,a')p)+CN-1) 

Thus, 

ES(b)    <    E,,,, ^Nil+Riayy+CN-1)^ 
{\R(a,a')\<b} 

eaP2N(l+R((rta')2b'"2+CN'1)-^ 
{|fl(^')|<6} 

_     ^p2N 

N/2+lbN} 

:iaP2N(R((r,a,)2bll"-2+CN'1) 

< V       2-N{ V )e(7+e)Ar^ 
A;=Ar/2-[6iV] 

(3.12) 

(3.13) 

by assumption 3.2, for any e > 0, if TV is large enough. Standard estimates then 
yield 3.2.0 

The next result concerns the term T(c, b, 1) in 3.1. 

Lemma 3.3. Let I(t) be the Cramer Entropy as defined in 1.  Suppose that there 
exist c > 1, d > 0, such that 

Vie [6,6'],    2a/32c(l 
2(1 + V) 

) < a(32 + I{t) - d. (3.14) 
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Then, if 

c<mm(—P'p,l + 1f), 

there exists N € N such that for all N > N, 

ET{c,b,l)<ea<l'Ne-'V. 

(3.15) 

(3.16) 

Proof: By definition, 

(3.17) 

In a first step, we bound the expectation over the disorder for fixed cr, a'. Similar 
to the proof of Lemma 3.1 we get (again q = afi2N), yields 

H? IT -j3(HN(a)+HN(a')) 
^ lL{-p(HN(a)+HN(a'))<2cq}e 

< inf e2tcqE  e-0(i-t)(HN(<r)+HNl<r')) 
~~ t>0 

We now use Lemma 2.3, with ft replaced by /?(1 — t) to obtain 

(3.18) 

infe^E 
t>o 

e-i3(l-t)(HN(<T)+HN(a')) < inf e2tcqe(l-t)2q(l+R(*1<r')*)eC2N-1qm 

- t>l-(3'p/{2(3) 

(3.19) 

The infimum is attained for t = 1 - ,1+
c
fip^ > 1 - ^ (by assumption 3.3. Thus 

E e-/HM*)-/HM*')        I{_/,Hw(ff)-/JJirw(a')<2ca/JAr} 

<    C3exp(2ca^2iv(l- 
2(l + i?(a,CT')p) 

(3.20) 

Finally, we integrate over all configurations a, a' satisfying \R(a,a')\ € [b,b']. We 
observe that R(a,a') has the same distribution as 5(a) = iV_1 Y,i=i ^i- Hence, 

E T(c,M')]    <    CaK,,- 

=   C3K 

exp (2ca/32(l - __^__) j^,^^,^ 

exp (2ca/32iv(l - 2(1 + g(g)p))j ^is^ie^v]} 

< 2C3A^exp   A^  sup 
\     te[b,b' 

< 2CzeNW2+]l^-d) < eNM2-t) (3.21) 

The second to last inequality follows from the hypothesis of the lemma, and the 
observation that we sum over at most 2N values of S(a). The last inequality holds 
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for all iV larger than a certain iV G N. Since this estimate is uniform in &', we may 
choose b' = 1. □ 

From the preceding results, we now get a variance estimate for the truncated par- 
tition function. 

Proposition 3.1. Suppose that (3 < (3P.   Then there exist constants C > 0 and 
c > 1 such that 

E[ZN,(3(c)2} < C(EZN,0(c))2. (3.22) 

and, 

nzNi0(c)>^EZNt0(c)]>-^. (3.23) 

Proof:   We first prove that the hypothesis implies that the assumptions of Lem- 
mata 3.1-3.3 are satisfied. Consider therefore ft < \(3'p such that 

/J2<   inf   m^?-. (3.24) 
o<t<i atv 

Then it is immediate that 

1       A      „     2  1 + 2^ _2 2^  I1 " 2(lT^J = ^ 2(1^) < ^  + /(t)' (3-25) 

for all t G [0,1]. By continuity, there exist c* > 1 and d* > 0 such that Vc G (1, c*) 
andG?G(0,d*) 

2ca/3211" 2(TT^)) < a/32 + /W " d'   vt G [0'11" (3-26) 

This implies the hypothesis of Lemma 3.3. 

We now show that (E[Z/v])2 is of the order of E[ZJV
2

]. We start by fixing the 
free parameters 6, &', and c. Choose first b such that 7(6) = \ (or any other constant 
less than one half). Then choose c such that 

c<min(c*,^,l + &p). (3.27) 

Then the hypotheses of all preceding lemmas are fulfilled. Finally, choose b' = 1. 
By Lemmata 3.2 and 3.3, we then have 

E [ZN
2] < E[S(b) + T(c,6,1)] < (Ci + e-Nd^)eaf32N. (3.28) 

The right-hand side is by Theorem 1.1 bounded by 

(Ci + e-Nd/2)eaf32N < 2C2(E[ZN)y, (3.29) 
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which in turn is of the order of (E[Ziv])2 by Lemma 3.1, so that 

(Ci + e-Nd'2)ea02N < C3(E[ZN}y. (3.30) 

This implies 3.1. The second assertion of the proposition follows from the Paley- 
Zygmund inequality, which states that for a positive random variable Y and any 
positive constant g, 

Y>9EY}>(l-9f^p^. (3.31) 

This relation gives us a lower bound on the probability that Zjy > gE[ZN], which 
is strictly greater than zero and uniform in N. Indeed, if we set g — \ in 3.1, then, 
by 3.1, we get 

V[ZN > ±EZN} > ^. (3.32) 

This concludes the proof of the proposition. □ 

3.2    Proof of the Lower Bound. 

We will now prove the lower bound, assuming that Theorem 1.4 holds. This is 
by now quite standard [T1,T2,T3], but we repeat the argument for the reader's 
convenience. Note that by Lemma 3.1 for iV large enough, for any 5 > 0, 

F[ZN> -EZN] <r[ZN> ±(1-6)EZN]. (3.33) 

But 

ZN>^(1-6)EZN]     =   r[FN-EFN (3.34) 

>    N-^IUEZN - Eln ZN - In ^(1 - S) 

But Theorem 8pr.4) implies that this quantity is smaller than B~n, if 

iV"1 (In EZN - Eln ZN) > N'1^6 (3.35) 

in contradiction to the lower bound 8C.42). This proves that for (3 < $, 

lim A^-^lnEZiv - Eln ZN) = 0 (3.36) 
iYfoo 

proving the lower bound on Pp. D 

Remark: It should be noted that the above argument requires only an upper 
deviation inequality for the free energy. Such an inequality can be obtained in 
a much simpler way than Theorem 1.4 (in that it does not require the results of 
Section 5) on the basis of a result of Ledoux [Le]. 
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3.3    Upper Bound on the Critical (3. 

