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1    Introduction 

In this paper, we observe that the brane functional studied in [5] can be 
used to generalize some of the works that Schoen and I [4] did many years 
ago. The key idea is that if a three dimensional manifold M has a boundary 
with strongly positive mean curvature, the effect of this mean curvature can 
influence the internal geometry of M. For example, if the scalar curvature 
of M is greater than certain constant related to this boundary effect, no 
incompressible surface of higher genus can exist. 
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A remarkable statement in general relativity is that if the mean curvature 
of dM is strictly greater than the trace of pij (the second fundamental form 
of M in space time), the value of this difference can provide the existence 
of apparent horizon in M. In fact, matter density can even be allowed to 
be negative if this boundary effect is very strong. Theorem 5.2 is the major 
result of this paper. 

2    Existence of stable incompressible surfaces with 
constant mean curvature 

We shall generalize some of the results of Schoen-Yau [1] and Meeks-Simon- 
Yau [3]. 

Let M be a compact three dimensional manifold whose boundary dM 
has mean curvature (with respect to the outward normal) not less than c > 0. 
Assume the volume form of M can be written as dh where A is a smooth 
two form. 

Let / : S —> M be a smooth map from a surface E into M which is one 
to one on ni(S). We are interesting in minimizing the energy 

£c(/) = ^|V/|2-c^/*A. 

There are two different hypothesis we shall make for the existence of 
surfaces which minimizes Ec. 

Theorem 2.1. Assume the existence of embedded E with ni(E) —» ni(M) 
to be one to one. Assume that for any ball B in M, the volume of the ball 
B is not greater than ^ Area (dB). Then we can find a surface isotopic to E 
which minimizethe functional Area (E) — c Js A. 

Proof This follows from the argument of Meeks-Simon-Yau [3]. The hy- 
pothesis is method to deal with the cut and paste argument. D 

Theorem 2.2. Assume that the supremum norm of A is not greater than 
c~l. Then for any c' < c, we can find a conformal map from some conformal 
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structure on S to M which induces the same map is /* = ni(S) —» ni(M) 
and minimize the energy ^ Js |V/|2 — cf /E /*A. 

Proof. Since cf < c, the energy is greater than a positive multiple of the 
standard energy. Hence the argument of Schoen-Yau [1] works. □ 

Remark. It should be possible to choose c' = c in this last theorem. 

3    Second variational formula 

Let E be the stable surface established in section 2. Then the variational 
formula shows that the mean curvature of E is equal to c. The second 
variational formula shows that for all tp defined on E, 

I \Vip\2 - J (RICMM + S/^-) ^2 > 0 (3.1) 

where Ric M^-, V) is the Ricci curvature of M along the normal of E and hij 
is the second fundamental form. 

The Gauss equation shows that 

RicAf (I/,I/) = \RM -KE + ^(H2 ~ E^) (3.2) 

where RM is the scalar curvature, K^ is the Gauss curvature of E and H = 
:e of hi 

Hence 

trace of h^ is the mean curvature 

£ |V^|2 > I J^RM + E*?. + ilV - ^ Kx<p2. (3-3) 

Since E/i?- > ^i?2
7 we conclude that 

/E 'Vlp\2 > I JM (KM + ^2) ^ - £ K^2- (3-4) 

If x(^) ^ 0^ we conclude by choosing tp = 1, that 

J UM + lA < 0. (3.5) 
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Theorem 3.1. IfRM+^c2 > 0, any stable orientable surface S with x(S) < 
0 must have x(E) = 0 and RM + f c2 = 0 along E. Furthermore S must be 
umbilical. 

Let us now see whether stable orientable E with x(E) = 0 can exist or 
not. If RM + |c2 > 0 at some point of M and RM + |c2 > 0 everywhere. 
We can deform the metric conformally so that RM + \c2 > 0 everywhere 
while keeping mean curvature of dM not less than c. (This can be done by 
arguments of Yamabe problem.) In this case, incompressible torus does not 
exist. 

Hence we may assume RM + |c2 = 0 everywhere. In this case, we 
deform the metric to gy - t(Rij - jQij). By computation, one sees that 
unless Rij — jQij everywhere, the (new) scalar curvature will be increased. 

Let E be the stable surface with constant mean curvature with respect to 
the metric gij. We can deform the surface E along the normal by multiplying 
the normal with a function /. For this surface E/, we look at the equation 
Ht(Ef) = c where Ht is the mean curvature with respect to the new metric 
at time t. As a function of t and /, i^(Ej) define a mapping into the Hilbert 
space of functions on S. The linearized operator with respect to the second 
(function) variable is -A - (Ric (i/, is) + S/i^-). This operator is self-adjoint 
and if there is no kernel, we can solve the equation HtCEf) = c for t small. 

We conclude that if -A - (Ric (z/, is) + S/i2) has no kernel and if the 
metric is not Einstein, we can keep mean curvature constant and scalar 
curvature greater than -^f-. On the other hand, if the metric is Einstein, 
we can use argument in [5] to prove that M is the warped product of the 
flat torus with R. 

