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Abstract 

We establish a correspondence between toroidal compactifications 
of M-theory and del Pezzo surfaces. M-theory on Tk corresponds to P2 

blown up at k generic points; Type IIB corresponds to P1 x P1. The 
moduli of compactifications of M-theory on rectangular tori are mapped 
to Kahler moduli of del Pezzo surfaces. The U-duality group of M- 
theory corresponds to a group of classical symmetries of the del Pezzo 
represented by global diffeomorphisms. The |-BPS brane charges of 
M-theory correspond to spheres in the del Pezzo, and their tension 
to the exponentiated volume of the corresponding spheres. The elec- 
tric/magnetic pairing of branes is determined by the condition that the 
union of the corresponding spheres represent the anticanonical class of 
the del Pezzo. The condition that a pair of |-BPS states form a bound 
state is mapped to a condition on the intersection of the correspond- 
ing spheres. We present some speculations about the meaning of this 
duality. 
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1    Introduction 

The discovery of duality symmetries in string theory has led to spectacular 
progress in our understanding of non-perturbative aspects of the theory. 
However, we still do not have a deep understanding of the meaning of these 
symmetries. Indeed, we find ourselves in the strange situation that the 
quantum corrected physics has more symmetries than the classical strings 
had any right to expect! 

A clear appreciation of symmetry principles is a sacred principle of 
physics. Given any physical system, we should formulate the theory in a 
way that makes all of the symmetries manifest. But despite many years 
of work on a non-perturbative definition of string theory, we are no closer 
to making duality symmetries manifest than when the dualities were first 
discovered! 

We would like to have a formulation of string theory in which all of the 
duality symmetries are classically visible. The aim of this paper is to develop 
a mysterious duality which points to the existence of such a formulation. 

It was noted in [1] that there is a classical geometric system which shares 
all the U-duality symmetries of M-theory compactified on rectangular tori. 
The relevant geometric objects are del Pezzo surfaces, which are complex 
2-dimensional Kahler manifolds with ci > 0. In this correspondence, M- 
theory in 11 dimensions is mapped to P2, and subsequent compactifications 
of M-theory on rectangular tori Tk are mapped to P2 blown up at k generic 
points (i.e. a manifold in which k generic points on P2 are replaced with 
P^s), which is a del Pezzo surface denoted Bfc. Type IIB is mapped to 
P1 x P1, which can be viewed as a blow down of B2. The U-duality group 
of M-theory on Tfc, which for rectangular compactifications with no C-field 
vevs is given by the Weyl group of E^ (with a suitable definition for small 
fc), is mapped to a subgroup of the global diffeomorphisms of the del Pezzo. 
For example, the 5-duality of type IIB in 10 dimensions is realized as the 
exchange of the two P^s in P1 x P1. 

We will show in this paper that one can take this idea quite far, con- 
structing a precise dictionary relating the two sides. In particular, the 5-BPS 
p-branes of M-theory will be mapped to rational curves on the del Pezzo. 
Furthermore, we find a map which relates the moduli of the (extended) 
Kahler metric on B^, which is determined by k + 1 real parameters (one for 
the overall size of the original P2 and k for the volumes of the blown-up P1 's) 
with the k + 1 moduli of M-theory on Tk (k moduli for the compactifica- 
tion radii and one for the Planck scale). The moduli space of Kahler classes 
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also carries an action of a group of global diffeomorphisms of the del Pezzo 
surface, which exchange the various embedded 2-spheres; as noted above, 
this group is isomorphic to the Weyl group of Ef-. Moreover, this symme- 
try action is compatible with the identification of the moduli on the two 
sides. The map relates the tension of a ^-BPS state with the exponential of 
the volume of the corresponding P1. In addition, electric/magnetic duality 
and the condition for a pair of branes to form a bound state admit a nice 
geometric interpretation on the del Pezzo side. 

Some aspects of the dictionary we construct are listed in the table below: 

del Pezzo Mk M-theory on Tk 

Element of H2 (Ek, E) 
Point in moduli space of 

M-theory on Tk 

Global diffeomorphisms 
preserving the canonical class K 

U-duality group 

2-sphere C with volume Vc and 
degree p + 1 

^-BPS p-brane 
state with tension 27r exp Vc 

Volume VK of canonical class 
Compactified Planck length, 

~9—k 
lp      = exp VK 

Volume VH of hyperplane class 
11-dimensional Planck length, 

Z"3 = exp VH 

Volume VE of exceptional curve Radius 2'JTR = exp —VE 

if, line in P2 M2-brane 
2i?, conic in P2 M5-brane 

2-spheres Cu C2 with d + C2 = -K Electric-magnetic dual objects 

Here H denotes the class of a hyperplane (a complex line) in P2, and K 
denotes the "canonical class," a 2-cycle class which is dual to the negative 
of the first Chern class of the del Pezzo. 

The organization of this paper is as follows: In Section 2 we review some 
relevant geometric aspects of del Pezzo surfaces. In Section 3 we present the 
map between the two sides. In Section 4 we discuss some speculations as to 
the meaning of this duality and raise some natural questions. 
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2    Del Pezzo surfaces 

2.1    Basic properties 

The term "del Pezzo surface" refers to any manifold of complex dimension 2 
such that the first Chern class is positive [2]. These surfaces admit metrics 
of positive scalar curvature. They may be classified as follows: either take 
IP2 and blow up k < 8 generic points, or take IP1 x P1 and blow up k < 7 
generic points. We call the resulting del Pezzos 1% and IF* respectively. In 
fact Bfc+i ~ IF* for k > 1, so it is enough to consider only 1% and P1 x IP1. 

Now let us describe the homology of del Pezzo surfaces, beginning with 
P2. Since P2 is simply connected the only interesting homology will be 
in dimension 2; in fact ^(IP2,^) is simply Z, generated by the class of a 
line, which we write H. When we blow up a point we replace it with a P1 

(a 2-sphere), which gives a new generator in iiZ2(Bfc,Z) for each of the k 
points we blow up. Thus dim #2(1%, R) = k + 1; a natural basis to choose 
is {if, .Ei,... ,-Efc}, where the Ea are the "exceptional curves" obtained by 
blow-ups and H represents the pullback of the generator of #2(IP2, Z) under 
the projection 

TT : Mk -+ Bo - P2 (1) 

which simply collapses each exceptional curve Ea to the corresponding point 
pa E P2 which was blown up. The intersection numbers are given by [3] 

HH = l, H-Ea = 0, Ea'Eb = -5ab,a,b=l,'-- ,fc. (2) 

For IF*-1, dim ^(IF*-1,!^) = k 4- 1 and the natural basis is given by 
{hifaiCi, • • • >efc_i} (the ^ come from P1 x P1 and the ej are the blown- 
up P^s) satisfying 

li • lj = 1 - 8ij , h - ea = 0, ea • 65 = — <Ja&, i, j = 1,2; a, b = 1, • • • , k - 1.  (3) 

Since B/c ^ IF*4"1 we can write the two bases just described in terms of one 
another; the map is given by 

H H-> Zi + I2 - ei, 

Ea+i ■-» e0 ,   a = 2, • • • , k - 1. 
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The inverse map is then 

Zi ^ H - Ei, 

ei^H-Ei-E2, 

ea i-> Ea+i,   a = 2,■■■ ,k-l. 

