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Abstract 
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1    Introduction 

Let S be an n-dimensional spacelike hypersurface in a n + 1-dimensional 
Lorentzian space-time (.A/f,#), n > 2. Suppose that M contains an open set 
U with a global time coordinate t (with range not necessarily equal to M), as 
well as a global "radial" coordinate r G [J?, oo), leading to local coordinate 
systems (£, r, vA), with (vA) — local coordinates on some compact n — 1 
dimensional manifold M. We further require that <S DU = {t = 0}. Assume 
that the metric g approaches (as r tends to infinity, in a sense which is made 
precise in Section 2 below) a background metric b of the form 

b = -(g + k^dt2 + -^—dr2 + r2h , (1.1) 
W 
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where h is an r-independent Riemannian metric on M, while k and £ are 
constants3. Suppose further that g satisfies the vacuum Einstein equations 
with a cosmological constant 

J^ - ^pV =-A0«, ,        A = -^, (1-2) 

similarly for b. (The existence of a large family of such g's follows from 
the work in [18,24].) A Hamiltonian analysis (following [10], and discussed 
in some more detail in Appendix A; see also [16, Section 5]) leads to the 
following expression for the Hamiltonian associated to the flow of a vector 
field X, assumed to be a Killing vector field of the background 6:4 

m(<S,<7,6,X)    =    I [   Ua(3dSaf3, (1.3) 
z JdS 

U =   U'V^ (\/|det^| gal"-J\detbr\ba^Xx\a , (1.4) 

U^    =    l/'/u'r'   .WeV^),, (1.5) 

e   =    y/\detgp(7\/yj\detb^\ . (1.6) 

(The question of convergence of the right-hand-side of (1.3) is considered in 
Section 2 below.) The hypersurface S singles out a set of Killing vectors X 
for the metric b which are normal to 5, 

X = Nn , (1.7) 
s 

where AT is a function and n = CQ = (^ + k)~ll2dt is the future-directed 
&-unit normal to S. We shall use the symbol K,s±. to denote this set of 
Killing vectors. The question then arises whether one can extract out of 
(1.3), with X £ /Cs±, one or more geometric invariants associated to g along 
S. Another way of stating this question is, essentially, whether the integrals 

3 A warped product form of the metric, with the factor in front of h not being constant, 
together with the Einstein equations (1.2), force ^rr and gtt to have the form (1.1) in 
an appropriate coordinate system [8], with k being a function of r which approaches a 
constant as r tends to infinity. Further h itself has to satisfy the Einstein equation (1.2) 
with A replaced by an appropriate constant. Some metrics slightly more general than (1.1) 
will be considered in the body of the paper. 

4The integral over dS should be understood by a limiting process, as the limit as .R 
tends to infinity of integrals over the sets t = 0, r = #. dSap is defined as ^|^J ^-J dx0 A 
• • • A dxn, with J denoting contraction; g stands for the space-time metric unless explicitly 
indicated otherwise. Further, a semicolon denotes covariant differentiation with respect to 
the background metric b. 
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(1.3) are background independent. As discussed in more detail below, every 
metric g asymptotes many different backgrounds of the form (1.1) whenever 
it asymptotes one, and it is not at all clear how these backgrounds relate 
to each other: if the geometry of space-time does not sufficiently constrain 
the set of allowed backgrounds (1.1), then the numbers obtained from (1.3) 
could be completely unrelated to each other when different backgrounds are 
chosen. If this were the case, it would appear questionable to associate 
physical meaning to the integrals (1.3). The purpose of this paper is to 
prove that, in several cases of interest, geometric invariants can indeed be 
extracted out of the integrals (1.3). 

The model problem of interest are space-times which are asymptotic to 
anti-de Sitter space-time. In this context there exist several alternative meth- 
ods of defining mass — using coordinate systems [7, 20], preferred foliations 
[19], generalized Komar integrals [31], conformal techniques [2-4], or ad-hoc 
methods [1]; an extended discussion can be found in [16, Section 5]. We wish 
to stress that the key advantage of the Hamiltonian approach is the unique- 
ness of the candidate expression for the energy (which follows from the fact 
that Hamiltonians are uniquely defined up to a constant on each path con- 
nected component of the phase space), and that no such uniqueness proper- 
ties are known in the alternative approaches mentioned above (c/., however, 
[23,32] for some partial results in the "Noether charges" framework). Now, 
independently of the question of what is the "correct" candidate expression 
for the energy, each of the expressions proposed in the existing literature 
suffers from some ambiguities, so that the question of well-posedness of the 
definition of mass as defined in those papers arises as well. For instance, the 
Abbott-Deser mass [1], or the Hamiltonian mass of [21], both suffer from 
precisely the same potential ambiguities as the Hamiltonian mass analyzed 
in this paper. As shown in Appendix C, under the asymptotic conditions 
considered in our well-posedness results, the Hamiltonian mass defined by 
(1.3) coincides with the Abbott-Deser one. Thus, one way of interpreting 
our results is that we prove the existence of a geometric invariant which can 
be calculated using Abbott-Deser type integrals. As another example, we 
note the potential ambiguity in the mass defined by the conformal meth- 
ods in [2, 3], related to the possibility of existence of conformal completions 
which are not smoothly conformally equivalent. The results proved here 
can be used to show [13] that no such completions exist, establishing the 
invariant character of the definitions of [2, 3]. 

We note that a similar problem for the ADM mass of asymptotically flat 
initial data sets has been solved in [5,11] (see also [12]). Our treatment here 
is a non-trivial adaptation to the current setup of the methods of [11]. Some 
of the results proved here have been independently observed in [33]. 
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The detailed statements of our results in a general context are to be 
found in the sections below, and will not be reproduced here. We shall, 
instead, discuss the application of our results to two families of examples: 

1. Let M be the n — 1 dimensional sphere n~15 with the round metric 
h of scalar curvature (n — l)(n — 2), while b is the n + 1 dimensional 
anti-de Sitter metric: 

r2     A  ,.o     _1 b = - (^ +1)dt2 + z7Tdr2 + rZh' (1-8) 

The space JCS_L of 6-Killing vector fields normal to S PI U consists of 
vector fields X(X), X = (A^)) G ]R"+1, which5 on S take the form (1.7) 
with iV = A(^iV(M), where 

iV(0) = V^ + 1'        JV(0 = 7' 
v 

and xl = rn2, r being the coordinate which appears in (1.1), while 
n1 G n~1S C W1. The group Iso(S, b) of isometries $ of b which map 
S into S acts on ICS± by push-forward; in Appendix B.l we show for 
completeness the well known fact that for every such $ there exists a 
Lorentz transformation M : IRn+1 -» Rn+1 so that we have 

$*X(A) = X(MX) . 

Letting g^ be the //'th basis vector of JCS± ^ M724"1, g^ := X(X^ = 
(^), we set 

it follows that the number 

where rf^ly) = diag(—1, +1, • • • ,+1) is the Minkowski metric on 
M71"1"1, is an invariant of the action of Iso(S,b).6 Further, if we de- 
fine ra(<S, g) to be positive if m^ is spacelike, while we take the sign of 
m(S,g) to coincide with that of mo = — m0 if m^ is timelike or null, 

5We stress that the index (/i) on A does not have anything to do with space-time; A^ 
is simply a coordinate on the n + 1 dimensional vector space JCS±. Similarly the Lorentz 
metric rj^)^), which arises naturally on JCS± from the construction here, does not have 
anything to do with the space-time metric g. To emphasize this we put brackets around 
the /x's. 

6This has been observed independently by X. Wang [33] in, however, a considerably 
less general setting. 
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then m(S,g) so defined is invariant under the action of the connected 
component ISOQ(S, b) of the identity in Iso(S, b). We show in detail in 
Section 4 that m(S,g) is independent of the background metric chosen 
to calculate the integrals (1.3), provided that the fall-off conditions of 
Theorem 2.1 and Theorem 2.3 hold, which justifies the notation. The 
number m({t = 0}, #) so defined coincides with the mass parameter m 
of the Kottler metrics7 

/       2m     r2\  Ii2      /       2m     r^"1 7 «       2l ^ ^ 
g   =    -{1- — + p)dt2+{1- — + -e2)     dr*+r*h{1.9) 

where h — d62 + sin2 Odtp2. Similarly m({t = O},^) is proportional to 
the parameter 77 which occurs in the (n+l)-dimensional generalizations 
of the Kottler metrics (cf., e.g., [22]) 

2rl    , r2W ,   f,       217    , ^V1 .2 ,    2, 

(1.10) 

with h — a round metric on a n — 1 dimensional sphere of scalar 
curvature (n — l)(n — 2). 

Some further global geometric invariants of the metrics asymptotic to 
the backgrounds (1.10) are discussed in Section 4. 

2. Let M be a compact n — 1 dimensional manifold with a metric h of 
constant scalar curvature and with non-positive Ricci tensor, and let 
b take the form 

b = —^dt2 + a2(r)dr2 + r2h , (1.11) 
az{r) 

h being r-independent, as before. We show (see Proposition B.2, Ap- 
pendix B.2) that for such metrics the space of 6-Killing vector fields 
normal to S consists of vector fields of the form 

x{\) = \dt,   AGE. (1.12) 

The discussion in Section 4 shows that 

m(S,g) = m(S,g,b,X(l)) 

is background independent, hence a geometric invariant. Some other 
geometric invariants can be obtained from the integrals (1.3) when 

7The Kottler metrics, published in 1918 [29], are also known as the "Schwarzschild - 
de Sitter metrics". 
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Killing vectors which are not necessarily normal to S exist, using in- 
variants of the action of the isometry group of b on the space of Killing 
vectors. If the Ricci tensor of M is strictly negative no other Killing 
vectors exist, cf. Appendix B.2. On the other hand, if h is a flat 
torus, then each /i-Killing vector provides a geometric invariant via 
the integrals (1.3), provided that those converge and that the fall-off 
conditions of Theorem 2.3 are met (this will be the case if, e.p.; Equa- 
tions (2.9)-(2.10) hold). 

The number m(S,g) defined in each case above is our proposal for the 
geometric definition of total mass of S in (.M, g). 

The results described above can be reformulated in a purely Rieman- 
nian context, this will be discussed elsewhere [13]. The extension of the 
results proved here to hyperboloidal hypersurfaces in Minkowski space-time, 
that leads to a geometric definition of the Trautman-Bondi mass, requires 
a considerable amount of work and will be discussed elsewhere [14]. Let us 
simply mention that if the metric of a hyperboloidal hypersurface in asymp- 
totically Minkowskian space-times satisfies the fall-off conditions here then 
its Trautman-Bondi mass coincides with the Hamiltonian one. More general 
statements require care. 

It is natural to study the behaviour of the mass when S is allowed to 
move in M. A partial answer to this question is given in Theorem 2.3 below. 
A complete answer would require establishing an equivalent of Theorem 3.3 
in a space-time setting. The difficulties that arise in the corresponding prob- 
lem for asymptotically Minkowskian metrics [12] suggest that this might be a 
considerably more delicate problem, which we plan to analyze in the future. 
It should be stressed that this problem mixes two different issues, one being 
the potential background dependence of (1.3), another one being the possi- 
bility of energy flowing in or out through the timelike conformal boundary 
of space-time. 

This paper is organized as follows: In Section 2 we present conditions 
which guarantee convergence of the mass integrals (1.3), see Theorem 2.1. 
We also show that the integrals (1.3) are invariant (Theorem 2.3) or covari- 
ant (Lemma 2.4) under a class of well-controlled coordinate transformations, 
consisting of symmetries of the background, and of certain generalizations 
of the usual "supertranslations" that occur in the asymptotically flat case. 
Section 3 contains the proof of the asymptotic symmetries theorem, Theo- 
rem 3.3, which is the key result in this work. In this theorem we show that 
the coordinate transformations allowed by our conditions are compositions 
of those considered in Section 2. In Section 4 we apply the previous results 
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to the construction of global geometric invariants in a reasonably general 
setting. In Appendix A the Hamiltonian approach to the definition of mass 
is examined in our context. Appendix B contains some results on Killing 
vectors which are needed in the body of the paper. 

