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1    Introduction 

Let Z -> S be an elliptic fibration on a smooth variety Z, i.e. a flat morphism 
whose generic fiber is a curve of genus one, and which has a section S -» 
Z. The choice of such a section defines a Poincare sheaf V on Z Xs Z. 
The corresponding Fourier-Mukai transform FM : Db(Z) -> Db(Z) is then 
an autoequivalence of the derived category Db(Z) of complexes of coherent 
sheaves on Z. It sets up an equivalence between SX(r, C)-bundles on Z and 
spectral data consisting of line bundles (and their degenerations) on spectral 
covers C C Z which are of degree r over S. This equivalence has been used 
extensively to construct vector bundles on elliptic fibrations and to study 
their moduli [FMW97, Don97, BJPS97]. 

For many applications it is important to remove the requirement of the 
existence of a section, i.e. to allow genus one fibrations. This could be done 
in two ways. 

The 'spectrum' of a degree zero semistable rank r bundle on a genus one 
curve E consists of r points in the Jacobian Pic0(-E'), rather than in E = 
Pic1 (E) itself. So one approach is to consider spectral covers C contained in 
the relative Jacobian Pic0(Z/S). But the spectral data in this case no longer 
involves a line bundle on C; instead, it lives in a certain non-trivial gerbe, 
or twisted form of Pic(C). So the essential problem becomes the analysis of 
this gerbe. 

The second approach is to find an elliptic fibration TT : X —> B together 
with a group G acting compatibly on X and B (but not preserving the 
section of TT) such that the action on X is fixed point free and the quotient 
is the original Z -» S. One can then use the Fourier-Mukai transform to 
construct vector bundles on X. The problem becomes the determination of 
conditions for such a bundle on X to be G-equivariant, hence to descend to 
Z. Equivalently we need to know the action of each g 6 G on spectral data. 
This is the restriction of the action on Db(X) of the Fourier-Mukai conjugate 
FM~l o g* o FM of 5*. This will be referred to as the spectral action of 
g. Unfortunately, the spectral action can be quite complicated: both global 
vector bundles on X and sheaves supported on C can go to complexes on X 
of amplitude greater than one. 

In this paper, we work out such a spectral action in one class of examples 
consisting of special rational elliptic surfaces. In the second part [DOPWa] 
of this paper we use this analysis to construct special bundles on certain 
non-simply connected smooth Calabi-Yau threefolds. These special bundles 
in turn are the main ingredient for the construction of Heterotic M-theory 
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vacua having the Standard Model symmetry group SU(3) x 517(2) x £7(1) 
and three generations of quarks and leptons. The physical significance of 
such vacua is explained in [DOPWb] and was the original motivation of this 
work. 

Here is an outline of the paper. We begin in section 2 with a review of 
the basic properties of rational elliptic surfaces. Within the eight dimen- 
sional moduli space of all rational elliptic surfaces we focus attention on a 
five dimensional family of rational elliptic surfaces admitting a particular 
involution r, and then we restrict further to a four dimensional family of 
surfaces with reducible fibers. This seems to be the simplest family of sur- 
faces for which one needs the full force of Theorem 7.1: for general surfaces 
in the five dimensional family, the spectral involution T := FM-1 or* oFM 
of r takes line bundles to line bundles, while in the four dimensional sub- 
family it is possible for T to take a line bundle to a complex which can not 
be represented by any single sheaf. We study the five dimensional family 
in section 3 and the four dimensional subfamily in section 4. This section 
concludes, in subsection 4.3, with a synthetic construction of the surfaces 
in the four dimensional subfamily. This construction maybe less motivated 
than the original a priori analysis we use, but it is more concise and we hope 
it will make the exposition more accessible. 

In the remainder of the paper we work out the actions of r, FM, T, 
first at the level of cohomology in sections 5 and 6, and then on the derived 
category in section 7. The main result is Theorem 7.1, which says that T 
behaves like a fairly simple affine transformation away from the union of 
those fiber components which do not intersect the zero section. A corollary is 
that for spectral curves which do not intersect the extra vertical components, 
all the complications disappear. This fact together with the cohomological 
formulas from sections 5 and 6 will be used in [DOPWa] to build invariant 
vector bundles on a family of Calabi-Yau threefolds constructed from the 
rational elliptic surfaces in our four dimensional subfamily. 
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2    Rational elliptic surfaces 

A rational elliptic surface is a rational surface B which admits an elliptic 
fibration /? : B -» P1. It can be described as the blow-up of the plane P2 

at nine points Ai,... , Ag which are the base points of a pencil {/tJ^eP1 of 
cubics. The map (3 is recovered as the anticanonical map of B and the proper 
transform of ft is (3~l(t). 