The canonical class, defined to be minus the first Chern class of the tangent 
bundle, will play an important role in our correspondence to M-theory; it is 
given by 

KB, =-c1(Mk) = -3H + ^Eai (6) 
a=l 

k-1 

Kv-i = - c^-1) = -2/! - 2/2 + Yl e« ' (7) 

where ci(X) is the first Chern class of X. Incidentally, from (6) we see 
directly that the condition of positive first Chern class is not satisfied for B^ 
or F^"1 with A; > 8, since 

<$(X) =K]c = 9-k  for X = nk or X = F*"1 . (8) 

We denote by dc the degree of a class C G i^OBfc)? which by definition is the 
intersection of C with the anticanonical class, i.e. 

dc := -C • ^ • (9) 

The terminology "degree" is explained by the fact that one can use the 
anticanonical class to give a map of Mk into projective space, and if C is 
represented by a holomorphic curve then its image will have degree precisely 
dc. 

If the class C G /^(Bfc) is realized as a genus g curve then we have an 
important relation between its self-intersection and its degree, known as the 
adjunction formula [4]: 

C2 = 2g - 2 + dc . (10) 

2.2    Ek root lattice 

We now review an important relation between del Pezzo surfaces and ex- 
ceptional Lie algebras.   Namely, the lattice ^(B^jZ) endowed with the 
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intersection product has a natural sublattice obtained by restricting to the 
orthogonal complement of i^B*., which turns out to be isomorphic to the root 
lattice of Ek- To see this (in case fc>3 — forA; = l,2 the story is slightly 
irregular) a convenient basis for the sublattice is the following, which is also 
a set of simple roots: 

ai = Ei-Ei+i,   i = I,--- ,k- 1, 

at = H — Ei — E2 — Es . 

It is easy to see that these classes are orthogonal to the canonical class, and 
that their intersection numbers are given by 

KMk - aa = 0,   aa • ab = -Aab, a, b = 1, • • • , k , (12) 

where A^ represents the Cartan matrix of the Lie algebra Ek- The Dynkin 
diagrams of the Lie algebras Ek are shown in Fig. 1. To each C G i^O^fc, Z) 
we can associate an Ek weight vector Cj_, obtained by projecting onto the 
orthogonal complement of Ifj^. The Dynkin labels of C± are given by 

Aa = -C • aa . (13) 

In terms of the weight vector, the self-intersection of C 6 #2(%5 Z) is given 
by 

C2 = Ci+9^- (14) 

Because of the minus sign in (12) we will have C^ < 0. Thus the lattice 
iJ2(B/c5Z) has signature (l,fe), 

I*2(B*,Z) = (^BJ er^. (15) 

Here F^ is the root lattice of E^ with the sign of the inner product reversed. 

2.3    Weyl group 

Next we show that the Weyl group of Ek acts naturally on f?2(Bjb,E), pre- 
serving the intersection form and K^. Given any a G #2(1%,Z) with 
a2 = —2 and 1^ • a = 0 (a root) we can define a transformation WQ,, 

which is the reflection in a and hence acts orthogonally: 

wa : C *-> C + (C • a) a ,  C G #2(8*). (16) 

The elements wa corresponding to simple roots have a particularly in- 
teresting action on #2 (Bfc, H^) •   The simple root a* = Ei — Ei+i exchanges 
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k=2 o 
o 

k=3 o—o 
o 

k=4        o—o—6 

k=5 o^y-o—6—o 

o—o—6—o—o k=6 

k=7 o—o—6—o—o—o 

o—o—6—o—o—o—o k=8 

Figure 1: The Dynkin diagrams of exceptional Lie algebras E^. 
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Ei and Ei+i (we will see in a later section that this corresponds to exchang- 
ing two of the circles on which we compactify M-theory.) The action of 
ajc = H — Ei — E2 — E3 is more nontrivial; on C = nH — ^2a=i rnaEa it is 
given by 

Wctk (C) = (2n — mi — m2 — ms)H — (n — 1712 — 7713 )J5i — (n — mi — ms)E2 

- (n - mi - m2)S3 - ^ maEa . 
a>3 

(17) 

Note that this transformation can only be defined for k > 3. We will see later 
that it corresponds to a double T-duality, which from the 11-dimensional 
point of view requires three compact directions. 

The Wat together generate the Weyl group of E^] in fact this is the group 
of all automorphisms of ^(B^, Z) which preserve the intersection form and 
K[2}. 

This action of the Weyl group on iZ2(%,Z) can actually be realized by 
global diffeomorphisms which act on the del Pezzo surface exchanging the 
exceptional curves and preserving K. For the roots a* with i < k this is easy 
to see: we only have to take a diffeomorphism of P2 which exchanges two 
of the blown-up points while fixing the rest. Such diffeomorphisms certainly 
exist and can be extended to the full del Pezzo. What is more interesting 
is the reflection in o^: this action is realized by a mechanism which is less 
obvious from the perspective of P2, which we discuss in Section 2.7. 

Since the Weyl group action preserves K it preserves the degree of any 
curve. Thus curves of a given degree form a representation of the Weyl 
group. 

2.4    Rational curves 

In our correspondence it will be especially important to understand the genus 
zero curves, also called rational curves, in ^(BjtjZ). Such a curve satisfies 
the adjunction formula (10) with g — 0. Hence if C = nH — ]Ca=i ma-^a IS 

represented by a rational curve we have 

C2 = dc-2, (18) 

or equivalently 

k 

n(n - 3) - Y, ma{ma - 1) = -2 . (19) 



Amer Iqbal, Andrew Neitzke, Cumrun Vafa 777 

For example, classes in f^QBss Z) which have dc = 1 and satisfy (19) are [2] 

5 6 

Ea, H - Ea- Eb^H -2_^Eai, 3H - 2Ea - } j Eai, 
i=l t=l 

5 6 2 

4tf - 2£;a - 2^ - 2£;c -YjEa^SH - 2^^ - ^K,, (20) 
z=l i=l .7=1 

7 

6i?-3Ea-2^£;ai. 

In terms of the E^ weight vector C±_ of a rational curve C we have 

ci=Sk+dc-2- (2i) 

Prom (21) we see that the degree 1 rational curves (exceptional curves) 
transform under the Weyl group in the fundamental representation of Eh, 
since for dc = 1 we would have 

which is just what we would expect for weight vectors of the fundamental. 

2.5    Toric geometry 

Toric geometry provides an interesting way to visualize some of the del Pezzo 
surfaces as well as a neat diagrammatic method of obtaining the intersection 
numbers of curves on toric del Pezzo surfaces. We therefore give a review of 
the relevant aspects of toric geometry applied to del Pezzo surfaces. 

P1: We start with a simple example: the representation of P1 in toric ge- 
ometry, following the discussion in [5]. Since P1 = 53/f7(l), we can describe 
it as [6] 

|$i|2 + |$2|2 = r, (23) 

U{1):  (*i,*2)-(*i^,*2eW). (24) 

The complex variables $; are related to the projective coordinates [zi, Z2] of 
P1 by 

^ = r^^==. (25) 
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The geometry defined by (23) can be understood in a slightly different way as 
well, which will be important for us when discussing toric del Pezzo surfaces. 
Namely, rewrite (23) and (24) as follows: 

J0\ W = r - l$ll   ,   ($1, $2) - (W, $20 (26) 

Thus we see that 0 < |$i|2 < r and therefore the range of |$i|2 is an 
interval with endpoints given by |$i|2 = 0,r. Fibered over every point of 
the interval except the endpoints we have two circles, given by the phases 
of $i and $25 the magnitudes being fixed by (26). However, because of the 
?7(1) identification only the relative phase survives; at every point of the 
interval except the endpoints we have a finite size circle parametrized by 
this phase. At one of the endpoints, say |$i| = 0, we have |$2|2 = ^ with 
the phase arbitrary; however, this phase is completely fixed by the 17(1) 
quotient. Thus at the endpoints of the interval the circle fiber shrinks to 
zero radius. As shown in Fig. 2 the total geometry is topologically a P1. 