Convergence, covariance under well behaved co- 
ordinate transformations 

Let us start by establishing convergence of the mass integrals (1.3) — this 
involves setting up appropriate boundary conditions on g. Let, thus, g and b 
be two metrics on a set {RQ < r < oo , (vA) G M}, let ea be an orthonormal 
frame for 6, set 

e?" = gW _ b^ , (2.1) 

and let eab = g(Qa, 6b) — r)ab denote the coefficients of e^ with respect to the 
frame 9a dual to the ea's: 

e^df, ®dI, = eacea ® ec . 

Here r]ab = diag(—1, +1, • • • , +1). We stress that we do not assume existence 
of global frames on the asymptotic region: when M is not parallelizable, then 
any conditions on the ea6's, etc. assumed below should be understood as the 
requirement of existence of a covering of M by a finite number of open sets 
Oi together with frames defined on [RQ,OO) X Oi satisfying the conditions 
spelled out above. The "matter energy-momentum tensor" TX

K is defined as 

87rT\ := RX
K - -5^-^ + A# . (2.2) 

9  ^MaP 

In our first result we assume for simplicity8 that b is Einstein, that is, b 
satisfies Equation (2.2) with TX

K = 0, with a cosmological constant A the 
sign of which is irrelevant for the theorem that follows: 

8Using Equation (A.27), Appendix A, it is straightforward to obtain results similar to 
Theorem 2.1 without the hypothesis that b is Einstein. Similarly, the hypothesis that X 
is a Killing vector field can be relaxed using the calculations of [10, Appendix B]; cf. also 
[15, Section 5.1]. 
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Theorem 2.1. Let X be a Killing vector of an Einstein metric b, set 

|X|2 = £|Xa|2,    |VX|2 = 5]|V6X<f ,    |J|2 = £|T0
6|2       (2.3) 

a a,b b 

o 
where V is the covariant derivative of b; the indices here refer to a b- 
orthonormal frame such that eo is normal to the hypersurface t = 0. Suppose 
that linv-^oo eab = 0 and that 

f \\X\ flJl + IAIIe^l + ^e^e^ + ^l^l2 

+| VX|   Yl   M^ ^l \ d»b < oo , (2.4) 

where djAb = y/detbijdr dv2 ... dvn is the Riemannian measure induced on 
{£ = 0} by b. Then the right-hand-side of Equation (1.3), understood as the 
limit as R —► oo of integrals over the sets {r = i?, t — 0}; exists and is finite. 

Remark: We note that the somewhat unexpected restriction on integrabil- 
ity (for A / 0) of eab&a& arises also in the requirement of a well defined gen- 
eralized Komar mass for static asymptotically anti-de Sitter metrics [16,31]. 

Proof. We have 

/       W*pdSap = 2 [ Vpl]apdSa + [ UapdSap .      (2.5) 
J{r=R} J{Ro<r<R} J{r=Ro} 

A formula for the volume integrand in Equation (2.5) is given in Equa- 
tion (A.27), Appendix A. Clearly conditions (2.4) guarantee convergence of 
that volume integral to a finite value when R tends to infinity. □ 

In the remainder of the paper we will only consider background metrics 
of the form 

b = -a-2{r)dt2 + a2(r)dr2 + r2h,        h = hAB(vc)dvAdvB , (2.6) 

where h is a Riemannian metric on a (n — l)-dimensional compact manifold 
M. The condition that b is Einstein will not be made unless explicitly stated 
otherwise. Let 

6° = -dt ,    e1 = adr ,    eA = raA , 
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where aA is an /i-orthonormal coframe. We let ea be the frame dual to 0a, 

eo = adt ,        ei = -Sr    e^ = -f3A , (2.7) 
a r 

so that /?^ is a /i-orthonormal frame on (M,/i). As an application of The- 
orem 2.1, consider, first, the Killing vector field X — dt = (l/a)eo and 
suppose that 

a(r) = - + o{r) ,     ei(a) = — + o(r) , . (2.8) 
r r 

o 
for some constant ■£   We then have |X| « £| VX|/v2 « r/£ and d/i^ = 
rri~2Vdethdrdv2 ... dv11.   When g and 6 are Einstein, the condition (2.4) 
will be satisfied if 

eab = 0(r-P),    ea(e
bc) = 0(r-'3) ,    babe

ab = 0^) , (2.9) 

with 

/3>n/2,        7>n. (2.10) 

(We note that the generalized n + 1 dimensional Kottler metrics (1.10) sat- 
isfy (2.9) with P = n, and with 7 = 2n.) An identical convergence analysis 
applies for all "rotational" 6-Killing vector fields XA(vB)dA (whenever occur- 
ring) for all the metrics (2.6)-(2.8), as well as all the remaining Killing vectors 
for the (n 4- l)-dimensional anti-de Sitter metric (listed in Appendix B.l), 
showing that all the corresponding charges are finite when the conditions 
(2.9)-(2.10) hold. Surprisingly, in retrospect the analysis in the case A 7^ 0 
turns out to be simpler than that for the asymptotically Minkowskian case, 
where A = 0: in the latter case the requirement of convergence of angular 
momentum or of boost integrals imposes more stringent conditions on the 
metric than that of convergence of the energy-momentum integrals. 

The conditions presented above are sufficient, but certainly not neces- 
sary, for convergence of the integrals (1.3): indeed, the metric considered in 
Proposition 2.2 below has a convergent mass integral, but the conditions of 
Theorem 2.1 fail to hold. However, there is a potential essential ambiguity 
in the definition of the integrals (1.3), which we will describe now. Propo- 
sition 2.2 below then shows that (2.9)-(2.10) are essentially sharp, if one 
requires that the integrals (1.3) are convergent and background-independent 

The ambiguity in the integrals (1.3) arises as follows: to define those 
integrals we have fixed a model background metric b with the corresponding 
coordinate system (£, r,vA) as in (2.6), as well as an orthonormal frame as 
in (2.7). Once this has been done, let g be any metric such that the frame 
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components gab of g tend to r]ab as r tends to infinity in such a way that 
the integrals m(5,5,6, X) given by (1.3) (labeled by the background Killing 
vector fields X or perhaps by a subset thereof) converge. Consider another 
coordinate system (£, f, vA) with the associated background metric b: 

b = —^rdP + a2(r)df2 + f2h,        h = hAB(vc)dvAdvB , (2.11) 
az{r) 

together with an associated frame ea, 

eo = a(f)^ ,        ci = -jrzdf    eA = -(3A , (2.12) 

and suppose that in the new hatted coordinates the integrals defining the 
charges m(S ,g, b,X) converge again. An obvious way of obtaining such 
coordinate systems is to make a coordinate transformation 

t-+i = t + 5t,        r-*r = r + 5r,        vA -+ vA = vA + SvA ,      (2.13) 

with (5t,5r,5vA) decaying sufficiently fast, as e.g. in the statement of The- 
orem 2.3 below. (However, we do not know a priori that the hatted coor- 
dinates are related to the unhatted one by the simple coordinate transfor- 
mation (2.13) with (St, 5r,SvA) decaying as r —> 00, or behaving in some 
controlled way — the behaviour of (St, Sr, SvA) could be very wild.) The 
question then arises, how do the m(S , g, 6, X)'s relate to the ra(<S, g, b, X)'s. 
A geometric definition of mass should be coordinate-independent, therefore 
one would like to have a simple relation between those integrals. 

At this point it is worth recalling that there exist several expressions 
for mass alternative to (1.3), which might or might not coincide with each 
other when the decay of the metric is too slow. For example, we show 
in Appendix C that (1.3) coincides with the Abbott-Deser [1] mass for all 
metrics satisfying the decay conditions (2.9)-(2.10) for Killing vectors such 
that \X\ = 0(r) with, say, a(r) as in Equation (1.1). Now, if X — dt, for 
background metrics of the form (1.1), in space-times of dimension 4, the 
integral defining the Abbott-Deser rriAD can be written in a particularly 
simple form [16] 

mAD^t = 0},£,Mi) 

= Hm^oo T^ /En{r=R} (r EA ^ " 2e11) d2^     .       (2.14) 

Generalizing an argument of [17], we show that if the decay condi- 
tions in (2.9) are too weak then one can obtain essentially any value 
of ra,4£)(<S,#,&,X) by performing coordinate transformations of the form 
(2.13). We do this explicitly in n — 3, the same argument applies in any 
dimension n: 
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Proposition 2.2. Let the physical metric g equal the background metric b, 
and let {r, vA} be coordinates so that b takes the form (1-8). Consider a new 
set of coordinates defined as 

r + A/2  ' VA = vA (2.15) 

where ( is a constant (This leads to eab = (^(r"3/2).,) If(^0 then the mass 
mAD{{t = 0},<7,6, dt) of g with respect to the background metric b defined by 
the coordinates {r,vA} does not vanish. 

Proof. First notice that this transformation satisfies ^ = O (r~3/2). Then, 
by straightforward computations one has, assuming without loss of generality 
that £=1, 

ei 

eA = 

1 + 
3c +£+<*-'/») 2r3/2        4r3 

2 

ei , 

l-4 + 3 + 0(r-7/2) ,3/2 eA 

and so, 

A 
Hence 

■Y,dr(e
AA)-2e" = -^ + 0(r-V>), 

and the result follows. □ 
While the above shows that the Abbott-Deser mass ceases to be well 

defined below the threshold o(r"3/2) in dimension 3 + 1, this still leaves 
open the unlikely possibility that the Hamiltonian mass (1.3) could be well 
defined. In order to see that this is not the case let us, first, calculate the 
mass integrand for metrics of the form 

.2 

-/* + k)dtz + -r 
i2 '    J C + k 

drl + arlhABdvAdvl (2.16) 

where //, v and a are arbitrary functions. One finds 

lLJ*r    = 
rna{n-\)l2y/diQthAB   (   20S7 

-(-"(^^"[K-l-')^]}- (2-17) 
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Suppose that —in space-time dimension n + 1 — g is the metric b expressed 
in a hatted coordinate system (r,vA), and consider the coordinate transfor- 
mation 

where £ is a constant. The metric 5, when expressed in the unhatted coor- 
dinates (r, vA), satisfies (2.9) with /3 = 7 = n/2, and is of the form (2.16) so 
that (2.17) applies. A MATHEMATICA calculation then shows that g has a 
mass integral (1.3) with respect to the unhatted background b equal to 

VoMM)/       n2\   2 

which is non-zero for any £ 7^ 0 and for any n G N. Here Vol/^M) is the 
n — 1-dimensional volume of M — area if n — 1 = 2 — with respect to the 
metric h. 

The coordinate transformation (2.15) is not yet as good as one would 
wish, because it leads — in space dimension three - to coordinates in which 
the trace of the metric ea6&a6 is 0(r_n/2), quite a bit above the threshold r~n 

set forth in Equations (2.9)-(2.10). We note that the change of coordinates 
(2.15) accompanied by a further time redefinition (which clearly does not 
change the mass as given by Equation (2.14)) 

i=t(l + cr-V2), 

with an appropriate choice of the constant c, will lead to a metric which at 
i = t = 0 satisfies 

«.« = 0(r-3/2) ,     ek(eV) = 0(r-V2) ,     babe
ab = Oir'3) , (2.18) 

where the indices i,j run from 0 to 3. Note that the above fall-off conditions 
will not hold for some of the e0a's, and for some eo derivatives of the ea&'s, but 
this turns out irrelevant for the problem at hand: the new hypersurface i — 0 
coincides with the previous one, therefore its extrinsic curvature will not 
change. One can check [13] that — similarly to the ADM case — conditions 
on the induced metric on the surface t = 0 and on its extrinsic curvature are 
sufficient for a well defined notion of mass, so that the result in [13] complete 
the proof of sharpness of the condition on 7 in (2.10). 

