
©  2001 International Press 
Adv. Theor. Math. Phys. 5 (2001) 617-650 

Holography Principle and 

Arithmetic of Algebraic Curves 

Yuri I. Manin and Matilde Marcolli 

Max-Planck Institut fur Mathematik 
Bonn 

Germany 

manin@mpim-bonn.mpg.de, marcolli@mpim-bonn.mpg.de 

Abstract 

According to the holography principle (due to G. 't Hooft, L. Susskind, 
J. Maldacena, et al.), quantum gravity and string theory on certain 
manifolds with boundary can be studied in terms of a conformal field 
theory on the boundary. Only a few mathematically exact results cor- 
roborating this exciting program are known. In this paper we interpret 
from this perspective several constructions which arose initially in the 
arithmetic geometry of algebraic curves. We show that the relation 
between hyperbolic geometry and Arakelov geometry at arithmetic in- 
finity involves exactly the same geometric data as the Euclidean AdSs 
holography of black holes. Moreover, in the case of Euclidean AdS2 
holography, we present some results on bulk/boundary correspondence 
where the boundary is a non-commutative space. 

e-print archive:   http://xxx.laiil.gov/hep-th/0201036 
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1    Introduction 

1.1 Holography principle 

Consider a manifold Md+1 ("bulk space") with boundary Nd. The holog- 
raphy principle postulates the existence of strong ties between certain field 
theories on M and N respectively. For example, in the actively discussed 
Maldacena's conjecture ([Mai], [Wi], [GKP]), Md+1 is the anti de Sitter space 
AdS^+i (or AdS^+i x S'd+1), Nd its conformal boundary. On the boundary 
one considers the large N limit of a conformally invariant theory in d di- 
mensions, and on the bulk space supergravity and string theory (cf. e.g. 
[AhGuMOO], [GKP], [Mai], [Suss], ['tH], [Wi], [WiY]). 

The holography principle was originally suggested by 't Hooft in order 
to reconcile unitarity with gravitational collapse. In this case M is a black 
hole and N is the event horizon. Thus the bulk space should be imagined 
as (a part of) space-time. 

There are other models where the boundary can play the role of space- 
time (Plato's cave picture), with the bulk space involving an extra dimension 
(e. g. the renormalization group scale) and a Kaluza-Klein type reduction 
[AlGo], and "brane world scenarios" where one models our universe as a 
brane in higher dimensional space-time, with gravity confined to the brane. 

In this paper we consider first of all a class of Euclidean AdSs bulk spaces 
which are quotients of the real hyperbolic 3-space H3 by a Schottky group. 
The boundary (at infinity) of such a space is a compact oriented surface 
with conformal structure, which is the same as a compact complex algebraic 
curve. Such spaces are analytic continuations of known (generally rotating) 
Lorentzian signature black hole solutions, and they were recently studied 
from this perspective by K. Krasnov (cf. [Krl]-[Kr4].) 

Other results on the AdS/CFT correspondence for spacetimes that are 
global (orbifold) quotients were obtained in [MS], by relating the discrete 
group of isometrics to the density matrix of the boundary CFT. 

1.2 Arithmetic geometry at infinity 

Consider a projective algebraic curve X defined, say, over the field of rational 
numbers Q. It can be given by equations with integer coefficients which 
defines a scheme Xz, "arithmetical surface". X itself is the generic fiber of 
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the projection Xz —> SpecZ. Finite points of the "arithmetic curve" SpecZ 
are primes p, and the closed fibers of Xz at finite distance are the reductions 
Xzniodp. One can also consider infinitesimal neighborhoods of p and the 
respective fibers which are simply reductions of Xz modulo powers pn. The 
limit of such reductions as n -> oo can be thought of as a p-adic completion 
ofXz. 

A geometric analog of this picture is an algebraic surface fibered over 
an affine line (replacing SpecZ.) We can complete the affine line to the 
projective one by adding a point at infinity, and extend the fibered surface by 
adding a closed fiber at infinity. If we want to imitate this in the arithmetic 
case, we should add somehow "the arithmetic infinity" to Spec Z and enhance 
the geometry of X by appropriate structures. 

It was long known that the arithmetic infinity itself is represented by 
the embedding Q —> C, considering the complex absolute value on an equal 
footing with p-adic valuations. In his paper [Ar] S. Arakelov demonstrated 
that Hermitian geometry of XQ constitutes an analog of p-adic completions 
of Xz- In particular, Green's functions for appropriate metrics provide in- 
tersection indices of arithmetic curves at the infinite fiber. Arakelov's arith- 
metic geometry was since then tremendously developed and generalized to 
arbitrary dimensions. 

One aspect of p-adic geometry was, however, missing in Arakelov's the- 
ory of arithmetical infinity: namely, an analog of the closed fiber Xz modp 
and the related picture of reductions modulo powers of p approximating the 
p-adic limit. 

In Manin's paper [Man2] it was suggested that this missing structure can 
be modeled by choosing a Schottky uniformization of X(C) and treating this 
Riemann surface as the conformal boundary of the respective handlebody 
obtained by factoring out H3 with respect to the Schottky group. Comparing 
this structure with the p-adic case, one should keep in mind that only curves 
with maximally degenerate reduction (all components of genus zero) admit 
a p-adic Schottky uniformization (Mumford's theory). Thus we imagine 
"the reduction modulo arithmetic infinity" to be maximally degenerate: a 
viewpoint which is supported by other evidence as well. 

We see thus that the oo-adic geometry at arithmetic infinity, developed 
in [Man2], involves exactly the same geometric data bulk space/boundary 
as the Euclidean AdSs holography of black holes. Moreover, Arakelov's 
intersection indices are built from Green's functions, which form the basic 
building blocks for Polyakov measures as well as the correlation functions 
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of bosonic and fermionic field theories on X (see [ABMNV], [Manl], [Fay], 
[FeSo].) 

In the first part of this paper we demonstrate that the expressions for 
these Green functions in terms of the geodesic configurations in the handle- 
body given in [Man2] can be nicely interpreted in the spirit of the holography 
principle. 

A recent attempt to generalize [Man2] to higher dimensions is due to 
A. Werner ([We]). It would be interesting to discuss her construction as a 
case of holography. 

In a recent paper [DMMV] a very interesting holographic interpretation 
of a different group of arithmetical constructions was found, related to the 
Hardy-Ramanujan and Rademacher asymptotic series for partition numbers. 
Physically, the authors consider in detail the AdSs/CFT — 2 duality with a 
specific "matter" CFT. In their case the boundary is an elliptic curve (2- 
torus) and the CFT partition function is a special weak Jacobi form (the 
elliptic genus of the Hilbert scheme on K3). The authors show that the 
terms in the Poincare series expansion of this Jacobi form are in one-to-one 
correspondence with the possible 3-manifolds bounding the 2-torus. These 
manifolds are represented by the cosets SL (2, Z)/Z. This averaging over all 
bulk spaces having a common boundary seems to be an interesting novel 
phenomenon. 