A 

W 

A"A""A'7\~AA- 

\j tf-lLU-U-- li 

|OP = 0 

10/= r 
|0|2 = r 
|O|2 = 0 

Figure 2: P1 as a circle fibration over an interval. 

P2: Now that we understand the representation of P1 as a circle fibration 
over an interval, we can try to understand the analogous picture for toric 
del Pezzo surfaces, starting with P2. In terms of complex variables $i,$2 
and $3, P2 can be represented as [6] 

|*i|2 + |*2|2 + |*3|2 = r, (27) 
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(*i,$2,*3)  ~  ($ietW,$2e^,$3etW). (28) 

The complex variables are related to the projective coordinates [zi,Z2, £3] of 
P2, 

$i = VF   ,    Zi   =. (29) 
yELi Izl2 

The equtaion (27) defines an 55 of radius -y/r, as can be seen easily by- 
writing the equation in terms of the real and imaginary parts of the $i. The 
U(l) identification then gives us P2 as S5/U(l) with Kahler parameter r. 
In analogy with the P1 case we then see that the toric representation of P2 

will be an 51 x 51 fibration over some base, with the S'1 x S1 given by the 
relative phases among $1, $2, $3- 

To obtain the base of the fibration we rewrite the equation defining S'5 

as 

|<I>3|2 = r-|<M2-|$2|2- (30) 

Since |$3| > 0 the base is a triangular region in the plane, with coordinate 
axes parametrized by |$i|2 and |$2|2 and boundary given by three intervals 
as shown in Fig. 3(a), 

/i:|$l|2 = 0, 0<|$2|2<r, 

/2:|#2|2 = 0, 0<|$i|2<r, (31) 

l3:|$i|2 + |<M2 = r, |$i|,|$2|>0. 

At every point inside the triangle the magnitudes of $i,$2 and $3 are 
fixed but the phases are not, giving a T2 for the relative phases. At the 
boundary the situation is different since some of the $; are zero and hence the 
corresponding circles have collapsed. Prom (31) we see that at the boundary 
component li we have ^ = 0. When one of the $j vanishes (30) reduces 
to (26); thus the interval represents a P1 inside P2, as shown in Fig. 3(b). 
At points where two of the li intersect (the vertices of the triangle) only 
one $i is non-zero; its magnitude is determined by (30), and the phase is 
completely fixed by the U(l) quotient. Thus we see that inside the triangle 
we have a T2 fibration, at the edges the T2 collapses to an S1, and at the 
vertices the 51 collapses to a point. The three intervals li represent three 
P^s. 

Bi_:  Next we consider the case of P2 blown up at one point. In this case 
we have four complex variables $1, $2? $3 and $4, satisfying 

|$l|2 + |$2|2 + |^3|2=ri, 

|$i|2 + |$4|2 = r2, ri>r2>0, 
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m 

a) b) c) 

Figure 3: a) The toric diagram of F2, b) P2 as a T2 fibration with collapsing 
fibers at the boundary, c) The three boundary components as P^s. 

U{l)a : (Si.^Sa,^) ~ (e^$i,e^$2,e^$3,$4), 

U{l)b : ($!, $2, $3, $4) ~ (e^$i, $2, $3, e^$4) 
(33) 

The first equation in (32) defines a IP2 and the second defines a P1; r\ and r2 
are the two Kahler parameters of the surface. We can draw the toric picture 
in the plane, parametrized as before by |$i|2 and |$2|2- Eliminating |3>3|2 

and |^4|2 we get linear constraints on |$i|2 and |$2|2 which define the base 
of the torus fibration: 

|$i|2 + |$2|2<ri, 

l*i|2 < r2. 
(34) 

So now we have four boundary components, given by 

h:\^\2 = 0, 0<|$2|
2<ri, 

72:|$2|
2 = 0, 0<|$i|2<r2, 

/3:|$i|2 = r2,0<|$2|
2<ri-r2, 

/4:0< |$i|2<r2,ri-r2< ^2? < n 

(35) 

The region bounded by the U is the base of the fibration, shown in Fig. 4. 
If we had used |$2|2 in the second line of (32) then a different vertex of the 
triangle would have been replaced by a line segment; the choice among |$i|2, 
|$2|2 and |$3|2 corresponds in the toric picture to the choice of which vertex 
to replace by a line segment representing the exceptional curve. 

B2:   Now let us consider the case of P2 blown up at two points.   The 



Amer Iqbal, Andrew Neitzke, Cumrun Vafa 781 

io2r 

LVr 
10 

Exceptional Curve 

a) b) 

Figure 4: a) The toric diagram of Bi.  b) The interval which replaces the 
rightmost vertex of the triangle represents the exceptional curve. 

equations representing E2 are 

\$i\2 + \$2\2 + m2 = n, 
|$i|2 + |$4|2 = r2, 

|$2|2 + |$5|2 = r3,    ri>r2,ri>r3, 

(36) 

U(l)a 

U(l)b 

U(l)c 

(*i, *2, $3, $4, $5) ~ (ew-$i, ew«*2, eM«*3, $4, $5), 

(*i, $2, *3, *4, $5) ~ (eWk$i, $2, $3, eM^4, *5), (37) 

($1, $2, $3, $4, $5) ~ (*i, ei0c$2, $3, *4, e*c*5) • 

In the above equations ri, r2 and rs are the three Kahler parameters of the 
surface IB2. As before, we solve these equations in the plane parametrized 
by |$i|2 and |$2|2- Eliminating |$3|2, |$4|2 and |$5|2 leads to inequalities in 
terms of |$i|2 and |$2|2 whose solutions bound a region in the plane, with 
boundary components given by 

7i:|#i|2 = 0,0<|$2|2<r-3, 

/2:|$2|2 = 0, 0< |$i|2 <r2, 

/3:|$i|2=r2,0<|$2|2<ri-r2, 

h -n - r3 < |$i|2 < r2 , n - r2 < |$2|2 < ^3 , |$i|2 + |#2|2 = n , 

h :|$2|2 = r-3 , 0 < |$i|2 < ri - rs . 

(38) 

The base of the torus fibration is shown in Fig. 5. 
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ii-T 

u y 

Exceptional Curve 

i^r 
Exceptional Curve 

a) b) 

Figure 5:  a) The toric diagram of B2, b) The two intervals replacing the 
vertex represent the two exceptional curves on the base. 

B3: Next we consider P2 blown up at three points. We omit the equa- 
tions but they are similar to those in the previous examples; there are three 
exceptional curves now, described torically by three intervals which replace 
the vertices of the triangle. The picture is shown in Fig. 6. 

Exceptional Curve 

E2 

Exceptional Curve 
E3 

Exceptional Curve 

Ei 

Figure 6: The toric diagram of B3 with three exceptional curves as intervals 
on the base. 