The proof of the upper bound in Theorem 1.2 is considerably simpler than the 
lower bound. Obviously, E ^jff- < iV""1E sup^ \HN(a)\, while Lemma 2.4 yields 
immediately: 

Lemma 3.4.   There exists C < oo, such that: If a > ^p, then 

E sup \HN(a)\ < NBa + C (3.37) 

where 

Ba~\a-^ + ^,    if0<a<^ (3-38) 

Let poo = ^a/a and assume that a > ap. Now assume that ^ > PQQ. Then for 
/^oo < ft < Pp, we have that 

limsupEFiv(/?)    <    limsupEFiv(^oo) + HP - f3oo)Ba 
A/'foo Ntoo 

in contradiction to the assumption that P < PP. Thus /3p < /JQO which proves the 
upper bound 1.2. □ 

3.4    Convergence to the REM: Proof of Theorem 1.3. 

The convergence of the free energy as p f oo follows now from a simple convexity 
argument. Note that for all P < PP, Yimmoo EFN^ = fpEM, while for all p > J3P, 
by convexity of F/v,/?, 

limmiEFNjp    > liminfNtoo EFN * + aPp{P - 0) = «£. + ap(P - J3)  (3.40) 

while on the other hand 

limsupEF^,/?    < liminfivtoo EFNj + aPp(P - J3P) = ^ + aPp(P - J3P)(3A1) 
Ntoo 

provided p is large enough such that a > ap. But since linipfoo PP = limp^oo Pp, the 
two bounds above both converge to fpEM, as p t oo, for any a > 0. This proves 
Theorem 1.2.0 
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4    Fluctuations: Proof of Theorem 1.4 

The main line of reasoning of the proof of the fluctuation theorem is as follows. 
First, for each N we define a set whose complement has a very small probability 
(of the order of N~n). On this set, we prove the estimates on the deviation with 
the so-called Yurinskii martingale method [Yu]. On the complement, we simply use 
that the free energy is bounded by a polynomial function. This approach was first 
used in the context of the mean field model in [PS,ST] for variance estimates and 
in [BGP2,B1] for exponential inequalities, but has later been made obsolete by new 
concentration of measure inequalities provided by Talagrand in [Tl]. Unfortunately, 
these require convexity of the level sets of the random functions considered which 
in the current situation do not appear to hold. 

Define the decreasing sequence of cr-algebras J^ = <7({ff }f>f • Furthermore, for 
c, 7 > 0 and k G Af, let 

where 

Ak = Ak^tr = {w e n: \gN,0 [#*»]! < cN-1+i\ 

iBk cii. 

'-   \1\-P^ 

(4.1) 

(4.2) 

\N 
We put and A = ^4c,7,Ar = V\k=i ^k-  The set A will be our 'good' set.  We first 
show that its measure is large. 

Lemma 4.1. For all 7, c, m > 0, there exists C > 0, such that 

PL^c/Y,JV] > 1 * CN~ (4.3) 

Proof: Since P[^c] < J2k=i p[^ifec] we only need to show that for each ki F[AC] < 
CN-171, for any m. By the definition of the sets Ak, Chebyshev's inequality and 
Jensen's inequality, we have, for any / G N, 

M(N) 

K E ^ >cAr7 < (cN"<)-2lEg {T^^HSf (4.4) 

If we can show that the expectation on the right-hand side is bounded by some 
iV-independent constant, 4 will prove the lemma. 

Expanding the power in the integrand yields, with the usual multi-index nota- 
tion, 

EG 
M{N) 

21 

(E R:) \= E C^EG n (ffor 
M(N) 

M=l 

(4.5) 
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where r is a multi-index and the numbers C2i,r are the multinomial coefficients. The 
main point in what follows is the realisation that the difficult terms are those which 
have at least one fi with r^ = 1. This is due to the following observation, which is 
a simple consequence of a result proven in [Ni2]. 

Lemma 4.2.  There exist constants c, K > 0 such that for all N large enough, 

M(N) 

sup   £ (i?ft»)2 < cF.103) (4.6) 

with probability at least 1 — e KN 

Proof: We write the left-hand side of 8F.103) as 

M(N) M(N) 

H=l M=l   X,jBk 
^1 £ ^xS; Np-1    L-J   ~±^a]SfP-l    J' 

T,j3k li 

(4.7) 

Consider a as a vector in an ( ~1
1) dimensional space, and a-1 N1~p ^M €z€j as 

the coefficients of a matrix P representing a map from this space onto itself. Then, 
denoting by Amax the operator norm of P) uniformly in cr, 

M(JV) 

E ww ap 
-MP°)< 

apl   (N - 1 

N1-? \p-l 

^v-1_pllcrll2Amaa: 

< apA^ (4.8) 

In [Ni2, Theorem 2] it is shown that Amax is bounded by a constant with probability 
at least 1 - e~KN with / G (0, |). This proves the lemma. D 

Returning to 4, we will try to get only terms of the form bounded by the lemma 
above, the idea being that we do not really want to integrate, but rather use a 
uniform bound for the integrands. We therefore single out those /i's for which 
r^ = 1. We obtain 

EG 
M(N) 

/i=l 
( E ^)     = E   E <*.rE0 

JCM:    r:r<J 
\J\<21    \r\=2l 

Urn n (#Dr 
(4.9) 

where the compatibility relation r < J means that for all fj, £ J, r^ = 1. Since 
the fi € M \ J will not enter in any of the calculations that follow, we write (the 
relation r -< J now denotes the condition that V/z E J", r^ = 0) 

r   M(N) 
i = Eg 

r   IviyiyJ on 

(Effr)    =  E   E c
2wiE^ 

|J'|<2Z    |r|=2/-|l7| 

n^ n w)-- 
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JCM: 
\J\<21 

= E ^ n *£ E cw\ n (^)r 
veJ r:r^J 

\r\=2l-\J\ fieM\j 

£J(<T) 

(4.10) 

At this point, we expand recursively the Boltzmann weights with respect to the 
terms H%, /i G J. This will generate new terms which are slightly more complicated 
than the term we started with. The procedure stops when no H£ is left to expand 
in. In particular, since \J\ does not depend on iV, this will ensure that none of the 
appearing factors will depend on iV. 

We use the following notation.  We order the set J in the canonical way, i.e. 
J = {/ii,... ,^n}5 with i < j => jii < fij. We define interpolating Hamiltonians 

#£;:.■.•;£» = # M - E^1 - «*)#*»• (4.11) 
i=l 

In particular, H = H^]"'{^n, and if Uj — 0, then ##*;;;;;#" is independent of (£ • 
The associated Gibbs measures and partition functions will be denoted by ^';;■,'£« J 

respectively Z^yjfc. 

The terms that will appear are of the form 

i=n'+l i=l 

(4.12) 

where q < n'', and the TTJ, j = 1,... , n are functions from {!,... , n'} to {1,... ,n'}. 
They appear because the expansion of the denominator (the partition function) will 
introduce new copies of the measure (hence the power q). 

