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Abstract 

We study the photoelectric effect on the example of a simplified model of an atom 
with a single bound state, coupled to the quantized electromagnetic field. 

For this model, we show that Einstein's prediction for the photoelectric effect is 
qualitatively and quantitatively correct to leading order in the coupling parameter. More 
specifically, considering the ionization of the atom by an incident photon cloud consist- 
ing of N photons, we prove that the total ionized charge is additive in the N involved 
photons. Furthermore, if the photon cloud is approaching the atom from a large dis- 
tance, the kinetic energy of the ejected electron is shown to be given by the difference of 
the photon energy of each single photon in the photon cloud and the ionization energy 
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I    Introduction 

The photoelectric effect was discovered in increasingly precise experiments by Hertz [17, 
1887],Hallwachs [16, 1888],Lenard [18, 1902]1, andMillikan [21, 20, 1916]. 

It was observed that, when light is incident on a metal surface, electrons are ejected 
from the surface. The striking fact about this phenomenon is the seemingly odd dependence 
of the maximal kinetic energy Tmax of the ejected electrons on the frequency of the light 
and its independence of the light intensity. The latter contradicts the principles of classical 
physics, and in 1905, Einstein suggested an explanation of this phenomenon [9, 1905] 
which explicitly involves the quantum nature of electromagnetic radiation. He found that 

Tmax   =  his -  AE, (U) 

provided that the frequency v of the light times Planck's constant /i, i.e., the photon energy 
hv is larger than the (material dependent) work function AE. Conversely, if 

hi/ < AE, (1.2) 

then no electrons leave the metal surface. Our ultimate goal is the derivation of Einstein's 
predictions, Eqs. (I.l)-(1.2), from first principles of quantum mechanics and quantum field 
theory. 

In the present paper, we analyze a simplified model which is far from the appropriate 
model for a metal interacting with electromagnetic radiation and can, at best, be regarded 
as a caricature of a hydrogen atom interacting with the radiation field. Yet, it contains many 
of the mathematical difficulties we expect to encounter in the analysis of a more realistic 
model, and we prove Eqs. (I.l)-(1.2) for this simplified model. Our emphasis lies in the 
following aspects: 

• Given the model as described in Sect. 1.1, below, our derivation is mathematically 
rigorous, and no unjustified approximations are used. To our knowledge, the present 
paper is the first to treat the photoelectric effect with mathematical rigor. 

We draw from many facts about nonrelativistic quantum electrodynamics which have 
been previously established in [2, 3, 4, 5]. 

As we propose to study the charge transported to infinity (see Sect. 1.2) which in- 
volves the asymptotics of the unitary time evolution operator e-111*9, as t —> oo, 
our results can be viewed as part of scattering theory for models of nonrelativistic 
quantum electrodynamics. Results in this context, but on other aspects can be found 
in [1,6, 10, 12, 13,23]. 

• While our model for the particle system, i.e., the metal or atom, is a crude model in- 
volving only a single, spinless electron, the particle system is coupled to a quantized 
scalar field. (The difference between the quantized [vector] electromagnetic and a 
quantized scalar field is irrelevant, for the scope of this work. For certain other facts 
in nonrelativistic quantum electrodynamics, however, this difference is crucial, see, 
e.g. [4].) 

1 In some physics textbooks, e.g., [15], Lenard is not mentioned, and it seems that in 1905, Einstein derived 
his famous theory from nothing but a Gedankenexperiment. 
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• Our model describes a single atom rather than a metal or even a gas interacting 
with the electromagnetic field. Thus our derivation of Eqs. (I.l)-(1.2) shows that the 
photoelectric effect is not a collective, statistical phenomenon, visible only if many 
particles or many photons are involved. Most texts on laser theory or quantum optics, 
e.g., [8, 14], immediately proceed to a statistical description of both the metal or gas 
of atoms, say, and the photon field, and the question, whether this is really necessary 
or merely a matter of mathematical convenience, is left open. 

• Within our framework, we prove Eqs. (I.l)-(1.2) to be correct in leading nonvanish- 
ing order in the coupling parameter g which, in appropriate units, equals \/27ra3'2, 
where a « 1/137 is the fine structure constant. More precisely, given the interacting 
atom at rest plus an incident photon cloud consisting of iV photons, we show that to 
leading order the contribution to the charge ejected from the atom is additive in each 
photon and independent of all other photons of the incident photon cloud. Moreover, 
we prove that this contribution is in accordance with (I.1)-(L2) in case that the pho- 
tons are in an incoming scattering state. In fact, the leading order contribution to the 
ejected charge resembles the first term in the Born series for the T-Matrix (see, e.g., 
[22]). 

• While it is customary to restrict the analysis of the photoelectric effect to a single 
photon scattering off the atom or metal, we point out that it is important to consider 
more than one photon, iV > 2, because for a photon state consisting of a single 
photon only, total energy and energy of each single photon involved agree. Hence, if 
studying a single photon state, it is impossible to say whether the ejection of electrons 
is proportional to the total energy of the photon cloud or depends on the maximal 
energy of all photons in the photon cloud. 

Our paper is organized as follows. In Sect. 1.1 below we introduce the mathematical model 
for the photoelectric effect. This includes a precise description of the atom, the photons, 
and their interaction in terms of a semibounded, selfadjoint generator of the dynamics, the 
Hamiltonian. 

In Sect. 1.2 we then describe our main results. In Subsects. 1.2.1-1.2.2, we introduce 
the main quantities dealt with in this paper, the charge transported to infinity and photon 
clouds, and in Subsect. 1.2.3, we derive the asymptotics of the former to leading order in 
the coupling constant. A limit of monochromatic light is discussed in Subsect. 1.2.4, and in 
Subsect. 1.2.5, we compare our methods and results to those derived or used in other papers 
on scattering theory. 

The proof of the theorems in Sect. 1.2 are given in detail in Sects. II and III. 

Finally, our paper contains two appendices. In Appendix A we construct a Bogoli- 
ubov transformation that eliminates a single, arbitrary matrix element in the interaction, 
and in Appendix B we show that bound or negative energy states do not contribute to the 
transported charge. 

Acknowledgement: We thank S. De Bievre, J. Frohlich, Ch. Gerard, M. Griesemer, V. Ko- 
strykin, T. Paul, B. Schlein, R. Schrader, I. M. Sigal, H. Spohn, and S. Teufel for helpful 
discussions and remarks. 
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LI    Mathematical Model for the Photoelectric Effect 

Our goal is to analyze the photoelectric effect on the example of an atom coupled to the 
quantized radiation field. The mathematical model for our analysis of the photoelectric 
effect is a variant of the standard model of nonrelativistic quantum electrodynamics as 
given in [2] which we briefly recall and adapt to our problem at hand. 

1.1.1 Atom with a Single Bound State 

For the atom to be described we make the simplifying assumptions that it consists of a 
single, spinless electron bound in a potential well which admits exactly one bound state of 
energy eo < 0. More specifically, we assume the Hamiltonian generating the dynamics of 
the electron to be given in diagonal form as 

ff- = -A©eo=  (^   e!)' (L3) 

acting on 

Uei  := L2(E3)eC - nac(Hei)®Hd(Hel), (1.4) 

and UsdHei) - {0}. We further denote by 

"■-(ii) - *<■■-*-ui) 
the projections onto the continuous subspace and the discrete subspace (of dimension one), 
respectively. The Hamiltonian Hei can be derived from a Schrodinger operator — A — V(x) 
with a short-range potential V. An appropriate choice of V guarantees that — A — V (x) 
has a single bound state only, and then —A — V(x) and Hei are unitarily equivalent, as can 
be seen by conjugating — A — V (x) with the wave operators. 

1.1.2 Photons 

We couple the atom described above to the quantized photon field which, for notational 
convenience, is assumed to be scalar. For our study of the photoelectric effect, the differ- 
ence is not relevant. The Hilbert space J7, carrying the photon degrees of freedom is the 
bosonic Fock space J7 = ^[L^R3)] over the one-photon Hilbert space L2(E3), i.e., 

oo 

^  =   0 jr(») , (1.6) 
n=0 
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where T^ is the state space of all n-photon states, the n-photon sector. The vacuum 
sector, J7^, is one-dimensional and spanned by the normalized vacuum vector, fi, i.e., 
JF(0) := Cfi. For n > 1, the n-photon sector is the subspace of L2[(E3)n] containing 
all totally symmetric vectors. The Hamiltonian on J7 representing the energy of the free 
photon field is given by 

Hf =   I dzkuj{k)a*{k)a{k), (1.7) 

where oo(k) \— \k\ is the photon dispersion, and a*, a are the usual standard creation- and 
annihilation operators on T representing the canonical commutation relations, [a(k), a(A;/)] 
= [a*{k),a*{k')) - 0, [a(A:),a*(A;/)] = <J(fc - A/), a(A;)n = 0, in the sense of operator- 
valued distributions. 