Let us show that the decay rates (2.9)-(2.10) guarantee non-occurrence 
of the behaviour exhibited in Proposition 2.2: 

Theorem 2.3. Consider an n + 1 dimensional space-time {M^g), and let 
b and b be two background metrics of the form (2.6) and (2.11), with a(r) 
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as in Equation (1.1), in coordinates {£,r,vA} and {t, f^vA} with ranges cov- 
ering {r > RQ} x M and {r > RQ} X M for some RQ^RQ G M. Suppose 
that b satisfies the vacuum Einstein equations with a negative cosmological 
constant, that the conditions of Theorem 2.1 hold both for the hatted and 
unhatted coordinates, and that we have 

eab = o(r-n/2) ,    ec(e
ab) - oir'^2) . (2.19) 

Let X =■ Xa(t, r, vA)ea G /C be a Killing vector field of the metric b satisfying 

\X\ + I VX| = 0(r) , (2.20) 

and let X = Xa(i,r,vA)ea G JC be its hatted counterpart (with the ea compo- 
nents of X given by the same functions Xa of the hatted variables as the ea 

components of X in the unhatted variables). Let S and S be the hypersur- 
faces given by t = 0 and i = 0 respectively. If the coordinate transformation 
satisfies 

i = t + o(r-<1+n/2>) , ea(i) =£5° + o(r-^n^) , 

f = r + oir1'"/2) , ea(r) = ^ + oir1'^2) , 

vA = vA + o(r-(1+n/2)) ,        ea{vA) = 6A + o(r-^n^) , (2.21) 

m(5, g, b, X) = m{S, g, 6, X) . 

Proof. The idea of the proof is to compute the background metric b in a 
frame related to the unhatted coordinates, obtaining an expression in terms 
of b plus correction terms. Then, we compute (1.4) for 6, similarly obtaining 
an expression in terms of (1.4) for b plus additional terms. We show that 
these terms integrate to zero, up to terms vanishing in the limit as r tends 
to infinity, keeping thus the mass invariant. 

In terms of ££, Jr, and SvA defined as in Equation (2.13), the decay 
conditions (2.21) imply 

y/k + r2/£2St = o(r-n/2) ,        . - o(r-n/2) ,    rdvA = o(r-n/2) . 
y/ k + r2/£2 

(2.22) 

From Equation (2.12) one finds the following relation between the hatted 
and non-hatted coframes 
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*1=(l-^?)«' + 71n^(fr)+o(r-), 

eA + ^eA + r( d-^- 6vc dvB + aA
B d(6vB) } + o(r-n) .     (2.23) 

where aA ia a co-frame on M dual to PA, and we have introduced the 
notation aA = aABdvB\ with the index A being a tetrad index, while the 
index B is a coordinate index. All the terms denoted by o(r~n) above have 
o(r~n) coefficients when expressed in terms of the 6a frame. Actually, the 
term in the curly brackets in the right hand side of the last equation gives a 
clue to a convenient way of writing these equations, since it can be rewritten 
as £§vBQ/QvBaA, where £ denotes a Lie derivative; in order to justify such 
a procedure, we use the following artifact: As explained in [9, Section 4], 
embedding M in M2(n-1) and extending the metric appropriately, we can 
without loss of generality assume that the coordinates vA and the frames 6A 

are globally defined on M. We then set 

(■ = St— + 6r— 4- 6v 
dt dr dvA 

one sees from (2.22) that the components of £ in the ea frame are all of the 
same order o(r_n/2), and one can check that Equation (2.23) for the hatted 
tetrad reduces to 

ea = ea + £^a + o(r-n) ; 

we note that £(>6
a = o(r~n/2). Let us write 

^■a ~ ^a ~T~ ^^a 5 

one verifies that the tetrad components of 8ea are o(r~n/2), and from the 
condition 6a(ef)) = 5% and its hatted analogue one has 

ea(8eb)    =    -£ie
a(eb)+o(r-n) 

=   -£c(9a(eb))+ea(£(:eb) + o(r-n) 
N v ' 

o 
-   ea(£(eb) + o(r-n), 

which shows that 
ea = ea + £cea + o(r n) , 
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with £^ea = o(r~n/2). This looks to leading order like a change of tetrad 
under an infinitesimal transformation, but we emphasize that we are not as- 
suming that the transformation is infinitesimal. Denoting {x^} — {£, r, vA}, 
and using V" = r]ab^eh

v', and b^ = r]abea^eh
u, we obtain 

6^ = 6^^ + £^u + Sb^ , (2.24) 

with 
\LV na   nb 8bat) = 5Vwea^\ = o{r-n) 

The expression (2.24) is the first step to compute the change in the integrand 
of (1.3). The next step is to rewrite (1.4) in the following more convenient 
way 

OTT 

+ ̂  (vlsls^17 - vl&r^17) *v v«xCT, 

with Q = det(3^), and b = det(6/ii/). Let Ua^ be defined as the expression 
above with b and X replaced with b and X; from Equation (2.24) we obtain 

U^    =   — 
STT 

0 0 0 0 

STT 

+81P13 , 

vKx7 

with 

5lSab = SlpPe11^/) = o(r-n) 

We have used the fact that £cbaP = -2 V^C^, and that ^/g = \/b{l+ V 
^-e//2)+o(r-"). 

The idea now is to write the right hand side above as a total divergence 
of a totally antisymmetric tensor density. The first term at the right hand 
side above can be written as 

aagjAWV^K ^/C£7+ v* VV) = 3 v7 s&x" vxe XvH 

+ Ry^X^P + 2XW ^PCP - (V^X13) V^Ca] + (V7X
a) V^1 • 
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Since VaX^ is antisymmetric, one obtains 

+ Rrp
aPx'rCp 

+2XW B^pC + 3(V[aX/3)(V7C7])] + ^^ 

Finally, with the remaining terms we construct the divergence of a totally 
antisymmetric tensor, as follows: 

3(V7C[7)(VaJ^) = 3 V7  C^V0^1) C7 V7 TPX0 - 2C[a B?]
pX

p. 

Recalling that a Killing vector satisfies Va VpX^ =Rp
ap1Xp1 and that 

o 
Rap = 2Abap/(n — 1), one finds 

STT       
7 xh vacp] + c[7 v^x® + 5lJaP . 

(It would suffice that Rap = 2Abap/(n — 1) + 0(r~n/2) for the argument 
to go through.) The first term on the right hand side above integrates out 
to zero on (n — 1) dimensional boundary less compact submanifolds, and the 
remainder is order o(r"n), so that 

f       iPPdS*p=   [       WfdSap + oil), 
Jr=R Jr=R 

with o(l) tending to zero as r goes to infinity. We also have 

f   ir^dSap = [   irpdsap + 2 f    vJrpdSp 
Jr=R Jf=R JvD A 

(2.25) 

(2.26) 

where VR ^ is a set the boundary of which is the union of the coordinates sets 

{r = R} and {r = R}. Conditions (2.4) guarantee that the volume integral 
in Equation (2.26) tends to zero when both R and R tend to infinity, which 
together with (2.25) establishes our claims. □ 

Let us finally show that the integrals (1.3) are covariant under isometries 
of the background. In what follows S is an arbitrary hypersurface on which 
the charge integrals (1.3) converge: 

Lemma 2.4. Let $ : M —> M be an isometric diffeomorphism of (.M,&) 
such that $(5) = S. Then 

m(<S, $*<?, 6, ($*)-1X) = m(S, g, 6, X) . (2.27) 
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Proof. Formula (1.3) for mass is invariant under diffeomorphisms, hence 

m($(s),s, 6, $*y) = m(S, $*5, $*&,y) , 

and the result follows from $(<?) = 5, $*6 = b. □ 

3    Asymptotic isometries - the Riemannian prob- 
lem 

Throughout this section, in contradistinction with the remainder of this pa- 
per, g will denote the Riemannian metric induced by the space-time metric 
on S. Similarly the letter b will denote the associated Riemannian back- 
ground metric9 of the form 

b = a2(r)dr2 + r2h ,        h = hAB{vc)dvAdvB , (3.1) 

with the indices A running from 2 to n. We assume that r E [12, oo) for 
some 12, while the coordinates vA are local coordinates on some compact 
n — 1 dimensional manifold M. Unless explicitly stated otherwise, we use 
the symbol O(r^) to denote either O(r^) throughout this section, or o(r^) 
throughout this section. We shall mainly be interested in background metrics 
for which 

ra{r)=£ + c(r) ,    c=0(r-mi),    R 3 mi > 0 , (3.2) 

^(r) = 0(r-1-mi) . (3.3) 

for some constants mi,^ > 0.10 When the vacuum Einstein equations (1.2) 
are satisfied by the metric (3.1) we have3 a(r) = l/\/r2/£2 + &, where k is 
a constant, which can be written in the form (3.3) with mi = 2, as well as 
in the form of footnote 10 (with ra2 of that footnote as large as desired). 
However, the hypothesis that the vacuum Einstein equations hold plays no 
role in this section, therefore in (3.3) any mi > 0 will be allowed. Let us 
mention that (3.3) is equivalent to the condition 

c(f) - c(r) = 0(r-l-mi)(r - r) (3.4) 

9One could also consider background metrics of the form b = a2 (f)df2+q2 (f )/i; however, 
if q is sufficiently differentiable, then b can be brought to the form (3.1) in the asymptotic 
region by a change of coordinates r = q(f) provided that dq/df has no zeros for large f's. 

10A typical example is o(r) = £ (l + ££L2
mi ft + 0(r~a)} for some constants mi > 1, 

m2 > mi, ai and a. 
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for r large enough, and for |f — r| < r/2. Indeed, under (3.3) we have 

c(r) - c(r) = I /   c'(tr + (1 - t)r)dt\ (r - r) , 

and Equation (3.4) follows. The implication the other way round is straight- 
forward using the fact that c is smooth (recall that local smoothness of the 
metric is assumed throughout). Condition (3.4) is actually the one which is 
needed in the arguments below. 

Let 0*, i = 1,... ,n be an orthonormal coframe for 6, with 91 = a(r)dr, 
and let e^ be the dual frame; we denote by 

o 
the associated connection coefficients, where V is the Levi-Civita connection 
of b. One easily finds 

(3.5) °A   _      !     vA _      ,0,1 
WlB"ra(r)dB~        AB 

If we denote by 

aA = a(vc)ABdvB (3.6) 

an orthonormal frame for the metric /i, and by (3
A

BC the associated Levi- 
Civita connection coefficients, then 

£V = VBC. (3.7) 
r 

All connection coefficients other than those in (3.5) or (3.7)vanish. 

Lemma 3.1. Let 6l be an orthonormal coframe for the metric b as in (3.1), 
let g = gij9l ® 63, and suppose that 

9ij ~~^r—>oo Oj • 

Denote by GR, respectively a R, the g-geodesic distance along S, respectively 
the b-geodesic distance along S, from the set {r = R}. There exists a function 
C(R) > 1 satisfying lim^-^oo C(R) = 1 such that 

C(RrlaR<aR<C(R)aR. (3.8) 
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Proof. For s G [R,r] let 7(5) = (s,vA), then 

VR(r,vA)    <     /   ^g(j,j)(s,vA)ds 

=    [ ^9^)91 ms,vA)ds 
J R 

=    f ^9n(s,vA)a{s) ds (3.9) 
J R 

<    (l + o(l))aR(r,vA). 