In particular the topological Euler characteristic of B is x(2?) = xO^2) + 
9 = 12. For a generic B the map /3 has twelve distinct singular fibers each 
of which has a single node. For future use we denote by B^1 C B the open 
set of regular points of (3 and we set /3# := /3|£#. 

Under mild general position requirements [DPT80] each subset of eight 
of these points determines the pencil of cubics and hence the ninth point. 
In particular we see that the rational elliptic surfaces depend on 2 ■ 8 — 
dimPGL(3,C) = 8 parameters. 

Let ei,... , eg be the exceptional divisors in B corresponding to the Ais. 
Let t, be the preimage of the class of a line in P2 and let / := /?*0pi(l). 
Note that 

f = -KB = M-Y; 

and that I, ei,... ,69 form a basis of H2(B, Z). 

The curves ei, 62,... ,69 are sections of the map /? : B —» P1. Choosing a 
section e : P1 —> B determines a group law on the fibers of /^. The inversion 
for this group law is an involution on B^ which for a general B extends to 
a well defined involution (—1)3,6 ' B —» B. When B or e are understood 
from the context we will just write (—1)B or (—1). The involution (—1)3,6 
fixes the section e as well as a tri-section of /? which parameterizes the non- 
trivial points of order two. The quotient Wp/(—1)B,6 is a smooth rational 
surface which is ruled over the base P1. For a general B this quotient is the 
Hirzebruch surface F2 and the image of e is the exceptional section of F2. 
This gives yet another realization of B as a branched double cover of F2. 

A convenient way to describe the involution (—1)B^ is through the Weier- 

strass model w : Wp -> P1 of 5-^P1 . 

The model Wp is described explicitly as follows.    By relative duality 
R

1
^OB  =  Opi(-l).    This implies that /?*0B(3e)  =  (Cfei © C?pi(2) © 
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e>Pi(3))v. Let 

p : P := P(CVi © OPI(2) © C>pi(3)) -> P1- 

be the natural projection. The linear system 0£(3e) defines a map u : B —> 
P compatible with the projections. The Weierstrass model Wp is defined to 
be the image of this map. It is given explicitly by an equation 

y2z = x3 + (p*g2)xz2 + (p*gs)z3 

where #2 £ -H"0(Opi(4)) and gs G -H"0(Opi(6)) and x, y and z are the natural 
sections of OP(1) ®p*Opi(2), (9F(1) ®p*C?pi(3) and Op(l) respectively. 

In terms of Wp the section e is given by x = 2 = 0 and the involution 
(-"l)j3,e sends y to —y. The tri-section of fixed points of (—1)^,6 is given by 
y = o.' 

The Mordell-Weil group MW = MW(S, e) is the group of sections of (3. 
As a set MW is the collection of all sections of (3 : B —>- P1 or equivalently 
all sections of /?# : B^ —> P1. The group law on MW is induced from the 
addition law on the group scheme /?# : B^ -+ P1 and so e corresponds to 
the neutral element in MW(jB,e). For a section ^ C B we will put [£] for 
the corresponding element of MW. Note that the natural map 

ci : MW(B,e) -> Pic(B), [^ ^ C?B(0- 

is not a group homomorphism. When written out in coordinates, it involves 
both a linear part and a quadratic term (see e.g. [Man64]). However, when 
B is smooth the map ci induces a linear map to a quotient of Pic(-B) which 
describes MW(2?, e) completely. Indeed, let B be smooth and let T C Pic(B) 
be the sublattice generated by e and all the components of the fibers of (3. 
Then ci induces a map 

ci : MW(B,e) -> Pic(B)/T,        [£] ^ (OB(€) mod T) 

which is a linear isomorphism [Shi90, Theorem 1.3] 

There is a natural group homomorphism t : MW -» BirAut(J3) assigning 
to each section £ G MW the birational automorphism t^ : B —+ B, which 
on the open set £?# is just translation by f with respect to the group law 
determined by e. When /3 : B —> P1 is relatively minimal the map if extends 
canonically to a biregular automorphism of B [Kod63, Theorem 2.9]. 
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3    Special rational elliptic surfaces 