1.1.3   The Atom-Photon System 

The Hilbert space of states of the atom-photon system is the tensor product space 

U := Uei (8) T , (1.8) 

and its dynamics is generated by the Hamiltonian 

Eg  := #o + gW , (1.9) 

where 

iJo := Hei®lf 4- lei®Hf (1.10) 

is the non-interacting Hamiltonian, 0 < g <^ 1 is a small coupling parameter, and 

W :=   f d3k{G(k)®a*(k) + C?*(fc)®o(Jb)} (1.11) 

is the interaction operator. Here, G E I/2[E3; B(?fe/)] is a square-integrable function with 
values in the bounded operators on Heh given by 

«»■- (^"?') • 
for k G M3, a.e. For the formulation of assumptions about G it is convenient to introduce 

JK,y(k) :=   max H^G^II + ||(|xp ©1)G(A)|| + ||G(fc) (kr © 1)|| .     (1.13) 

Note that, for JK^{k) < oo, we necessarily assume a decay of the coupling matrix G(k) 
as least as |#|~7, as # -* oo. This assumption is not satisfied, e.g., if we consider elec- 
trons minimally coupled to the quantized radiation field. Namely, in the case of minimal 
coupling, the linear part of the interaction operator is of the form (1.11), with 

«(&) e^'f 
Brn.cXk)   =       :'/2    gW-Vg, (L14) 
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where k = (k, a) G M3 x Z2, ^ is a smooth function of rapid decay, as |fe| ->► 00, serving 
as an ultraviolet cutoff, and e(k,±l) J_ k are two transversal, normalized polarization 
vectors. Besides the lack of decay of 2Jm.c.(fc)» as |a;| -> 00, Bm.c.(k) is not bounded. 
This is, however, only a minor complication. The extension of our results to this case of 
main physical interest will be the subject of a forthcoming paper. 

Further note that 

JK.-yik) < J'K^W :=   max ||d£B(Jfe)|| + || |x|7B(Jfe)|| + \\B{k) |z|7 ||      (1.15) 

+ max \\d^(k)\\ +  max ||^n(A;)|| + || \x\^p^k)\\ + Wp^k)^ II > 
|Q;|<K |a|</v 

and, conversely, J'x^ik) < SJic-yik). We shall make use of the following Hypothesis 
throughout the paper. 

Hypothesis 1. There is an integer K > 1 and a real number 7 > 3/2 such that G £ 
CK [M3; BCHei)] is K times differentiable and satisfies the following estimate, 

I (l + uj{k)-l}\JKn(k)\2d*k < 1. (1.16) 

We remark that, although the requirement (1.16) with fractional derivatives of G, for 
real K > 1, is presumably sufficient, we do not try to optimize our result in this respect 
and work with classical derivatives in this paper. 

Since, for a.e. k G M3, 

Pt(fc):C -» L2(E3)     and     p^k) : L2(E3)  -► C, (1.17) 

there exist p( •, fc), 7j( • fc) € L2(E3), such that 

WtWW = ,^,t)   and  n(W - W-.*)W = jimtV**. 
(1.18) 

for all z G C, ^ E L2(E3), and (x, A:) E E3 x E3, a.e. Furthermore, in many applications 
^(fc) E B[L2 (E3)] acts in the Schrodinger representation as a multiplication operator. That 
is, there is a function M E I/2(E3 x E3) such that 

[J3(fc)^](a0 = M(x,k)<iP(x), (1.19) 

for (x, fc) E E3 x E3, a.e. For instance, in case of the dipole approximation, 

Mdipfa k) = K(S/R) K(k) \k\1/2 e(k) -x , (1.20) 

using the same notation as for 2Jm.c., above, and additionally a spatial cutoff K,(X/R) at 
length scale R > 1 which should be chosen large, compared to atomic length scales. We 
remark that, for a given function M, a physically natural choice for rj and p is 

77(0;,fc)  := pfofc)  := M(x,k)ipei(x) , (1.21) 
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where (pei 6 L2(R3), ||</?e/|| = 1, is the normalized wave function of the atomic bound 
state. Note that the special form (1.12) of G(k) implies that 

(Pd 0 1) W (Pd ® 1) = 0 , (1.22) 

since the lower right matrix element of G(k) vanishes. 

We remark that if the electron Hamiltonian is a Schrodinger operator, as described 
below Eq. (1.5), a single diagonal matrix element can always be "gauged away" by means 
of a Bogoliubov transformation. The construction of this Bogoliubov transformation is 
given in Appendix A. That is, for our model with a single atomic bound state, we do 
not loose any generality by assuming (1.22). As (1.22) is an important assumption for the 
present paper, we point out that, in case the atom has more than one bound state, Pd would 
be the orthogonal projection onto these, and (1.22) would imply, that the field does not 
couple different bound states. 

1.1.4    Selfadjointness, Semiboundedness, and Binding 

Next, we discuss selfadjointness, semiboundedness and existence of a ground state (bind- 
ing) of the Hamiltonian Hg of the system. We basically invoke the theorems and methods 
for their proof established in [2, Sects. II and III]. 

Assuming Hypothesis 1, selfadjointness and semiboundedness, for any value of the 
coupling parameter g > 0, are a simple consequence of standard Kato perturbation theory; 
we appeal to [2, Cor. 1.7 and Lemma 1.5] which yield that Hg is selfadjoint on its natural 
domain, dom[iJ5] = dom[i7o]> and that the ground state energy is given by 

Eo  := m£a[Hg]  > eo + 0(g2) . (1.23) 

In the present paper we additionally assume that EQ is an eigenvalue of Hg and that the 
corresponding eigenvectors have a large component in the vacuum sector J7^. More pre- 
cisely, we require 

Hypothesis 2. The Hamiltonian Hg possesses a (normalizable) ground state $gs G H, 
||$gS|| = 1, i.e., EQ is an eigenvalue with corresponding eigenvector $gS, 

Hg $gs = £o $gs • (1.24) 

Moreover, denoting PQ := |n)(n| = 10 |fi)(n|, the ground state <f>gs obeys 

\\pn$gs\\  < Cg, (1.25) 

for some constant C < oo. 

The existence (1.24) of a ground state $gS and the overlap bound (1.25) is proved in [2, 
Thm. 1.1] under the assumption of a somewhat stronger bound than Eq. (1.16) in Hypothe- 
sis 1, namely, 

[ (l+Lj(k)-2^\Jo^(k)\2d3k < 1. (1.26) 
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In this paper, we do not use this estimate but only its consequence in form of Hypothesis 2. 

We remark that the noninteracting Hamiltonian iJo has the unique (non-degenerate) 
ground state 0 0 ft G H corresponding to its ground state energy eo, and we note in paren- 
theses that, by the results of [2], Eq. (1.25) holds for any ground state of Hg. Consequently, 
the interacting ground state $gS of Hg is unique, provided g > 0 is sufficiently small. 

In Lemma IIL2 we strengthen (1.25) and show that, for any a > 1 and any A < oo, 

|| (ffJA) + l)a Pc $gs || + || (Hf + l)aP£ %s ||  < 0(9) . (1.27) 

Here, Hj ' denotes a free photon Hamiltonian acting only on photon states with energy 
less than A < oo, 

H{
f
A)  =   [ d3ku;A(k)a*(k)a(k)  =   [ d3kuj(k) a*(k)a(k) , (L 

J JW(k)<A} 

where UA(k) := u(k) l{u,(k)<A}- 

1.2   Main Results and Discussion 

1.2.1    Charge transported to Infinity 

Having introduced the quantum mechanical framework in terms of Hilbert spaces and 
Hamiltonians and established some basic facts such as selfadjointness, semiboundedness, 
and binding, we proceed to defining the charge transported to infinity or simply the trans- 
ported charge. To this end, we introduce the projection FR onto the functions with support 
outside the ball of radius R > 0. More precisely, 

FR :=  ( 1{lf *>    o ) ® If , (1-29) 

where l{|a;|>/e} := iRs^o^fa;]. Similarly, we introduce the projection Tj- onto the 
particle states with momentum in a measurable set T C M3, i.e., the functions whose 
Fourier transform is supported in T. That is, 

Tr :=  ( 1{p
n
6r}    n ) ® 1/ • (1-30) 0        0 / 

where l{P6r} acts as a Fourier multiplier with lr[p]- Given a state ^ G 'H, the corre- 
sponding (least and most) transported charges with momentum in T C E3 are defined to 
be 

Qi?1 m    :=    lim inf lim inf 11 Tr FR e-itH° * f , (1.31) 
' R-+00     t->oo   " " 

Q^P($)    ;=    lim sup lim sup || Tr FR e-itH° * f , (1.32) 
R—>oo        t-*oo 

In case that T = M3, we write ginf(*) := Q£f(#) and (5SU
P(*) := Q^p(^). Interpret- 

ing \l> as an initial state for t = 0, the transported charge Qm{ ($) measures the amount 
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of its mass that is definitely transported away from the atom as time evolves, eventually. 
If T C R3 is a small ball, then QrW additionally filters out the part of the state with 
momentum in T. 