To obtain the reverse inequality, we note that for points (r, vA) such that 
r > R it holds that 

VX    g(X,X)>(l + o(l))b(X,X), 

with o(l) going to zero as R —> oo, hence for every curve 7 from {r = R} to 
(r, vA) we have 

/ VoKWids > (i + 0(1)) f VWhW^Jds, 

therefore 

aR    =   inf / y/gi^fW) ds 

>    (l + o(l)) inf [ y/b{w){s)ds 

=   {1 + O(1))GR. (3.10) 

□ 
The proof of Lemma 3.1 uses only the product structure of 6, and does 

not require Equation (3.3) to hold. If, however, that last equation holds, 
then clearly 

aR{r,vA) - [" a(s)ds = €ln(r/i2) + 0(irmi) « ^ln(r/iJ) 
JR 

for large r, and (3.8) implies that for all e > 0 there exists Re > R and a 
constant (7(e) such that for all r > Re we have 

Cie)-1^-6 < exp (a/j/^) < C(e)r1+e . (3.11) 

We will need a sharper version of this: 
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Lemma 3.2. Under the hypotheses of Lemma 3.1, suppose further that 
Equation (3.3) holds, and that there exists a constant a > 0 such that 

g.j -8) = 0(r-a) . 

Then for r > max[i?, 1] we have 

exp{aR/l) = r/R + 0(R-mi) + 0{R-a) , (3.12) 

in particular 

r/C' < exp (aR/i) < C'r . (3.13) 

Proof. Here and elsewhere in this paper the letter C denotes a constant 
which may vary from line to line; if 0 = o the constants in the current 
proof can be chosen as small as desired by choosing R large enough. In 
Equation (3.9) we can estimate v/<7u by 1 + Cs~a, obtaining thus 

<JR{r,vA)    <   GR{r,vA) + CR-a 

=   nn{r/R) + 0(irmi) + CR-a . 

Similarly, Equation (3.10) is rewritten as 

(jR    =   inf / \/g{j,j)(s) ds 

>   inf [(l-Cs-a)^b{<y,<y)(s)ds. (3.14) 
^ Jj 

The last term in Equation (3.14) is the distance from the set {r = R} in the 
metric 

(l-Cr-a)2(a2{r)dr2+r2h) , 

which equals 

Hi - Cs-a)a{s) ds = nii{r/R) + 0(irmi) - 0(irQ) , 
JR 

and our claims immediately follow. □ 

The key result in our work is the following: 

Theorem 3.3 (Asymptotic symmetries). Let (r,vA) coordinatize £1 C 
S so that fi « {r G [i?, oo)} x M, and let (r, vA) be another set of coordinates 
on Q, so that ft « {{vA) E M, f G [R(vA)^ oo)} for some continuous function 
R. We further assume that vA and vA are consistently oriented, and that 
(r,vA) and (r,vA) are also consistently oriented. Let b, O1, el, etc., be as at 
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the beginning of this section, with a of the form (3.3), and let b, 6l, e^ etc. 
be the hatted equivalents thereof, so that 

b = a2{r)dr2 + r2h = ]£ ^ ® # , 
i 

for some Riemannian metric h on M. Suppose that there exists a > 0 such 
that 

<7(ei,ej-)-^ = 0(r-Q),    ek(g(ei,ej)) = 0(r-a), (3.15) 

giiitij) - Si = 0(f-Q) ,    ekig&^j)) = 0(r-Q) . (3.16) 

Then: 

1. There exists a C00 map ty : M —)• M satisfying 

^*h = e'^h 

for some C00 function ip : M —>■ M, and 

r = e^r + Oir1^) ,    e^r) = ei(e^r) + O^1^) ,       (3.17) 

v* = i;A(vB) + 0(r-2) ,    ei(vA) = e^iv3)) + 0(r-2) ,(3.18) 

in local coordinates with $ = (ipA), with (3 = min(mi,Q;, 2). 

2. If ^ is the identity and if ip = 0, then for a > 1 we further have 

f = r + ©(r1-*) ,    ei(f) = ei(r) + ©(r1"0) , (3.19) 

tiA = i;j4 + 0(r-a-1),     ei(vA) = e^) + ©(r-0-1) ,    (3.20) 

ej (e^r - r)) = ©(r1"") ,    e^ (e^ - vA)) = ©(r^"1) . (3.21) 

Remarks: 1. For reference we note the partial derivatives estimates 

! = ' + <*-').    & = &-K><^>. (3-22) 

^=0,-3,,    I^^.O,^,, ,3,3, 

with the second estimate in (3.23) being somewhat stronger than its coun- 
terpart in (3.18). 

2. It should be noted that in point 1. above we do not assume that M = M 
and h = hAB{'vc)dvAdvB', this fact plays a role in [13]. The arguments 
in that last reference show that ^ is a diffeomorphism, in particular M 
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is necessarily diffeomorphic to M. If h = hAB{vc)dvAdvB and ^ is the 
identity, then clearly ip = 0 follows. 

3. We stress that we do not assume M or M to be parallelizable, thus 
Equations (3.17)-(3.21) have to be understood in the sense of finite coverings 
of M and M, with corresponding frames, on which the claimed estimates 
hold. However, if M or M are parallelizable, then the estimates are global. 

Proof. Let Op be a conditionally compact subset of an open domain of a local 
coordinate system (vA) around p = (VQ) G M, and let, on a neighbourhood 
of Op, /3A be a /i-orthonormal frame dual to aA. We note that the connection 
coefficients f3ABC are uniformly bounded on Op. Consider the radial ray 

7p(r) := (r,v£) , 

which, in hatted coordinates, can be written as 

[i2,oo)9r -> 7P(0 = (^^)^M7PW:=(*
A

(^^))) e[fl,cx)) x M C S ; 
(3.24) 

here and in what follows we identify [i?, oo) x Op with the corresponding sub- 
set of *S, similarly for sets of the form [R, oo) x U, where U C M. It should 
be clear from (3.24) that the operation ujp —> PQIP" above is a coordi- 
nate projection which consists in forgetting the r coordinate in a coordinate 
system (f,^). We have 

dvAdvB      .     l   (~2i     dvAdvB       2(^f
d^ 

— f2      Qr' Qr f2 

Let dr denote the /i distance on M, for r2 > ri we thus obtain 

/>r2    F-      dvA dvB 

<    C2 Z"7'2 \ ds = C2 (- - - 
Jrx    s \r\       1 
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and Lemma 3.2 has been used. It then easily follows that 

p := lim P^7p(r) 

exists, with 

dh (PMMr),p) < ^r ■ (3-26) 

Let Op be a conditionally compact subset of a domain of local coordinates vA 

around p, Equation (3.26) shows that jp enters and remains in [jR, oo) x Op 
for r large enough. In what follows only such r's will be considered. 

Consider, now, a point q G Op] we wish to show that the corresponding 
ray jq will stay within [R, oo) x Op if q is close enough to p. In order to do 
that, consider an /i-geodesic segment 7 C M parameterized by proper length 
such that 7(0) = p and 7(0^(p, q)) = q. Expressing the path 

s -+ Y{s) := (r,7(s)) G [R, 00) x Op C S 

in terms of the barred coordinates we have 

~      d^_d^_ l_ (2~      d^_d^_       2      /drN 

!&(^ ^)   <  c -6(— —) 
f2    ds1 ds     ~       f2    ds' (is 

r2 

-     C ^2    <    ^ , 

An estimation as in Equation (3.25) gives 

^(PM>(r),^(r))    <    Cdh(p,q). 

Passing to a subset of Op if necessary we thus obtain that for all q G Op the 
rays 7^ enter and remain in [JR, 00) x Op, for r > Rp for some Rp. 

Let, on an open neighbourhood of Op, aA be a A-ON frame with uni- 
formly bounded connection coefficients $A

BC, and let A4 be a /i-orthonormal 
frame dual to aA. Equations (3.5) and (3.7) show then that all the o/^'s and 

c&fcj's — the connection coefficients of b and of b — are uniformly bounded 
along the rays 7^, q G Op] the reader will note that the same will be true for 
the constants controlling various error terms O(r') in the calculations below. 
The idea of the argument below is then to derive the desired estimates along 
the 7g's, q € Op] covering the compact manifold M by a finite number of 
coordinate patches C^., i = 1,... ,/, will establish our claims. 
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Let /i, respectively fi, be a #-orthonormal frame obtained by a Gram- 
Schmidt orthonormalisation procedure using {e;}^, respectively {e;}-^. 
The explicit form of the fi's and /^'s in terms of the e^'s and e^'s shows that 

fi^ei + Sfi,    8fi = 8fiiej,    Sfi^O(r-a),    efc(W) = 0(r-a) , 

(3.27) 

fi = ii + 6fi,    Sfi^SfiUj,    Sjj = 0(r-a) ,    efc(W') = O(f^) . 

(3.28) 

By construction we actually have 

/! = (! + 0(r-a)) ex = (l + 0(r-Q) + 0(r-mi)) ^ . (3.29) 

The uniform boundedness of the a/jy-'s further shows that 

Ve//,- = 0(r-a) , (3.30) 

similarly for the 6-covariant derivatives of the tf/j's with respect to the e^'s. 
Recall that 

&kj = \{ej{[ei,ek})-n[ek,ej])-ek{[ej,ei])} ; (3.31) 

Equation (3.31) together with its ^-equivalent and (3.27)-(3.30) imply 

^jk =Sfjk + 0(r-a) , (3.32) 

similarly 

tfjk = fiiVfJj) = (Sifc + 0(r-a) . (3.33) 

We use the symbols </>z and ^ to denote coframes dual to fa and fa. Now, 
both the /i's and /^'s are orthonormal frames for ^, hence there exists a field 
of rotation matrices A = (A^) G 0(n) such that 

fi = KJfj ■ (3-34) 

We recall that for rotation matrices we have11 

X;W = 4, (3.35) 

11 We use the convention summation throughout, so that repeated indices in different 
positions have to be summed over. We will explicitly indicate the summation only in those 
equations in which we need to sum over repeated indices which are both subscripts or both 
superscripts. 



722 The mass in anti-de Sitter space-times 

in particular 
(A-V = A/ , 

so that 0l = A/^, and <^ = Y^i^j1^1- Further, from Equation (3.35) we 
obtain 

X>*A^ = 1     =»    Vi,i  |V| < 1 ■ (3.36) 
k 

Prom the definition of the connection coefficients we have 

=   <AfcV,VAim/m(Aj
n/n)) 

leading to the well known transformation law 

u^A,* = A//,(A/) + A/VwfcJn , 

which we intepret as an equation for the Ajk,s: 

^(A/) = (A-^i'^-tAn* - A/cA • (3.37) 

From Equations (3.3) and (3.27) we obtain 

fUdr)    -   a(r)(*r + 0(r"a)) (3.38) 

=   - ((JT + Ofr"^)) , (3.39) 

with /3 = min(a,mi), except if 0 = o and a > mi in which case either /3 
should be taken to be any number smaller than mi, or 0 should be under- 
stood as 0. Rescaling r and the metric g by a constant conformal factor 
we may without loss of generality assume that I = 1; similarly for f. Equa- 
tion (3.13) together with Equations (3.32)-(3.39) leads to 

^   =   a(r)(T^Mkl + 0(r-^) (3.40) 

=    - [Y&i^Ak1 + G(r-p)) , (3.41) 
r V. 

in particular 

MlJ    -    o(r)  '^A^A^ + O^-)) (3.42) 
dr fair)  .    A 

ifJ^AV'A^ + OM)) . (3.43) 
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Now, the transpose of a rotation matrix is again a rotation matrix, therefore 
we also have 

k 

which gives 

X;AA
1
A/ = 1-(A1

1
)
2
, (3.44) 

and it follows that 

^T-   = ^(l-lAi^ + Olr-)) (3.45) 
or ra(r) v ^ 

- ^-(Ai^+Ofr-*"1). (3.46) 
r 

We have the following: 