From the diagrams we have seen so far it is clear that the toric repre- 
sentation of the operation of blowing up a point which is a vertex of the 
toric diagram is the replacement of that point by a line segment.   In case 
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1$, 

\% 

Figure 7: The toric diagram of P1 x P1. 

k < 3 any triplet of points on P2 is equivalent in the sense that there is 
an automorphism of P2 which moves any given triplet to the three vertices 
of the triangle; hence it is always sufficient to consider blowing up the ver- 
tices. For k > 3 we encounter a difficulty: after blowing up three points all 
the curves appearing on the boundary of the toric diagram are exceptional 
curves, hence rigid. A generic point does not lie on any of these exceptional 
curves, so we cannot give a toric description of the process of blowing up a 
fourth point; hence Bfc does not admit a toric description for k > 3. 

From the toric diagrams we can easily see why P2 blown up at two points 
is the same as P1 x P1 blown up at one point, in other words B2 ~ F1. To 
see this consider first the case of P1 x P1, which is given by the equations: 

|$l|2 + |$3|2 = Si, 

|$2|2 + |$4|2=S2, 
(39) 

U(l)a :(<!>!, $2, $3, $4) - (c^$i,$2,c^tt*3,*4), 

I7(l)6 :(*i,$2,$3,*4) - ($i,e^$2,$3,e^$4) - 
(40) 

The toric diagram is shown in Fig. 2.5. 
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Then we can consider P1 x P1 blown up at one point, which is given by 

|*i|2 + |*3|2 = ai, 

|<h|2 + |<N2 = S2, (41) 

|$l|2 + |$2|2 + |$5|2 = S3, 

U(l)a 

U(l)b 

U(l)c 

($1, $2, *3, *4, *5) ~ (ei6a§i, *2, ^$3, *4, *5) , 

($1,$2,$3,*4,$5)~(*l,e^*2,$3,e^$4,$5), (42) 

After a change of coordinates the equations (41), (42) are equivalent to (36), 
(37), showing that B2 c^ F1; but it is much easier to see this directly from 
the toric diagram, as shown in Fig. 8. 

0 

B 

Figure 8: Equivalence of B2 and F1. 

2.6    Toric description of curves and intersection numbers 

As remarked earlier, each boundary line segment of the toric diagram cor- 
responds to an exceptional curve. Let us denote the curve corresponding to 
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li by Di; then we can see from Fig. 9 that 

^2 Di = -K,  and A • Dj = Sij+i + Sij-i. (43) 

H-E-E , 
2     3^ 

E2 H-E1-E 2 

u ErE3 
a)B3 

e2~ 

li-ei 

L 
b)F' 

h-*! 

1l-e2 

Figure 9: a) Boundary components of the toric diagram and correspond- 
ing exceptional curves for B3, b) boundary components and corresponding 
exceptional curves for IF2. 

An equivalent way of representing curves in the del Pezzo is motivated 
from the string web picture in the context of (p, q) 5-branes [7], which is 
related to del Pezzos as discussed in [5]. Namely, the del Pezzos have a 
symplectic form represented by the Kahler class. The base of the toric 
fibration can be viewed as the V space and the T2 fibers can be viewed 
as lp' directions, where we represent the symplectic form as J2i=i ^xi A 
dpi = Z)i=l d\$i\2 A d6i, where Oi represents the phase of $^. This implies 
that each direction in the base is naturally paired with a circle in the fiber. 
Consider for example a line in the base ending on a boundary. If the line ends 
orthogonally on the boundary, considering the total space of the line and the 
corresponding circle in the fiber one obtains a piece of a holomorphic curve. 
We can connect these pieces together to obtain closed curves by drawing 
trivalent graphs with external legs ending orthogonally on the boundary 
components J^. Consider first the case of P2; let us try to represent in this 
way the class if of a line. If we can find a curve of genus zero with self- 
intersection one then it is clear that this curve represents H. As shown in 
Fig. 10(a), such a curve corresponds to the simplest trivalent graph in the 
triangle; this can be understood from the fact that the boundary components 
are in the same class as H and therefore 

A-ff = l,  i = 1,2,3, (44) 
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which implies that the graph corresponding to H should have one external 
leg ending on each /;. In fact note that there is a moduli space for this curve 
(which is again a P2) which can be viewed in the base as the choice for the 
position of the trivalent vertex (this description itself gives the base of a toric 
realization of the moduli space). One can see that if we go to a point on 
the moduli space of this curve corresponding to putting the trivalent point 
of the graph at one of the three vertices of the triangle we obtain the curve 
zi = 0 which represents H. 

Fig. 10(b) shows the case of a conic in P2, which has genus zero and in 
homology is just 2H. It is easy to see by deforming the graph and making it 
trivalent that it indeed represents a curve of genus zero. On the other hand, 
a cubic curve will have genus one, as one sees from the "hole" appearing in 
the rightmost picture in Fig. 10(c). 

a) 

b) 

c) 

Figure 10: a) Line H in P2, b) conic 2H in F2, c) anticanonical class 3H in 
P2. 
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2.7    Quadratic transformation 

Now we discuss the geometric realization of the nontrivial part of the Weyl 
group, the reflection in a^ = H — Ei — E2 — E^. First consider the case k = 3 
and observe that starting from B3 we can obtain P2 in two distinct ways: 
either blow down the set {^1,^2, ^3} of exceptional curves, or blow down 
{H-E2-E3,H-E1-E3,H-Ei- E2} to obtain P2, as shown in Fig. 11. 
The two sets of exceptional curves are related to each other precisely by the 

*r 

Figure 11: Blowing down from B3 to P2 in two different ways. 

reflection in the root a^. Correspondingly, the P2,s obtained this way are 
related by a birational map 0o called the "quadratic transformation," [4] 
given by 

</>0 : [21,22,23] »-> [2223,2123, Z1Z2] . (45) 

The expression above makes sense only when at least two of the Zi are 
nonzero (otherwise we get [0,0,0] which is not a point of P2); so </>o is de- 
fined on P2 minus the three points xi = [1,0,0],X2 — [0,1,0],x^ = [0,0,1]. 
By blowing up those three points to JBI,£?2,E3 we can make </>o defined ev- 
erywhere. Similarly, we can make (/>o 1-1 by blowing up the same three points 
in the image P2. We therefore obtain an automorphism of B3. 

Now how does 0o act on #2(83,^)? It is easy to see that 

0o([2i, 22,23]) = [(31*223) 21, (31*223) 22, (21*223) 23]. (46) 
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Thus 0o is ^e identity on the open set P2 - {zi = 0} — {2:2 = 0} — {z^ = 0} 
and hence extends to the identity on B3, so </>o = 1 on #2(83, Z). Next let us 
consider the action of (po on H — E1—E2. This class is the proper transform 
of a complex line in P2 passing through the points xi and X2} namely the line 
Z3 = 0. The action (45) of 0o maps this line to the point £3 = [0,0,1] which 
was blown up to obtain #3; hence (f)Q(H — Ei — E2) = E^. Since 4% = 1 
we also have (j)o{E^) = H — Ei — E2 and similarly for the other exceptional 
curves. This is precisely the action of the reflection in the root 0^3, as desired. 

For k > 3 the situation is similar: the presence of additional blown-up 
points at generic positions on P2 does not change anything, except that the 
quadratic transformation will move these points, so that we have to compose 
with a diffeomorphism of P2 to move them back to their original positions. 
So for all k > 3 the reflection in a^ is realized by a global diffeomorphism. 

The description of the quadratic transformation above was given in terms 
of the realization of B^ as P2 blown up at k points. However, as discussed 
above, B^ ~ Ffc+1 so we can equally well think of P1 x P1 blown up at k — 1 
points. Prom this perspective the action of the quadratic transformation 
is simple to describe: namely, it corresponds to exchanging two of the k — 
1 blown-up points. This description makes it obvious that the quadratic 
transformation is realized by a global diffeomorphism. 