1.3    Modular curves and non-commutative boundary 

The second part of this paper is dedicated to the holography in 1+1 dimen- 
sions which we recognize in the approach to the theory of modular curves 
developed, in particular, in [ManMar]. In this case H3 is replaced by the 
upper complex half-plane H2, and a Schottky group by a subgroup G of the 
modular group. The most interesting new feature is that the boundary of 
the quotient space considered in [ManMar] is a non-commutative space: it 
is the quotient G\P1(R) treated as a crossed product in the style of Connes. 
This might be of interest, because non-commutative boundaries of mod- 
uli spaces (e. g. that of instantons) play an increasingly important role in 
physics considerations. 

In particular, we argue that one reason why little is known on AdSi+i 
holography, unlike the much better understood case of AdS2+i, is that a 
treatment of holography for AdSi+i and its Euclidean counterpart H2 should 
take into account the presence of non-commutative geometry at the bound- 
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ary. 
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2    Handlebodies as holograms 

In this section we review the basic notions of the boundary and bulk geome- 
try and function theory in the context of Schottky uniformization. Then we 
state and interpret the main formulas of [Man2] in the light of the holography 
principle. 

2.1     Green's functions on Riemann surfaces 

Consider a compact non-singular complex Riemann surface X and a divisor 
A = Ylx mx(z) on it with support \A\. If we choose a positive real-analytic 
2-form d/i on X, we can define the Green function Q^^A = 9A as a real 
analytic function on on X \ \A\. It is uniquely determined by the following 
conditions. 

(i) Laplace equation: 

ddgA = m (deg{A) dfi - 8A) 

where 5A is the standard ^-current tp \-± J2x 'mx^p{^)' 

(ii) Singularities: if z is a local parameter in a neighborhood of re, then 
QA — rux log |^| is locally real analytic. 

(iii) Normalization: fx QAd^ — 0. 

Let now B = J2yny(y) be another divisor, |A|n|B| = 0. Put g^A.B) := 
Ylyny9^A(y)- This is a number, symmetric and biadditive in A, B. 

Generally, g^ depends on /i. However, if degA = degB = 0, gfi(A:B) 
depends only on A, B. Notice that, as a particular case of the general Kahler 
formalism, to choose d/i is the same as to choose a real analytic Rieman- 
nian metric on X compatible with the complex structure. This means that 
3^ (A, B) = g(A) B) are conformal invariants when both divisors are of degree 
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zero. If moreover A is the divisor of a meromorphic function WA, then 

g(A,B) =log H \wA(y)ry=Re [   ^ (1) 
2/€|J5| '75 

where 75 is a 1-chain with boundary B. This is directly applicable to 
divisors of degree zero on the Riemann sphere P1(C). 

This formula admits also a generalization to arbitrary A, B of degree 
zero on a Riemann surface of arbitrary genus. The logarithmic differential 
dwA/wA must be replaced by the differential of the third kind UJA with pure 
imaginary periods and residues mx at x. Then 

g(A,B)=Re   f   UJA. (2) 

If we drop the degree zero restriction, we can write an explicit formula for 
the basic Green's function g^^iy) via theta functions in the case when JJ, is 
the Arakelov metric constructed with the help of an orthonormal basis of the 
differentials of the first kind. For a characterization of Arakelov's metric in 
a physical context, see [ABMNV], pp. 520-521. 

2.1.1    Field theories on a Riemann surface X 

Green's functions appear in explicit formulas for correlators of various field 
theories, insertion formulas, and Polyakov string measure. In [ABMNV] they 
are used in order to establish the coincidence of certain correlators calculated 
for fermionic, resp. bosonic fields on X (bosonization phenomenon). See 
[Fay] for a thorough mathematical treatment. 

2.2    Green's functions and bulk geometry: genus zero case 

In this subsection X is the Riemann sphere P1(C). It is convenient to start 
with a coordinate-free description of all basic objects. 

Choose a two-dimensional complex vector space V and define X = Xy 
as the space of one-dimensional vector subspaces in V. Define the respective 
bulk space as a three-dimensional real manifold H3 = Hy whose points are 
classes [h] of hermitian metrics h on V modulo dilations: h = h! iff h = ph! 
for some p > 0. Clearly, PGL(V) acts on Hy and Xy. The stabilizer of any 
[h] is isomorphic to SU(2). Any point [h] defines a unique Kahler metric 
on Xy which is stabilized by the same subgroup as [h] and in which the 
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Figure 1: Configurations of geodesies 

diameter of Xy equals one. This metric, in turn, determines a volume form 
d/i = dfAty] on Xy- 

The bulk space Hy has a natural metric: the distance between [h] and [hf] 
is the logarithm of the quotient of volumes of unit balls for h and h', if one ball 
is contained in the other and their boundaries touch. In fact, Hy becomes 
the hyperbolic three-space of constant curvature —1. Its conformal infinity 
Xy can be invariantly described as the space of (classes of) unbounded ends 
of oriented geodesies. 

We will now give a bulk space interpretation of two basic Green's func- 
tions g((a) — (6), (c) — (d)) and g^z^w)^ where d/j, corresponds to a point 
u G Hy as explained above. To this end, introduce the following notation 
from [Man2]. If a, b G Hy U Xy, {a, b} denotes the geodesic joining a to b 
and oriented in this direction. For a geodesic 7 and a point a, a * 7 is the 
point on 7 at which 7 is intersected by the geodesic S passing through a and 
orthogonal to 7. In particular, the distance from a to 7 is the distance from 
a to a * 7. If two points p, q lie on an oriented geodesic 7, we denote by 
ordist (p, g), or else &y(p, g), the respective oriented distance. 

Lemma 1.   We have 

g((a) - (6), (c) - (d)) = -ordist (a * {c, d}, b * {c, d}), (3) 

el/2 

^(p^) = 10gcoshdist(.,{p,,})- (4) 

Figure 1 illustrates the configurations of geodesies involved. 

We invite the reader to compare these configurations to the Feynman 
diagrams in [Wi] illustrating propagation between boundary and/or interior 
points. 
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To check, say, (3), it is convenient to introduce the standard coordinates 
{z,y) identifying H with C x R+. Both sides of (3) are PGL(F)-invariant. 
Hence it suffices to consider the case when (a, 6, c, d) = (z, 1,0, oo) in P1(C). 
Then {c, d} — {0, oo} is the vertical coordinate semi-axis, and generally in 
(z, y) coordinates of H3 we have 

a*{c,d} = (0,|s|),    6*{Cjd} = (0,l), 

ordist ((0,|^|), (0,1)) =-log|z|. 

On the other hand, using the notation of (1), we obtain 

g{(a) - (6), (c) - (d)) = log |^=^| = log \z\. 

The middle term of this formula involves the classical cross-ratio of four 
points on a projective line, for which it is convenient to have a special nota- 
tion: 

(a, 6, c, d) := '      . (5) 
w{a)_{b)(d) 

It is interesting to notice that not only the absolute value, but the argu- 
ment of the cross-ratio (5) as well admits a bulk space interpretation: 

W(a)-(6)(C) , ,     .x (a. 

Here we denote by ^(a, 6) the oriented angle between the geodesies joining 
a * 7 to a and 6 * 7 to 6, which can be measured after the parallel translation 
to, say, a. For a proof of this and other details we refer to [Man2], Prop. 
2.2. 