If —A — (Ric (z^, u) + E/&?-) has kernel, it must be a positive function / de- 
fined on E. (This comes from the fact that it must be the first eigenfunction 
of the operator.) Hence 

A(log/) + |Vlog/|2 = -(Ric(v,v) + S^) 

^-URM + IHA+KX. 
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Since 

/.(■ 

RM + IH2
 ) > 0 

and 

/, s 
/ must be a constant and 

K^>-URM + IH'
2
) =0. 

Hence K^ = 0 and RM = —\H2 is constant along S. Also hij = ^Qij 
and Ric (z/, v) + E/i?- = 0 along E. 

If we compute the first order deformation of the mean curvature of E 
along the normal, it is trivial as hij — y^j, R = —\H2 and R(y, v) = —E/i^. 

In conclusion, the mean curvature is equal to H up to first order in t 
while we can increase the scalar curvature of M up to first order (unless 
Rij = jgij everywhere). We can therefore prove the following 

Theorem 3.2. Let M be a three dimensional complete manifold with scalar 
curvature not less than — |c2 and one of the component of dM is an ori- 
entable incompressible surface with nonpositive Euler number and mean cur- 
vature > c. Suppose that for any ball B in M, the area of dB is not less 
than cVol(S). Then M is isometric to the warped product of the flat torus 
with a half line. 

4    Geometry of manifolds with lower 
bound on scalar curvature. 

In this section, we generalize the results of Schoen-Yau [4]. 

Given a region fi and a Jordan curve F C dVt which bounds an embedded 
disk in fi and a sub domain in dQ, we define jRr to be the supremium of r > 0 
so that F does not bound a disk inside the tube of F with radius r < Rp. 
We define Rad(fi) to be the supremium of all such R?. (Note that this 
concept can be generalized to higher homology or homotopic groups.  The 
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Radius that is defined in this manner will be sensitive to geometry of higher 
homology or higher homotopic groups.) 

Let R be the scalar curvature of M and h be a function defined on M 
and & be a function defined on dM so that for any smooth function <p 

f  |V^|2 + I /■ V + /"    V > f V2. (4.1) 
JM Z

 JM JdM JM 

Let / be the positive first eigenfunction of the operator —A + ^R — h so 
that 

(-Af + iRf-hf = \f 

\ZL + kf = 0 on dM. K ' ) 

Let F be a Jordan curve on <9fi which defines Rad (f2) up to a small 
constant. Let S be a disk in Q, with boundary Y such that S together with 
a region on dVL bounds a region Qs- 

Assume that dQ, has mean curvature H so that f(H — k) is greater than 
cf. Then we define a functional 

L(S)= [ f-cf   f. (4.3) 

Let us now demonstrate that dfi, forms a "barrier" for the existence of 
minimum of L (E). 

Let r be the distance function to dfl Let us assume that T is in the 
interior of $7. If E touches <9fi, we look at the domain fix fl {0 < r < e} = 
fiS)£. Then 

f f^-= [     /Ar+/     V/.Vr. (4.4) 

When e is small, / Ar + V/ • Vr is close to the boundary value —fo— Hf 
on dVt. Hence 

/    f^<-[  cf- (4-5) 



GEOMETRY OF THREE MANIFOLDS 761 

Since ||^| < 1 and |^ = 1 along r = e, we conclude that if we replace S 
by (S \ dfl^.s) U (S^s^ fl {r = e}), then the new surface will have strictly- 
less energy than L/(S). Hence when we minimize L, 90 forms a barrier. 

By standard geometric measure theory, we can find a surface E which 
minimize the functional Lf. (We start to minimize the functional /E / — 
tc Jn   / when t is small.) 

For this surface, we can compute both the first variational and second 
variational formula and obtain from the first variational formula 

% + Hf = cf. (4.6) 

The second variational formula has contributions from two terms. The 
second term gives rise to 

Using (4.6) the first term of the second variational formula gives 

0 < j iVyf / (4.8) 

- J {^RM - K^j ip2f - J det^V/ 

+ ^ (AMf - AE/ - H^j <p2 - J(Zhl - H2)<p 

+2/J^-/s^ 
< J IVvl2 + J (A„/ - 1-RUA v2 

- U^ -K^+i /, *"+L %H«2 - * L ^ 
where AM and Ax; are the Laplacian of M and S respectively and if is any 
function vanishing on dE. 
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We conclude from -^ + H. f = cf that 

< -i^H'f^ + c^Htf-jfjv* 

<--h2L^ 

f^ 1^1^  - X^^  " ^^  -fx(h + X+^f)f<p2-0 (4- 10) 

where A is the first eigenvalue of the operator —A + y — h with boundary 
value given by ^ + kf = 0. 

By the argument of [4], we see that for any point p G S, there exists a 
curve a from p to dE with length / such that 

£(»+>+%)* 4 fw (4.11, 
where / is the length of the curve a and cp vanishes at 0 and /. 