3    The correspondence 

We have discussed in the previous section how the moduli spaces of del 
Pezzos are interrelated via the operations of blowing up and down. Moreover, 
as we have discussed, the group of global diffeomorphisms of B^ which fix K 
is the Weyl group of the corresponding exceptional group Efr. 

On the other hand, if we consider compactifications of M-theory on rect- 
angular tori Tk with no vev for the C-field, the U-duality group acting on 
this class of compactifications is also realized as the Weyl group of E^ [8] (see 
also [9].) It is thus natural to ask if there is a map between such M-theory 
compactifications and del Pezzo geometries. In fact, the story is already 
rather interesting for small A;'s, as shown in Fig. 12. 

Note that in Fig. 12 each time we blow up a point to a P1 in the del 
Pezzo, we compactify a circle on the M-theory side. It is remarkable that 
the exotic role type IIB plays in the chain of dualities of M-theory exactly 
matches the role P1 x P1 plays among del Pezzos. In particular, if we wish 
to get from M-theory in 11-dimensions to type IIB in 10 dimensions, we 
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Figure 12: M-theory / del Pezzo relation for k = 0,1,2, 3. 

have to compactify two circles and then let the resulting torus shrink to 
zero size; this is precisely mirrored by the fact that to get to P1 x P1 from 
P2 we first have to blow up two points and then blow down another P1. 
Note also that the symmetries of the corresponding theories are manifest as 
classical symmetries of the del Pezzos. For example, the 5-duality of type 
IIB corresponds to the exchange of the two sides of the rectangle above (i.e. 
the exchange of the two P^s). Moreover, the non-trivial part of S-duality 
in M-theory compactified to 9 dimensions is still Z2, which is reflected in 
the Z2 symmetry of the rectangle with one corner cut off. The non-trivial 
part of S-duality in d = 8 is Z2 x S's, which is manifest as the symmetries 
of the del Pezzo B3, torically represented by the group of symmetries of 
the hexagon depicted in the above figure. Indeed this identification of Weyl 
groups continues to make sense for all del Pezzos, even those which are not 
toric (namely the B^ with k > 3). 

It is thus natural to expect that we can get a more detailed map between 
the two sides and promote the above correspondence to the level of moduli 
and objects on both sides. We now consider this question. 
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3.1     Matching the moduli spaces 

We consider the moduli space for M-theory on a geometry Tk x R10-^1 for 
k < 8, where the torus has a rectangular metric of the form 

A; 

ds2 = j2R*dx* (47) 

with the Xi periodic, Xi ~ Xi + 27r, and all background C fields set to zero. 

At least when all Ri are small compared to the 11 dimensional Planck 
scale lp, the low energy dynamics are described by an 11 — k dimensional 
supergravity theory with 32 supercharges. This theory is determined by the 
k + 1 parameters lp, i?i,..., R^ which are positive real numbers, so naively 
one would expect its moduli space to be M++1. However, if we want the 
space of physically inequivalent theories then we have to take the quotient 
of M++1 by the duality group consisting of transformations which leave the 
physics invariant. 

For M-theory on a Tk of arbitrary shape with arbitrary C-field the dual- 
ity group is well known to be E^^Z) [10]. In our case we want to consider 
only dualities which respect the "rectangular, no C-field" condition. These 
include the symmetric group Sk permuting the k radii; this group is gener- 
ated by the k — 1 exchanges 

wai : Ri <-> Ri+i, i = 1,..., k - 1. (48) 

In addition one also has the action of T-duality (M2/M5 exchange, after T3 

compactification) which when expressed in M-theory language involves three 
radii, so we need to include one extra generator in case k > 3, namely 

27rR3 ^ 27rR127rR2'lp ^ 2^2^2^ 

As we will see below, this corresponds to the quadratic transformation dis- 
cussed before in the context of del Pezzos. It is known [9, 11] that the wai 

generate the full duality group acting on "rectangular, no C-field" compacti- 
fications; just as in Section 2.3 this group is isomorphic to the Weyl group of 
Efr. Moreover, the other elements of the U-duality group, such as periodicity 
of the C field or shifting complex moduli of tori by r —> r + 1, are manifest 
symmetries of string theory. So the non-obvious part of the full U-duality 
group is already captured by the Weyl group W(Ek). 
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Now we are ready to map the moduli. Using the notation Mk for the 
naive moduli space R^-1, we may write 

Mk = Mis/W(Ek). (50) 

It is convenient to switch to a linear representation by taking logarithms: 
namely, we think of Mk as a (A; 4- l)-dimensional real vector space, with a 
typical element 

(loglp, log(27ri2i),..., log(2irRk)). (51) 

Then Uk acts linearly on Mk> To establish our correspondence we need 
one more piece of structure on Mk- Namely, by considering the log-tension 
formulas for ^-BPS states we obtain a lattice A in the dual vector space 

Mk , spanned by k + 1 basis vectors (3 log lp) and (log 27rRa) (a = 1,..., k). 

In sum, we have a (k + l)-dimensional vector space Mk, carrying an 
action of the Weyl group Uk which furthermore preserves a lattice A in the 
dual space. Precisely this structure is also present on the del Pezzo surface: 
namely, we have the (k + l)-dimensional cohomology if2(B^,]R), carrying an 
action of the Weyl group by global diffeomorphisms preserving the canonical 
class, which furthermore preserves the homology lattice i^OBfcj^)- The 
natural thing to do, then, is to identify the two vector spaces i^OBjfe ? K) and 
Mk in a way which identifies the lattices i?2(% ? 2) and A while preserving 
the action of the Weyl group. This can be done in an essentially unique way: 
in the notation of Section 2.1, we map 

Ea^-\og(2TrRa). 

Dually, we have an identification between Mk and JJ2(Bfc,E), described by 

(lp,Ri,...,Rk) ^(UJ€ H2(Mk,m) : OJ(H) = -3loglp,oj{Ea) = -log(27ri?a)). 
(53) 

We think of cu E iJ2(Bfc,IR) as a kind of generalized Kahler class. If LJ 

came from an ordinary (positive) Kahler metric, then u)(C) would be simply 
the volume of a holomorphic curve in the class C. Our u need not come 
from a Kahler metric, since UJ(C) may be negative (e.g. if 27rRa > 1 then 
w(Ea) < 0.) 

The choice (52) is not quite unique — apart from the unimportant free- 
dom to make a Weyl group transformation on one side, we could also have 
taken plus signs instead of minus.  Our choice was dictated by the original 
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intuition that blowing up Ea corresponds to compactification from Ra = oo 
to Ra = finite, so that the volume of Ea should be inversely related to Ra. 

Before going further, let us remark on the appearance of the group of dif- 
feomorphisms preserving the canonical class K in the above correspondence. 
Recall from (6) that 

k 

K = -3H + ^Ea. (54) 
a=l 

Applying (52) we find the correspondence 

K^ (9 -k) log Z~, (55) 

where lp is the Planck length in the compactified theory, which is given by 

-9-* _ l* 
lp       - (2nR1)..-(2nRky 

{bb) 

~9-k 
Since lp can be observed in the dimensionally reduced theory as the in- 
verse of the gravitational coupling constant, it must be invariant under every 
element in the U-duality group; this is why we have to consider only diffeo- 
morphisms preserving K. 