The first product in the integrand above contains the H% with respect to which 
the expansion has not yet been done. The second corresponds to those which have 
been used. 

The initial expressions on the right of 4 correspond to the case q = 1, n' = 0, 
m = l,Vi, that is, 

EG n H££M = E^.V'i'"" EK^-1) 
i=l 

(4.13) 

The following provides the basic recursion relation. 

Lemma 4.3. For all numbers n' G {0,... ,n — 1}, q G N,  and wi,... ,un', and 
functions 7rn/7 there exist functions (T{3

ni+1)j=i,...,q+i, and a number unr+i G [0,1] 
such that 

^^Ul ,... ,un/ 
i=ri+l i=l 

(4.14) 
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=  -pJ^EgZi-Z^ 
j=i 

^, 
+      -ll!'i/ui,...,un,+1 

n'+l 

H   ^r^1) 11 ^(^)^(^'+l(i))^(er1) 
=n/+2 i=l 

n ^C'1)"n ^((ri)iTr(^:"i(i))^(^1) 
i=n/+2 t=l 

The functions (7r^/+1)j=ij...)g+i satisfy 

7rn'+lW = 
f7rn/(i),    ifi^n'; 
|i, if i = n' + l. 

(4.15) 

Proof: We expand the Boltzmann weight of the Gibbs measure on the left-hand side 
of 4.14 in the pattern //n'+i- Since Huu'.'.'.litn' - ^l^/Z^'u^^lu^^^i, expanding 
in the variable iv+i about 0 to zero order with remainder of order 1 yields 

exp i -/j£*/=1 <;:::;:;;(*>'))    exp (-/JEJ,.,H^Z'Z::"'*
1
^') 

(Zui.....«n/.«n/+1) (<1:.:'::";+o1)' 

^"l "n'^n' + l-.. ■H;-'
+I

(^) 

+- 

xE^+x exp ( - 0Hi:i::;;Z£;£(a'+^HZ~,+l(<r'+1), (4.16) 

for some un'+i G [0,1]. 

The first term on the right does not depend on £^n/+1 (see the remark after 4. 
Hence, when multiplied by the products of the H%, this disorder variable appears 
exactly once, so that integration with respect to it yields zero. 

The second and third term above give the new terms on the right in 4.14. The 
relations for the functions 7r^,+1 are easily verified. □ 

Applying this recursion relation n times yields the following decomposition. 

Lemma 4.4. LetJ — {iii^..^n}Jn<2l. Then there exist numbers ui,... ,un £ 
[0,1] such that 

n+l 

qz= 1 7r~<7 

[ H fff (^tff (a^CAa1)],     (4.17) 
i=l 

i=l 
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where the functions TT permute the indices i G {1,... ,n}, and the relation IT ~ q 
describes the condition that \{i G {1,... ,n} : 7r(i) ^ 1}| = q. The number of such 
functions TT is thus independent of N. 

Proof: The proof follows by applying the recursion relation from Lemma 4.3 n 
times. Observing that each step adds at most one other replica implies that q < 
n +la. □ 

We finally sum over the sets J C M on the right of 4. We obtain 

\J\ n 

I'l^   E  EE^^E^^^^l-^Inl^^W^0)  ^(a1)].  (4.18) 
JCM: q=l n~q 1=1 

First, we observe that since \H£\ < 1, 

I^I < E ^m n W"* E ^^i n i^i2^-2. 
(4.19) 

\r\=2l-\J\ ^   lW \r\=2l-\J\ ^      W 

where 8ayb = 1, if a > 6 and zero otherwise. 

For any multi-index r, denote by #r the number of rM which are not zero. Hence, 
the products on the right-hand side of the above inequality are just the completely 

off-diagonal terms of the form f J2^eM\j^k)2 ) • Then, adding the terms which 

have at least two indices equal (and which are obviously positive), yields uniformly 
in a 

2*-|J| 2l-\J\ 

\Cj\<   £  ciWi(   £   (Htf)   <   £  ^^(SW)2)   <C,   (4.20) 

on a set £ of measure at least 1 — e~KN     by Lemma 4.2. Using this in 4, we bound 
/' = EiBa[(E^n2i]by 

\J\ n 

l7'!^ E EE^.m^EI^1V:::,l"®'[nF*i(^1W(^('))]-   (4-21) 
JCM: q=l nr^q i=l 

Since the integrand is non-negative and \H%\ < 1, we can change the Boltzmann 
weights back to the original ones (that is, setting all Ui = 1), and committing at 
most an error of e^71. Furthermore, the functions TT depend only on the size of J. 
Hence, adding again positive terms in the third step below (and observing that 1,71 
is even), 
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n=o   JCM: ir~q q=l z=l 
even  1.71=71 

* CEE E E^^a^lnl^r^w^0)!] 
n=0    Tr^gr   JCM:   q=l i=\ 
even U'Nn 

^ CEE^   E   E^^^^lnl^^w^0)!] 
even      ^       ^       '^        H 

21 1      n n M 

n=0    7r~g        '   g=l i=l        //{=! 
even 

Finally, we apply Cauchy-Schwarz to get rid of the absolute value in the sum over 

M M i        M i 

EWVWK*
0
)!<(E^r^1))2)^E(^r(^w))2)5<c (4.23) 

^=i ^i=i /ii=i 

on B by Lemma 4.2. Inserting the above in 4.22 shows that EIB^E^^] is 
bounded by a number independent of N, since all the remaining sums are over 
finite sets whose sizes do not depend on N. 

Since (^ H^)21 is polynomially bounded in N, uniformly in a;, the remaining 
part / —/' (i.e. the integral on the set Bc) is obviously bounded by an exponentially 
small number in iV1/5 (e.g.), and is thus also smaller than a constant. 

We use this in 4 which shows that 

P[AC] < ctc-^N-W. (4.24) 

Thus for all 7, m > 0, there exist / and C/>m such that 

P[-4ifcc]<aim^-m-1. (4.25) 

Summing over all k = 1,... , iV shows that indeed 1P[^4C] < ChrnN-rn. D 

We now bound the fluctuations of the free energy on the set A. 