Theorem 4.1. Let M be a three dimensional manifold so that (4-1) holds. 
Let A be the first eigenvalue of the operator (4-2). Suppose that the mean 
curvature of dM minus k is greater than a constant c > 0. Then for any 
closed curve T C M; there is a surface S that T bounds in M so that for 
any point p G S; there is a curve a from p to 5X1, inequality (4-11) holds. 
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5    Existence of Black Holes 

For a general initial data set for the Einstein equation, we have two tensors 
gij and Pij. The local energy density and linear momentum are given by 

M^^-Ep^ + M (5-1) 

J^ = 5>; [py - (M) 0y 

In [2], Schoen and I studied extensively the following equation initiated 
by Jung 

W - TTWW) i^jw*-«0-*    <5-2> 
For the metric 

9ij-9ij + dxi dxj, 

one has the following inequality 

2(n-\J\)<R-Y2(hij-Pij)
2 (5.3) 

Hence for any function tp 

2 f (/i - \J\)^ < [ Rep2 - 2 /  V(/iz4 -^4)2 (5.4) 

- /   4^(V^)(/ii4 -P24) + 2 /    (/v4 -p^)^2 

< / Rip2+ 2 [  |V^|2 + 2 [   {h^-p^cp2. 
JM JM JdM 

Hence in (4.1) we can take 

/i = (/j —|J|), k — h^-p^. (5.5) 
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Let 61,627^3 and 64 be orthonormal frame of the graph so that 61,62 is 
tangential to dM (assuming / = 0 on dM) and 63 is tangential to the graph 
but normal to dM. By assumption, 

KA = hu = (Ve4e4,63). (5.6) 

Let w be the outward normal vector of dM in the horizontal space where 
/ = 0. Hence 

HM = (64,^)^64,63) (5.7) 

-(64, w) 

(es,™) 
(64^363). 

Since - Yll=i (e4> ^e^i) is the mean curvature of the graph of / which 
is trp, we conclude that 

= i^iM  Lp + ^ {C4| v  ^"j (5.8) 

(ea.ti;)   V fey 

The mean curvature of 90 with respect to the metric gij + •$£■ ^ is 

given by 
2 2 

i=l i=l 

Hence the difference between mean curvature and A; is given by 

Jj^£Livp + m + L,e3) -I- ^\ HdU (5.9) 
63, W) ^ (^,63) J 

where Hdn is the mean curvature of 30 with respect to the metric gij. 

Since 

P34 = (e^w) p{e3,w) 

(64, W) 
= i rP(e3,e3). 

(63,^) 
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We conclude that the expression (5.9) is given by 

- j^- (tr dnp) + —^Hdn (5.10) 
(ea, w) (63,™) 

> (HdQ - |tranp|) (es,^)-1- 

We shall assume EQ^ > \tidnp\ and we can choose c to be lower bound 
of Hdn- \tidnp\> 

We need to solve the Dirichlet problem for / with / = 0 on d£l. While 
most of the estimates were made in [2], we need to construct a barrier for 
the boundary valued problem. 

Let (p be an increasing function defined on the interval [0,6:] so that 
tp'is) = oo. Let d be the distance function from dft measured with respect 
tO Qij. 

Then cp(d) can be put in (5.2) and when e is small, we obtain the expres- 
sion 

^        (-Hon) - tTaap + ,,  , ^'n - 7^2 ■ (5.11) 
y/1 + (^)2 (1 + V2)3/2 1 + ^ ' 

To construct a supersolution, we need this expression to be nonpositive. 
When e is small, and tp' is very large, the condition is simply HQQ > tr^P- 
Similarly, we can construct a subsolution using —<p(d). The conclusion is 
that we can solve (5.2) if HQQ, > |tr^p|. We have therefore arrived at the 
following conclusion 

Theorem 5.1. Let M be a space like hypersurface in a four dimensional 
spacetime. Let gij be the induced metric and pij be the second fundamental 
form. Let /i and J be the energy density and local linear momentum of M. 
Suppose the mean curvature H of dM is greater than trQMip)- Assume 
that H — |tr^^p| > c > 0. Let Y be a Jordan curvature in dM that bounds a 
domain in dM. If M admits no apparent horizon, then there exists a surface 
S in M bounds by Y so that for any point p G S, there is a curve a with 
length I from p to Y and 

I ((/* - \J\) + ^c2) tfds < ^ \V<p\2ds (5.12) 

where <p is any function vanishing at 0 and I. 
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Theorem 5.2. Let M be a space like hypersurface in a spaetime. Let gij 
be its induced metric and pij be its second fundamental form. Assume that 
the mean curvature H of dM is strictly greater than |tr#m(p)|.   Let c = 

mm(H - |tram(p)|) if Rad (M) >J\^k where A = |c2 + /i - | J|; then M 
must admit apparent bonizons in its interior. 

An important point here is that the curvature H — \tTdm(p)\) of the 
boundary itself can give rise to Black Hole. 

The inequality actually shows that as long as /i — | J\ > 0 everywhere, 
^- + fi — \J\ to be large in a reasonable ringed region and Rad (fi) is large, 
an apparent horizon will form in M. 
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