This expression is relevant in at least two contexts. First, it shows how 
the characteristics of rotating black holes are encoded in the complex ge- 
ometry of the boundary (cf. (8) below for the genus 1 case). Second, it 
demonstrates that our formulas for the Green functions g(A, B) given below 
can be refined to provide the bulk space avatars of the complex analytic ex- 
pressions such that expg(A, B) is the modulus squared of such expression. 
This is the well known phenomenon of holomorphic factorization. 

We will now introduce a Schottky group F acting upon H3 U P1(C) 
and consider the respective quotient spaces. The boundary will become a 
complex Riemann surface -X"(C), whose genus equals to number of generators 
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of F, and the bulk space turns into a handlebody r\H3 "filling" this surface. 

The boundary/bulk expressions for degree zero Green's functions and 
related quantities will be obtained from (3) with the help of an appropriate 
averaging over F. The geodesic configuration involved in the right hand side 
of (3) will have to be supplemented by its F-shifts and then projected into 
the handlebody. After such a projection, however, an expression like a * 7 
will have to be replaced by an infinite sum over all geodesies starting, say, 
at a boundary point a and crossing 7 orthogonally. Interpreting distances 
between such points involved in (3) also becomes a trickier business: the 
geodesic along which we measure this distance has to be made explicit. 
We will provide the details for the genus one case in §2.3 below. After 
gaining some experience, we can restrict ourselves to working in the covering 
bulk space H3: it is well known that the geometry of non-simply connected 
spaces is best described in terms of the universal cover and its group of deck 
transformations. In §2.4 we explain this geometry for genus > 2 case. 

2.3    Genus 1 case and Euclidean BTZ black holes 

Bahados-Teitelboim-Zanelli black holes ([BTZ]) are asymptotically AdS 
space-times which are obtained by global identifications of AdS2+i by a 
discrete group of isometries T generated by a single loxodromic element. 

The group of isometries of AdS2+i is 50(2,2) as can be seen by consid- 
ering the hyperboloid model of anti de Sitter space — t2 —u2 + x2 + y2 = —1 
inR2'2. 

The non-rotating case (see [ABBHP], [Krl]) corresponds to the case 
where the group T lies in a diagonal 50(2,1) = PSX(2,R) in 50(2,2). 
In this case, there is a surface of time symmetry. This t = 0 slice is a 
two-dimensional Euclidean signature space with constant negative curva- 
ture, hence it has the geometry of the real hyperbolic plane H2. The fun- 
damental domain for the action of F on the t = 0 slice is given by a region 
in H2 bounded by two non-intersecting infinite geodesies, and the group 
F is generated by the element of PSX(2,R) that identifies the two non- 
intersecting geodesies in the boundary of the fundamental domain, creating 
a surface with the topology of Sl x R. The BTZ black hole is then ob- 
tained by evolving this t = 0 surface in the time direction in AcLS^+i? until 
it develops singularities at past and future infinity. The time evolution of 
the two geodesies in the boundary of the fundamental domain gives geodesic 
surfaces that are joined at the past and future singularities.  The geodesic 
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Figure 2: Fundamental domain and solid torus 

arc realizing the path of minimal length between the two non-intersecting 
geodesies is the event horizon of the BTZ black hole (see [ABBHP], [BTZ], 
[Krl] for further details). 

The Euclidean analog of the BTZ black hole is given by realizing the H2 

slice as a hyperplane in H3 and "evolving" it by continuing the geodesies in 
H2 to geodesic surfaces in H3. This produces a fundamental domain of the 
form illustrated in Figure 2. 

The group F = qz is a Schottky group of rank one in PSX(2, C), gener- 
ated by the choice of an element q G C*, \q\ < 1. It acts on H3 by 

i1/2       ..     . 
  (7) -1/2) (*>y) = (QZMV)- 0      q- 

The quotient Xq = H3/(gz) is a solid torus with a hyperbolic structure and 
with the Jacobi uniformized elliptic curve Xq(C) = C*/(qz) as its boundary 
at infinity. The fundamental domain depicted in Figure 2is|g|2<|/£|<l, 
M2<N2+y2<i. 

The physical meaning of q is clarified by the following expression: 

'27r(z|r_| — r+V 
exp ' (8) 

where the parameters r± depend on mass M and angular momentum J of 
the black hole, 

r± = \ (m± VM2£2 + Jj , 

and £ determines the cosmological constant A = —l/£2 and normalizes the 
metric as 

ds2 = ^(\dz\2+dy2). 
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This can be seen by writing the coordinates in the upper half space model 
of H3 in terms of Schwarzschild coordinates (r, r, (/>) with Euclidean time r, 

^|)1/2exP((^-^)+,(^+^ 

The transformation (6) can then be written as 

{z,y) ^ (e2^k-|-r-+)/^? e-^'+Vy). 

This was already observed in [BKSW] [MS]. For r_ ^ 0, that is, not purely 
real #, the quotient space Xq(C) represents a spinning black hole. We nor- 
malized our coordinates so that I = 1. 

2.3.1    Determinant of the Dirac operator and Green's function 

There are explicit formulas in terms of theta functions for the determinant 
of the Dirac operator twisted with a flat bundle on an elliptic curve. For a 
parameterized family of Dirac operators Dp, with P a Poincare line bundle, 
whose restriction to a fiber Xq over L 6 Pic0(Xq) is isomorphic to L, it is 
proved in [RS] that, up to a constant phase, we have 

oo 

detDp(q',u,v) = q^ JJ (l - qn-ve2™) (l - g^+«-ie"27r*u) ,      (9) 
71=1 

with B2(v) = v2 — v + 1/6 the second Bernoulli polynomial. It is shown in 
[AMV] that (9) is the operator product expansion of the path integral for 
fermions on the elliptic curve Xq. 

On the other hand, the Arakelov Green function on Xq is essentially the 
logarithm of the absolute value of this expression: 

y(^,l)-log(|g|B2(logl^log|^/2|l-^| f||l-gn^| \l-qnz-1\)      (10) 

(see [Man2], (4.6)). 

To interpret various terms of (10) via geodesic configurations, we use (3) 
and (5) for various choices of the cross-ratio, for example, |a;| = \(x, 1,0, oo)|, 
|1 — x\ = \(x:0,1,oo)|. More precisely, we introduce the following notation: 
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Figure 3: Geodesies and Green function 

• {0, oo} in H3 becomes the closed geodesic 70 in the solid torus Xq. Its 
length is l(j0) = -log|g| (cf. (6).) 

• Choose a point x on the elliptic curve Xq and denote by the same letter 
x its unique lift to C satisfying \q\ < \x\ < 1. In particular, 1 denotes both 
the number and the identity point of Xq. 

• Denote by x the point x * {0, 00} and also its image in 70. Similarly, 
denote by 1 = 1 * {0, 00} = (0,1) G H3 and the respective point in 70. 

Figure 3 depicts the relevant configurations: 

• Denote the image of {1,00} by 71. This is the geodesic starting at the 
boundary identity point and having 70 as its limit cycle at the other end. 
(As was explained in [Man2], this is one of the avatars of "reducing 1 modulo 
powers of arithmetic infinity".) Denote by 0 the point 0 * {1, 00}, and also 
its image in the solid torus. 

• Finally, put xn = gnx*{l,oo}, and denote its image in 71 by the same 
letter. Similarly, xn = qnx~l * {l,oo} (cf. Figure 4.) 