While it would be desirable, of course, to define only one type of transported charge, 
namely, QrW '-^ lim/^oo limt_>oo \\TrFR e~ltH9 ^H2, our methods described below 
do not allow us to prove the existence of such a limit - not even for the restricted class 
of initial states of the form (1.35). Nevertheless, Q^f (#) and Q^p(#) agree to lead- 
ing order in the coupling constant g, as we demonstrate below. In fact, our main ob- 
jective is the determination of the transported charges Q^f (\I>) and (5^p(^r) to leading 
order in g. Finally, we remark that it is important to observe the order of the two limits 
R -» oo and t ->• oo, as interchanging these limits would, indeed, yield the trivial result 
lim^oo lim^oo \\FR e'itH' *||2 = 0, for all * G U. 

As we prove in Appendix B, 

lim sup 
i?-»00   t>Q 
lim zuv\\FRlw(Hg)e-itH'^    =    0, (1.33) 

lim sup \\FR lR-(Hg) e-%tM' *      =    0 , (1.34) 
R-+oo t>Q o 

for all \I> G H, so the transported charge of all bound states $ G Ranlpp(iJ5) and of all 
states * G RanlR-(iJp) of negative total energy vanishes. 

1.2.2   Ground State and Photon Cloud 

Our choice for the initial state ^ is of the form 

*  := A(r,/)$gS3 (1.35) 

where 

4(0,/)  = A{f)  := lel ® a*(/i)a*(/2) •■• a*(/^) , (1.36) 

and 

A(T, /)  := e-iTH° eiTHo A(f) e-irHo eiTH9 . (1.37) 

The operator A(T, }) is called & photon cloud and represents N photons with corresponding 
smooth orbitals / = (/i, /2,. • • , /N). fj ^ ^^(E3 \ {0}), of compact support away from 
zero momentum. These iV photons are prepared at time t = — r in such a way that they 
hit the atom at rest at time t = 0. (We thank S. De Bievre, M. Griesemer, H. Spohn and 
especially S. Teufel for clarifying this point to us.) From Eq. (II.8) below we show that, 
in particular, A(oo,f)$gs := limr_^00 ^4(r,/)$gS exists, thus representing an incoming 
photon scattering state. In contrast, choosing $ according to (1.35) and with r = 0 amounts 
to adding at time t = 0 the photon cloud A(f) to the (interacting) atom at rest. 

We henceforth often leave out trivial tensor factors in our notation whenever it is clear 
from the context what is meant. For instance, we write A(f) = a*(/i) a* (A) • • • a*(/jv), 
iJo = Hel+Hf,etc. 
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1.2.3   The Photoelectric Effect 

Having defined the transported charges with momentum in T, we can now formulate a 
quantitative assertion about it. To this end, we fix p G M3 and define two distributions 
Lg, 14 e W (E3 \ {0}) on smooth functions / € Q0 (E3 \ {0}) of compact support away 
from zero by 

<i&,/>    :=    2wJi(I?-Ev-<J(k))i>(p,h)md*k, (1.38) 

«,/>    ==    /" 
-ip{p,k)f(k)d3k 

(1.39) 
>2 - EQ - u(k) + iO 

=    -TT f S(p2 - EQ - u(k)) pip, k) f(k) d3k (1.40) 

fp(p,k)f(k)d3k 
J p*-Eo-L>(k)' 

IP J denoting the Cauchy principal value and p(p, k) denoting the partial Fourier transform 
of p(x, h) (as a square-integrable function) with respect to the particle position variable x. 

Now we are in position to formulate our main result. 

Theorem 1.1. Assume Hypotheses 1-2, fix N, m G N with m < N, and let ipi, (p2,... <pm G 
CQ

0
 (E3 \{0}) be an orthonormalsystem, {<pi\ipj) = S^j. Let -A(r, y?) Z^e f/ze corresponding 

photon cloud, i.e., 

A{T,<p) = e-iTH3 eiTHo a*^!)711 a*((^2)n2 • • • a*(^m)nm e-ir/fo eirH° ,      (1.41) 

where rij G N are swc/z f/za? ni + n2 + ... + nm = N, and fix a measurable set T C E3. 

f/J Ifr > g~l'K then the transported charges with momentum in T of the initial state 
A(T, ^)$gs satisfy 

Q^^Cr,^)*,,,) + O^2-*-")  = Qs
r

up(A(T^)$gs) + 0(5
2^) (1.42) 

m « 

=   p2Qf(5e)   :=   ff2(ni!n2!...nm!)5>i  /  |(^,^)|2d3p. 

(H) If T < g*1 then the transported charge with momentum in T of the initial state 
A(r, ^)^gs is given by 

Q^(A(r,£)$gs) + 0{g2+»)  = Qs
r

up(A(r,£)$6S) + 0(P
2+^)        (1.43) 

771 /, 

//ere, L^ and LQ are the distributions defined in Eqs. (L38)-(L40), and p = p(K) := 
1 — K"1 > 0, where K is the degree of differentiability in Hypothesis 1 and 2. 
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The asymptotic representation (1.42) (resp. (1.43)) is similar to the Born expansion for 
the T-matrix (see e.g. [22]) in Schrodinger scattering theory (resp. to the Born expansion 
for the wave operator). 

Note that the coefficient Q^-(<p) of the leading order contribution to the photoelectric 
effect is additive (counting multiplicities) in the single photon states <pi,... ,^m- This 
implies that the contribution of each cpj is independent of the other single photon states ipi, 
i ^ j, in the photon cloud, in contrast to the classical model for the photoelectric effect 
which would have predicted a dependence of Qj-iv) onty on the total energy of the photon 
cloud. 

1.2.4   The Limit of Monochromatic Light 

For large values of r, i.e., in Case (i) in Theorem LI above, the transported charge directly 
yields Einstein's predictions (LI) and (1.2). In Case (ii), however, there is an inconsistency 
between Eq. (1.43) and (1.1) and (1.2), since (LQ , ipj) may be non-vanishing, even if ipj is 
supported in a region where uj(k) < p2 — EQ. This observation may reflect that Case (ii) 
in Theorem LI is physically less relevant than Case (i), because it can hardly be realized 
experimentally: the photons would need to be present at the origin x = 0 at time t = 
0, coming from nowhere. On the other hand, Case (ii) deals with a (perhaps naive, but 
reasonable) first proposal for a model of a photon cloud, and it is appropriate to discuss this 
case, as well. 

It turns out, that Einstein's predictions (1.1) and (1.2) can be recovered even in Case (ii), 
provided the incident light is sufficiently monochromatic, i.e., sharply localized in momen- 
tum space. To define our notion of monochromatic light 

in precise terms, we restrict ourselves to considering a photon cloud consisting of single 
photon with wave function ip$ G Co0(E3 \ {0}), only. It is a trivial matter to extend the 
consideration below to a photon cloud of N orthonormal photon wave functions. 

For fixed tu > 0, we construct a wave function ipg localized in energy about UJ by 
choosing a smooth, L2(R)-normalized function of one, compactly supported variable, 
XITX2, • • -Xm € C'o0[(—I, !)], and a smooth, normalized functions on the two-sphere, 
Ke C00^2] and setting 

W(r, nk)  := u-1 S-^xi^p-) K(nk) , (1.44) 

using spherical coordinates (r, flk) — (|^|>^/|^|)- The limit of monochromatic light 
is then defined to be S -> 0.   Note that ips is asymptotically normalized in this limit, 
limj^oll^ll = 1. 

Given the photon wave function cps, a (more or less straightforward) computation in 
distribution theory yields, for any measurable set T C M3, that the first order term of the 
transported charge in Case (ii) in Theorem 1.1 is given by 

- (      0        if   EQ+U < 0, 
lim / \(Lp

0,ips)\2d3p =  \   Go Jo    if   EO+LJ = 0, (1.45) 
^0f [ 00/+    if   E0+UJ>0, 
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where, 

0o    :=     / lr(y/Eo+iJ<T)y/Eo+u> \Q{^/Eo+LJa,Lj)\2d2a,      (1.46) 
Js2 

f  r2 

0(p,r)    :=    -i /   —p(p,ra)hi(a)d2a, (1.47) 

with p(p, k) denoting the Fourier transform ofx-+ p(x, k), and 

Jo     J-oo y-x + iO 

i+ := z00 r x{x)dx 
y — x + z'O 

dj/, (1.48) 

2 
0 

oo 
* v i :/: ir#.:#: 

dy, (1-49) 

We state Eq. (1.45) without proof but mention that its derivation requires a slightly stronger 
assumption than what is provided by Hypothesis 1-2. 