3.2    Brane charges and rational curves 

Next we consider the tensions of |-BPS states in M-theory. We will show 
that a holomorphic rational curve C in the del Pezzo corresponds to a |-BPS 
p-brane charge. Moreover, the BPS tension can be identified as 

T = 27rexpa;(C), (57) 

where u G iT^B^R) is the generalized Kahler class introduced in the last 
section. Given this formula for the tension, one easily checks that p is de- 
termined by the intersection product with K (recall that K corresponds to 
(9 — k) log/p, so we can think of it as in some sense "carrying the units of 
mass"): 

dc = -C>K=p+l. (58) 

Furthermore, electric-magnetic duality has a simple interpretation in this 
framework: dual pairs are related simply by 

^Electric + ^Magnetic — —K. (59) 
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In particular this will imply, using (57) and (55), that 

J- Electric-^ Magnetic r= \^)   ^p        -> 

for all electric-magnetic pairs of ^-BPS branes. 

(60) 

Before considering the general setup, let us consider the simple case of 
uncompactified M-theory. 

M-theory in d — 11. Recall that this theory corresponds to P2. The lattice 
iJ2(P2, Z) is spanned by the single element iJ, so consider a curve in P2 given 
by the class 

C = nH. (61) 

A priori we could choose any integral value for n. However, not every class 
in i?2(P2,Zi) is actually realized by a holomorphic curve: one has to choose 
n > 0. Choosing n = 1, H is the class of a line in P2, and the tension formula 
gives T = 27rexpuj(H) = 27r//p. Similarly, 2H is the class of a conic and 
gives T = 2ir/lp, the tension of the M5 brane. These are the only genus zero 
curves in P2, since by (10) the genus of C = nH is given by 

9(C) = 
(n-l)(n-2) 

(62) 

The toric representations of H and 2H are shown in Fig. 13.   Note that 

M2-brane 
a) 

b) 
2H- M5-brane 

Figure 13:  a) Hyperplane class H in P2 which maps to the M2-brane, b) 
The conic 2H in P2 which maps to the M5-brane. 

the fact that the M2-brane and M5-brane are electric-magnetic duals agrees 
with the prediction from (59), because H + 2H = 3H = —Kf>2. 
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What about 3iJ? This is the class of a cubic curve in P2. If it plays 
a role in our correspondence it should correspond to a tension T = 27r/Zp, 
giving some hypothetical M8 brane. On the other hand, as remarked earlier, 
a cubic curve in P2 has genus one. So if we restrict to rational curves we 
obtain only the M2 and M5. 

It is intriguing that the fact that the worldvolume dimensions of the Jp 
BPS states in 11 dimensions are a multiple of 3 directly follows from the 
fact that the canonical class of P2 is a multiple of 3 given by —3if. This is 
indeed a remarkable map! 

Before going on to a more complicated example, we discuss some general 
aspects of the relevant physics. States which are ^-BPS satisfy a formula 
relating their tensions to the SUSY central charges. These charges in turn 
are proportional to gauge charges in 11 — k dimensions, with the constant 
of proportionality depending on the parameters Ra and lp. For example, a 
state with one unit of momentum in the compact 1 direction would satisfy 

M = ib (63) 

while an M2-brane wrapped on the 1 — 2 directions would have 

j,-"*'"**. (64) 

By "gauge charge" we include charges under p-form symmetries as well as 
1-forms, so we can also consider e.g. an M5 wrapped on the 1-2-3 
directions. In this case we get a tension formula rather than a mass formula, 
which reads 

T={2*)'RlR2R3 (65) 

All three tension formulas (63), (64), (65) are of the form 

T..ar(**.)-";(**>-', m 

lp 

with n and all ma integral. It is not quite true that this is the most general 
situation for a 5-BPS state — for example, a state with one unit of momen- 

tum in each of the 1 and 2 directions would have M = A/1/JR
2
 + 1/R%. Put 

differently, the two states given by one unit of momentum in each of the 1 
and 2 directions form a bound state which has mass smaller than the sum of 
the two masses. We will discuss below the geometric condition under which 
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a pair of ^-BPS states form a bound state; at this point we concentrate on a 
particular basis for the lattice of charges, such that every state in the basis 
has a tension formula of the form (66). 

So let us relate the formula (66) to the del Pezzo surface B^. Setting 

k 

V = -3n log lp + Y^ rna log(27rRa), (67) 
a=l 

we can rewrite (66) as 

T = 27rexpy. (68) 

On the other hand, through the map (53) we can rewrite (67) as 

V = u{C), (69) 

where 

k 

C^nH-YjmaEa. (70) 

So we have expressed the log-tensions of certain ^-BPS states as generalized 
volumes of particular classes in ^(BfcjZ), using (52) as our dictionary. 

We can now ask the question: which classes actually do correspond to 
^-BPS states? We will see below that the rational curves which correspond 
to p-branes with codimension 2 or more are in 1-1 correspondence with the 
^-BPS brane charges in M-theory. We have already discussed the situation 
for M-theory in 11 dimensions. Let us now consider its compactification to 
10 dimensions. 

Type IIA in d = 10. Compactifying M-theory on a circle corresponds 
to blowing up a point on P2 to get Bi. The homology lattice is then two- 
dimensional, so an arbitrary element in if2(Bi,Z) is given by 

C = nH- mE. (71) 
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Taking our cue from the result in case k = 0, let us look for C which are 
realized by holomorphic curves of genus zero. The adjunction formula (10) 
in this case becomes 

n(n — 3) — m(m — 1) = 2g — 2. (72) 

Looking for integer solutions of the resulting quadratic, we find two infinite 
families: 

(n,m) = 

(n,m) = (|,|-l)   (PG2Z) 

p + 3     p — 5 
4    ' 

(p€4Z+l). 
(73) 

Since we do not have branes of arbitrary dimension in type IIA, we now 
impose a further restriction: namely, we consider only solutions with 0 < 
p < 8. Upon so doing we obtain the following list: 

homology class tension type IIA meaning 
E R-^lj'gT1 DO-brane 

H-E (27ryRl^ = (2n)-%* F-string 
H (2ir)J-8 = (27r)-!'J7V1 D2-brane 

2H-E ^iV^TT)-4^-' D4-brane 
2H (2*)*-8 = (2*)-6J7V' NS5-brane 

3H-2E (27r)3i2V = (2T)-6irV1 D6-brane 
4H-3E (2K)* m^ = (2^-^17^^ D8-brane 

Remarkably, we have all the relevant ^-BPS objects in type IIA in 10 
dimensions, with the correct tensions. To see this, consider the p-brane 
which maps to the curve Cn)m = nH — mE, for some n and m satisfying 
(73). The tension is given by 

= 27rexp(cj(C7l)m)), 

(27rJR)m 

27r- 
(74) 

/3n 
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From (74) it follows that1 

_rn _ (27r)2JRf-1   _ 1 
TDp-brane — -*§,£-l "  3^    

/ 2 
ip 

(27r)P5s^^
1, 

T -T _ (2ir) 4   fl 4 1 
-*NSp—brane — -*■ P+

3
 

5
-P 

— 2p+9 — p-i 

(75) 

Thus we get correct tensions for all the Dp-brane as well as the fundamental 
string and the NS5-brane, as shown in the above table. 

The electric/magnetic pairing works as described by (59), with 

^Electric + ^Magnetic = —K = 3i? — E. (76) 

It is also interesting that the del Pezzo knows about ALF space, i.e. about 
the D6 brane, which does not come from simple dimensional reduction from 
11 dimensions. Similarly the appearance of the D8 brane here, which does 
not correspond to any object in P2, is remarkable. 