With this notation, we have: 

Proposition 1. Let g(u:v) be the basic Green function with respect to the 
invariant measure of volume 1.  Then g(u,v) = g{uv~l, 1); and 

^,i)-iih.)a(^) + 5]^7l(6,5n) + ^£7l(0,5n).      (11) 
n>0 n>l 

A contemplation will convince the reader that the meaning of the sum- 
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Figure 4: Geodesies and Green function 

mation parameter n in the last expression consists in counting appropriate 
winding numbers of geodesies in X starting at x along the closed geodesic 

To- 

One can similarly write a more informative formula calculating the whole 
determinant of the Dirac operator (9) which involves winding numbers around 
7o. using the formula (6) which provides the phases of cross-ratios in terms 
of angles and parallel translations of the relevant geodesic configurations. 
We leave this as an exercise for the reader. 

2.4    Genus > 2 case and Krasnov's Euclidean black holes 

The construction of the BTZ black hole with Lorentzian signature can be 
generalized to other asymptotically AdS^+i solutions, by prescribing global 
identifications on the t = 0 slice H2 of AdS2+i1 obtained by the action of 
a discrete subgroup of P5L(2,R). Solutions of this type are described in 
[ABBHP]. They admit a Euclidean version which is a global quotient of H3 

by the action of a discrete group of isometries F. We are especially interested 
in the case where F C PSL(2, C) is a geometrically finite Schottky group. 
Such solutions were studied by Krasnov [Krl], [Kr4], so we refer to them as 
Krasnov black holes. For this class of space-times, in the Euclidean case, 
the bulk space is a hyperbolic handlebody of genus g > 2, and the surface at 
infinity is a compact Riemann surface of genus #, with the complex structure 
determined by the Schottky uniformization. 
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2.4.1     Schottky groups and handlebodies 

(i) Loxodromic elements. As in §2.2, we choose a 2-dimensional complex 
vector space V and study the group PGL(2) and various spaces upon which 
it acts. A loxodromic element g E PGL(2, V), by definition, has two different 
fixed points in P(V) = P1(C), the attracting one z+(g) and the repelling 
one z~(g). The eigenvalue q(g) of g on the complex tangent space to z+(g) 
is called the multiplier of g. We have \q(g)\ < 1. 

(ii) Schottky groups. A Schottky group is a finitely generated discrete 
subgroup F C PGL(V) consisting of loxodromic elements and identity It 
is always free; its minimal number of generators p is called genus. Each 
Schottky group of genus p admits a marking. By definition, this is a family of 
2p open connected domains Di,..., Z?2p in P(V) and a family of generators 
9i^'-")9p £ F with the following properties. The boundary Ci of Di is 
a Jordan curve homeomorphic to S1, closures of Di are pairwise disjoint; 
moreover, gk(Ck) C Cp+k, and 9k{Dk) C P{V) \ Dp+k. A marking is called 
classical, if all Di are circles. Every Schottky group admits a marking, but 
there are groups for which no classical marking exists. 

(in) Y-invariant sets and their quotients. Any Schottky group T of genus 
p acts on Hy faithfully and discretely. The quotient Xp := F C Hy is (the 
interior of) a handlebody of genus p. 

Choose a marking and put 

Xo,r := P(V) \ Up
k=1(DkUDk+p), nT := Ugerg(Xo,r). 

F acts on Or faithfully and discretely, XQ^ is a fundamental domain for this 
action, and the quotient F \ ftp is a complex Riemann surface of genus p. 
Every Riemann surface admits infinitely many different Schottky covers. 

In the representation above, F acts upon ftp as on the boundary of a 
tubular neighborhood of a Cay ley graph of F associated with generators gk> 
Since they are free, the Cayley graph is an infinite tree each vertex of which 
has multiplicity 2p: cf. Figure 5 illustrating this for the case p — 2. 

As above, Xp can be identified with the boundary at infinity of Xp: the 
set of equivalence classes of ends of unbounded geodesies in Xr modulo the 
relation "distance = 0." 

A marking of F induces a marking of the 1-homology group Hi(Xr, Z). 
Concretely, denote by ak the class of the image of Cp+k (with its natural 
orientation.) Choose some points xk G C^, k = 1,... ,p, and pairwise disjoint 
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Figure 5: Fundamental domains as tubular neighborhood of a tree 

oriented paths from Xk to gk{xk) lying in -Xojr- Denote by bk their classes in 
Hi(Xr,Z). Clearly, {a/b?^} form a basis of this group, satisfying (a^aj) = 
{bk,bi) = 0, (ak,bi) = 5^. Moreover, a^ generate the kernel of the map 
Hi(Xr, Z) —)- HI(XYI Z) induced by the inclusion of the boundary. 

The complement Ar := P(V) \ ^r is the minimal non-empty F-invariant 
set. Equivalently, it is the closure of the set of all fixed points z±(g)1 g G 
r,g / id, or else the set of limit points of any orbit F^o, ZQ G Hy U P{V). 

If g = 1, Ar consists of two points which can be chosen as 0,oo. For 
g > 2, Ap generally is an uncountable Cantor set (fractal). This is the main 
source of complications (and interesting developments). Denote by a(r) the 
Hausdorff dimension of A(r). It can be characterized as the convergence 
abscissa of any Poincare series 

dg{z) E dz 

where z is any coordinate function on PiV) with a zero and a pole in fir- 
Generally 0 < a(r) < 2. Convergence of our holography formulas below will 
hold only for a(r) < 1. For other characterizations of a(r), see [Man2], p. 
236, and the references therein. 

Geodesies in the bulk space Hv with ends on Ap become exactly all 
bounded geodesies in the quotient Afp.   Their convex hull Cp is called the 
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Figure 6: Topologies arising from Fuchsian Schottky groups 

Figure 7: Evolving the t = 0 slice 

convex core of Ap. The group F is geometrically finite if the convex core Cr 
is of finite volume. In this case, the core Cr is a compact 3-manifold with 
boundary, which is homeomorphic to and a strong deformation retract of 

2.4.2    AdS and Euclidean black holes 

Consider a Fuchsian Schottky group F acting on H2. The resulting quotient 
space is a non-compact Riemann surface with a certain number of infinite 
ends. The genus of the surface and the number of ends depend on the 
Schottky group, for instance, both topologies shown in Figure 6 arise as 
quotients of H2 by a Schottky group with two generators. 

An asymptotically AdS non-spinning black hole is obtained by extending 
these identifications globally to AdS2+i-) or, in other words, by evolving the 
t = 0 slice forward and backward in time. The geodesic surfaces extending 
the geodesies in the boundary of the fundamental domain in the t = 0 slice 
develop singularities in both forward and backward direction (see [ABBHP], 
[Krl]) as illustrated in Figure 7. 

The procedure used by Krasnov [Krl] to construct the Euclidean version 
of these black holes follows the same line as in the case of the BTZ black hole, 
namely, the t = 0 slice is identified with a hyperplane in H3 and the geodesies 
in this hyperplane are continued to geodesic surfaces in H3. The resulting 
quotients are special cases (non-rotating black holes) of the handlebodies Xr 
constructed above in §2.4.1, in the case of real Schottky parameters.   The 
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general case of §2.4.1 includes also the more general case of spinning black 
holes considered by Krasnov in [Kr4]. 