Einstein's predictions (1.1) and (1.2) are now manifest in the right hand side of (1.45). 
The coefficient limj-^o Q^fiM^gs) may still vanish, as the factor ©o may turn out to be 
zero. This case is in accordance with (1.1) and (1.2) and merely reflects the physical fact 
that some transitions (here: from a bound into a scattering state) are forbidden in lowest 
order perturbation theory. 

1.2.5    Comparison to other Results and Methods in Scattering Theory 

As pointed out in the introduction, the results of the present paper may be considered scat- 
tering theoretic, as the transported charge derives from the asymptotic limit of the unitary 
evolution operator e-111*9, as t -> oo. Most of the work in mathematical scattering the- 
ory in the past two decades or so is devoted to proving asymptotic completeness (AC), 
first for nonrelativistic iV-body systems and, more recently and inspired by the former, for 
quantum field theoretic models like the one defined by the Hamiltonian Hg, especially, in 
[6, 7, 10, 11, 12]. The mathematical methods developed and applied in these papers are, 
perhaps, more sophisticated than those used by us for the computation of the transported 
charge. A central role in all the papers mentioned above is played by asymptotic observ- 
ables, notably the asymptotic velocity operator. Loosely speaking, the positivity of the 
asymptotic velocity guarantees that any initial state eventually breaks up into parts which 
move independently, i.e., whose time evolution is free (noninteracting), and this is an im- 
portant ingredient to prove AC. It is therefore important to note that the transported charge 
measures any contribution that escapes to infinity (in particle configuration space), even 
those that come from particles with zero asymptotic velocity. Another important aspect to 
note is that we are interested in a quantitative estimate on the transported charge, asymp- 
totically in g. In this context, AC has to be seen as an existence result: every vector can 
be approximated by a polynomial in asymptotic creation operators, acting on the ground 
states of the system. It is not easy to turn the involved estimates leading to this statement 
into quantitative information. Also, it should be noted that so far AC can be proved only 
for massive quantum fields - an assumption that plays no role in our analysis, although we 
do make a confinement assumption on the interaction couplings. 
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To be more specific about the implications of AC on the value of the transported charge, 
we consider the results in [10], where AC is proved for Rayleigh scattering, i.e., for the 
energy range below the ionization threshold. In [10] an auxiliary Hilbert space H = Ti® 
T is introduced, and with the scattering identification operator / : % —\ Ti given by 
I[ip ® a*(/i) • • • a*(/n)fi] := a*(/i) • • • a*(fn)(p, the dynamics generated by H := Hg 0 
Ijr + ln 0 Hf on 7i can be compared to the dynamics on H generated by Hg. The main 
result in [10] is, that 

n+ := s - lim eiTH°Ie-iTX{lpp{Hg) ® 1T) (1.50) 
T—>00 

exists and Rann+ D RanlR-(iI^). In particular, for each # G RanlR-(if5), there exists 

tp EH, such that 

lim sup lim sup HFfle""*^ *|| = lim sup lim sup \\FRe~itH9 n+ y?|| = 
H—>-oo        £-»oo ii-J-oo        t->cx) 

=    limsup lim sup ||Ffi/e-"5(lpp(Fs)® l^)v|| = 0, (1.51) 

and the last equation follows from the fact that e~ltH leaves lPp{T-L) invariant, and the 
application of I does not affect the electronic component, thus (B.l) implies (1.51). Hence, 
the proof of AC in [10] yields Qinf = Qsup = 0 below the ionization threshold. While this 
result does not cover the range of positive energies, which is where the photoelectric effect 
takes place, the proof of AC for Compton scattering in the more recent paper [11] may 
show that <3inf = Qsup extends to any bounded energy range. It would then be interesting 
to see whether the methods used therein also yield a better quantitative estimate on the 
transported charge than the one derived in the present paper. 

II   Dyson Series and Photoelectric Effect 

In this section we study the asymptotics, as t -» oo, for e~^jff9^4(r, /)$gs, where Hg — 
Ho + gW is the Hamiltonian generating the dynamics of the interacting system, which is 
applied to an initial state A(r, /)$gs for 0 < r < g^ and for r > g~T<. The initial state is 
composed of a photon cloud 

A = A(f) = cftfja'fo) ••'(?(/„),   with fuf2,...,fN e CO
00
(J5A\{0}), 

(H.l) 

of N photons and its time evolution 

A{T)$gs = i4(r,/)*g8  := e"^ eiTHo A(f) e-irHo eiTH° $gs (II.2) 

applied to a ground state vector <f>gS, 

Hg $gs = Eo ^gs , (II.3) 

representing the interacting atom at rest. Note that each photon orbital fj is assumed to 
be smooth and compactly supported away from zero momentum and in the ball of radius 
A < oo about the origin, 

supp/j  C BA\ {0} := {k e M3 | 0 < uj(k) < A} . (II.4) 
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We now give a list of assumptions used to derive Theorem II. 1, below. Given an operator 
X on Ti and t £ E we denote its free Heisenberg time evolution by 

Xt   :=   e-itHoXeitHo ! (IL5) 

Next, we recall from (1.27) the estimate 

|| (ff}A) + 1)* Pc $gs 1 + || (Hf + IT P& $gs ||  < O(g) , (11.6) 

for any a > 1 and any A < oo, where ijl ^ is defined in (1.28). Eq. (II.6) is proved in 
Lemma III.2, below. Furthermore, we recall from (1.22) that 

PdWPd = (Pd 0 1) W (Pd 0 1) - 0 . (II.7) 

In Lemma III.3, we demonstrate that, for any s E R 

\\[W , As](H{
f
A) + 1)-1-W2m  < ©((l + H)-*), (II.8) 

where K > 1 is the degree of differentiability in Hypothesis 1. Since $gs G dom[(Hf + 
1)i+(iv/2)]? for any JV G No, the estimate (II.8) and the fact that Hf and Pd commute 
imply the norm-convergence of 

*OO(A(/),T) :=   lim $T(A(/),r) , (II.9) 
— T-+oo — 

where 

$T(X,r) := { 

(   rT 

/    dseia(Ho-Eo)\W,Xa]Pd$&    if   0<r<^ 

T 

/ ds eis^-E^ [W , Xs] Pd $gs      if   r > g-ir 

(11.10) 

provided K > 1. Furthermore, we show in Lemma III.4 that, for any r G M and s G lj, 

llWe-^^Pe^^^^ + l)-2-^/2^!  < 0((l + |r|)-3/2). (11.11) 

Under these assumptions, we prove the following Theorem. 

Theorem ILL Assume Hypotheses 1-2 and (ILl)-(II.ll).  Then there exists a constant 
C < oo such that, for all t > g~l/K, 

He-^'-^UMSgs - At$gs + ise-^0"^ $00(^,7-) ||  < C91+*K\ 
(11.12) 

provided that either 0 < r < g* or r > g~K, and where p(K) := 1 - K'1 > 0 and 
K > 1 is the degree of differentiability in Hypothesis 1. 
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Proof. First we compute the Heisenberg time evolution of the photon cloud A(T) on Ran 
K^-i)-1-*], 

e-itHg ^/A eitHg      _     e-i(t+T)Hg ei{t-\-T)HQ ^ e-i{t+T)HQ ei(t+T)Hg (11.13) 

■=    At +        ■-    ■- ■-    •- 

t+T 

0 
=    At - ig [      ds e-isH° [W, A*-,] c"^ 

=    At - ig f   ds e-^'8^ [W , A,] e^"5^ , 

using A = A(0) = A(0, /) and a change of integration variables, s *-> t — s. Applying 
(11.13) to the ground state $gS, we obtain 

■-20tf(t,T)    :=    e-^^-^^r)^ - At9& (11.14) 

=    -z^l   dse-W-H^-^iWtAs]^, 

and our goal is to show that 

||*(i,r) - e-^-^SooMr),-/-))!!  < Cp" . (IL15) 

To this end, we first prove (11.15) for the special case r = 0. Given T > 1 and K > 1, 
and assuming that £ > T, we observe that 

|$0004,0) - $T(A0)||  < (^(T1-^), (11.16) 

^(t.O) - fodse-W-'M'-^lW, As]$gs    < ^(T1-^).       (11.17) 

Next, we use that HQ and >1 commute with Pd and that P^ PF Pa = 0 which imply 

[W,^]Pd = Pc[^,As]Pd. (11.18) 

Hence we have that 

\\e-UH> $T(A,0) - e-itHo $T(A,0)\\ (11.19) 