Proposition 4.1. Let FN = iV-1 In ZN^AC^^ • Then, for all ft, all r > 0 and all 
e > 7, there exists N < 00 such that for all N > N, 

P  \FN -EFN\ > rpN-i+£] < 3e-N£/\ (4.26) 

Proof: In the sequel, iV, ^,7,c will be fixed, and we will therefore frequently drop 
the corresponding indices. The approach to the proof follows the general idea of 
[BGP2,B1]. Define a decreasing sequence of cr-algebras {FkjkeN by 

^ = ^({^}r>T)vA,7,iv. (4.27) 
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This allows to introduce a martingale difference sequence (see [Yu]) 

Fk = E[F\Fk]-E[F\rk+1]. (4.28) 

By the definition of conditional expectations F - EF = J2k=i Fk1IP[A]. The factor 
F[A] tends to one as N t oo by Lemma 8f.l). It is therefore enough to control the 

sum Y^k=i Fk- ^e observe that 

k=l 

=    2 inf e-tzE[E [... E[E [etpl |^2]e^2^3].. • ]etpN
|^V-M].(4.29) 

To make use of this inequality, we need bounds on the conditional Laplace trans- 
forms, that is, we want to show that for some Ck(t), \nE[etF |^+i] < ^^(t), uni- 
formly in !Fk+i. Using a standard second order bound for the exponential function, 
we get 

E[etpk\h+i} < 1 + ^E[(i?*)2elt#*l|.Ffc+i]. (4.30) 

To make use of this we need to bound \Fk\. A conventional strategy is to introduce 
a family of Hamiltonians Hk(a,u), defined by 

r„ni/2 M(N) 

Hk{a,u) = H{o) + (1 - u)^- "£   Y, &i- (4-31) 

|I|=p 

This new Hamiltonian is equal to the original one for u = 1, and independent 
of {££}M=I,...,M for u = 0 Denote by Zk(u) and gk(u) the partition function, 
respectively the Gibbs measure associated to this Hamiltonian. Observe that the 
condition on being on the set A is stable against the change in parameter u € [0,1], 
that is 

M(N) 

gk(u) [N-* £ Y, fri] e [-c'c].   Vu € P'!]' (4-32) 
11=1   X3k 

on the set A. Indeed, the derivative of the left-hand side with respect to u is non- 
negative, since it is the variance of the integrand with respect to the measure Q(u). 
For u = 0 the Boltzmann weight does not contain cr^ and thus the left hand side is 
zero for u = 0. The absolute value of the left-hand side thus assumes its maximal 
value for u = 1. 

Define 

gk («) = ^ 1A In Zk («) - 11A In Zk (0). (4.33) 

Since Zfc (0) is independent of cr*;, this quantity relates to Fk via 

Fk = E[gk(l)\Fk}-E[gk(l)\Fk+1} (4.34) 
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Observe that gk(u) is convex in -u, since its derivative is equal to the expectation 
of the left-hand side of 4.32, whose derivative is the variance of a random variable 
with respect to the measure G- Since by its definition gfc(0) = 0, and therefore 
|#fc(l)| < max(\(gky(l)\, |(^fc)/(0)|), where the prime denotes the derivative with 
respect to u. Moreover, since Hk(a,u = 0) does not depend on cr^, it follows that 
(gky(0) = 0, and hence we can use \gk{l)\ < K^)^!)]. Explicitly, this is 

\ 
1/(1)1 < i(/)'(i)i = 

fnlW2 fM{N) 

\     [1=1      ZBk 
\ |X|=P / 

1A < ciV-1+7.   (4.35) 

Inserting this bound into the exponent on the right-hand side of 4.30 gives 

1 + yE[(F*)2el^l|^+1]      < 1 + ^EKF*)2^1)!!^!] 

< 1 + ^e2c*Af"1+1rE[(F*)2|^fc+1]. (4.36) 

To treat the quadratic term, we observe that by 4.34, the properties of conditional 
expectations, and Jensen's inequality (see also [Bl] and [BGP2]), 

E[(Ffc)2|^+1]    < E[(/(l))2|^+1] < E[(fl*(l))'2|^+i]. (4.37) 

The last term is bounded since we are in the set Ak- Indeed, 

E [(/(1))'2|^+1 N2Py 

<   f32CN2~<-2, 

M{N) 

^[ E E^x Fk+l 

(4.38) 

Thus, using the bound 4.38 in 4.36, 

1 + ^E[(F*)2el^l|^k+J]    <    1 + tle2c>3tN-l+''C{32N2'>-2 

<    exp (je^^-^CpN2^2 

Inserting this in 4.29 yields 
N 

k=i 

(4.39) 

<    2inf exp (-tziriA})-1 + Le2^tN~1+1C^N2^ . (4.40) 

We choose z = r^iV"1/2^, and t = \Nz = ^N1^. This implies that 

N 

k=i 

<  2 exp (-N* (F[A})-1 + CT-
2
N

2
^ 

-6    2cr-1Ar-1/2+'Y-e /2) -(4.41) 
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Choose 7 < e/2. Then for any r > 0, and iV large enough, the right hand side of 

4.41 is bounded by Se~Ne/2. Since P[.A] ~ 1 - N~m, the claimed estimate follows. 
□ 

Proof of Theorem 1.4: The assertion is now an immediate consequence of 
Lemma 4.1 and Proposition 4.1. Indeed, 

\FN-EFN\ < \FN-FN\ + \FN-EFN\ + \EFN -EFN\. (4.42) 

The first term is non zero only on Ac. Also, the last summand is bounded by 
IP[^C] sup FN < CNpF[Ac]. If we choose m in Lemma 8f.l) larger than p + n + 1, 
then this term is eventually less than iV-2, and thus also less than z = riV-1/2*5'. 
Thus, for all n,r,£ > 0, and iV large enough, 

V[\FN-EFN\>z]    <    n\FN-FN\>^}+n\FN-EFN\>^] 

< CNPF[AC] + F[\FN - EFN | > |] 

< CN-71'1 + e-N€ < N'71. (4.43) 

This concludes the proof of the theorem. □ 

5    Results on the Replica Overlap. 

5.1    Proof of Theorem 1.5. 

By the definition of the free energy, 

8F 1 1  MiN) 

E^F = -jf^NAH] = -jf E VGNAH»(V)}, (5.1) 

where 

NP 
XCA/" 
|X|=p 

is the contribution to the Hamiltonian from pattern /i. For u E [0,1], we define an 
interpolating Hamiltonian 

H^ = H-{l-u)H^. (5.3) 

Observe that H(0) is independent of the pattern f while 5(1) = H. The notations 
Qfi and Z£ refer to the corresponding Gibbs measures and partition functions. We 
now write the Gibbs expectation on the right of 5.1 as 

gNAH'i{(r)]=K Ea,[e-PRZ} 
(5.4) 

u=l 
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Developing the Boltzmann weights in u about 0 with second order remainder, we 
obtain for each term in the sum on the right-hand side of 5.1 (for some u € [0,1]) 

GNA^
1
]    =   E. 

zS #o» -PK 

+m<r,. 
'e-l3RS(<r)-0BS{<7') 
 ^ H»(a)H»(a') 

H^ia)2 

a' 

B2 e-0HZ(v) 

^[e-pmW] 
H^ia)3 

3/32 E 
' e-l3RZ(<T)-0RZ(v') 

(^[e-^SW])2 H^a^H^a') 

P2 
R2 

-0H»(<r)-0H»(<T,)-0Rii(<T") 

(^[e-^M])" 
-H't(iT)Hit(<T')Hi'(a") 

Rs 
(5.5) 

As remarked above, neither Hfi nor Zg contain any of the variables {£f }i€j^. Inte- 
gration with respect to them (denoted by EM) thus yields for the linear term, 

EE^ 
e-0RS(e) 

~~zr~ HH?) ^E^ 
TQM 
|I|=p 

—JU—E/x^crx = 0,       (5.6) 

and for the second order contribution 

EE^ 
% 

-H^(ay 
pi 

N*^*** 

i\ 

N
2
P-

2 E'Eo- 

e-PHS(a) 

 -p 2^ ^tztjvxrj Jo XtJ 

"0 X      J 

(5.7) 

(5.8) 

respectively, 

The latter sum is 

XCM 

EE^, ['-^T^H»(*)H»(a>)} 

all different 

(5.9) 
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=    -NPRi^a'Yil + OiN-1)), (5.10) 

whence, 

VCT' H't(a)Hit(a') = N2-pEgg®2 [R(a,a')p{l + 0(N-1))] . 