In the second part of this paper [DOPWa] we will work with Calabi-Yau 
threefolds X which are elliptically fibered over a rational elliptic surface B. 
Any involution TX on an elliptic CY TT : X —> B commuting with TT induces 
(either the identity or) an involution TB on the base B. In order for TX to act 
freely on X we need the fixed points of TB to be disjoint from the discriminant 
of TT. If B is a rational elliptic surface, then the discriminant of TT is a section 
in Kg12 — (9B(12/) and so (—1)^ will not do. We want to describe some 
special rational elliptic surfaces which admit additional involutions. Within 
the 8 dimensional family of rational elliptic surfaces we describe first a 5 
dimensional family of surfaces which admit an involution OLB- The fixed 
locus of OLB has the right properties but it turns out that a^ does not lift 
to a free involution on X. However, one can easily show that each as can 
be corrected by a translation t^ (for a special type of section Q to obtain 
an additional involution TB which does the job. Unfortunately the general 
member of the 5 dimensional family leads to a Calabi-Yau manifold which 
does not admit any bundles satisfying all the constraints required by the 
Standard Model of particle physics (see [DOPWa]). We therefore specialize 
further to a 4 dimensional family of surfaces for which the extra involution 
TB can be constructed in an explicit geometric way. This provides some extra 
freedom which enables us to carry out the construction. The involution OLB 

fixes one fiber of (3 and four points in another fiber. The involution TB fixes 
only four points in one fiber. A special feature of the 4 dimensional family is 
that it consists of B's for which /3 has at least two I2 fibers. This translates 
into a special position requirement on the nine points in P2. Another special 
feature of the 4 dimensional family is seen in the double cover realization of 
B where the quotient £/(-!) becomes FQ = P1 x P1 instead of F2- 

In the next several sections we will describe the structure of the ratio- 
nal elliptic surfaces that admit additional involutions. This rather extensive 
geometric analysis is ultimately distilled into a fairly simple synthetic con- 
struction of our surfaces which is explained in section 4.3. The impatient 
reader who is interested only in the end result of the construction and wants 
to avoid the tedious geometric details is advised to skip directly to section 
4.3. 
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3.1    Types of involutions on a rational elliptic surfaces 

Consider a smooth rational elliptic surface B    ^P1  with a fixed section. 
e 

For any automorphism TB ofB we have T^KB = KB- Since Kg1 = /3*Opi(l) 
this implies that TB induces an automorphism rpi : P1 —^ P1. If TB is an 
involution we have two possibilities: either rpi = idpi or rpi is an involution 
ofP1. 

Both of these cases occur and lead to Calabi-Yau manifolds with freely 
acting involutions. For concreteness here we only treat the case when rpi 
is an involution. The case rpi = idpi can be analyzed easily in a similar 
fashion. 

If rpi is an involution, then rpi will have two fixed points on P1 which 
we will denote by 0, oo G P1. Note that every involution on P1 is uniquely 
determined by its fixed points and so specifying rpi is equivalent to specifying 
the points 0,oo G P1. Next we classify the types of involutions on B that 
lift a given involution rpi. 

Lemma 3.1. Let (3 : B —>► P1 be a rational elliptic surface and let rpi : P1 -> 
P1 be a fixed involution.  There is a canonical bisection 

f Pairs (aBiQ consisting of: 

{Involutions TB • B —> B, satis A 
\fyin9 Triof3 = f3oTB. j 

<-> < 

• An involution as : B -> 
B, satisfying rpi o (3 = 
(3 o as which leaves the 
zero section invariant, i.e. 

• A section ^ of (3 satisfying 

«B(C) = (-I)B(C)- 

Proof.  Let TB : B —> B be such that TFI o (3 = (3 o TB- Put (" = r#(e) for 
the image of the zero section under TB and let OLB = t-c, 0 TB- 

Then OLB is an automorphism of B which induces rpi on P1 and preserves 
the zero section e C B. So a^ : B —> B will be an automorphism of B which 
acts trivially on P1. But 

where r*/Ipl : Pic0(S/P1) -4 Pic0(S/P1) is the involution on the relative 

Picard scheme induced from TB> In particular we have that a2
B must be a 
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translation by a section. Indeed we have 

(3.1) a2
B = t-C OTBOTBO t    *-i fC) = t,*-i,Cy 

Combined with the fact that a^ preserves e (3.1) implies that otg = id^. On 
the other hand, if we use the zero section e to identify Pic0(S/P1) —> P1 with 
I3*:B#-+F1, then r*/pl = aB. Indeed, let f G Pic^JS/P1) and let x E P1 

be the projection of the point £. Let fxcBbe the fiber of/? over x. Denote 
by m^ G fx the unique smooth point in fx for which 0/^ (m^) = i®Ofx {e(x)). 
Then by definition T^(^) is a line bundle of degree zero on fx such that 

Ofx{TB{mt)) =TBZ®Ofx{TB{e{x)))=TBZ®OfM*))- 

In other words under the identification of Y\(P{fx) with the smooth locus of 
fx via e{x) the line bundle r^^ —>» /^ corresponds to the unique point p^ of 
fx such that 

^(Pf) = 0/x(TB(m{)) ® 0/x(e(a;) - C(x)). 