/ dre-irH° We-i{t-r)Ho $T(A,0) 
Jo 

I dr f   ds e-isE° e-irH° W e-^-r-sWo p^w > A^ pd $gs 

<    5||(^ + 10)2+W2)$gs|| 

( dr f   ds ||We-^-*-'^0 Pc[W, ^] (i?/ + l)-2-W2)|| j 

and (II. 11) and a change of variable r ^ t — r now imply that 

=    9 

=    9 

||e-'^$T(^,0) - e-itHo §T(A,0)\\    <   d g [   ds [ 
Jo        Jo 

dr 

(1 + |r - s|)3/2 

<    CxCigT, (11.20) 
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where Ci < oo and C2 := /^(l + |r|)"3/2dr < 00. Applying the estimates (11.16)- 
(11.20) to the left side of (11.15), we hence obtain that 

|*(*,0) - e"^1*0-^ ^(A,0)|| (11.21) 

< 

< 

< 

+     /T ds e-Ht-HH.-Eo) [w ) As] $gs _ e-*^«-^)$T(^, 0) || 
Jo 

+ ^e-it(Hg-E0)   _ e-it(Ho-Eo)}$T(Aj0^   +   ||$T(A,0)  - $oo(^,0) 

[   ds e^"'-^ [W, A,] $6s - $T(A, 0)    + 0{Tl-K + gT) 
Jo 

f   ds (e"^'-^) - e***-^) [W, As] Pd $gs 
Jo 

rn 

[   dsei<H°-E^[W,As}Pc$gs    +0{T1-K + gT), 
Jo 

+ 

using that Pd + Pc = 1. It remains to bound the two integrals in the last line of (11.21). The 
second of these is bounded by 

(11.22) /    dseis^-E^[W, AS}PC$ 
Jo 

< ||(tfJA) + l)1+W2>Pc<I>gs|| Jo
Tds\\[W,As}(Hf + l)-^N^\\ 

< 0(g) < 0{gT), 

due to (II.6) and (II.8), since K > 1 and T > 1. To estimate the first integral, we use again 
the DuHamel formula as in (11.19). This yields 

/    ds(. 
Jo 

<    9 

MH9-E0) _ pis(H0-Eo)) 

■T 

g^V^j-^uy    _   g-y-u-    ^U,^   [W  )    ^j  pd  $gs (11.23) 

f   ds e-isB° f dr eirH° W e^'^"0 PC[W, A.] Pd $gs 

<   g\\<flt + lF-W*>*v\\ 

fT ds fS dr WWe*'-*)110 pc[w j As] {Hf + 1)-2-(iv/2) 
Jo       Jo 10 Jo 

<    Ci g [   ds [ 
Jo       Jo 

dr 
(1 + |r|)3/2 

< 0{gT) , 

changing again the integration variable r i-» s - r. Inserting (11.22) and (11.23) into (11.21), 
we arrive at 

||tf(t,0) - e-^^-^^oo^O)!!  < O^-K+gT), (11.24) 

which yields (11.15) upon choosing T := g^^'1 and setting ii{K) := 1 - if-1 > 0, for 
the special case r = 0. 
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Note that if more generally 0 < r < g^ then $00 (A, r) — $00 (A, 0) and hence 

||A(r)$g8 - ,4$gs|| - g\\ [Tdse-is(H°-E^[W,A-s]$gs\\. (11.25) 

Additionally using (11.8), we hence conclude ||A(r)$gS - A$g8\\ < 0(g1+^), proving the 
asymptotic expansion (11.12) in the case r G [0, g*1]. 

In order to deal with the case r G [g~1^K, 00), we observe that an application of (11.25), 
fort>g~^, in combination with the decay property (II.8) establishes 

\\e-itH»A(t)$& - e-itH'A(T)$&\\ < 0{gl+il) , (11.26) 

and we may replace the time-evolved state e111*9 A{T)§gs by e~'ltH9 A(t)$gS in this case. 
Using r = t in Eq. (II. 13), we furthermore obtain 

e-u(H3-Eo)A(t)$gs = At$gs - ig f   dse-i{t-s)H°[W,As]ei{t-s)H°$gs.   (11.27) 

Using 

*(*,*) =   /"  dse-W-'W'-^iWtAslQv, (11.28) 

computations running along the lines of (II.16)-(II.23) substituting $00 (A, 00), $T(^45 00), 
T 

*(£, 00) for $00(^4? 0), $T(A 0), $(*, 0) and replacing integrals of the form / ds by those 
0 

T _x 
of the form f ds proves (11.12) for r > g   * , as well. □ 

-T 

Theorem II. 1 is the main tool for the analysis of the charges transported to infinity, 
Qj^(A{r)^gs) and (5^ip(^4(r)$gS), because it allows us to take the limits t -> 00 and 
R -4 00, as shown in the following lemma. 

Lemma II.2. Assume Hypotheses 1-2, and let A — a*(/i) a* fa) • • • 
a*(/iv) vwY/z /1,..., /JV G CQ^E

3
 \ {0}). T/z^n J/zere g^cw^ a constant C < 00, .swc/z ^flf 

r/z^ charges transported to infinity obey 

Q™»(A(T)$gs) - C/^ < /Hrr^oo^r)!!2 < Qr (Mr)**) + Cg2+^ 
(11.29) 

for 0 < r < g*1 and r > #_ *, w^r^ ^(JFC) := 1 — i^-1 > 0 and K > 1 is the degree of 
differentiability in Hypothesis 1. 

Proof: First we observe that, since FR = FR <g) 1/ commutes with A^ = lei ® At and 
if/ = lei (g) 71/, we have 

HrrFfl^SgsH    <    ||FflAt*g8||   -   H^^^gsll (11.30) 

<    \\At (Hf + I)""/2!! • 11^ (F/ + I)"/2 <I>gs|| . 
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Applying Lemma III. 1 iV-times, we observe that \\At (Hf +1)  N/21| is bounded by C2 < 
00, uniformly in t. 

N 

\At(Hf + l)-N/2\\  < Y[ \\(Hf i-l^-V/2 ^{e-^f^iHf + l)-j/2 

i=i 

Moreover, (Hf + l)iV/2$gS G Ti and FR -> 0 strongly, as it! -> 00, hence 

lim   lim \\TrFRAt^gs\\  = 0. 

< c2. 

(11.31) 

(11.32) 

According to Theorem II. 1 we have 

e-it{Hg-Eo)A(T)Q&   =  At$&  _ ige-iWo-Eo)^^  + Rem(t) j       (n.33) 

where ||Rem(t)|| < Ci^1+/i, for some constant Ci < 00 independent of t G M+ and 
fi = 1 - 1/X. Inserting Eqs. (11.33) and (11.32) into the definitions (L31HL32) of the 
transported charges, we find that 

Qs^(A(T)*gs) - d^"  <  <72Qr(^(r)$gs)  < Q^f(^(r)*g5) + ds2^ , 
(11.34) 

where 

QT(A(T)%S) :=   lim   lim ||rriiKe-4'<ff,'-'Eo>$00(i4>T) (11.35) 

and estimate (11.29) would follow from Qr(A(r)$gs) = ||Tr^oo(^,r)||2. 

Next, we turn to TrFRe-it{Ho~Eo^^(A, r). We note that FR = FR PC and hence 

FRe-it(Ho-Eo)   =   e-it(Hf-Eo) FRpce-itHel   _   e-it(Hf-Eo) FRe-it(-A) pc ^ 

(1136) 

Furthermore, the absolute continuity of the spectrum of -A on L2 (R3) implies that 

(1 - FR)e-^-^ = l{|s|<fl}e-
i<(-A) -»• 0 (11.37) 

strongly, as t -»■ oo, for any i? < oo. Using (11.36), (11.37), and the fact that the operators 
Tr = TrPc, e~it(-~A\ and e-it(Hf-Eo) commute, we thus obtain 

lim   lim ||Tri^e-a<*°--B°>$<X)(,4,T)|| = 

=     lim   lim llrrFfle-^-^Pc^oo^TJl^llrr^oo^T)!, 

which implies the claim. 

Next, we recall from Eq. (II.9) the definition of 

(11.38) 

□ 

foo (A, T) = < 

/•OO 

/     dseis^Ho-Eo)[W,A8]Pd$&     if 0 < r < gv 
Jo 
/oo 

dseis(Ho-Eo) |Wj As}Pd%s     ifT>g-* 
-OO 

(11.39) 
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which we complement by the definition of the vector 

/     d»e"(/ro-'Bb>[W)i4,]Pd(0©n)-    ifO<r<^ 

*S,(A,r) := {     0 (11.40) 
/     dseis(Ho-Eo')[W,As]Pd(0®n)   \fT>g-Tc 

J — oo 

whose existence is guaranteed thanks to Lemma IIL3. Lemma IL3 below shows that these 
two vectors differ by at most 0(g), i.e., a replacement of the ground state ^gS of Hg by the 
ground state 0 © 0 of HQ in the definition of $00 {A, r) introduces only small errors which 
are negligible, as we shall see. 