(5.11) 

We now show that the remainder terms in 5.5 are at least one order (in iV) less than 
the two leading contributions above. We start with a result that shows that the 
perturbed partition function Z£ = E^ [e-^^] is bounded from below by a constant 
times the partition function 2 = 2$  (that is, the one not containing any of the 

Lemma 5.1. For all 0 > 0 there exists a constant c > 0 such that for all u G [0,1], 

^>^ = cE^[e-^o]. (5.12) 

Proof: Lemma 2.1 with Xi = £f cr^ implies that 

W2 
-H»{a) 

NP 
-N   £   gax 

I:\1\=P 

9=0 

We distinguish two cases. If |mM(cr)| > jV-1/2"1"'5 for some S > 0, 

(5.13) 

P/2-1 

-N^H^a)    >    Cp.ptmT-  ^  |cp,,|(m'')2«JV«-5(l + 0(iV-1)) 
9=0 
p/2-1 

>    cp,pN-%+pS -  ^ c'p<qN-%+2«5 > N-i+p5(cp,p - c"N-s), 

(5.14) 

which is obviously positive for all N large enough. 

On the other hand, if raM is less than N~1^2+5, then, 

q=0 

(5.15) 

which tends to zero as N t oo, if S < | - ^, then (ff^l = o(l). In conclusion we 
have that uniformly in £mu and cr, 

-f^1 > -o(l). (5.16) 
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Thus, to prove Lemma 5.1, we just observe that 

This proves the 5.1. □ 

(5.17) 

We apply this result to the error terms in the development 5.5. We start with 
Ri. By Jensen's inequality, 

\Ri\ = \e!Z[H'i*]\<gz[\H>'\3] = K 
»-0H» 

(5.18) 

Since the integrand is a positive function, we may bound the expectation using 
Lemma 5.1 in the denominator. We obtain, noting that H% — HQ + uH^ 

\Ri\ <cEa If \H*\ -   nCM cQZie- -ffuH^ijjuiS- (5.19) 

We observe that the last Gibbs measure does not depend on the pattern //. We 
may therefore integrate with respect to {£f }i "inside". In complete analogy with 
Chapter 3 (the result about the error term), we get 

(5.20) E^e-^V'f ] < E^l^ltf'f ] < cN3-%, 

whenever f3u < f3f
p. Since u G [0,1], this condition is satisfied if /3 < /3'p. 

The remainder R3 gets essentially the same treatment. By Jensen's inequality, 

i^3i=i^[^(<7)]r<^[ii?''i3]=i^ii- 

Hence, E|i?3| < cN3~¥. Finally, the term R2. By Lemma 8ro.2), 

\R2\ < gii[H',2]g^[\Hit\] < cgsie-WH^gsie-wwi]. 

Thus, by Cauchy-Schwarz and Jensen, 

E|i?2|    <    ^[ggle-WH^gSle-WWl]] 

<    c (E [ggle-iWH^]}) h (E [^[e-^-^H"2]]): 

Both factors are now treated as Ri. Hence, if 0 < \(3l
p, 

E life I < (ciV4-2p)i(ciV2-p)2 = c'iV3-^. 

The above condition is always satisfied if /3 < |/3p. 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

The results above almost prove the theorem. What remains to show is that in 
the leading terms, we can replace without harm the Gibbs measure QQ by Q. More 
precisely, we claim that 

|E^®2[iJP] -Eg®2[i?p]| < ciV1"*, (5.25) 
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for some constant c. 

The proof of this claim is done exactly as before, namely by expanding the 
Boltzmann factors, this time, however, only to zero order. We get 

g®2[Rp} = g^2[RP] + g^lR^a'nH^a) + #*>'))] + GZ®3[R(cT,af)pH»((T")]. 
(5.26) 

Since Rp G [0,1], the second term on the right is bounded by 

IG^iR^a'nH^^+H^a'm = 2\gZ®2[R{a,a')>>H'>(a)]\ < 2^[|ff(cr)|]. 
(5.27) 

Proceeding as above we get, 

\EgZ®2[R{v,<T')*(H'l{v)+H>t(a,))]\    <    2Eft[\H(a)\] 
< 2cE,g^[e-0uH''\Hfl\] 
< 2c'AT1"!. (5.28) 

The third term on the right of 5.1 is bounded by the same order. Indeed, 

\gZ®3[R(a,ayH»(a")}\ < QZWW], (5.29) 

from which the bound follows again by integration. This proves 5.1. 

To finish the proof of the Theorem, we sum the contributions we have obtained. 
This gives 

(3E^--aP2{l-Eg®2[RP}) ^cpN-i+c'pN2-3* (5.30) 

which proves Theorem 1.5. □ 

6    Condensation: Proof of Theorem 1.6. 

Theorem 1.6 follows now just as the analogous result in [T3] from the convexity of 
the free energy. Suppose that (3 < ftp. Since we always assume that a > ap, then 

aB2 

limsupEFAr = -£- (6.1) 
ATfoo 2 

by the definition of ftp. As remarked after their definition in Chapter 2, EF/v is 
convex for all N. It then follows from a standard result in convex analysis ([Ro], 
Theorem 25.7) that 

lim sup E -^- = — lim sup EFN = a/3. (6.2) 
ATtoo Op dp    Affoo 
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Hence, from Theorem 1.5, 

E£®2 [Rp] + E ^ = a(3 + ©(iV"1), (6.3) 

and thus, passing to the limit, 

limsiipE£®2[i^] -fa/?- a/3, (6.4) 
JVtoo 

which in turn implies that 

Suppose now that 

limsupEg®2[i^] = 0. (6.5) 
Ntoo 

limsupE^ <a/3. (6.6) 
Ntoo OP 

Then it follows immediately from Theorem 8pr.5) that 

lim inf E£02 [SP] = a/3 - lim sup E —^ > a/3 - a/3 = 0. (6.7) 
iVtoo Artoo Op 

This proves 1.26.  To see where the condition 6.6 actually holds, we observe first 
that by Lemma 8ub.l), it is satisfied for all 