Since Fuchsian Schottky groups are classical Schottky groups, the black 
holes obtained by the construction of Krasnov as Euclidean versions of the 
AdS black holes of [ABBHP] are quotients of H3 by a classical Schottky 
group on p generators, and the fundamental domain is a region in H3 de- 
limited by 2p pairwise disjoint geodesic half spheres. 

As observed in [BKSW], the kinematic part of the Maldacena correspon- 
dence for spacetimes that are global quotients of H3 by a geometrically fi- 
nite discrete group of isometries is provided by the correspondence between 
hyperbolic structures on the bulk space and conformal structures on the 
boundary at infinity, [Sul]. (cf. also [Kh] on the correspondence between hy- 
perbolic and conformal geometry viewed in the light of holography.) Below 
we will complement this by providing some dynamical content for the case 
of the Krasnov black holes. 

2.5    Abelian differentials and Green functions on Schottky 
covers 

In this subsection, we will calculate Green's functions of the form (2) for 
curves with a Schottky cover. The differentials of the third kind which can 
be obtained by a direct averaging of simple functions do not necessarily have 
pure imaginary periods. To remedy this, we will have to subtract from them 
some differentials of the first kind. Therefore we will start with the latter. 

2.5.1     Differentials of the first kind 

In the genus one case, if z is the projective coordinate whose divisor consists 
of the attractive and repelling point of a generator of F, a differential of the 
first kind can be written as 

u = a logz = a log — —-—- = a log(0,oo,^,^o) 
W(0)-(oo)(20) 

where ZQ is any point 7^ 0,00. Generally, an appropriate averaging of this 
formula produces a differential of the first kind uig for any g G F. In the 
following we assume that a marking of F is chosen. Denote by C(\g) a set 
of representatives of r/(#z), by C(h\g) a similar set for (hz) \ r/(gz), and 
by S(g) the conjugacy class of g in F. Then we have for any ZQ G Op: 
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Proposition 2. (a) If a(T) < 1, the following series converges absolutely 
for z G Or cmd determines (the lift to fir of) a differential of the first kind 
on X^: 

u9 =    ^2    dz loS(hz+(9)^hz~(g),z:zo). (12) 
hec(\g) 

This differential does not depend on ZQ, and depends on g additively. 

as 
If the class of g is primitive (i.e. non-divisible in H), LOg can be rewritten 

UJ9=   Yl   dzlog{z+(h),z-(h),z,zo). (13) 
heS(g) 

(b) If gk form apart of the marking ofT, and a^ are the homology classes 
described in §2.4-1 (Hi), we have 

/ Ugl=2m5ki. (14) 

It follows that the map gmodfr, F] (-> cjg embeds H := F/fF, F] as a sublat- 
tice in the space of all differentials of the first kind. 

(c) Denote by {6/} the complementary set of homology classes in Hi(Xr^ Z) 
as in §2.4-1'  Then we have for k ^ I, with an appropriate choice of logarithm 
branches: 

Tki'=       ^91=      Yl     los(z+(9k)^~(gk),hz+(gi),hz~(gi)).        (15) 
Jbk heCigM 

Finally 

Tkk = \ogq(gk) +      ^      log(z+(gk),z-(gk),hz+(gk),hz-(gk)).     (16) 
heCo(9k\9k) 

where in Co(gk\gk) is C(gk\gk) without the identity class. 

For proofs, see [Man2], §8, and [ManD]. Notice that our notation here 
slightly differs from [Man2]; in particular, Tki here corresponds to 2mrki of 
[Man2]. 

In the holography formulas below we will use (15) and (16) in order to 
calculate Rer^/. The ambiguity of phases can then be discarded, and the 
cross-ratios must be replaced by their absolute values. Each resulting term 
can then be interpreted via a configuration of geodesies in the bulk spaces 
H3 and Ar, similar to those displayed in Figures 3 and 4. 
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2.5.2    Differentials of the third kind and Green's functions 

Let now a, b e fir- Again assuming a(r) < 1, we see that the series 

V(a)-(b) ~ Yl dz l0g(a' b' hZ> hZ0) ^ 
her 

absolutely converges and represents the lift to fir of a differential of the 
third kind with residues ±1 at the images of a, b. Moreover, its a* periods 
vanish. Therefore, any linear combination ^(a)-(b) - Y^i xi(ai b)wgl with real 
coefficients Xi will have pure imaginary a^-periods in view of (14). If we 
find Xi so that the real parts of the frfc-periods of V(a)-(b) := u(a)-(b) - 
Y^i^MM^gi vanish, we will be able to use this differential in order to 
calculate conformally invariant Green's functions. Hence our final formulas 
look as follows. 

Equations for calculating Xi{a,b)'. 

Y,Xi(^b)ReTkl = Re       v{a)_{h) =    ^   log |(a,M+(/i),*-(/0)| •   (18) 
i=i Jbk hes(9k) 

Here k runs over 1,... ,p, the Rer^^ are calculated by means of (15) and 
(16), and the ^-periods of ^(a)-(6) are given in §8 of [Man2]. 

Moreover, 

Re  /   i/(o)-(6) = ^log|(a,6,/zc,M)|, (19) 
her 

Re   /    "91=     S    l0&\(Z*(h)>Z    W^'^l' (20) 
h£S(gi) 

Hence finally 
9((a)-(b),(c)-(d)) = 

J2 log I (a, &,/ic,/id)|-£*iM)    Y,   log\(z+(h),z-(h),c,d)\.     (21) 
her i=i hes{gi) 

Here we have to thank Annette Werner for correcting the last formula in 
[Man2]. 
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2.6    Discussion 

(i) The most straightforward way to interpret formulas (3), (4), (11), (20), 
(21) is to appeal to the picture of holographic particle detection of [BR]. 
In this picture, Green functions on the boundary detect geodesic movement 
and collisions of massive particles in the bulk space. Particles, being local 
objects, exist in the semiclassical limit. 

More precisely, consider in the bulk space the theory of a scalar field of 
mass m. The propagator, in the notation of [BR] p.7, is 

G(B(z),B(-z)) = fvPeiM^\ (22) 

where 1{P) is the length of the path P, A = 1 + \/l + m2, and the points 
B(±z) in the bulk space correspond to some parameterized curve b(±z) on 
the boundary at infinity, in the sense that the B{±z) lie on a hypersurface 
obtained by introducing a cutoff on the bulk space. 

In the semiclassical WKB approximation, the right hand side of (22) lo- 
calizes at the critical points of action. Thus, it becomes a sum over geodesies 
connecting the points B(±z), 

G(B(z),B(-z)) = Y/e-
Mb)- (23) 

7 

This has a logarithmic divergence when the cutoff e —> 0, that is, when the 
points B(±z) approach the corresponding points on the boundary at infinity. 

On the other hand, for the CFT on the boundary (in the case where the 
bulk space is just AdSs), the boundary propagator is taken in the form in 
the form (pp. 6-7 of [BR]) 

(0(x),0(x')) \x — Xf\2A 

In the case where the bulk space is globally AdSs, there is an identification 
of the propagators as the cutoff parameter e —> 0 

T(z) = logG(B(z),B(-z)), 

after removing the logarithmic divergence, where 

T(z)=log{0(b(z)),0(b(-z))). 
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The appearance of the geodesic propagator (22) in the bulk space, written 
in the form (23) is somewhat similar to our exact formulas written in terms 
of geodesic configurations. 