Lemma 3.4. For all a < min(mi,a, 2) we have 

Ax1    =    1 + 0(0, (3.47) 
fjr 

r—    =   r + Oir1-") . (3.48) 
or 

Proof. Let x denote the 0(r_/3~1) term in Equation (3.46), set g := Ai1, 
and denote by (f)(r,vA) = f™ x{s,vA) ds — 0(r~^); Equation (3.46) shows 
that 

djg-t) ._i-g2
>0 

dr r      ~    ' 
It follows that g — (j) is non-decreasing, and therefore has a limit as r goes to 
infinity; since 0 tends to zero in this limit we conclude that 

goo = lim g 
r-»oo 

exists. Equation (3.46) shows that 

lim r^ = 1 - gl . (3.49) 
r->-oo    or 

Now Equation (3.36) gives \g\ < 1, while Equation (3.49) implies a logarith- 
mic divergence of g unless g^ = ±1; thus #00 = ±1. Define / > 0 by the 
equation 

ff = ffoo(l-/), 

then / -»r->oo 0 and we have 

df        W(2-/) 
-5- = 9ooX • or r 
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Suppose, first, that g^ = 1; since / -tr^^^z 0 it follows that for every S > 0 
there exists rj such that / < S for r > rj; for such r we then obtain 

£s-^-*. («•) 
and by integration 

/(r, 0 - rj-Sf(rs, ■)<- [ X{s, ^s2'5 ds = 0(r2-^) + 0(r,2-^) , 

so that 

/(r) = 0(rJ-2) + 0(r-^). (3.51) 

Choosing 8 appropriately we obtain (3.47) with any a < min(mi, a, 2), under 
the assumption that g^ ^ — 1. In the case g^ = — 1 similar, but simpler, ma- 
nipulations lead again to Equation (3.51) with 6 = 0. Prom Equation (3.44) 
and from Ai1 = g^ + 0(r~cr) we obtain 

A^1 = 0(r-^2) . (3.52) 

Equation (3.35) similarly implies 

A/ = 0(r-^2) . (3.53) 

Equation (3.40) gives 

^   =    if-A.'Ax'+tXr-)), 

and integration in r together with (3.52) yields (assuming without loss of 
generality that a ^ 1) 

AA
1
 = Ofr-1) + Oir-*) . (3.54) 

Integrating in r Equation (3.43) and using (3.53)-(3.54) we similarly obtain 

A1
A = O{r-1) + 0(r-a) . (3.55) 

From the definition of the f^s and from (3.3) (with £ = 1) we have 

A(f)=r + 0(r1-^,     fA(r) = 0(fl-a), 

hence 

/i(r)    =   A1
1f1(r) + A1

AfA(r) 

=  goof + 0(rl-c), 



P. T. Chrusciel and G. Nagy 725 

Inverting Equation (3.29) we have 

(l + CKr-™1))^    =   ei(f) 

=    (l + 0(r-a))/i(r) 

=   9oor + ©(r1^) . 

We have finally obtained 

r-^^goor + Oir1-*), (3.56) 

which is compatible with the fact that the coordinate systems (r, vA) and 
(r, v^), as well as (v^) and (O"4), carry the same orientations if and only if 
goo = 1? and the lemma is established. □ 

Returning to the proof of Theorem 3.3, it is useful to introduce new 
coordinates x and x defined as 

r = ex ,        r = ex . 

In terms of those variables Equation (3.48) can be rewritten as 

^ = 1 + 0,        ^ = 0(6-**), (3.57) 

for an appropriately defined function 0: More precisely, if we write 

ei = eiJfj ,    /t = fiJej , (3.58) 

with the obvious hatted equivalents, then 

^^Ee^AV*1-!. (3.59) 
ralr) ^-^ 

Integration of Equation (3.57) gives 

)(x,vA)    =    x — x(xo,vA)+       (j){s,vA) ds 
JxQ 

noo roo 

=    X-X(XQ,V
A

)+ (j)(s,vA)ds- (t>{s,vA) 
J XQ J X 

ds 

:    x + ^{vA) + 0{e-(TX) , (3.60) 
' XQ 

.,<4\ J^ (^f^ — vx\ 
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which establishes the existence of a continuous function ip : M —> M such 
that 

f(r, vA) = e^v% + ©(r1"^) (3.61) 

(continuity of ip follows from the Lebesgue (dominated) theorem on continu- 
ity of integrals with parameters; the Lebesgue theorem is used in a similar 
way without explicit reference at several places below). 

Let us write Equation (3.45) as 

d{All~ ^    -   Xi(Ai1-l)+X2, (3-62) 

where 

Xl := -(1 + Ai1)^ = -- + ©(r"1-') , X2 = ©(r-*-1) ; 
ra{r) r 

we obtain 

MrV) = l+^i1^) +Jl2exp{J™(xi(v,vA) + ^ dv^X2(s,vA)d 

xr-2exp|-y00(xiK^) + ^)^} , (3-63) 

with some continuous function /i1 : M —> R. In particular 

Ai1    =   l + O(r-2) + 0(r-Q) + ^0(r-alnr) . (3.64) 

Prom Equation (3.40) we obtain 

^    =    ^l (-A1
1A/ + 0(r-2) + 0(r-2-) + ©(r"")) , (3.65) 

or ra{r) 

which integrated in a manner similar to that for Equation (3.62) shows that 
there exists a continuous function /A1

 - M —t E such that 

AA
1
^,^)    =    fA ^  ) +Q(r-Q)+^0(r-Qlnr) + O(r-1-^) 

r 
(3.66) 

=   O(r-1) + tf?Q(r-alnr) + 0(r-a)> (3.67) 

with any 6 satisfying 

d <mm(l,2a-l) . (3.68) 
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It is easily seen now that the r~2 Inr terms which could potentially be present 
in Equation (3.64) cannot occur: clearly they are only relevant for a = 2; in 
that last case it immediately follows from Equations (3.44) and (3.66) that 
no such terms are allowed. It follows that 

Ai1    =   i + o{r-2) + 0(r-a) . (3.69) 

Repeating the argument after Equation (3.55) one is led to 

^    =    i: + 0(r-a) + O(r-mi) + O(r-2), (3.70) 
or r 

r   =   e^AV + 0(r1-a) + O(r1-mi) + O(r-1); (3.71) 

(3.71) has been obtained from (3.70) by calculating dx/dx and integrating 
the resulting equation, compare Equations (3.57)-(3.60). Equations (3.40) 
and (3.71) yield 

^AA 
B 

dr 
=   o(r) [Y/^Ak^B^k1 + 0(r-a) 

=   a(r)\TtS>eAcAiBAc1 + 0(r-a)\ 

=   0(r-a-l) + 6^0(r-a-l\nr) + O{r'3) , 

and by integration one finds that there exists a continuous matrix valued 
function R = (RA

B
) : M ->• 0(n - 1) such that 

AA
B(r, vc) = RA

B
(V

C
) + 0(r-a) + 6?©(r"0 In2 r) + Oir'2) .       (3.72) 

Repeating the argument which led to Equation (3.55) and using (3.72) one 
finds now that there exists a continuous function fiA : M —>■ R such that 

.^^..B\    _    /i   (v   ) (-1   i n(^-mi) A/(r,v
B)    =    Jl   v     ' (l + 0(r-mi)) 

r 
+0{r-a) + <5iO(r-ttInr) + ©(r"2"7) , (3.73) 

compare Equation (3.65); without loss of generality we have assumed that 
a 7^ 1. The hatted equivalent of (3.6), 

aA = a(vc)ABdvB , 

gives 

dvA = pAB&B = lpABeB 

r 

=   l$AB{{l + O(r-a))AcB0C + (l + O(r-a))A1
Be1) , 
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where PA
B denotes the matrix inverse to aAB, while the symbol PA

B is used 
to denote the the matrix inverse to aAB' This implies 

-fr     =   0(r-3), (3.74) 

§j£   =   rfAB^DBaDc + 0{r-°). (3.75) 

Integrating (3.74) in r one obtains that the limits 

V>A = lim vA 

r—>-oo 

exist and are continuous functions, with 

vA-^A = 0(r-2) . (3.76) 

Moreover, it follows from (3.75) that the limits as r tends to infinity of 
dvA/dvB exist and are continuous. Passing to the limit r -> oo in Equa- 
tion (3.75) one obtains 

hence 

y*aA - e-^RABaB , (3.77) 

A 

=   e-W£RABRAcaB®ac 

A 

A 

where we have used the fact that R = {RA
B

) is a rotation matrix. It follows 
that the map ^ = (^A) is a conformal local diffeomorphism from (M, h) to 
(M, h). We can thus use a deep result of Lelong-Ferrand [30] to conclude that 
\I/ is smooth, in particular so is I/J. Equation (3.77) shows then smoothness 
of RA

B- Further 

=   (1 + 0(r-a)) Y, ^BAUr) + (1 + 0(r-a))A//1(f) 
B 

-   O(l) + O(r1-Q), (3.78) 

hence 

dSi       1 ^  =O(l) + 0(r1-a). (3.79) 
dvA      r dvA 
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This, together with Equations (3.74)-(3.76), establishes point 1 for 0 < a < 
1. 

If a > 1, a closer inspection of the 0(1) terms in Equation (3.79), making 
use of Equation (3.73), shows that the limits lim^oo dx/dvA exist, and are 
continuous functions of the IJ^'S. NOW, in the current range of a's it is easy 
to show that the function -0 in (3.60) is continuously differentiable without 
invoking the Lelong-Ferrand theorem, as follows: Let </> be the function 
appearing at the right-hand-side of Equation (3.57), from (3.59) and from 
what has been said with a little work one finds 

dcf) 
dvA = 0{e^-^x) + 0(e-x) ; 

the differentiability of I/J follows now from its definition (3.60) and from 
Lebesgue's dominated theorem on differentiability of integrals with param- 
eters. The last estimate together with Equation (3.60) also show that 

and point 1 is established. 

To establish point 2, suppose that \I/ is the identity and that ip = 0. The 
calculation in Equation (3.78) shows that 

0 = lim —j = lim TTTT = lim raBAeB{r) = lim aB
A^B

1
 , 

r—>oo OV r—>oo r OV r—too r-^oo 

hence the function JA
1
 appearing in Equation (3.67) vanishes. The identity 

AIW + J^AB^AB^O (3.81) 
B 

shows that the function fiA from Equation (3.73) vanishes as well. If 1 < 
a < 2 we thus obtain 

Aj = Si + 0(r-Q) . (3.82) 

For a > 2 a closer inspection of Equation (3.42) is needed: 

dr rra(r) \^ J 

=   -^(-A/V + Otr-")) , (3.83) 
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where we have used Equation (3.81). Integrating this equation in a way 
somewhat similar to Equation (3.62) shows that 

A/(r,^) = 0(r-a) + ^0(r-alnr) . (3.84) 

If a = 2, suppose for the moment that there is no Inr term in (3.84); it 
then follows from Equations (3.69) and (3.81) that Equation (3.82) holds. 
On the other hand, for a > 2 Equation (3.44) forces the function /i1 from 
Equation (3.63) to vanish, which in turn implies that Equation (3.82) holds 
again. The formula inverse to Equation (3.34) reads 

f^Y^Mfi, (3-85) 
i 

in particular 

/i(r) = Ai7i(r) + X;A^1/^)i 
A 

which implies 

^ = ^(l + 0(r-a))+0(r-a). (3.86) 
or      ayr) v 

Equation (3.4) together with the identities 

ra^ = ra(r)--ra(r) + 1 = 1 + 0(r-rai-i)ffr 

a(r)     ra(r)      r    ra(r) 
a(f)     fa(f)      r    ra(r) 

shows that Equation (3.86) can be rewritten as 

d8r 

(3.87) 

(l + y) = 1 + (i + 0{r-m^l)\ Sr .(3.88) 

a    =X3*r + X4, (3-89) 

with 

X3 = - + 0(r-mi-1),        X4 = 0(r-a). 
r 

Hence, for r2 > r we have 

Passing with r2 to infinity and using the fact that 6r = o(r) shows that 

=   ©(r1""). (3.90) 
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From Equation (3.86) we obtain 

^ = 0(r-a) . (3.91) 

Equation (3.85) implies 

ej    =    (^ + 0(r-Q))/fe 

i 

=   ei + ^0(r-a)ei. (3.92) 

It follows that 

ej(r)   =   dfr + Oir1-01) 

=   ejM + Gir1-"), (3.93) 

ejiv*)   =   ejiv^ + Qir-1-*). (3.94) 

In particular 

dvA 

dr 
= a(r)ei(t)A) = 0(r-2-a)     =>     vA-vA = ©(r"1"0) . (3.95) 

Equations (3.90) and (3.95) allow us to rewrite Equation (3.94) as 

ej(v
A)   =   ejiv^ + Qir-1-"). (3.96) 

Equations (3.17)-(3.18) are thus established. A straightforward analysis of 
the equations 

eh {fj(vA))    =   ek(TAijMvAyj  , 

leads to Equation (3.21), and the theorem is established for a / 2, or for 
a = 2 provided that no log terms are present in (3.84). 