This concludes the proof of the Theorem. □ 

Remark: Of course one would expect 6.6 starts to hold right after the critical 
temperature. In fact, a weak version of this can be proven. Namely, Theorem 5.5 
in [Ro] implies that the function 

/(/?)= lim sup EFJV (6.9) 
JVtoo 

is a convex, bounded function on U = [0,/3p). By Theorem 25.3 in [Ro] it is thus 
differentiable on an open set V C U which contains all but perhaps countably many 
points of U, and its derivative /' is bounded on V. Lebesgue's integrability criterion 
then implies that 

P 

/(/3) = f((3p) + I f'{u)du,    V/3 > /3P. (6.10) 

ft 

Now it is immediate that for all (3 > (3P there must exist a set / C (/3p,/3) with 
strictly positive Lebesgue measure, on which /' is strictly less than a/3. Indeed, 
were this not the case, then / > ^|-, which contradicts the definition of /3p. Since 
/3 was arbitrary, the relevant condition 6.6 is satisfied on sets of positive Lebesgue 
measure arbitrarily close to /3p. 
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7    Proof of Theorem 1.7. 

We have shown that in the low temperature phase, the replica overlap is not con- 
centrated on zero. We will now show that its distribution is concentrated on a 
neighborhood of zero and 1. 

Proof of Theorem 1.7:    Let C^,CN be such that 

sup(-HN(a))?[NC-,NC+] : pN = O(l) 

Then 

^o E       ie-P(HN(a) + HN (or,))J 
EG®2(RN(a,a') e 7) < EIsup^ |/fjv(<r)|<JVCjv^li  ^'^ )6f 

EE     /e-^(Hiv(^)+Hiv(",))]I 
/3( HJV(<r) + H(cr/))<JVC+i9]L«JV(<y.<y/)6J 

2-2NePN2CN 
PN 

(7.1) 

(7.2) 

The numerator has been estimated in 3.21. Using this, we get 

(N wc+(i-aal$+tP)
y)-m J exp | 

Ea®2(^(«Tl(T')e/)<Ete/C3- 
/,/9iV2C>r-2 1n2 + PAr 

= Eta C* exP (^2i9(C+ - C£) + iv(21n2 - ^ggy - J(t))) +Piv    (7.3) 

Let us note first that from 89.3) it is obvious that if we can choose |C^ — C^| < iV~e
5 

then the result cannot depend on /?. An obvious candidate for these numbers is thus 
A7r~1Esup0.(—HN{CF)) ± e. Indeed we have 

Lemma 7.1. For any e > 0, and for all N large enough, 

\—sup(-HN(a)) - E— sup(-HN{a))\ > e <N -2 (7.4) 

Proof: Note first that 

2"^ < ZN(l3)ePsup^-HNitr^ < 1 

and therefore 

IIF^J-ISUPC-H^))!^^ 

Therefore, for any (3 < oo, 

i sM-HN(a)) - Ejj sM-HN(a)) 

^ sM-HN(a)) - ±FN(0) + ±FN(0) - E-^ sM-HN(a)) 

+E±Fff(0)-E±FN(f}) 

(7.5) 

(7.6) 
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< IFN((3)-E±FN(/3) + 21n2 

P 
By Proposition 6.2, 

IFN(J3)-E±FN<J3) > jv'-1''2+e <CN-n 

(7.7) 

(7.8) 

from which the claimed result follows by choosing e.g. f3 = e  141n2. D 

Using this result, and setting CN = E^ sup0.(-iJiv(cr)), we get that 

¥0%2(RN(a,a') e /) < ^Cgexp ^4)9e + N(2In2 - (^^ -J(f)))  (7.9) 

Since e can be chosen as small as we like, e.g. £/3_1, we already see that our result 
will be uniform in /3. 

It remains to estimate E-^ supcr(-iJAr(cr)). We will only consider the case a > 
~j.  In that case it follows from Lemma 3.4 that CN < \/2a In 2 + C/N.   For a 
lower bound, note that for any /?, 

^FN(p) = jjWN(-HN(a)) < EJj SM-HN(a) (7.10) 

But we know that for all /? < (3^ limivtoo E^V (/?) = ^f-' an(^ therefore by standard 
results limivtoo E A F/v(/3) = afi- Thus chosing /3 as large as possible we see that 
we see that 

CN > afi' - 5. N (7.11) 

where S^ I 0, as N f oo. But Theorem 1.2 and the estimate 1 show that 

CN > V2a\n2 - 2 ^—^ - 5N 

Therefore we have that for any 8 > 0, and for p large, 

(7.12) 

te/ 1 + tP 

AT(2In2- |^| -I(t)f}+pN 

<    Y,CzeW(N{5 + 2-n + N(^^-m))+PN 
tei ^ ^ 

(7.13) 

The function n1!?^) — I(t) vanishes at zero and at one, and is negative everywhere 

in the interval (0,1 — Zp), where zp ~ 2~p. This implies the main conclusion of 
Theorem 1.7, 7. Note that since I(t) ~ t2 for small £, we can chose the interval I 
more precisely of the form Ip — ((72~p/2,1 - C2P), with C a constant of order 1. 
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To proof the estimate 1.7 in the high-temperature case is considerably simpler. 
Since we already have the estimate ET(c, &, 1) < ea^ N-dN/2 for some positive d, it 
remains to show that with sufficently large probability, Z^f(P) > ea(3 N-dN/4. To 
do so, we use the Paley-Zygmund inequality 3.1: 

F [ZN > e-dN'*EZN] > P [ZN > e'dN^EZN] > (1 - e-dN^)C3        (7.14) 

Given that by Lemma 3.1 and Theorem 1.1 EZN > CeNa(32/2, 1.7 follows immedi- 
ately. This completes the proof of Theorem 1.7. □ 

8    Ghirlanda-Guerra identities and lump masses. 

The techniques used to prove Theorem 1.5 can also be used to derive the Ghirlanda- 
Guerra identities [GG] (see also [AC]) that provide relations between distributions 
of overlaps of a larger number of replicas. This observation is due to Talagrand 
[T5]. Note that he announced more far-reaching results than those we will prove 
here. 

The basic input is the following slight generalization of Theorem 1.5. 