Moreover, passing to the Euclidean case, and reading our formula (3) 
for the genus zero case in this context provides a neater way of identifying 
propagators on bulk and boundary which does not require any cutoff. For 
assigned points on the boundary P1(C), instead of choosing corresponding 
points in the bulk space B(±z) with the help of a cutoff function and then 
comparing propagators in the limit, any choice of a divisor (a) — (b) deter- 
mines the points in the bulk space a* {c, d} and 6* {c, d} in H3, for boundary 
points c, d G P1(C) (cf. Figure 1), and a corresponding exact identification 
of the propagators. 

If we then let a —> c and b —> d, in (3) both the Green function and 
the geodesic length have a logarithmic divergence, as the points a * {c, d} 
and b * {c, d} also tend to the boundary points c and d, and this recovers 
the identification of the propagators used by the physicists as a limit case of 
formula (3), without any need to introduce cutoff functions. 

Notice, moreover, that the procedure of §2.5.2, and in particular our 
(18) to compute the coefficients Xi(a,b) is analogous to the derivation of 
the bosonic field propagator for algebraic curves in [FeSo], with the sole 
difference that, in the linear combination 

I 

(cf. equation (3.6) of [FeSo]) the differentials of the third kind z^a)_(&) are 
determined in our (17) by the data of the Schottky uniformization, while, in 
the case considered in [FeSo], they are obtained by describing the algebraic 
curve as a branched cover of P1(C). Then our (18) corresponds to (3.9) 
of [FeSo], and Proposition 2 shows that the bosonic field propagator on the 
algebraic curve -X"(C), described by the Green function, can be expressed in 
terms of geodesies in the bulk space. 

(ii) K. Krasnov in [Krl] (cf. also [Kr2]-[Kr4]) establishes another holog- 
raphy correspondence which involves CFT interpreted as geometry of the 
Teichmiiller or Schottky moduli space rather than that of an individual Rie- 
mann surface and its bulk handlebody. In his picture, the relevant CFT the- 
ory is the Liouville theory (existence of which is not yet fully established). 
An appropriate action for Liouville theory in terms of the Schottky uni- 
formization was suggested L. Takhtajan and P. Zograf in [TaZo]. Krasnov 
identifies the value of this action at the stationary ("uniformizing") point 
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with the regularized volume of the respective Euclidean bulk space. Accord- 
ing to [TaZo], this value provides the Kahler potential for the Weil-Petersson 
metric on the moduli space. 

It would be interesting to clarify the geometric meaning of Krasnov's 
regularized volume. Can it be calculated through the volume of the convex 
core of the bulk space? In the genus one case the answer is positive: both 
quantities are proportional to the length of the closed geodesic. 

A recent preprint of J. Brock [Brl] establishes an approximate relation- 
ship between the Weil-Petersson metric and volumes of convex cores in a 
different, but related situation. Namely, instead of giving a local formula for 
the WP-distance "at a point" X, it provides an approximate formula for this 
distance between two Riemann surfaces X, Y which are far apart. The han- 
dlebody X filling X is replaced by the quasi-Fuchsian hyperbolic 3-manifold 
Q(X, Y) arising in the Bers simultaneous uniformization picture ([Be]) and 
having X U Y as its conformal boundary at infinity. It turns out that at 
large distances £WP(X,Y) is comparable with the volume of coreQ(X, Y). 

We expect that an exact formula relating these two quantities exists and 
might be derived using a version of Krasnov's arguments. 

In fact, the Krasnov black holes also have a description in terms of Bers 
simultaneous uniformization. By the results of Bowen [Bow], a collection 
Co of pairwise disjoint rectificable arcs in Xo,r with ends at Xk E Ck and 
9k(xk)i as described in §2.4.1 (hi), determine a quasi-circle C = U7Gr7Co. 
The quotient (Cnfir)/r consists of a collection of closed curves in Xr whose 
homology classes give the bk of §2.4.1(iii). The quasi-circle C divides P1(C) 
into two domains of Bers simultaneous uniformization, with the handlebody 
Xr (topologically a product of a non-compact Riemann surface and an in- 
terval) in the role of Q(X,Y). This fits in with the results of Krasnov on 
the generally rotating case of Krasnov black holes discussed in [Kr4]. 

2.7    Non-archimedean holography 

According to various speculations, space-time at the Planck scale should 
be enriched with non-archimedean geometry, possibly in adelic form, so 
that space-time can be seen simultaneously at all non-archimedean and 
archimedean places. Prom this perspective, it is worth observing that the 
holography correspondence described in §2 admits a natural extension to 
the non-archimedean setting. In fact, the results of [Man2] on the Green 
functions on Riemann surfaces with Schottky uniformization and configura- 
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tions of geodesies in the bulk space were motivated by the theory of p-adic 
Schottky groups and Mumford curves: cf. [Mum], [ManD], [GvP]. 

In the non-archimedean setting, we consider a finite extension K of Qp. 
Anti de Sitter space, or rather its Euclidean analog H3, is replaced by the 
Bruhat-Tits tree T with the set of vertices 

T0 = {A-lattices of rank 2 in a 2-dim if-space V}/K* (24) 

where A is the ring of integers of if. Vertices have valence |P1(A/m)|, where 
m is the maximal ideal, and the length of each edge connecting two nearby 
vertices is log |j4/m|. The set of ends of the tree T can be identified with 
P1(iir): this is the analog of the conformal boundary. 

The analog in [ManD] of the formulas of Lemma 1, gives a quantita- 
tive formulation of the holographic correspondence in this non-archimedean 
setting, with the basic Green function on T given by 

G>(w)(x,y) = distr(u,{x,y}), (25) 

where the metric on the Bruhat-Tits tree T is defined by assigning the 
length log |A/m| to each edge, so that (25) computes the length of the 
shortest chain of edges connecting the vertex u to the doubly infinite path 
in the tree containing the vertices x, y. 

A triple of points in P1(if) determines a unique vertex v € T0 where the 
three ends connecting v to the given points in P1(if) start along different 
edges. This configuration of edges is called a "cross-roads" in [Man2]. It 
provides an analog of the Feynman diagram of §2.4 of [Wi], where currents 
are inserted at points on the boundary and the interaction takes place in the 
interior, with half infinite paths in the Bruhat-Tits tree acting as the gluon 
propagators. Such propagators admit a nice arithmetic description in terms 
of reduction modulo the maximal ideal m. 

For a subgraph of T given by the half infinite path starting at a given 
vertex v G T0 with end x G Pl(K)^ let {^o = v,vi,... ,^n...} be the 
sequence of vertices along this path. We can define a 'non-archimedean 
gluon propagator' as such a graph together with the maps that assign to 
each finite path {^o, • • • , vn} the reduction of x modulo mn. 

Consider the example of the elliptic curve with the Jacobi-Tate uni- 
formization K*/(qz), with q G K*, \q\ < 1. The group qz acts on T like the 
cyclic group generated by an arbitrary hyperbolic element 7 G PGL(2,K). 
The unique doubly infinite path in T with ends at the pair of fixed points 
rz;± of 7 in ¥l(K) gives rise to a closed ring in the quotient T/F. 
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The quotient space T/F is the non-archimedean version of the BTZ 
black hole, and this closed ring is the event horizon. Prom the vertices of 
this closed ring infinite ends depart, which correspond to the reduction map 
X{K) ->X(A/m). 