Lemma 11.3. Assume Hypotheses 1-2, and let A = a* (/1) a* (/2) • • • a* (/AT) with fi,..., 
/JV € CQ^E

3
 \ {0}). Then there exists a constant C < 00, swc/z that 

QooiAr) -#S»(X,r)||  < C5. (11.41) 

Prao/- We first note that due to Lemma III.3, we have the estimate 

||*oo(A,T)   -  C(AT)||  < 

< 

(11.42) 

(MA) + I)1+
T (pd$gs - (o e ft)) • / d*|l [^' A°} (HfA) + i)"1-^ 

JR 

(^}A) + l)1+*(Pd$gs - (0 0 ft)) 

for some constant Ci   <  00.   Additionally using Lemma III.2 and the decomposition 
Pd$gs - (0 © O) = [PdPQ^gs - (0 © ft)] + PdP^-$gs , we observe that 

{HW + 1)l+iV/2 (p^^   _   (0 0 ft))       <   0(^ _ n 
(11.43) 

The final ingredient for the proof of Theorem 1.1 is Lemma 11.4, below. Note that due 
to the definitions (11.40) we may restrict ourselves to the case r = 0 and r = 00. 

Lemma II.4. Assume Hypotheses 1-2, fix TV, m G N with m < N, and let <pi, y?2 5 • • • tfrn € 
C^E3 \ {0}) be an orthonormalsystem, (<^|^) = 5ij. Let A = a*(^i)nia*(^2)n2 • • • 
a*(<£>m)nrn, vv/i^r^ n^ G N are such that ni + n2 + ... 4- nm = iV, and fix a measurable 
setT C E3. rAen 

||rrC(^r)||2  = gH5e) = 
771 p 

(11.44) 

i=i 

w/Z/z L? = LlJorr G [0,^], an^/L? = L^Jorr G [£~1/jft:, 00), wA^re Lg am/L^ ^re 
defined in Eqs. (1.38H 1.40). 
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Proof: We first write W = a*(G) + a(G) and use the canonical commutation relations to 
obtain that 

[W,AS]    =    [a*(G) + a(G) , a*{e-™vtf* c? (e-***wY* • ■ ■ a*{e'^^m)n-} 

=    [a(G) , a*(e-is"lp1)
nia*{e-is"<p2)n2---a*(e-iso,<pm)n'"] 

=    Enn (G\e~iSUJVj) QUa^e-Wtpi)"*-6'-' \ , (IL45) 

on dom[Hf     ' ], where (G|e""Z5u;</?j)  G B(Hei) is a bounded operator acting on the 
electron variables given by 

(Gle'^tpj)  :=   [(Pke-wWtpjWG'ik). (11.46) 

Moreover, for any s > 0, 

i=l 

=    e^^-'-^^Gle-*^^) 0 ei5fr' JJa*(c-"Cl,^)n'-J*^ (0 © fi) 
i=l 

771 

=    eis(-A-£;o)(PcC?Pd|e-^(pj)0[Ja*(^)ni-(5i-(O©n). 
2=1 

m 

-    (^.s 0 0) ® JJa*(^)n'-^n , (11.47) 
2=1 

where the Fourier transform of ^j € L2(M3) with respect to the particle coordinate £ is 
given by 

4,(p) = y d3A: e-^2"^-^)) p(p, k) wik) . (11.48) 

Here, we used the fact that Pd G(k)*Pd = 0 and hence G(k)*Pd = Pc G(kyPd, for all 
jb G E3. Moreover, Pc G(kyPd(^®z) = zpi(ky®0, and this yields (11.48). Eqs. (11.45)- 
(11.48) imply that 

171 (     poo ^ rn 

*£ {^ r) = J2nn     ds fa.'e 0) r ® 11a* (v«)ni "''■,".      (n.49) 

Passing to the momentum representation for the particle variable and using that 
/   m m . m 

\ 2=1 2=1 ' 2=1 

we hence obtain 

||rr$S,(AT)||2  =    5>i{/   d5(Tr^,.eo)}0no*(vOB'"''-;'n 
j=i      •/-r »=! 

=   nil^l • • • nm\ y^rij / d3p  /    ds^jtS(p) (11.51) 
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It remains to evaluate the integral /^ ds ipj^ip) in (11.51), which is an exercise in distribu- 
tion theory. To this end, we note that the K > 1-fold partial differentiability of p(x, k) with 
respect to A: in Hypothesis 1 implies that /3(p, • )(fj is two times partially differentiable with 
respect to k, and that its derivatives of order < 2 have bounded support away from k = 0. 
Since the phase in ipj^ip) is non-stationary, away from k = 0, two times integration by 
parts back and forth yields 

/oo roo n 

ds4>j,s(p)   =   /    da     <Pkeitto-Bo-','Wp(p,k)(pj{k) 

=      lim   f dZk   I     ds eis(P2-Eo-u(k)+ie) pfa fc) y.^ 

=    lim     d3k      0     „ t1,
P(P:  ' ipAk). (11.52) 

Thus in the case T = 0: 

/     ds^j^ip)    =     /   ds^hs{p) +   /     dsipjiS(p) (11.53) 
JO JO Jl 

=      lim   / ^^    2        I^Vu   ,    ■     W (*) = (L0 . W> • 

For the case r = oo, we get 

lim   /   ds^sip)    =     lim  [   ds  [ d3k e^(p2-^o-^k)) fifaQwik) =      (11.54) 

r eit{p2-Eo-uj(k)) _ eit(p2-Eo-uj(k)) 
=     lim  / d3/c — —-r pip, k) ipj (k) 

t-^oo J i{p2 - EQ - u(k)) 

=  27r / d2n(p2-Eo)2p(p;p2-E(hn)vJ(p2-E(hn).  D 

Proof of Theorem LI: The proof of Theorem 1.1 consists of the following chain of esti- 
mates, 

Q^(A(r)^s) + 0(92+»)    = Q™p(A(T)$gs) + 0(g2+n 

= j2||rr*oo04)T)||2 (11.55) 

= 92\\Tr^(A,T)\\2 + Oig2^) (11.56) 

= QHy) + 0(g2+n , (11.57) 

where Lemma II.2, II.3, and II.4 justify Eq. (11.55), (11.56), and (11.57), respectively.       □ 
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III   Technical Estimates 

In this section we derive the estimates (II.6), (11.8), and (II. 11), which is the basic input for 
the asymptotics of the time evolution asserted in Theorem ILL 

Before we turn to these bounds, we derive a preparatory lemma. 

Lemma III.l. Suppose that a > 1, A < oo, and let G G Z/'fR3 ;#(%)] with C := 
/<?*(!+fa;(A)-1)||G(A:)||2 < oo. Denote a*(G) := f d?kG(k) ®a*(k) anda(G) := 
Jd3kG{k)*®a(k). Then 

||(ffjA) + l)'MG)(tf/ + ira~1/2|| < V^, (III.1) 

||(FjA) + l)aa*(G)(F/ + l)-a-1/2|| < >/C(2 + 4A)a, (III.2) 

||(FjA)+l)aa(GA)(Jj}A)+l)-a-1/2|| < VC, (III.3) 

||(F}A) + l)ao*(GA)(F}A) + l)-a-1/2|| < A/C(2 + 4A)
Q
, (III.4) 

where G^(k) :— l{w(fc)<A} G(k), and l{Uj(k)<\} denotes the characteristic Junction of 
{k e M3 | Lj(k) < A}. 

Proof. First, we introduce a more compact notation. 

Gi     :=    G, 

G2    :=    GA, 

^1 

H2 

Hf, Wi     :=    w, 

^2    :=    WA, 
(III.5) 

and observe that Eqs. (III. 1)-(III.4) are equivalent to 

\\{H{
f
A) + l)aa(Gj)(Hj + l)-a-1/2\\    <    VC, (111.6) 

IK^ + ^^a^G.O^ + l)-0-1/2!!    <    v/G(2 + 4A)a, (III.7) 

withj = 1,2. We apply the operator on the left side of (III.6) to a normalized vector ip e H 
and obtain the desired estimate by means of the pull-through formula, the Cauchy-Schwarz 

inequality, and Hf ' + 1 < Hj + 1 +UJJ, 

(Hf + iraiG^iHj + ir"-1/2^ (III.8) 

< Jd'kWGjim 
Hf + l 

Hj -l-l-t-w^fc) 
a(A;)(^ + l)-1/2V 

< f f WGjjk iGjimiu^y^ 
(A) 

Hj 
Hi + 1 

1/2 
< 

ujjik)       ) 
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for any ip € H, \\ip\\ = 1. To derive (III.7), we use the canonical commutation relations, 

(III.9) 

=    jd*kd3~k(y | G^kYGjik) ® (Hj + ir^^aik) (H^ + l)2a a*(k) 

GjikYGjik) 

r^\2 {H^+l+iOAJ^+OJ^k)) 

[{Hj + 1 + Uj(k)) (Hj + 1 + Uj(k)) J      y n   3      '        V 

+ j'd3k (v| Gj(kyGj(k) ® (^ + l)"2—1 (ijW + 1 + WACA;))
2
" V) 

tfiA) + 1 + 2A  2a /  r  , 
" g. + i        (^y^HG?^)!!   a^^ + l)-1^^ 

+ l^ + l)-2-1 (Hf + l+LJA(k))2a\\ (Jd3k\\Gj(k)\\ 

<    C(l + 2A)2a(l+   fd^kijji^^i^iHj + l)-1/2^^ 

<    C (1 + 2A)2a   1 + if,- 
fl^ + l 

< C(2 + 4A)2a. 