2^V Proposition 8.1. Assume that ft < ^P'    Let f denote any bounded function of n 
spins.  Then, for any k £ {1,..., n}; 

W%?fl(N-1Hff{ak)f{a1,...,an)) 
(n > 

/(aV .. ,0 XX(aV) - ni^(<7<>n+1) 
1 = 1 J 

< CAT1 (8.1) 

Proof: The proof of this proposition is an exact rerun of the proof of Theorem 1.5, 
except for the computation of the leading terms which is however straightforward. 
We will not repeat the details. □ 

As in [GG] it then follows from the concentration result Theorem 1.4 and stan- 
dard arguments that for any bounded function /, 

lim  [    d   P     ES®" (AT^^X/V,...,^)) 
Vtoo Jp, 

-    WN^iN-'HNia^W^iHa1,...,*71))   =0       (8.2) 

for any (3' < ft".   Combining 8.1 and 8.2 with the bounds 8.1, we arrive at the 
identity 
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+    EC^^V2)))] 
=   0 (8.3) 

which is the analogue of (16) of [GG]. Note that this can be written as 

Hm I    dm%n^ [f{a\...,an)BPN{a
k,an^)\ 

= Ln    JfeX'Wfc /(^....^^(E^^.^ + Ee^^^1^2)) 

(8.4) 

and choosing / to be the indicator function 

/(CT1,...,*/1) = ^\fk¥:lRN(aK(Tl)=qki (8-5) 

This implies that 

limmoof
b

0
l! dpWf,^1 [^(ff*,ffn+1)|Vfc^i2jv(a*,<Ti) = to] 

which is the relation (17) of [GG]. 

Remark: While [GG] claim to obtain the same relations also for all other moments 
of the replica overlaps, it needs to be said that they tacitly assume the continuity 
of the Gibbs measures with respect to certain random perturbations of the Hamil- 
tonian that is not only not proven but is certain to be false in the generality they 
are announced. Otherwise, the argument below could be considerably sharpened 
and simplified. 

The main use of the identities 8.6 is that they allow to draw conclusions about 
the distribution of the masses of the Gibbs measures on the so-called cTalagrand- 
lumps'. 

Proof of Theorem 1.8: The starting point of the argument is that Theorem 1.5 
together with Theorem 1.9 in fact imply that the distribution of the replica overlaps 
has positive mass both near zero and near one. Let us set 

p0 = W3%2 (\RN(;-)\ < eo)px = Wf (\RN{;-)\ > 1 - d) (8-7) 

Since by convexity (see 6.2) for all 0 > (3P, except possibly for a countable number 
of exceptional points 

d „ „d 
al3p < lim inf E— FN {j3) < lim inf E— FN (/?) < Va21n211.4) (8.8) 
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we have on the one hand that 

and 

Va21n2 
hmsuppo < —ZTZ 711-5) 

JV 0!yC((l - eo) 

lunsuppi < — r- 
JV 0(1 - €i)P 

(8.9) 

(8.10) 

Since we know that lini/v(po +Pi) = 1, and this implies what we want for /? somewhat 
larger than 0P. Recall that eo ~ 2-p/2 and ei ~ 2~p. 

This result shows first of all that it is not possible that the mass of one single 
(pair of) lump(s) can be almost equal to one, since in that case po would be close 
to zero (which is impossible by 8. 

Now assume that the assertion of Theorem 1.8 fails. Then there exists a first 
instance k* such that 

lim FgN (uCiCi) = 1 (8.11) 
iVtoo \ / 

Now define events Q[™' G Bn by 

Q(n) = {S € [_1? l]^-1)/2|V1<Z<,<n|i?/,| < 60} (8.12) 

The important obervation is that if {it^-^z, crk)}i<i<k<k* € Qe , then there exists 
some permutation TT G Sk* such that with probability one crk G C7T^ for all k < k*. 
In particular 

Um f <W%S+l K(-fc^r+1)^(.. .m)}l„<,fc,eQ<; iVtoo Jp 

=    hm|'  ^E^^1^^,^^1)^^*^,^^] (8.13) 

But 

E. esk* m 
k*+i 

N,0 

N,{3 
K+l 

+ Y<neSk* 

m N,{3 

®k* - 
N,(3 E£fr+1 

"RrN(a
k,ak*^)lwf:ialea -77(0 

"^(^,aJ')I(rik.+iecir(i)Iv?:i<r.6C.(l)] 

^(crfc,c7fc*+1)I<rfc.+ieC^)Ivf:i(T,6C]r(,)](8.14) 

where we used the symmetry betwen replicas in the terms j ^ k to exchange ak +1 

with aj. Note that for the first term we have the obvious (though not very good) 
bound 
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^PlUY?®** 

=   SoWZ 

while the second satisfies 

£      E<$f;+1     [^(cr*>0r*-+1)][(rfc.+ieC]r(,)]Iv?:i<rl6C]r(I)] 

> (1-^53  Ee^;+i [^+1€C.wiv?:1(,.eCir(I)] 

(8.15) 

7r65fc* 

= -(1-6!)"      WS%k0+1 

= F(i-ei)
p   iEafA; 

Vfl^'GC, ,] 
Q 

k* (8.16) 

where we used the obvious permutation symmetry among the first A:* replicas. Let 
us now use 8.4 with / the indicator function of the event Q\0 \ Clearly we get 

limbec/;;> E^;-*-
1
 K(-fc,-r+i)i{fliV(CTl,ffm)}l„<£fc.€e(r» 

((r-l)eg    +      E6%%RP(a,a')) 

Comparing 8.15, 8.16 to 8.17 we see that 

{i?,v(<7',<7m)} i<i<<h*eQion\ 

This implies the lower bound 

** > 
(l-e1r-p1 

Quantitatively, this estimate can be refined to 

jfe* > C-^3^2^! - C2-p)p-p1) = 2ppo(l - 0(2-2p) 

This proves the theorem. □ 

(8.17) 

(1 - a)* < {k* - l)el + lim WgfgR?{cj, a') < (k* - 1 + po)ep + Pi       (8.18) 

(8.19) 

(8.20) 

9    Spin Glass Phase: Proof of Theorem 1.9 

Having established the existence of an infinity of lumps that carry the Gibbs measure 
in the low temperature phase, one would like to know whether these are in any way 
related to the original patterns. Recall that in the standard Hopfield model at small 
a the Gibbs measure concentrates on small balls around the patterns f ^. Of course 
the reader will expect that this will not be the case here. To prove this fact, we first 
obtain two estimate the value of the Hamiltonian in the vicinity of each pattern. 
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Lemma 9.1.  The Hamiltonian evaluated at the patterns satisfies 

(PO2 e P?^  ~2E")Ar,    otherwise. 
(9.1) 

Proof: The Hamiltonian at the pattern ^ is given by 

which implies that 

(9.2) 

(9.3) 

We estimate the random part in 9.3 by the same method used in the proof of 
Theorem 1.1. By Chebyshev's exponential inequality, conditional independence of 
]Ci=i €i€i and Di=i €?€!? (for v jL y), and expansion of the exponential, we get 
for z > 0 

wrEEaa NP 
i/^/i   x 

> zN <    infe-t2iVTTE -pf'tese 
T-r  / t2p!     /iV 

<    mie-tzN ..  . . ,  nAr,    , . 