Subgraphs of the graph T/F correspond to all possible Feynman dia- 
grams of propagation between boundary sources on the Tate elliptic curve 
X(K) and interior vertices on the closed ring. 

In the case of higher genus, the Schottky group F is a purely loxodromic 
free discrete subgroup of PSL(2:K) of rank g > 2. The doubly infinite 
paths in T with ends at the pairs of fixed points x±(/y) of the elements 
7 G F realize 7r as a subtree of T. This is the analog of realizing the union 
of fundamental domains U77(^r) as a tubular neighborhood of the Cayley 
graph of F in the archimedeam case (cf. Figure 5). The ends of the subtree 
7r constitute the limit set Ar C P1^)- The complement fir = P1^) \ Ar 

gives the uniformization of the Mumford curve X(K) ~ fip/F. This, in turn, 
can be identified with the ends of the quotient graph T/F. 

The quotients X-p = T/F are non-archimedean Krasnov black holes, 
with boundary at infinity the Mumford curve X(K). Currents at points in 
X(K) propagate along the half infinite paths in the black hole that reach 
vertices on Tr/F. Propagation between interior points happen along edges 
of Tr/F, and loops in this graph give rise to quantum corrections to the 
correlation functions of currents in the boundary field theory, as happens 
with the Feynman diagrams of [Wi]. 

2.8    Holography and arithmetic topology 

We have seen that, for an arithmetic surface Xz —> SpecZ, it is possible 
to relate the geometry at arithmetic infinity to the physical principle of 
holography. Over a prime p, in the case of curves with maximally degener- 
ate reduction, it is also possible to interpret the resulting Mumford theory 
of p-adic Schottky uniformization in terms of an arithmetic version of the 
holography principle. One can therefore formulate the question of whether 
some other arithmetic analog of holography persists for closed fibers Xz 
mod p. 

A very different picture of the connection between 3-manifolds and arith- 
metics exists in the context of arithmetic topology, a term introduced by 
Reznikov [Rez] to characterize a dictionary of analogies between number 
fields and 3-manifolds. See also a nice overview by McMullen [Mc]. 
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According to this dictionary, if L is a number field and OL its ring of 
algebraic integers, then B = SpecC^ is an analog of a 3-manifold, with 
primes representing loops (knots in a 3-manifold). In our case, with B = 
SpecZ, the local fundametal group Gal(Fp/Fp) = Z is generated by the 
Frobenius ap : x »-> xp acting on Fp. 

The fiber of X over a prime p, in the dictionary of arithmetic topology, 
may be regarded as a 3-manifold that fibers over a circle. In fact, for a fixed 
prime £, let S be the union of £ and the set of primes where X has bad 
reduction. Let B = SpecS^Z. This satisfies 7ri(B) = Gal(Qs/Q). For 
p £ S, the £-adic Galois representation 

pi : Gams/Ct) -> AutH^X, 7>t) = GL(2g, Zi) 

gives an arithmetic version of the monodromy, see [Mc], with the Frobenius 
ap that lifts to an element of GaZ(Qs/Q). In the arithmetic topology dic- 
tionary, a prime p corresponds to a "loop" in the "3-manifold" £?, hence the 
fiber Xz mod p together with the Frobenius element ap can be regarded as 
the data of a 3-manifold that fibers over the "circle" p. 

The question of a holographic correspondence for these arithmetic analogs 
of mapping tori may be related to results of J.Brock [Br2] on 3-manifolds 
that fiber over the circle, where the hyperbolic volume is related to the trans- 
lation length of the monodromy, in the same way that relates the hyperbolic 
volume of the convex core to the Weil-Petersson distance of the surfaces at 
infinity in the case of Bers' simultaneous uniformization in the main result 
of[Brl]. 

In our perspective, this result of [Br2] can be regarded as an extension of a 
form of holographic correspondence from the case of hyperbolic 3-manifolds 
with infinite ends and asymptotic boundary surfaces, to the case of a compact 
hyperbolic 3-manifolds which fibers over the circle, with the information 
previously carried by the boundary at infinity now residing in the fiber and 
monodromy. Thus, it is possible to ask whether, under the dictionary of 
arithmetic topology, a similar form of holographic correspondence exists for 
the fibers Xz mod p regarded as arithmetic analogs of a 3-manifold fibering 
over the circle with monodromy ap. It is possible that such correspondence 
may be related to another analogy of arithmetic topology, which interprets 
the quantity |Tr((jp)| as a measure of the "hyperbolic length" of the loop 
representing the prime p (cf. [Mc] Remark on p. 134). 
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3    Modular curves as holograms 

In this section we suggest a different type of holography correspondence, this 
time related to AdSi+i and its Euclidean version H2. 

In the case we consider, the bulk spaces will be modular curves. They 
are global quotients of the hyperbolic plane H2 by a finite index subgroup G 
of PSL(2j Z). We identify H2 with the upper complex half-plane endowed 
with the hyperbolic metric of curvature —1. Its boundary at infinity is then 
P^R). 

Modular curves have a very rich arithmetic structure, forming the essen- 
tial part of the moduli stack of elliptic curves. In this classical setting, the 
modular curves have a natural algebro-geometric compactification, which 
consists of adding finitely many points at infinity, the cusps G\P1(Q). Cusps 
are the only boundary points at which G acts discretely (with stabilizers of 
finite index). The remaining part of the conformal boundary (after factoriza- 
tion) is not visible in algebraic (or for that matter analytic or (7°°) geometry, 
because irrational orbits of G in P1(R) are dense. 

In [ManMar] and [Mar] some aspects of the classical geometry and arith- 
metics of modular curves, such as modular symbols, the modular complex, 
and certain classes of modular forms, are recovered in terms of the non- 
commutative boundary Gf\P1(R) which is a non-commutative space in the 
sense of Connes, that is, a C*-algebra Morita equivalent to the crossed 
product of G acting on some function ring of P1(R). This way, the full 
geometric boundary of P1(R) of H2 is considered as part of the compactifi- 
cation, instead of just P^Q). We argue here that this is the right notion of 
boundary to consider in order to have a holography correspondence for this 
class of bulk spaces. In particular, since we strive to establish that the bulk 
spaces and their boundaries carry essentially the same information, we call 
the quotients Gr\P1(R) non-commutative modular curves. 

3.1    Non-commutative modular curves 

In the following F = PSL(2, Z) and G is a finite index subgroup of F. 
Denoting by P the coset space P = F/G, we can represent the modular 
curve XQ := Gf\H2 as the quotient 

XG = r\(H2xP), (26) 
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and its non-commutative boundary as the C*-algebra 

CtP^R) xP) XJT (27) 

Morita equivalent to C(P1(R)) x G. 

There is a dynamical system associated to the equivalence relation de- 
fined by the action of a Fuchsian group of the first kind on its limit set, as 
in the case of our Gf\P1(R). The dynamical system can be described as a 
Markov map TG : S1 -+ S1 as in [BowSer]. 