Let us return to the case a = 2; then (3.82) holds with any a < 2 and 
therefore the calculations that follow remain valid with any a < 2. Further 
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(3.82) holds with i = j = 1 and a = 2 by Equation (3.69). Equations (3.37) 
and (3.87) give then 

^i^ = 0(r-2)     =*     AAi = 0{r-*), 

so that no log terms can occur in A^1. Equation (3.81) implies then 

A/ = 0(r-2) , 

and (3.37) establishes (3.82) with a = 2, and the theorem follows. □ 

In the next section we shall need the following: 

Corollary 3.5. Let \I/(r, vA) = (r(r^vA),vB(r^vA)) be an isometry of the 
background metric b: 

y*{a2{r)dr2+r2h) = a2{r)dr2 + r2h , h = hAB(vC)dvAdvB . 

If there exists a > 1 such that the physical metric g satisfies 

gid, ej) - ^ = 0(r-Q) ,    eM^Bj)) = 0(r-a) , (3.97) 

where ei, i = 1,... , n i5 ^/ie wst/a/ ON frame for the metric b as in (2.7), 
then 

g(eu ej) - S{ = 0(r-«) ,     ek{g(ei, e,)) = 0(f-°) , (3.98) 

where ei is the corresponding hatted frame. 

Proof. Applying point 1. of Theorem 3.3 to g = b we obtain that 

f = e^r + 0(r1-^) , (3.99) 

with (3 = min(mi,2).  Since ^ is an isometry we have e* = A^'e7' for some 
rotation matrix A^, which gives 

c« = ((/ - bWJi) = AJAJig - b)(ek,ee) = 0(r-a) = 0(r-a) . 

Further, 

erm = er (AJAJe*1) , 

and — since e^Afc-7) =0(1) by (3.37) — the result easily follows. □ 
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4    Global charges 

Let us give here a general prescription how to assign global geometric invari- 
ants to hypersurfaces S in the class of space-times with metrics asymptotic 
to backgrounds (2.6): consider such a background metric b and consider a 
hypersurface S given by the equation {t = 0} in the coordinate system of 
(2.6). Let /C denote the set of all Killing vector fields of 6; the hypersurface S 
singles out two subsets of /C: a) the set /C^x of those Killing vector fields of 
b which are normal to <S, and the set Ks\\ of all ^-Killing vector fields which 
are tangent to S. Consider any metric g for which the fall-off hypotheses of 
Theorem 2.1 are met, with X E /C^x, or with X G /C^u, or perhaps with all 
X E /C. (In that theorem we have assumed that b satisfies Equation (1.2), 
but it would be sufficient that (1.2) holds only up to terms which decay 
sufficiently fast when r tends to infinity, the same for g.) Let Iso^(<S, b) be 
the group of all time-orientation preserving isometries of b which leave S 
invariant.12 We shall suppose further that the following condition holds: 

for every orientation-preserving conformal isometry ^ of (M, h) there 

exists R* > 0 and a b-isometric map $ : [i?*, oo) x M -¥ [R, oo) x M, 

such that lim^oo $(r, •) = *(•) . (4.1) 

It follows from [6, Vol. II,Theorem 18.10.4] and from what is said in Ap- 
pendix B.l that this condition holds for the (n + 1)-dimensional anti-de 
Sitter metrics, n > 2. Further, the above condition obviously holds for those 
metrics for which every conformal isometry of (M, h) is an isometry, as is 
the case for the (M, /i)'s considered in Appendix B.2: the desired extension 
$ is 

$(r,vA) = (r,tf(vA)). 

In fact, it is shown in [13] that condition (4.1) always holds when a(r) = 
l/Vr2 + k regardless of the metric h. 

Let C denote the collection of positively oriented coordinate systems c = 
(0, (r, vA)), where 0 is the domain of definition of the collection of functions 
(r, v^, with the associated background metrics and orthonormal tetrads, 
for which Equations (2.4), (2.19) and (2.20) hold. For each such coordinate 
system c we can calculate the set of integrals (1.3), where X runs over JCS±, 
or over /C^i, or over /C, whichever appropriate. By Theorem 3.3 every two 
coordinate system Ci, C2 in C differ by a coordinate transformation, say T, the 
M-part of which asymptotes to an orientation preserving conformal isometry 

12Some further invariants can sometimes be obtained by considering the connected com- 
ponent of the identity of Isot(5,6), but this seems to require a case by case analysis, so 
that no general discussion will be given here. 
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ty : M -> M. By the hypothesis (4.1) ^ can be extended to an isometry $ 
of b which leaves S invariant. Writing T as 

T = (To$-1)o$ 

we can decompose T into an isometry of b and a map T o $~1 which asymp- 
totes to the identity. By Corollary 3.5 the metric <$>*g satisfies the hypotheses 
of Theorem 3.3, in the new coordinates C3 as made precise by that Corol- 
lary, so that the conclusions of Theorem 3.3 apply to T o $_1. Let b be the 
background associated with the first coordinate system ci, and let b be that 
associated with C2; since $ is an isometry, the background metric associ- 
ated with C3 coincides with that associated with ci. Now, by Theorem 2.3, 
the integrals (1.3) are invariant under the change of background which is 
associated to T o $~1: 

m{S,g,b,X)=m(S,g,b,X), (4.2) 

where the 6-Killing vector X is associated to the 6-Killing vector field X as 
described in the statement of Theorem 2.3. On the other hand, Lemma 2.4 
shows that the isometry $ reshuffles the integrals associated with different 
Killing vectors, 

miSi&gAiQJ^X) =m(S,g,b,X) , (4.3) 

according to the action of Iso^(5, b) by push-forward on /C, or /C^x, or ICS\\. 
(We note that since $ is an 6-isometry preserving «S, <&* preserves the field of 
6-unit normals to <S, hence the space 1CS± of those Killing vector fields which 
are normal to S. Similarly $ preserves the space ICS\\ of Killing vector fields 
tangent to S.) Equations (4.2)-(4.3) show that any invariant of the action 
of Iso^(5, b) on /C, or on JCS±^ or on ICS\\, gives a geometric invariant which 
can be associated to 5, independently of the choice the coordinate systems 
inC. 

When b is the (n + l)-dimensional anti-de Sitter metric, the relevant 
invariants based on Killing vector fields in /C^x have already been discussed 
in detail in the introduction, Section 1. Consider the remaining Killing 
vector fields L^)^) € £511? as given by Equation (B.6). Equation (B.9) 
shows that under the action of Iso^(5, b) — 0^(1,n), the orthochronous 
(n + l)-dimensional Lorentz group, the integrals 

Q(/x)(i/) ^^OSjflS&j^Xi/)) 

transform as the components of a two-covariant antisymmetric tensor. One 
then obtains a geometric invariant of S by calculating 

Q = Q^AaX/^^V1^ (4-4) 
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(for conventions see Appendix B.l). In dimension 3 + 1 another independent 
geometric invariant is obtained from 

Q* = QWiu)Q{am^){0l){um ■ (4.5) 

In higher dimensions further invariants are obtained by calculating tr(P2fc), 
2 < 2k < (n + 1), where P(a)(/?) = 7?(a)(/x)<2(M)(/3). (In this notation Q given 
by Equation (4.4) equals tr(P2).) When n + 1 is even one also has obvious 
generalisations of (4.5). 

Consider, next, a (compact) strictly negatively curved (M, /i), as consid- 
ered in Appendix (B.2). In that case all Killing vector fields are in /C^, 
the action of Iso^(5,6) on 1CS±_ is trivial, and all the geometric invariants 
of S given by (1.3) are provided by the mass integrals considered in the 
Introduction. 

Let, finally, (M,h) be a flat (n — l)-dimensional torus T71, n > 2; as 
discussed in Appendix (B.2), all conformal isometrics of (M, h) are isometries 
and the action of Iso^(<S, b) on /C is trivial. It follows that in addition to the 
mass we have n — 1 independent invariants 

mA(S, g) == ra(<S, g, 6, SA) 

associated with the Killing vectors SA of (M,h)\ here the c^'s have been 
chosen so that they are tangent to the 51 factors of T^ = Sl x • • • x Sl, 
and normalized to have unit length; such vector fields can loosely be thought 
of as generating "rotations" of the torus Tn into itself, giving the ra^'s an 
angular-momentum type character. 

A    The phase space and the Hamiltonians 

In [10] the starting point of the analysis is the Hilbert Lagrangian for vacuum 
Einstein gravity, 

With our signature (—I h) one needs to repeat the analysis in [10] with 
C replaced by 

and without making the assumption n + 1 = 4 done there; we follow the 
presentation in [15]: Consider the Ricci tensor, 

Riiv = da [rj^ — tf^rj^ — [r^r^ - r^r^j , (A.i) 
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where the F's are the Christoffel symbols of g.  Contracting R^ with the 
contravariant density of metric, 

Q r^-Ly/^tetHfr, 
16n 

(A.2) 

one obtains the following expression for the Hilbert Lagrangian density: 

1 
L   = 

IGTT 
V-detgR = g^R, liv 

=    da r (r^ - %r^)] + vT [Vlv - r^rSa] •   (A.3) 

Here we have used the metricity condition of F, which is equivalent to the 
following identity: 

Q^a := dasr = STT^ - gTKa - iTT^ ■ (A.4) 

Suppose now, that B^n is another symmetric connection in M, which will 
o 

be used as a background (or reference) connection. Denote by R^ its Ricci 
tensor. From the metricity condition (A.4) we similarly obtain 

STK   =   dal^fa-SfrBZ^-griBS^-B^B*,] 

It is useful to introduce the tensor field 

(A.5) 

(A.6) 

Once the reference connection B" is given, the tensor jp"  encodes the entire 
'/JLV 

information about the connection F^: 

pa    _  pa        „a     ,       za ^K 

n 

(recall that the space-time dimension is n + 1). Subtracting Equation (A.5) 
from (A.3), and using the definition of pJJ^, we arrive at the equation 

where 

n/xi/ 

S'-iV - ^    f^ A = -da {^P«u) + L , 

(r^/x "" ^cffj) O^aiy - Bav) ~ (^ - Bpv) {^aa " Baa) + B^ 

y/- det g^ 

STT 
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This result may be used as follows: the quantity L differs by a total di- 
vergence from the gravitational Lagrangian, and hence the associated varia- 
tional principle leads to the same equations of motion. Further, the metricity 
condition (A.4) enables us to rewrite L in terms of the first derivatives of 
g^: indeed, replacing in (A.4) the partial derivatives g^a by the covariant 
derivatives fl^a, calculated with respect to the background connection £?, 

g^a := gT (K* - K<r) ' iT (^ - B^) - fT (I*, - 2%,) ,      (A.7) 

we may calculate p^ in terms of the latter derivatives. The final result is: 

\ 1 \™       1        \^       1 

1      _ 
+Tf TTdXa9^9aP3ap.a , (A.8) 

where by g^ we denote the matrix inverse to g^; we assume that n > 2. 
Further, 

We have 

dL _  di  _ di grg7 _ A 

dg^x~ dg^x~ dT^dg^.   "P^ = PL, (A.9) 
;A 

with the last equality being obtained by tedious but otherwise straightfor- 
ward algebra. It follows that the tensor p^ is the momentum canonically 
conjugate to the contravariant tensor density g^; prescribing this last ob- 
ject is of course equivalent to prescribing the metric. Alternatively, one can 
calculate 

r            *rt      -pi/   „Aa rtAa_     ^     -pis   „ap 
L   -   -gmB  -xQ  ;i/ - |0    8<T(iQpv&  ;AS y

;a 

+^Aa0^/ -AM^a + IT K - V   ^^A .    (A.10) 

and check directly that 

dL   =P". (A.11) 
dgT. 

pv      ~ rfll/ 

Given a symmetric background connection B on M, we take L given by 
Equation (A. 10) as the Lagrangian for the theory. The canonical momentum 
Ppj, is defined by Equation (A.8) or, equivalently, by Equation (A.11). If S 
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is any piecewise smooth hypersurface in M, we define the space-time phase 
bundle over S as the collection of the (p^jfl^J's over S. If (^p^, tfafla^), 
a = 1,2, are two sections over <S of the bundle of vertical vectors tangent to 
the space-time phase bundle, following [27] we set 

QsWip^, 5ig^), (S2P^, SiS^)) - / (SiP^phg^ - htiphtf") dS^, 
J o 

(A.12) 

with the fields {Sip^^Sig01^) and (^2P^5^2fla^) such that the integrals con- 
verge. Here dS^ is defined as 

9 ]dx0 A'-A dxn , (A.13) 
dx^ 

where J denotes contraction. This can be loosely thought of as being the 
"symplectic" form on the gravitational phase space; however we will avoid 
this terminology since the definition of a symplectic form involves non- 
degeneracy conditions, which are quite subtle in an infinite dimensional con- 
text, and which we do not want to address. 