Note that in the last step we used Hj = J d3k Wj(k) a* (k)a{k). U 

Now we are in position to establish Eq. (II.6) which shows that the interacting atom- 
photon ground state $gS is well-localized in energy, even for the noninteracting Hamilto- 
nian. 

Lemma 111.2. For any a > 1, A < oo, and sufficiently small g > 0, we have 

[H^ + irPc$ss\\ + ||(tf(A) +1)^^(1  < O(g). (III. 10) 

Proof. The proof is similar to the one for [2, Thm. X]. We first note that the asserted bound 
(III. 10) is implied by (1.25) and the following estimate, 

r(A) 
:ff}A,+l)al{tf0>iW3}*g,||  < O(g), (III. 11) 

because on Ran 1{H0<E0/3}, we have Pc = 0 and H{
f
A) < |eo| - \E0\/S. 

Let x € 0^(1; [0,1]) be a real-valued, smooth function, compactly supported in I := 
(lEo , f 3D) and such that*^) - 1. Clearly, l^o^o/s} x(Ho) = 0, andx(#9) $gs = 
$es. Hence we observe that 

r(A) (H^ + iri{H^Eo/3}^s = (III. 12) 

1{HO>E0/3} (H)A} + l)a [x(Hg) - x(H0)} (Hg -E0 + l)-""1*,. 
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Next, we represent x(Hg) and x(Ho) by the functional calculus based on almost analytic 
extensions of smooth functions of compact support [19]. Let x € C™ (A; C) be an almost 
analytic extension of x, supported in a small complex neighborhood A C C of / and such 
thsLtdx{z) = 0((lmz)2). By means of the measure dfjb(z) := (27ri)~1 dx{z) dz A dz and 
the second resolvent equation, we have the following identity 

MZ) Mz) (111.13) X(H9)-X(H0)    =   j^ 
Ho-z 

=    -gJd^iiHo-zr'WiHs-z)-1}. 

Inserting this identity into (III. 12) and applying Lemma III.l to W = a*(G) + a(G), we 
obtain the norm estimate 

||(tf}A)+l)*l{„0>Bo/3}<I>gs|| 

< g   jd^iiHo-zy'iH^ + irW 

■(Hs-Eo + iy^iHs-z)-1}^ 

< g I \dfi(z)\{\\{H0 - z)"1! ||(#JA) + I)" W(Hf + I)—1! 

•!(#, +ir+^-Eo + ir^iiK^-zri} 
< O(g), (111.14) 

which finishes the proof. □ 

Our next goal is the derivation of (II.8). Actually, we prove a somewhat stronger es- 
timate which is also used in the proof of Lemma III.4, below. Recall that A = A(f) = 
a*(/i)o*(/2) •■•a*(/Jv)isa photon cloud of N photons fu h,... ,fN € C^(BA\{0}), 
that Xt := e-

ltHoXeltHo denotes the free time evolution of an observable X, and that 
K > 1 is the degree of differentiability in Hypothesis 1. Denoting 

(i + N)8/3:=((1 + l
0
B|)8/a   ;)ai, dins) 

we prove the following lemma. 

Lemma III.3. For any N € N and K > 1, there exists a constant C < oo such that 

IKl + lxl)3/2^,^,]^^!)-1-^/2)!!  < C(l + \s\)-K , (111.16) 

for alls eR 

Proof. First observe that on dom(iJ^/2), we have e-isHoa*(f)eisHo = a*(e-isujf) and 
hence 

,4, = o'Ce-'^/i) a*(e-isw/2) • ■■a*(e-is" fN). (111.17) 



Mathematical Analysis of the Photoelectric Effect 993 

Writing W = a*(G) + a(G) and using the canonical commutation relations, we thus have 

[W,AS}    =    {a*{G)+a(G),a'{e-is«h)a*{e-is»h)--.a*{e-is»fN)} 

=    [a(G) , a'ier^h) a*(e-™f2) ■ ■ ■ a%e-i*>fN)] (111.18) 

= EJ^ie-*-/,-)®!!0*^"""/*)}, 

where (G\e lsuJ fj) € B(Uei) is a bounded operator acting on the electron variables given 
by 

(Gle-^fj) := JdSke-^WfjWG'ik). (111.19) 

Note that A; H-> fj(k)G*(k) is if > 1 times continuously differentiable, and, thanks to the 
support properties of fj, there exists r, > 0 such that /^G* G CK[BA \ Brj; iB(We/)] has 
compact support away from zero. Thus, thanks to Hypothesis 1, K times (B{Hei)-valued) 
integration by parts yields the standard estimate for oscillatory integrals, 

(l + Wf/^Gle-^/,-) 

<    1*1 -K j d3k ||(1 + |a;|)3/2 (V, - (k/\k\))K /,(*) G*(*) 

<    0((1 + |*|)-^), 

(111.20) 

(111.21) 

provided |s| > 1. For |*| < 1, Estimate (111.20) is trivial and hence holds for all s G 
Inserting (111.20) into (III. 18) and undoing the free time evolution (which is possible 

because HQ commutes with ijj 0, we obtain 

|| (1 + la;!)3/2 [W, A.] (H^ + i)-i-W2)|| 

<   0((1 + \S\)-K) f]  ( H a*(e~^/i)) (^/A) + i)-1-^ 

= o((i + \s\rK)f^ (n <»•(/«)) (^A) +1)-1 

(111.22) 

\-l-(N/2) 

To estimate a product of iV - 1 creation operators 

IN G C^CBA \ {0}), we use Estimate (111.4) N - 1 times and derive 

^(/Oa^^.-.a^/^Owith 

^ n=l / 

= H   ((^ + l)(n-1)/2«*(/n) (<' + I)"" 
n=l   ^ 

iV-1 

<       n||(-ff/A) + 1)(n_1)/V(/n)(^A) + ir"/2      <   ©((l + A)^)). 

(111.23) 
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Inserting this bound into (111.22) yields (III. 16), since A < oo is bounded. □ 

We finally turn to proving (II. 11). Note that the following Lemma uses Hf rather than 

Lemma III.4. There exists a constant C < oo such that, for any r € E and s £ Kg". 

|| W e-irHo Pc [W , As} (Hf + I)"2"W2) ||  < C ((1 + |r|)-3/2) . (111.24) 

Proof. The proof is based on the decay of the Schwartz kernel 

exp[i(a; — 2/)2(4r)_1] of the propagator e~ir(~A*> of the free particle.  More precisely, 
defining Ci := (47r)_1 /(I + |a;|)27d3a; < oo, we observe that 

|((1 + \x\)-^ | e-ir(-A) (1 + |a;|)-^)| (111.25) 

1 

< 

(47rr)3/2 

IMI IHI 

f***vVf ip[x) e^'-tf/W tp(y) 

d33 

+ 1^(1 + 12/1)7 

< CiiMMHk-3/2, 
(47r r)3/2 \J   (l + lxl)27, 

for any tp, ip € L1 D L2 (I3), since 7 > 3/2. This estimate yields 

||(1 + \x\)-< e-irH<> Pc (1 + M)-^ (111.26) 

(i + Mn e-*^-^) (i + IID-T  0 \ 0 e_irH/   £ Ci r_3/2 _ 

Inserting (III.26) into (III.24) and using that Hf and Ho commute, we obtain 

|| W e-irHo Pc [W , As] (Hf + 1)-2-W2) || (111.27) 

< \\W(l + \x\)i (8 (Hf + l)~1/2\\ ||(1 + la;!)-7 e"^0 Pc (1 + |a;|)-7|| 

|| (1 + M)7 ® (H, + I)1/2 [W, As] (if/ + I)"2" W2> || 

< Ci r-3/2 || W (1 + l^l)7 ® (H/ + l)-1/2)) 

|| (1 + \x\r <S> (Hf + I)1/2 [W, AJ (Hf + l)-2-(w/2) I . 