In [ManMar] we gave a different formulation in terms of a dynamical 
system related to the action of F on P1(R) x P. This dynamical system 
generalizes the classical shift of the continued fraction expansion in the form 

T : [0,1] x P -> [0,1] x P 

T(M)=(" 
-[l/x]    1 

1        0 
t) . (28) 

Some aspects of the non-commutative geometry at the boundary of modular 
curves can be derived from an analysis of the ergodic theory of this dynamical 
system, cf. [ManMar], [Mar]. 

3.2    Holography 

The 1 + 1-dimensional Anti de Sitter space-time AdSi+i has 5X(2,R) as 
group of isometrics. Passing to Euclidean signature, AdSi+i is replaced by 
H2, so that we can regard the modular curves XQ as Euclidean versions of 
space-times obtained as global quotients of AdSi+i by a discrete subgroup of 
isometrics. Notice that, unlike the case of spacetimes with AdS2+i geometry, 
the case of AdSi+i space-times is relatively little understood, though some 
results on AdSi+i holography are formulated in [MMS], [Str]. We argue that 
one reason for this is that a picture of holography for AdSi+i space-times 
should take into account the possible presence of non-commutative geometry 
at the boundary. 

There are three types of results from [ManMar] that can be regarded as 
manifestations of the holography principle. On the bulk space, these results 
can be formulated in terms of the Selberg zeta function, of certain classes of 
modular forms of weight two, and of modular symbols, respectively. 
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3.2.1     Selberg zeta function 

In order to formulate our first results, we consider the Ruelle transfer oper- 
ator for the shift (28), 

(W)(M) = E(^p/(^(? 0   £V*)- (29) 

On a suitable Banach space of functions (cf. [May], [ManMar]), the op- 
erator Ls is nuclear of order zero for Re(s) > 1/2, hence it has a Fredholm 
determinant 

det(l-L5)=exPf-^-^j. (30) 

The Selberg zeta function for the modular curve XQ encodes the length 
spectrum of the geodesic flow. Via the Selberg trace formula, this function 
also encodes information on the spectral properties of the Laplace-Beltrami 
operator. In terms of closed geodesies, we have 

oo 

ZG(S) =   JJ    11 i1 - e-(5+m)lenethW) , (31) 
7€Primm=0 

where Prim is the set of primitive closed geodesies in XQ.   We have the 
following result [ManMar] (see also [ChMay], [LewZal], [LewZa2], [May]). 

Proposition 3.  Consider a finite index subgroup G C r; with T = PSL{21 Z) 
or PGL{2, Z). In the case Y = PGL(2, Z) we have 

ZG(s)=det(l-La), (32) 

and in the case T = PSL(2, Z) we have 

ZG(s)=det(l-L2
s). (33) 

We can interpret this statement as an instance of holography correspon- 
dence, if we regard the left hand side of (32) and (33) as a partition function 
on the bulk space, and the right hand side as the corresponding boundary 
field theory. More precisely, the results of [Lew], [LewZal], [LewZa2] provide 
an explicit correspondence between eigenfunctions of the transfer operator 
Ls and eigenfunctions of the Laplacian (Maass wave forms).  This explicit 
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transformation provides a kind of holography correspondence between fields 
on the bulk space and a theory on the boundary, which can be interpreted 
as a lattice spin system with the shift operator (28). 

To make a connection to the point of view of Arakelov geometry con- 
sidered in §2, it is known that the Arakelov Green function evaluated at 
two different cusps can be estimated in terms of the constant term of the 
Laurent expansion around 1 of the logarithmic derivative of the Selberg zeta 
function, e.g. in the case of G = TQ(N). This means that, by Proposition 
3.2.1, such estimates can be given in terms of the transfer operator L5, which 
only depends on the boundary (27) of XQ- 

3.2.2    Modular symbols 

In the classical theory of modular curves, modular symbols are the homology 
classes 

<p{s) = {g{0),g{ioo)}G E H^XQ, cusps, Z) (34) 

with gG = s G P, determined by the image in XQ of geodesies in H with 
ends at points of P1(Q). 

In [ManMar] we have shown that the homology H\(XG^ cusps, Z) can be 
described canonically in terms of the boundary (27) in the following way. 

Proposition 4. In the case Y = JPSX(2, Z) = Z/2 * Z/3, the Pimsner six 
term exact sequence ([Pirn]) for the K-theory of the crossed product C*- 
algebra (27) gives a map 

a : ifo^P^RJxP)) -► Ko(Cr(P1(R)xP)xZ/2)eKo(C(P1(R)xP)xZ/3). 

The kernel of this map satisfies 

Ker{a) ^ #i (XG, cusps, Z). (35) 

In particular, the modular symbols (34) are identified with elements mKer(a): 

{g(0),g(i^)}G^6s-8(T{s)) (36) 

where Ss is the projector in (7(P1(R) x P) given by the function equal to one 
on the sheet P1(R) x {s} and zero elsewhere. 

Via the six terms exact sequence, the elements of Ker(a) can be identified 
with (the image of) elements in ^(C^P^R) x P) x F). Thus, modular 
symbols, that is, homology classes of certain geodesies in the bulk space, 
correspond to (differences of) projectors in the algebra of observables on the 
boundary space. 
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3.2.3    Modular forms 

Finally, we discuss from this perspective some results of [ManMar], [Mar], 
which give a correspondence between certain classes of functions on the bulk 
space and on the boundary. 

As the class of functions on the boundary, we consider functions 

00 

k=i 

Here / is a complex valued function defined on pairs of coprime integers 
{q.q') with q > q' > 1 and with fiq.q') = 0(q~e) for some e > 0, and 
qk{P) are the successive denominators of the continued fraction expansion 
of (3 G [0,1]. The summing over pairs of successive denominators is what 
replaces modularity, when "pushed to the boundary". 

We consider the case of G = TQ(N)^ and the function 

'"•rt-^Lu     "• (38) 
I '^ Jro(JV) 

with UJ such that the pullback ^{u^/dz is an eigenform for all Hecke oper- 
ators. Consider the corresponding i(f:/3) defined as in (37). We have the 
following result. 

Proposition 5. For almost all (3, the series (37) for the function (38) con- 
verges absolutely. Moreover, we have 

^    gn+i(p)1+t      I   ftH-UPjJroCw) 

which defines, for almost all /3 a homology class in HI^XQ, cusps,R) satis- 
fying 

t(f,P)= [        u (40) 
Jc(f,8) 

with integral average 

with Lu ' the Mellin transform of $ with omitted Euler N-factor, and £(s) 
the Riemann zeta, with corresponding C     . 
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Results of this type can be regarded, on the one hand, as an explicit 
correspondence between a certain class of fields on the bulk space (Mellin 
transforms of modular forms of weight two), and the class of fields (37) 
on the boundary. It also provides classes (39) which correspond to certain 
configurations of geodesies in the bulk space. These can be interpreted 
completely in terms of the boundary. In fact the results of Proposition 4 can 
be rephrased also in terms of cyclic cohomology (cf. [ManMar], [Nis]), so 
that the classes (39) in HI(XG, cusps, R) can be regarded as elements in the 
cyclic cohomology of the algebra (27). Thus, expressions such as the right 
hand side of (41), which express arithmetic properties of the modular curve 
can be recast entirely in terms of a suitable field theory on the boundary 
(27). 
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