To be more specific, let S be a hypersurface which is the union of a 
compact set with an asymptotic region <Sext « [i?o,oo) x M parameterized 
by (r, vA) as in the body of this paper. Consider a background metric b of 
the form (1.1) defined on SQXI, with its associated tetrad ea; we define the 
phase space Vb as the space of those smooth13 sections (pj^fl0^) along S of 
the space-time phase bundle which satisfy the following conditions: 

Cl. First, we only allow those sections of the space-time phase bundle 
which arise from solutions of the vacuum Einstein equations with cos- 
mological constant A — in particular the general relativistic constraint 
equations with cosmological constant A have to be satisfied by the fields 

C2. Next, the ea-tetrad components of g are required to be bounded on 

13The condition of smoothness of the relevant fields is certainly not needed, and should 
be relaxed if an attempt is made to obtain a full symplectic description of the situation at 
hand. 
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Sext. Moreover, we impose the integral condition 

/. 
r    E I W-ebC\2 + E ^^     dVb<™, (A.14) 

5ext      \a,b,c d,e ) 

where eab are the ea-tetrad components of g — b. In (A.14) dfi^ is, 
as before, the measure arising from the metric induced on S by the 
background metric 6; in local coordinates such that <Sext = {t = 0} we 
have dfib = yydetbijdrdn~lv, with the indices i, j running from 1 to n. 

C3. Further, the fall-off conditions 

eab = o(r-n/2) ,    ec(e
ab) = o(r-n/2) . (A.15) 

are assumed to hold on <Sext- 

C4. Finally, we shall assume that the following "volume normalization con- 
dition" is satisfied: 

f     r\bcdecd\ dnh<oo. (A.16) 
^ext 

(Recall that when M is not parallelizable, then conditions (A.14), (A.15), 
e£c., should be understood as the requirement of existence of a covering 
of M by a finite number of open sets Oi together with frames defined on 
[J?o,oo) x Oi satisfying the relevant conditions.) 

Whenever we consider variations {Sp^, ^0a^) of the fields in 7^, we will 
require that those variations satisfy the same decay conditions as the fields 
inn- 

From now on we shall assume that 3% is the Levi-Civita connection 
of the background metric 6. A condition equivalent to (A.14), and slightly 
more convenient to work with, is 

/. 
r    E M^)!2 + E ^^     ^ < oo . (A.17) 

^ext      \a,b,c d,e ) 

This follows immediately from Equations (3.5) and (3.7), which show that 
o 

the V-connection coefficients are bounded in the frame ea.  It follows that 
the fall-off conditions (2.9)-(2.10) will ensure that C2-C4 hold. 
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Let us show that Equation (A. 14) guarantees that the integral defining 
Q,S converges. In order to see that, consider the identity: 

=   -9^(Ka-BZa)-!r*Wa-B£a). 

The usual cyclic permutations calculation allows one to express F^L — Bo 
o 

as a linear combination of the Vae^'s. It then follows from Equation (A.6) 
that the tetrad coefficients p£c of p^   are, on <Sext? linear combinations with 

o 
bounded coefficients of the Vae

DC,s. In local coordinates on <Sext we have 

y | det bpvl ~ ry/detb^ , 

hence 

/     ISp^WSsfldrtT^vKC   ^    f     r\ Wc5ede\ {Se^d^ < oo . 

Here the coordinate x0 = t has been chosen so that Sext = {t — 0}. Thus, 
£1$ is well defined on Vb, as desired. 

Recall, now, that Sis coincides up to boundary terms with the more 
familiar "ADM symplectic form" [25,26]: one sets 

Pkl   :=    Vfetg^i'^Ki^gM-K"1), (A.18) 

where KM is the extrinsic curvature of 5, 

Kkl := -^n^' (A-19) V\9tt\ 

with 3gkl — the three-dimensional inverse of the induced metric gu on 5; 
the indices on Kkl have been raised using 3gkl. If we further choose the coor- 
dinate xs in such a way that dSext = {t = 0,rz;3 = 1}, then the "symplectic" 
form (A.12) can be rewritten as [25,26] 

fi5((*iP^, Sig^), (S2P^, S2^)) = T^JS faguSzP"1 - hguSil*1) <Px 

+ 
IGTT 

where 

IL^2^^-'2^1^^)""^' (A-20) 

t3   tk 
iV^l/V^V*,    Nk = gtk,    NS = {g

zk-g-l-)Nk. 
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Let us show that fis actually coincides with the ADM "symplectic form" on 
Vb- It clearly follows from (A.14) (with eab replaced by 5eab) that the volume 
integral there converges as before; it remains to show that the boundary 
integral vanishes. We have 

,(j£*«)    =   «(V|det^| 

-s f£t WM- bu 
detb^ I V ' ~" ^ 

=   o(r-n/2)0(rn-1) = o^"/2-1) 

One easily checks the identity 

r3       /o(r) iVJ 

vw 
where /o is the future directed ^-unit-normal to S. We have 

gu=g(dt,dt)    =    (vab + eab)ea(t)eb(t) 

=    (»j00 + e
00)(eo(*))2 

=    fo00 + e00)|&tt|, 

which gives 
1      = 0(r) , 

Further, 
/o(r) = fobeb(r) = tfe^r) = o(r-"/2+1) , 

'5/o(r) = ^/o1
ei(r) = 0(r-"/2+1), 

where ea is a 6-orthonormal frame as in Equation (2.7), and the vanishing 
of the boundary term in (A.20) readily follows. 

According to [28] (see also [15,27]) the Hamiltonian associated with a 
one parameter family of maps of the phase space into itself which arise from 
the flow of a vector field X on the space-time equals 

H(X, S) = j (P^XQ^ - X»L) dS^ (A.21) 
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provided that all the integrals involved are well defined, and that the boundary 
integral in the variational formula 

-8H   =    f [£xp\uhilv - «W>V) dSx 
J s 

+ f   X^apSg^dS^ (A.22) 
Jos 

vanishes. In the case when B is the metric connection of a given background 
metric 6^, and when X is a Killing vector field of fy^, the identification 

m{S,g,b,X)    =   H(X,S), (A.23) 

together with the calculations in [10] leads to Equations (1.3)-(1.5).  More 
precisely, let ElfX be given by the formula [10] 

EvX   =        2ldet^]    g0Je2g^g^).KXe 
IGny/ldetgpal 

+ ±-^\detgpcr\ 9^sfxe;a . (AM) 

e   =    ^Idetgpal/^/ldetb^l. (A.25) 

It can be checked that all the formulae of [10, Appendix B] are dimension 
independent, and lead to the identity 

Ex := p^£X9afi - XXL = E'V + TX
KX

K , (A.26) 

where the matter energy-momentum tensor has been defined in (2.2). Now, 
when b is the anti de Sitter metric, the integral of ExdS\ over large "balls" 
BR := {r < R} within 5 would diverge if we tried to pass with the radius 
of those balls to infinity because we have 

Ex 

g=b 
= -(R-2A)Xx/167r , 

o o 
with R — the Ricci scalar of the background metric 6, and R — 2A = 
4A/(n — 1) in an (n + l)-dimensional space-time. We therefore add to Ex a 
^-independent term which will cancel this divergence: indeed, such terms can 
be freely added to the Hamiltonian because they do not affect the variational 
formula that defines a Hamiltonian. From an energy point of view such an 
addition corresponds to a choice of the zero point of the energy. We thus set 

^p/5  ._ gap _ fiGLp 

9=b 
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Prom the definition of Ex and from Equation (A.26) one easily finds 

IGnVpU**    =    (^/\feti\gab - ^/\fetb\bab) khX? 

+2A (Vldet&l - y/\detg\\ Xp 

+ (T K-T\)X" 

+ ^d^ (QapXP + Qap1 fyxA ,      (A.27) 

where Qap is a quadratic form in ea(e
6c), and Qap1 is bilinear in ea(e

bc) 

h oA 

and e   , both with bounded coefficients.   Further, T    K is defined as in 
Equation (2.2) with g replaced by b. 

Prom now on we assume that both g and b are Einstein, and we only 
consider vector fields X which are 6-Killing vector fields and satisfy 

\X\ + | VX\ < Cr (A.28) 

for some constant C; this holds for all the backgrounds considered in Ap- 
pendix B, in particular for the generalized Kottler metrics (1.10). Theo- 
rem 2.1 then shows that the integral defining H converges for fields in Vb• 

Suppose, further, that the 6-Killing vector field X has the property that 
the associated variations of the fields are compatible with the boundary con- 
ditions imposed on fields in Vb- This means in particular that we must have 

JrJ2\£x (vae
6c) |2 dfjib < oo . (A.29) 

Clearly the volume integral in the variational formula (A.22) converges under 
(A.29) together with the remaining conditions set forth above. Further, the 
boundary integral there vanishes under (A. 15), so that Equation (A.21) does 
indeed provide the required Hamiltonian on Vb- 

For Killing vectors satisfying (A.28) Equation (A.29) will hold if 

/ r3 E I (^ ^e6C) I' d^<oo, (AM) 
a,b,c,d 

but we emphasize that the weaker condition (A.29) suffices. 
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B    Isometries   and   Killing   vectors   of the   back- 
ground 

B.l     (n + l)-dimensional anti-de Sitter metrics 

For n > 2 consider the (n + l)-dimensional anti-de Sitter space-time (M, 6), 
thus b is given by (1.8) with h — the unit round metric on the (n — 1)- 
dimensional sphere (n_1)5. As elsewhere we set S = {t = 0}. When M is the 
two-dimensional sphere, the Killing vectors of b are given in [21]. Whatever 
the dimension, the 6-Killing vector fields are easily found by thinking of b as 
the metric induced on the covering space of the hyperboloid 

rnamv{a¥b) = -e2 (B.i) 

in the (n + 2)-dimensional manifold y with the metric14 

V(amdy^Wb) - -(<*v(0))2 + E (dy®)2 - (dy(n+1))2 • (B.2) 
(0=(i) 

Throughout this section the indices (a), (6), etc., run from (0) to (n + 1). 
The hyperboloid can be locally parameterized by coordinates i, xl implicitly 
defined by the equations15 

j/W = £ cos{t/£)y/1 + r2/£2 , (B.3) 

y(n+1) - I sm{t/£) y/l + r2/^2 , (B.4) 

yW - x1 , (B.5) 

with r2 = YA=I(
X%

)
2

I where x1 — rnl', and n1 G ^n~x^S can eventually be 
expressed in terms of coordinates on the sphere ^n~x^S. For example, for 
n — 3 we can use xx — rsin(0) cos((/?), a;2 = rsin(0) sin((^), rz3 = rcos(0), 
with 0, </? — the usual spherical coordinates. It is also convenient to represent 

l^y can be identified with the universal covering of the space obtained by removing 
the set 2/(0) = 2/(n+1) = 0 from IRn+2; y then inherits the local coordinates 2/(a) used in 
Equation (B.2). However, in order to understand the geometry of M in a neighbourhood 
of <S it is sufficient — and most convenient — to think of y as of Rn+2. 