But the right hand side of this identity equals Ofx{aB{rn^)) by definition 
and so p^ — asirn^). 

Combined with the identity (3.1) and the fact that t : MW(B) -» Aut(S) 
is injective this yields 

MO = (-i)fl(O- 

Conversely, given a pair (ctBiC) we se^ rB — ^C 0 aB' Clearly TB is an 
automorphism of B which induces Tpi on P1. Furthermore we calculate 
T

B 
= t( 0 aB 0 t( o as = t^ o as 0 dB 0 t-( — id^- The lemma is proven.   □ 

The above lemma implies that in order to understand all involutions TB it 
suffices to understand all pairs (asX)- Since the involutions as stabilize e 
it follows that as will have to necessarily act on the Weierstrass model of 
B. In the next section we analyze this action in more detail. 

3.2    The Weierstrass model of B 

Let as before rpi : P1 —> P1 be an involution and let (to : ti) be homogeneous 
coordinates on P1 such that Tpi((£o : ^i)) = (to '- —ti) and 0 = (1 : 0) and 
oo = (0 : 1). Since to and *i are a basis of jff^P1, Opi(l)) and since Of>i(l) 
is generated by global sections we can lift the action of rFi to 0^i(l). For 
concreteness choose the lift to ^ to, h *-> —ti.   Since H0(Fl,OFi(k)) — 
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SkH0(F1,OFi{l)) we get a lift of the action of rPi to the line bundles 0Fi(k) 
for all k. We will call this action the standard action of rpi on 0Fi(k). 
Via the standard action the involution rpi acts also on the vector bundle 
C?pi © Of i(2) © C?pi(3) and hence we get a standard lift rp : P —>• P of rpi 
satisfying r^Op(l) = Op{l). 

Assume that we are given an involution og : B —> B which induces rpi 
on P1 and preserves the section e. We have the following 

Lemma 3.2.      (i)  There exists a unique involution awp ' Wp —> Wp such 
that the natural map v : B —> Wp satisfies awp ° v = v o ap- 

(ii) Let W C P be a Weierstrass rational elliptic surface. Then the invo- 
lution rpi lifts to an involution on W which preserves the zero section 
if and only if rp(W) = W. 

(iii) // w : Wp —> P1 is not isotrivial, then awp is either rp^ or rp|W/3 o 

(-1)w/3- 

Proof. Since a^(Oj5(e)) = OB{G), there exists an involution on the 
total space of the bundle (9p(e) which acts linearly on the fibers and induces 
the involution ap on B. Indeed - the square 7 o 0^7 of the isomorphism 
7 : a^(Op(e)):::>:Op(e) is a bundle automorphism of Op^) (acting trivially 
on the base) and so is given by multiplication by some non-zero complex 
number A G C. Rescaling the isomorphism 7 by VA-1 then gives the desired 
lift. 

In this way the involution ap induces an involution on Oe(—e) = Opi(l) 
which lifts the action of rpi. Let us normalize the lift of ap to Op(e) so 
that the induced action on Oe(—e) = Opi(l) coincides with the standard 
action of rpi. Thus the Weierstrass model Wp C P must be stable under 
the corresponding rp and the restriction of rp to Wp is an involution that 
preserves the zero section of w and induces rpi on the base. By construction 
rp^ coincides with the involution induced from ap up to a composition 
with (—l)wp' This finishes the proof of the lemma. □ 

We are now ready to construct the Weierstrass models of all surfaces B 
that admit an involution ap. Similarly to the proof of Lemma 3.2, the fact 
that TpOp(l) = Op(l) implies that the action of rp can be lifted to an 
action on Op(l). Since there are two possible such lifts and they differ by 
multiplication by ±1 G Cx we can use the identification C>p(l)|p = Op(3e) 
to choose the unique lift that will induce the standard action of rpi on 
C7pi(3) = Oe(—3e). With these choices we define an action 

rf, : H0(P,Op(r) ®p*Op(s)) -> H0(P,Op(r) ®p*Op(s)) 
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of rp on the global sections of any line bundle on P. Note that by construc- 
tion we have TpX = rr, Tpy = y and TpZ = z. 