3!Ar3P-3 
^^|3

e*^|Ex«x| .(9.4) 

The error term can be written as 

N3p-3 E 
l3 *(p')2 

E^ V^-ISi«si 
L    I 

1 

iV 2£-3 
E N->T,% e ^2 

(9.5) 

This latter term is exactly the same as in 2.2 (with /3 replaced by t). Hence, we get 
(compare 2.3) 

Minimizing the exponent yields 

-HN(a = Z»)>JLr + zN 
(PO5 

< 

<    inf    e-^-H-V^+Oi. 
te(o,0') 

^EEss>^ 

(9.6) 
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— — N e  2«   , if 0 < z < ap'p, 
<    C2{ '^ -   '-(9.7) 

e pp{z     2 )M ^    otherwise. 

This proves the claim. □ 

The next result shows that the Hamiltonian does not fluctuate much around a 
pattern. This result was already proven by Newman [Nl] for the Hamiltonian H. 
In our case this is even simpler. Define Bs(cr) to be the (iV(5)-ball around the 
configuration a in the Hamming distance. Then we have the following 

Lemma 9.2. If S < -, then there exists a constant C > 0 such that 

v[3aeBd(^):\HN(a)-HN(e)\    >    (2^1(p\)-iS 4- z)N 
<      C'e-^(/5(z)+(51n<5+(l-(5)ln(l-5))5 (gg) 

where 

fs{z) = ^ «e'p 
e P"   [    ztp-D!',    otherwise. 

(9.9) 

Proof:   By standard arguments (see also [Nl], in particular inequality (2.3) and 
surrounding comments), 

3<r    €    Bs(e)-\HN(a)-HN(e)\>(6 + z)N] 
[SNi 

< E 
9=1 

N F[\HN(C)-HN(e)\>(6 + z)N}, 

where 

(9.10) 

(9.11) 

We start by calculating the difference \H(Cq) - H(^)\- Let J = Jq = {!,... ,q}. 
One obtains 

mo-Hi?) = (P!) 
i   M(N) 

i E E («s - ««) 

=    2 

i   M(N) 

TE   E 
"=1  I:\IC\J\ odd 

=    2 M
2    v^   i , oO?1)2 

r    E    1 + 2^rE    E    ^z(9.i2) 
XilXDj-lodd v^n Z:\lnj\odd 

Explicitly, this is 

H(Cq) - Hi?) 
2     ^-i     /N-q\fq\ 

2Mi y- 
r=l,odd   x 
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vj^H X:\Xr\J\odd 

Let us treat the random term in 9.13 first. By the usual procedure, we get 

(9.13) 

Mi 
2-^l/^LL  2-J. 

Hcv 
ATP-I Z^i/^/i 2-jX:\Xr\J\odd^X^X m >zN 

< 2inf.^o,,,) e-^ [1^ {l + 2^ EflLdd (p-7) (?) + ^i^3^ }• 
(9.14) 

To treat products of binomial coefficients in last expression, observe that if q < 
N. 
2 [(WJ < y, then the following inequality holds, 

r=i,odd Ky        /   V / r=l,odd :l,odd V / 

<   (iv-^r1?  E   (P)=2P-1(7V-^-V 

(9.15) 

Using 9.15 in 9.14 yields 

-^ii Z-il:\xnj\ odd fe^I >z^ 

< Cmite(O>0'p)e-tzNex? (^T2i>-l(N - gK"1^. (9.16) 

(9.17) 

The deterministic term in 9.13 is given by (again using 9.15) 

If 6 < i, then the last line is bounded by the term for the maximum q. That is 

p-i 

(pip. 
(9.18) 

ML    ^    (N-q)(q)<      r     (N-mr^lSN^^rNS. 
r=l,odd v^ J 

Collecting 9.16 and 9, we get 

2P~1 

mCq)-H(^)\>^N + zN] 

< 2inft€(o,/3p e-t2Wexp (5]2|ir2P-1(iV - g)""1^ + d). (9.19) 

Plugging this into 9.10 gives 

F[3<7 6 Bsit") : \HN(a) - HN(Z»)\ > (^ + *)*] {pi) 2 
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< 2 ESJ O mftefo^) e"^ exp ^^T2^(N - q^q + d).   (9.20) 

It is straightforward to check that under our assumptions on 5 and for fixed t, the 
ratio between two consecutive terms in the above sum is larger than 2, and therefore 
the whole sum is at most twice the maximum term, 

Ppo- G Bsm : \HN(a) - HN(^)\ > (^5 + z)N] 
(p!)2 

< 4(L^J) initmpip) e-*°N exp (*^N6 + d) . (9.21) 

Minimizing with respect to t concludes the proof of Lemma 9.2. □ 

Proof of Theorem 8pr.7): We observe the following elementary fact. By the 
definition of the free energy 

FN((3)<^sup\HN(a)\. (9.22) 

Hence, by Theorem 1.4, for any {3,m,z>Q there exists N G N such that, for all 
N>N, 

F[^sup\HN(cr)\ < ^EFN(/3) - z] < V[FN(/3) < EFN(p) - z] < CN'"1.  (9.23) 

[1 ft2    1 "" ^ 

which is equivalent to 

*- < happp - ^) < ^EFN(p) + Ci^"1. (9.24) 
(p!)i      /3V "^       2  ' - /3 

The second inequality follows from the convexity of FN{P) and the definition of /?p. 
But then we can find 8 € (0, -) and z > 0 such that 

^-5-5 + 3* < ^^(/J) - -j-r, (9.25) 
(p!)2 P (p!)2 

and (see Lemma 9.2 /^(z) + 5 In (5 + (1 — (J)ln(l - <5) > 0. By Lemma 9.1, resp. 9.2, 
for any m > 0, we can find an iV G N such that for all iV > N 

M(N) 

F[    3    ae   IJ  B6^)'.\HN(<T)\>N(—-r + 5 + 2z)} 

M(iV) 

<    P[3(r G   U   Bj(^) : I^M - HN(^)\ > N(5 + ^)] 

+P[sup 1^(^)1 > ^(T^rr + *)] < ^"m- (9-26) 
» (pi) 2 
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On the other hand, the inequality 9.23 implies that 

V[8up\HN(a)\ < NEFN
^ - zN] < N-m, 

a P 

for all A^ large enough, so that finally, by standard arguments, 

Af(iV) 

*igsuj>\HN(a)\e   U   Bsi?) 

M(N) 

3a G   U   B6(€'').\HN(<T)\>N(7T^+6 + 2Z) 

IA=1 

(9.27) 

< 
^{p\)l 

+P 'sup\HN(a)\<N^M-zN 
P 

<N- (9.28) 

for all iV larger than some N G N. 

To show the existence of an aSp, we observe that the bounds 1.2 and 1.2 on the 
critical p imply that the quantity a(3p(a) ~ ^/a and is thus eventually larger than 
any fixed number. This concludes the proof of Theorem 1.9. D 
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