15 The spherical coordinates associated to the "cartesian" coordinates x1 give the form 
(1.8) of the metric 6. 
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the hypersurface S C M given by S = {t — 0} as {r]{a)(b)y^y^ = -£2} H 
|y(n+i) = Q^CO) > 0} c J^. We set 

L(a)(b) = Via) ^py - y(b) g^ , (B.6) 

where y^ = rj^^y^. The i(a)(6)'s are Killing vector fields of CV,77(a)(6))- 
Further they are tangent to the hyperboloid {n^Q^V^V^ — ~^2} and 
hence define, by restriction, Killing vector fields of the hyperboloid with the 
induced metric. In fact they span the space of all the Killing vectors of 
b because there is the right maximal number of them. Prom the coordi- 
nate transformation (B.3)-(B.5) one can compute the corresponding Killing 
vectors of anti de Sitter space-time in the coordinates {£, x1}, obtaining 

£(n+l)(0) = Lfo , 

Let JCS± be the set of Killing vector fields of b which are orthogonal to 5; 
from the expressions above it is not difficult to check that a vector basis for 
]CS± is given by g^) = i(n+i)(M)|t=o, where (/i) runs from (0) to (n). 

Proposition B.l. Let <$> : M -> M be an isometry ofb such that <f>(S) = S. 
Then there exists a Lorentz transformation matrix hS"'^ such that the basis 
vectors of ICS± satisfy 

**fl(Ai)=A(l/)(rt8(l/). 

Remark: We note that the property ^(/C^J.) = JCS± follows from the fact 
that $ preserves 5, which implies that $ maps the field of unit normals to 
S into itself. 

Proof As is well known, for every isometry $ : M -> M of b there exists a 
diffeomorphism l> : y —> 3^, isometry of V(a)(b)i such that $ is the restriction 
of $ to the hyperboloid (B.l). In coordinates we have 

$(a)(y)=A(a)(6)y(fe), (B.7) 
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where A(a) ^ is a matrix satisfying 

A(c)(a)A(d)(6)7?(c)(d) - T/(fl)(6) . (B.8) 

The hypersurface S C y is given by r](a)(b)y^y^ — — 1 and y(n+1) = 0 
together with the condition j/0) > 0, so that the condition $(<S) =5 implies 

A(aV) - A(/i)
M     0 

0        ±1 

where we split the indices as (a) = (/i), (n + 1). Equation (B.8) shows that 
A^)^) is a n + 1-dimensional Lorentz transformation, (A^^)) G 0(1,n). 

Equations (B.7) and (B.6) imply that under push-forward by $ the Killing 
vectors of 77(a)(6) transform as 

**£(a)(6) = A(c)(a)A(d)(6)L(c)(d) 

in particular, the basis vectors of K,s±_ transform as 

$*0(/i)     =    *^(»+l)(A.)|i(v(B+1))=0 

=   A(c)(„+1)A(<i)(/i)L(c)(d) ^+i)=o 

Replacing ^v\ll) by — A^^ if necessary, the result follows. □ 

Let /C511 be the space of &- Killing vectors spanned by the L^^'s, thus 
/C^n contains all the L(a)(&)'s which are not in /C^^. An identical calculation 
as in the proof above shows that under isometries of b preserving S we have 

*♦£(„)(„)    =   ^\PSp\v)L{(T){(>) . (B.9) 

It follows that the resulting representation of the Lorentz group on Ks\\ is 
equivalent to a representation on two-contravariant anti-symmetric tensors. 

B.2    /i's with a non-positive Ricci tensor 

We consider metrics (2.6), as in Section 2. In what follows we shall only 
consider (M,/i)'s with a non-positive Ricci curvature, with n > 3, the case 
n = 2 being covered by the previous section. We shall further assume that 
the scalar curvature Rh of h (the Ricci scalar) is a constant. We note that 
the vector fields 

X = X0n = -n = \dt,        A E R , (B.10) 
a 
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where n = eo is the field of future pointing unit normals to the hypersurfaces 
{t = const}, are Killing vector fields for the metric b whatever a = a(r). The 
non-vanishing connection coefficients, 

£jabc = ea(veceb), 

with respect to this frame are 

0A 1     cA 0i 0A -"■ aA        o o a (r) 
^   IB =  7~TdB — - & AB ,W   BC = -R   BC , ^100 = " ^010 = oT-T , ra{r) r az{r) 

(B.H) 

where the PA
BC are the Levi-Civita connection coefficients of h with respect 

to the frame aA. The AB components of the Killing equations read 

VAXB + VBXA + -^HABX
1
 = 0 , (B.12) 

a(r) 

where V is the covariant derivative operator associated with the metric /i, 
which shows that XBdB is a conformal Killing vector field on M. Unique- 
ness of solutions of the volume-normalized Yamabe equation in the case 
under consideration implies that conformal Killing vector fields of (M, h) 
are necessarily Killing vectors, hence 

The 00, 01 and 0A components of the Killing equations read 

eo(Xo)    -   0, (B.13) 

e1(Xo) + ^Xo    =   0, (B.14) 

eA(Xo) + eopCO    =   0. (B.15) 

Equation (B.13) shows that XQ is t-independent. 

Suppose, first, that the Ricci tensor of h is strictly negative. It is well 
known16 that in this case (M, h) has no non-trivial Killing vector fields so 
that XA = 0, and Equation (B.15) shows that XQ is ^-independent. Inte- 
grating (B.14) yields then the one parameter family of Killing vector fields 
(B.10), which shows that the algebra of all Killing vector fields of b is one- 
dimensional. 

16The Killing equations imply XBVCV
CXB = -RABX

A
X

B', where RAB is the Ricci 
tensor of /i; integration of this equation over M shows that XA is covariantly constant 
when RAB is non-positive, and vanishes when RAB is strictly negative. 
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Suppose, next, that (M, h) is an (n — l)-dimensional flat torus (T71-1,5). 
Then the XA's are covariantly constant16 vector fields on T71-1, which shows 
that XA = XA(t,r) in coordinates vA in which the metric S has constant 
entries. Integrating (B.15) over Tn_1 gives 

0= f      eA(Xo) = -eo(XA) Vol^-1) , 

hence XA = XA^). Equation (B.15) implies then that XQ is vA- 
independent, so that XQ = -Yo(r), from (B.14) we recover (B.10), and 1CS± 
is again one-dimensional, as claimed. We note that the 1A component of 
the Killing equation implies that the XAjs are in fact r-independent, which 
gives a complete description of the set of Killing vector fields occurring in 
this case. 

The above arguments extend to all manifolds with constant scalar cur- 
vature and non-positive Ricci curvature, as follows: suppose that (M, h) has 
non-trivial Killing vector fields. The 1A component of the Killing equations 
gives 

e1(XA)--XA = 0     =»     XA = XA(t,vA). 
ra 

Integration of Equation (B.14) gives 

X0 = ^ , (B.16) 
a(r) 

for some function A on M. Equation (B.10) inserted into (B.15) gives 

eA(X) = -a2(r)dtX
A , 

which is compatible with Equation (B.10) only if dtXA = 0, hence ^(A) = 0. 
Summarizing, we have proved 

Proposition B.2. If (M, h) has non-positive Ricci curvature and constant 
scalar curvature, then all Killing vector fields of the metric b given by Equa- 
tion (2.6) are of the form 

X = -n + XA(vB)dA,        AGM, 
a 

where XA(vB)dA is a Killing vector field of the metric h. 

C    Equality   of the  Hamiltonian   mass  with  the 
Abbott-Deser one 

In this appendix we consider a subset R x Egxt of a four dimensional space- 
time (M,g) defined by a coordinate system {xa}\ we identify Se^ with 
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the set {xa : x0 = 0}. The space coordinates (x1) on Ee^ will be written 
as (r, vA), with the range of r being [RQ^OO)^ and with the vA being local 
coordinates on some compact two dimensional manifold. Assume that there 
exists a frame {ea}^=o defined on Tiext^ which defines a background metric 
baP = 7]abe^e^ where r]ab = diag(-l, 1,1,1). In other words, the tetrad {ea} 
is orthonormal with respect to bap. Assume that in this frame the space-time 
metric g has the form 

9ab = Vab + Cab , 

where 
ea6-o(l/ra),        Ca(c6c) = o(l/ra), 

for some a > 0. The Abbott-Deser mass MAB associated with X is defined 
as [1] 

MAB = 1 Hm   f     VaPdSap, (C.l) 
2 R-+oo JdTiTi 

where 

with 

Va0{h) = -L 6 (K^^^X^ - K^X^ , (C.2) 

■fc-aPcrK _ ^a[K,jj-a}(3 _j_ jja[K^a](3 jjafi _ eap _ £e  7^"^ 

^ det bl HV] 

Note that K^*7*1 has the same symmetries as the Riemann tensor. Let UaP 
be the "Hamiltonian superpotential" defined by (1.4); assume that 

(\X\ + \VX\)b = Oir*) , (C.3) 

we then claim that 
IpP = V<*P + o{rP-2a) . 

In order to establish this, recall that 

det(gap)    -   det(6Q7[(r/, + 6^c^ + o(r-2a)]) 

=   det(6a7) det(57^ + e7^) , 

where e7^ = b^e^^ + o(r~2oL). A well known identity gives 

det(^) = det(6a/j) (1 + e7
7 + o{r-2a)) . 
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Let us write Ua/3 = Ua/?
7XT + Ua/3, where 

0*" := i Uldetg^l^S^ - b Vt-^ Jr,. . 

We have 
e2 = 1 + ea

a + 0(r-2a) , 

so that the first term above can be written as 

IT^   =    ±-b[(l + ea
a + o(r-2a)) 

(&"[«&/>]" _ F^efl* - e'Hft" + o(r-2Q))l    67a 

=   -^jfe^^iJ^ + iJ^ft^)    +o(r/3-2Q) 

so that 

Similarly, 

=    -L (^/idet^l ^[^^ - b b^b®^ XriK 

b_ 
Sir 

l + \e + o(r-2a) 

^[«bffl7 _ e«[«^]7 + o{r-2a)) - b^bflf] XTiK 

=    -£- H<a^"iXrtK + o(r/3-2Q) . 

Now, X1 is a Killing vector of b^, therefore 

Hx\Ph«YiXTiK   =   H^ba^Xb.K] 

^«^6«]7 _ H^b01^} XrtK 
1 
2 

=    ^KK^XTtK, 
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so, we have obtained 

IOTT 

The two terms together give 

=   ^ (Ka^.KXa - \ K^Xr^\ + 0(r^-2a) . 

As Ka^7K  has the same symmetries as the Riemann tensor,   we have 
#a[07K] = o, which implies that ± Ka^K = Ka^}^ and 

^    =    ^ (KaPaK.KXa-Ka^Xr^+o{rP-2a) 

=    VaP + o{rP-2a) . 

If 

0 - 2a < 0 , (C.4) 

we obtain equality of the Abbott-Deser mass with the Hamiltonian one; recall 
that /3 = n for the anti-de Sitter type metrics considered in the body of the 
paper, and Equation (C.4) reproduces the condition a > n/2, identical to 
that which arises in the proof of coordinate-invariance of the mass integral. 

Summarizing, we have proved: 

Proposition C.l. Suppose that Equations (C.2), (C.3) and (C.4) hold. 
Then the Hamiltonian mass coincides with the Abbott-Deser one; in par- 
ticular, either they are both undefined, or both diverge, or both converge to 
the same values. 
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