Next, we use (III. 18) and the pull-through formula to commute (Hf + I)1/2 through 
[W, As], observing that suppfj C BA(0). This yields 

(1 + W ® (if/ + I)1/2 [W, A,] (ff, +1)-2-w2) (111.28) 

< (1 + \x\r [W , A,] (Hf + I)-2-W2> (^ + 1 + (AT - 1)A) 
1/2 

<    (1 + iVA)1/2   (l + \x\)'>{W,As](Hf + l)-3/2-(NM < c2, 

for some constant C2 < 00, uniformly in 5 G M. Here we additionally inserted (III. 16) to 
derive the last inequality. Finally, there exists a constant C3 < 00, such that 

jy(i + M)7®(#/ + i)-1/2 
< £3, (111.29) 

as follows from writing W (I + \x\)^ = a*[G (1 + |a;|)7] + a[G (1 + |a;|)7] and applying 
Lemma III. 1. D 
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A   Elimination of Matrix Elements by a Bogoliubov Trans- 
formation 

Consider Hei — -A-y(x), a Schrodinger operator on E3 having a single, simple negative 
eigenvalue, eo < 0, associated to a normalized vector </?o- This Hamiltonian represents an 
atom which we couple to the photonic field described in Subsect. 1.1.2 with an interaction 
described in Subsect. 1.1.3. More precisely, we assume the interaction W to be of the form 
(1.11), with G G L2[l3;S(/He/)] being a square-integrable function with values in the 
bounded operators on 'H,ei, satisfying 

I&k\\ + u(k)-2}\G(k)f  < 1. (A.l) 

Note that this assumption is stronger than (1.16). We now show 

Theorem A.l. Assume (A.l). For g > 0 small enough, there exists a unitary transform 
Ug G B(Hei 0 J-) real analytic in g such that 

Hg := UgHgU; = Hei 0 1/ + lel®Hf + gW (A.2) 

where 

• Hei = Hei + g2AV, and AV is a bounded self-adjoint operator; 

• ifW acts as a multiplication operator in the electron variable, AV is a potential, 
i.e., a multiplication operator; 

• Hei has a single, simple negative eigenvalue, eg < 0, associated to the one-dimensional 
eigenprojectorllg; 

• we have 

(Ug 0 1/) W (Ug <8> 1/)   =   0 . (A.3) 

All the quantities introduced above are real-analytic in g. 

Theorem A.l proves that, starting from a Schrodinger operator on E3 with a single, 
simple negative bound state, using a unitary transform, one can always pass to an interac- 
tion fulfilling Assumption (1.12). 

Proof Pick h 6 L2(E3), and consider the Bogoliubov transform 

U(h) = i®ei9la*w+aWK (A.4) 

A standard computation gives 

U{h) Hg U(hy = Hel 0 1/ + lez 0 Hf + gW , (A.5) 
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where 

Hel = Hei + g2 AV(h) , (A.6) 

AV(h) := f d3kh(k)G(k) +h(kJG*(k)\ , (A.7) 

W = W + 1 (8) {a*(a;/i) + a(cj/i)} . (A.8) 

We remark that AV : L2(E3) -> B(Hei) is a bounded linear operator with norm bounded 
by one, thanks to (A.l). Hence, Hei has a single, simple eigenvalue e(h) = eo H- 0(g2) in 
a vicinity of eo, and we denote the corresponding normalized eigenvector by (pg (h). 

To prove Theorem A.l, we only need to show that, for g > 0 sufficiently small, we can 
construct hg G L2(E3) such that 

-(ipg{hg),G{k)v9{hg)) = hg{k),       where      G{k) := ^(fc)"1 G(fc) .      (A.9) 

By Assumption (A.l), G is a square-integrable function with values in the bounded opera- 
tors on 1-Lei. Using standard perturbation theory, we construct ipg (h) simply by normalizing 
the vector 

<P9{h)  :=  2^   {z-Hel-g2AV(h))~1ip0dz, (A.10) 

where 70 is a small circle of center eo and radius |eo/2|. The function ipg (h) is real analytic 
in g and continuous in h, for h in the unit ball in L2(E3); real analytic perturbation theory 
and the bound ||AV(/i)|| < ||ft|| immediately give 

\\ipg(h) -^(V)||  < Cg2\\h-ti\\, (A.11) 

for some constant C < 00 and all A, h' € I/2(E3) with ||ft||, ||/i'|| < 1. Set 

h0 - -^o|G(fc)^o). (A.12) 

For g fixed and small and h € I/2(E3), with \\h\\ < 1, we define 

Tg(h) = -(Vg(ho + h)\G(>)ipg(ho + h)) - ho. (A.13) 

Note that To has a trivial fixed point, h — 0. For # > 0 sufficiently small, Tg maps the unit 
ball of L2 (E3) into itself. Moreover, one computes 

\\Tg(h)-Tg(h')\\    <    4||G(A;)||||^(/io + /i)-^(/io + ^)ll 

<    Cg2\\h-h'\\, (A.14) 

for some C < 00. Hence, Tg is contracting for g small enough. Therefore, the fixed point 
equation h — Tg(h) has a unique solution in the unit ball of L2(E3). This fixed point is 
the desired function solving (A.9). We may construct this solution as the norm limit of the 
sequence T™(0). Each of these terms being real analytic in g and the convergence being 
uniform in g sufficiently small (the rate of convergence is given by g2), the limit is real 
analytic in g. □ 
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B   Transported Charge for Bound and Negative Energy 
States 

Theorem B.l. Assume Hypothesis 1. Then 

lim   sup \\FRe-itH° l^ff,) * 11    =    0 (B.l) 

lim   supH^e-"^ l^oco]^)*!!     =    0 (B.2) 

for any ^ G H, where lpp(Hg) and l^^^Hg) are the spectral projections ofHg onto 
its point spectrum and onto ] — oo, 0], respectively. 

Proof. To prove equality (B. 1), we first assume that ^ is an eigenvector of Hg with corre- 
sponding eigenvalue E G M. Since FR -» 0 strongly, as R ->> oo, we then have 

lim   supllF^e-^^^IU  lim ||Ffl*|| = 0. (B.3) 

This, of course, generalizes to any finite linear combination of eigenvectors of Hg. Since 
the norm closure of this set of vectors is the pure point subspace of Hg, Eq. (B.3) also 
generalizes to vectors in Ran lPp(Hg), which yields (B.l). As a consequence of (B.l) we 
may assume ^ = lc(Hg)S& in the proof of (B.2). These vectors out of the continuous 
subspace have the property that 

lim 1{E_S,E+6)(H9)* = 0, (B.4) 

for any E G E. As Hg is bounded from below and in view of (B.4), it hence (choosing 
E := 0) suffices to prove that 

lim   ||F*x[^]||  - 0, (B.5) 

for any smooth function x € Co0^--00} 0)], compactly supported on the negative half-axis 
and away from zero. The basic idea of our proof of (B.5) is essentially the same as [2, 
Thm. II. 1] or Lemma III.2 and uses a Combes-Thomas or Agmon Estimate. For H = Hg 
or H — HQ, we use a representation 

™-JJ 
dp{z) 

(B.6) 

based on an almost analytic extension x € CQ
D
{M]C) of x> whose compact support 

M C C can be chosen to include only z G C with Rez < — J, for some 5 > 0. Moreover, 
we can choose x as t0 obey dx(z) — (9((Im ^)2). The measure in (B.6) is then defined as 
dp{z) '.— (27rz)_1<9x(;z) dz A dz. By means of (B.6), the second resolvent equation, and 
the fact that FR x[jffo] = FR PC X[#O] = 0, since Ho > 0 on Ran Pc, we thus have 

FRX\«,\   =   FR(XIII,]-X[HO]) 

■>L*4.)r._L+%_wlll=-i.        (B.7) 
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Next, we pick 1 < A < oo and introduce fx : M3 -> E+ by f\(x) := A/1 + (x/X)2 , and 
we denote f\(a;)-1 := l/f\(x). We note the following properties of /A, 

y  < /A(«)  < l + \x\3/2    and    A^)"1 |V/A(x)|  < A"1, (B.8) 

which imply 

11*11/AOS)"
1
 || < C\R-\ (B.9) 

Rel/A^C-^A^)"1} = (B.10) 

-A + 2Re{/A(a;)-1V/A(a:)-zV} > -A"2, 

||/A(a;)W(tf,+;)-1|| < C, (B.ll) 

for some constant C < oo. Here, (B.9) is trivial, (B. 10) is meant in the quadratic form sense 
on smooth functions of compact support, and (B.ll) uses Hypothesis 1 and Lemma III.l. 
Choosing A > 2/V6 and inserting the bounds (B.9)-(B.ll) into (B.7), we arrive at (B.5). 

□ 
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