Type II in d = 8. For brevity we now skip d = 9 and go directly to d = 8. 
We search for curves which could represent p-branes with 0 < p < 6; using 
(10) as above and (58), this amounts to finding integer solutions of 

3n - mi - 1712 - ms = p + 1, 
2222 t v' ' / 

71    — ml — 1712 ~~ m3 — P ~ I- 

The results are summarized in the table below, where we include the inter- 
pretation of the states in terms of M-theory as well as Type IIA. (One could 
also interpret these states from the perspective of compactified Type IIB, 

i 
We use the relations R = gsls, lp = 2TTg$ls between M-theory parameters lp,R and 

type IIA parameters Is^Qs [12]. 
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using the relations (5) between blow-ups of F2 and of P1 x P.) 

p homology class type IIA meaning M-theory meaning 

p = 0 

EM DO-brane 
momentum 

Ei momentum 
H — Ei — Ej twice-wrapped D2-brane twice-wrapped 

M2-brane H — EM — Ei once-wrapped F-string 

p = l 
H — EM F-string once-wrapped 

M2-brane H-Ei once-wrapped D2-brane 

p = 2 
H D2-brane M2-brane 

2H — EM 

—Ei — Ej 

twice-wrapped 

D4-brane 

thrice-wrapped 
M5-brane 

p = 3 
2x2 — EM — Ei once-wrapped D4-brane twice-wrapped 

M5-brane 2H — Ei — Ej twice-wrapped NS5-brane 

p = 4 

2H-EM D4-brane once-wrapped 
M5-brane 2H-Ei once-wrapped NS5-brane 

3H — 2EM 

—Ei — Ej 
twice-wrapped 

D6-brane twice-wrapped 
ALF space ZH-EM 

—2Ei — Ej 
exotic state 

p = 5 

2H NS5-brane M5-brane 

3H — 2EM ~~ Ei once-wrapped D6-brane 
once-wrapped 

ALF space 
3H — EM ~ ^Ei exotic state 
ZH - 2Ei - Ej exotic state 

AH - 2EM 

-2Ei - 2Ej 
exotic state exotic state 

p = 6 

3H — 2EM D6-brane 
ALF space 

m - 2Ei exotic state 

AH - ZEM 

-Ei — Ej 

twice-wrapped 
D8-brane 

exotic state 
AH-EM 

—3Ei — Ej 
exotic state 

In the above table we have singled out one of the exceptional curves 
as the "M-theory direction" and called it EM, while the indices i,j run 
over the values 1,2 for the other two circles. The entries labeled "exotic 
state" correspond to states satisfying exotic tension formulas which are not 
straightforward to interpret; nevertheless, these states are required by the 
U-duality symmetry, as reviewed e.g. in [11]. 
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From looking at the table we notice a simple pattern, namely, if C is a 
^-BPS object not involving Ei, then C — Ei will be the same object wrapped 
on the i direction. One can also see this directly from the tension formulas 
since — Ei corresponds to log27rii^. 

Type IIB in d = 10. In our discussion so far we have mostly stuck to 
the surfaces B^, but the discussion goes through essentially unchanged for 
P1 x P1. Recall that a basis for ^(P1 x P1, Z) is given by the classes of the 
two factors, which we write li and Z2, with 

Il-h=l2'l2 = 0, 

h ■ h = 1. (78) 

The canonical class is K = — 2li — 2I2, and the analog of (52) in this setting 
is 

l\ i-> -21og27r/5, 6 (79) 
Z2H--21og27rZ5-log£5, 

where ls and gs now denote the Type IIB quantities. From (9) and (10), a 
genus zero curve C = nli + ra/2 of degree p + 1 satisfies 

2nm=p-l,   2(n + m)=p+l. (80) 

There are two integer solutions for each p G 2Z + 1: 

(n,m) = ( 1, 

(n, m) = 

2 

p-1 
(81) 

The tension is then given by 

1 Ezd 
TDp-brane — T2^1i — E-i  

TF-string TD-string — p+1 , 
2 (27r)   2 {l'K)Pgsl

ts 

1 Ezl 1 
TNSp-brane = ^1,2=1 =   ,.    % p-i Tp-string TD_strinQ = ^ri      — • 

2        (20  2 (27r)^s
V/?+1 

(82) 
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Then restricting to 0 < p < 8, we obtain 

homology class tension / 2% type IIB meaning 

h (2nls)-
2 F-string 

h {^Q^gj1 D-string 

h+h (2^)-4^-1 D3-brane 

2h + h {2^s)-&971 D5-brane 

h + 2h (2nls)-
eg-z NS5-brane 

3/i + h (^hrv D7-brane 

h + Zh (20-8373 NS7-brane 

Note that the fact that the worldvolume dimension of the Type IIB i- 
BPS branes are all even follows from the fact that K for P1 x P1 is even, i.e. 
K = -2/i-2/2. 

Type II in general d > 3. In parallel to the discussion above, one can 
check that all the |-BPS p-branes with codimension at least 1 in uncom- 
pactified spacetime in compactifications of M-theory on Tk for k < 8 are in 
1-1 correspondence with rational curves C with dc = p + l. One finds all the 
branes which appeared in the table for d = 8, plus their compactifications, 
plus various extra exotic states (again, all required to exist by U-duality.) 
It is not actually difficult to determine genus zero curves of a given degree 
satisfying the adjunction formula. We can write the self-intersection of C in 
terms of the weight vector C_L as discussed in section 2.2, 

C2 = dc - 2 C2 
.L 

4 
9-k 

+ dc-2. (83) 

The results are summarized in the following table in which we give the 
representation of E^ to which the curve belongs, the size of the Weyl orbit 
and a representative curve.  The uncompactified dimension of spacetime is 
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d=ll-k. 

k Ek dc cl rep of Ek Weyl orbit size curve 

k = 4 SU{h) 

1 6 
5 10 10 Ex 

2 4 
5 5 5 H-Ex 

3 4 
5 5 5 H 

4 6 
5 10 10 

3H - 2Ei 
—E2 — E3 — E4 

5 -2 24 20 2H-Ei 

6 16 15 5 2H 

k = 5 
50(10) 

1 5 
4 16 16 Ei 

2 -1 10 10 H-Ei 

3 5 
4 16 16 

3H - 2Ei 

-ZUEi 
4 -2 45 40 2H-Ei- E2 

5 13 
4 144 80 2H-Ei 

k = 6 
E& 

1 4 
3 27 27 £1 

2 4 
3 27 27 

3H - 2Ei 

-Z^Ei 

3 -2 78 72 H 

4 10 
3 351 216 2H — Ei — E2 

k = 7 E7 

1 3 
2 56 56 Ei 

2 -2 133 126 H-Ei 

3 7 
2 912 576 H 

k = 8 E8 
1 -2 248 240 Ex 

2 -4 3875 2160 H-Ei 

3.3    Bound states of 0-branes 

Consider two 0-branes, represented by rational curves Ci,C2. Then we may 
ask: can they form a BPS bound state?  For simplicity let us restrict our 
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attention to compactifications to d > 5 dimensions. Then there are three 
different possibilities: i) they form a bound state at threshold which is still 
^-BPS, ii) they form a bound state, not at threshold, which is ^-BPS, iii) 
they form a bound state at threshold which is |-BPS. The first possibility 
is exemplified by a bound state of a pair of DO-branes. The second is ex- 
emplified by a bound state of a DO-brane with a 2-cycle wrapped D2-brane, 
and the last occurs e.g. for the bound state of a DO-brane with a 4-cycle 
wrapped D4-brane. It is not too difficult to show that on Be, Ci • C2 is the 
only Weyl invariant of a pair of exceptional curves and can only be —1,0 or 
1. These correspond to the above three possibilities: 

- - BPS at threshold ^ Ci ■ C2 = -1   (i.e. Ci = C2) 

- - BPS not at threshold ^ Ci • C2 = 0 

- - BPS at threshold *» Ci • C2 = 1. 

The mass of the bound state can be written in all three cases as 

M12 = 2ir\evi+i(c^2-1ev>\. 

Representatives of these three different cases can be chosen from the list of 
possible 0-brane classes (20): 

Ci'C2   =   -1,        Ci = Ea,    C2 = Ea, (84) 

Ci • C2   =      0,        Ci = Ea ,    C2 = Efj, 

Ci - C2   =     1,        Ci = EM ,    C2 = 2H — EM — Ei — E2 — E3 — E^. 

3.4    Changes of scale 

In our discussion to this point we have implicitly assumed that some energy 
scale fi has been fixed, with all quantities measured in units of //. Indeed, 
such a choice is necessary in order to make sense of our main formula (57), 
T = 27rexpu;(C), which requires that T be dimensionless. To understand 
the significance of this choice let us write the /i dependence explicitly: then 
for a p-brane state corresponding to a curve C, 

log(T/27r//+1)=u;(C). (85) 

Now consider changing scale from // to //; then we will have 

log(T/27r^+1)    =   logCT^TT/^ + fr + ^logW//) (86) 

=   a;(C) + (p + l)log(/i//i'). (87) 
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On the other hand, using (58) we can also rewrite (86) as 

log(T/27r//
p+1)=u/(C), (88) 

where 

u'(C) = UJ{C) + logOi/fx'JC • K. (89) 

Hence a change in // is equivalent to a shift in the generalized Kahler class 
cu along the direction of K. In particular, shifts along the K direction do 
not affect any dimensionless quantities one might compute on the M-theory 
side (e.g. ratios of masses of ^-BPS states.) So it is natural to think of a; as 
decomposed into 

u = a;_L + XK (90) 

where u± is orthogonal to K] then UJ± controls all the dimensionless quanti- 
ties and A sets the units of measurement. Setting fi = lp would correspond 
to fixing A = 0 in (90). 

The situation just described is somewhat counterintuitive: one might 
have expected that the choice of units in M-theory would correspond to 
the overall volume of the del Pezzo, but the exponential relation between 
volumes and masses spoils that idea. In particular, given any u G H2(X, E), 
there is some A for which u + XK is in the Kahler cone; so if we interpret 
u as a generalized metric, then whether volumes of curves on the del Pezzo 
are positive or not is dependent on the units we choose. 

4    Concluding discussion 

The duality we have described is mathematically rather striking. Of course, 
it is important to uncover its physical interpretation. It is hard to believe 
that the correspondence is purely accidental (it is reminiscent of the purely 
"accidental" appearance of Dynkin diagrams in the intersection matrix of 
vanishing 2-cycles in K3). One possibility is that the del Pezzo is the moduli 
space of some probe in M-theory. If so this probe must be a U-duality 
invariant probe, and should be unlike any brane with which we are familiar. 
However, we can obtain a hint about what it should be from the del Pezzo 
side. Recall that the U-duality group was mapped to the group of global 
diffeomorphisms of del Pezzo which preserve K. Thus a curve in the class 
given by —K will be U-duality invariant. Such a curve would have genus one 
(it is the elliptic curve in P2, with the blow-up classes added.)  Up to now 
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we have only considered rational curves, but if we assume there is a p-brane 
associated to this duality invariant elliptic curve, then we get 

p + 1 = {-K) • (-K) = 9 - k 

i.e., it would be an 8 — fe-brane, which would have codimension 2 in the 
uncompactified spacetime. It would be interesting to see if such a U-duality 
invariant brane exists in some sense, and if so whether its moduli space is 
given by the del Pezzo. 

A rather interesting suggestion has been made by Motl: perhaps the del 
Pezzos should be viewed as target spaces of (2,1) strings, thus providing a 
concrete realization of the proposal [13]. There are a number of obstacles 
to overcome to make this precise, but there are encouraging signs that this 
idea may be on the right track [15]. 

Up to now, we have considered only rectangular compactifications of M- 
theory, with the C fields vanishing. It is natural to ask how we can relax 
these conditions. If we fix lp then by a naive dimension count we find that 
the tangent space to the moduli space of M-theory compactifications could 
correspond to 

0    A^fliOfc)), 
£=1,2,3,6 

where the symbol ± means we restrict to the subspace orthogonal to K. The 
rectangular compactifications correspond to p = 1 above; this is the map we 
have already described. The p = 2 can be viewed as the choice of making 
parallelogram compactification of tori, p = 3 is turning on the C-field and 
p = 6 corresponds to turning on the 6-form field coupling to the M5-brane 
(for compactifications to 3-dimensions some other exotic moduli appear). It 
would be interesting to interpret the p / 1 deformations in some geometric 
way. Similarly, it would be useful to have a clearer geometric understanding 
of the role of ^-BPS states whose masses are not of the simple form (66). 

It would also be interesting to extend this kind of duality to other com- 
pactifications of M-theory. A natural candidate to study in this case is the 
duality web with 16 supercharges. 
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Appendix: Group-theoretic description 

To emphasize the mathematical naturality of our construction, we recall 
a more abstract description of the moduli space of M-theory on Tk with 
lp held fixed: namely, the moduli space is of the form G(Z)\G/K, where 
G = i?fc(fc)(M) is the maximally noncompact real form of Eh, and if is a 
maximal compact subgroup. Restricting to rectangular tori with no C field 
corresponds to restricting to the Cartan subgroup H C G; the part of G(Z) 
that preserves H is isomorphic to the Weyl group W, and the quotient by 
K restricts us to the identity component HQ of if, so abstractly we have 

Mk ^ HQ/W. (91) 

For example, in case k = 4 we have G = iSX(5,M). Then H consists 
of diagonal matrices with determinant 1, and HQ consists of such matrices 
with diagonal entries positive. The Weyl group is the symmetric group £5, 
which acts by permuting the diagonal entries; this is the manifestation of 
U-duality in this picture. 

Now what is the meaning of the logarithms and exponentials which ap- 
peared in Section 3? Given HQ we can consider its (abelian) Lie algebra 
(), and the exponential map exp : f) —> HQ. Since we are working with the 
maximally non-compact form this map is in fact a bijection, so it identifies f) 
with HQ] furthermore it commutes with the action of W, which acts linearly 
on f). 

Hence it is mathematically very natural to take logarithms to identify 
Mk with the linear space f). On the other hand fj contains a natural lat- 
tice, namely, the lattice of "coweights," dual to the weight lattice in fj*. 
Furthermore f) carries an orthogonal action of the Weyl group. This is es- 
sentially the structure which was uncovered in Section 3.1 and identified 
with H2(Mk,Z) C .H^OBfcjR) (except that in that section we had a lattice 
of dimension k + 1 rather than k] the one-dimensional extension arises be- 
cause we allow lp to vary in order to sweep out all of #2(1%,K).)  The fact 
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that the tension formulas involve the exponential is also natural from this 
point of view since the BPS mass formulas can be expressed in terms of the 
eigenvalues of the E^ action on states [14]. 
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