Consider the general equation of the Weierstrass model Wp of B: 

(3.2) y2z = x3 + (p*g2)xz2 + (p¥gs)z3. 

Here 52 G H0{OFi{4)) and 33 € iJ0(OPi(6)). The fact Wp C P is stable 
under rp implies that the image of the Weierstrass equation (3.2) under Tp 
must be a proportional Weierstrass equation. In particular we ought to have 
Tpi02 = 02 and r^gs = 33. 

Conversely, for any #2 € iJ0(C?pi(4)) and 33 G if0(OPi(6)) which are 
invariant for the standard action of rpi it follows that rp will preserve the 
Weierstrass surface W given by the equation (3.2). Note that for a generic 
choice of ^2 and #3 the surface W will be smooth and so B = W, CXB = Tp\w. 
When W is singular, the surface B is the minimal resolution of singularities of 
W and hence aw — Tp\w determines uniquely ap by the universal property 
of the minimal resolution. 

Next we describe the fixed locus of dp- Note that since ap induces rPi 
on P1 the fixed points of ap will necessarily sit over the two fixed points of 
rpi. So in order to understand the fixed locus of ap it suffices to understand 
the action of ap on the two o^-stable fibers of (3 - namely /o = ^~1(0) and 
/00 = i9-1(oo). 

Lemma 3.3. Let ap be the involution on B induced from TP\WB (wtth the 
above normalizations). Then ap fixes /o pointwise and has four isolated 
fixed points on f^, namely the points of order two. 

Proof. The curve /o is a smooth cubic in the projective plane 

Po=P(0oe0(2)o®0(3)o), 

Where C?(A;)o denotes the fiber of the line bundle C?pi(A;) at the point 0 G 
P1. Note that 1, to(0)2 and to(0)3 span the lines OQ, O(2)o and 0(3)o 
respectively and so rpi acts trivially on those lines via its standard action. 
So if we identify those lines with C via the basis 1, £o(0)2 and ^o(O)3, then 
XQ := £|p0, Yo :— y\PQ and ZQ := z\pQ become identified with sections of the 
line bundle 0po(l) and can be used as homogeneous coordinates on PQ in 

which Tp|p0 : PQ -> PQ is given by (XQ : YQ • ^0) ^ (-X"o '.YQ \ ZQ). In other 
words Tp|p0 acts as the identity on PQ and hence ap preserves pointwise the 
cubic 

/o  :     Y^Zv = Xl + 0,(1 : 0)XoZ0
2 + 53(1 : 0)Z0

3     C B. 
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In a similar fashion f^ is a cubic in the projective plane 

Poo = F(Ooo e 0(2)00 e 0(3)00). 

In this case the lines Ooo 0(2)00 and 0(3)oo have frames 1, tf and if respec- 
tively and so rpi acts trivially on OOQ and 0(2)oo and by multiplication by —1 
on 0(3)00- This means that if we use these frames to identify O005 0(2)00 and 
0(3)00 with C we get projective coordinates XQO := ^{p^-) Yoo '-— UlP^ and 
^00 := ^p^ in which rp^^ acts as (Xoo : 1^ : ZQO) \-> (Xoo : -1^ : Z^) 
and /oo has equation 

Y^Z^ = X3
oo+g2(0 : 1)X00Z

2
00+g3(0 : 1)ZS

0 

In other words ctBlfoo — (""1)B|/OO 
an^ so aB has four isolated fixed points 

on /oo coinciding with the points of order two on /oo- a 

Note that if we consider the involution Q>B 
0 (—1)B instead of as we will get 

the same distribution of fixed points with /o and /^ switched, i.e. we will 
get four isolated fixed points on /o and a trivial action on /QQ. 

3.3    The quotient B/aB. 

Let /3 : B —>• P1 be a rational elliptic surface whose Weierstrass model is 

given by (3.2), with 52 G ir0(OIpi(4)) and 53 G iI0(C}pi(6)) being invariant 
for the standard action of rpi. For the time being we will assume that #2 
and #3 are chosen generically so that B = W is smooth and /? has twelve Ii 
fibers necessarily permuted by rpi. 

We have a commutative diagram 

B ^ B/CLB 

sq 

where sq : IP1 —> P1 is the squaring map (to : ti) H-> (*§ : *i)- 

Now by the analysis of the fixed points of a.g above we have that B/aB —> 
P1 is a genus one fibration which has six Ii fibers. Furthermore we saw that 
the only singularities of B/OLB are four singular points of type Ai sitting on 
the fiber over 00 = (0 : 1) E P1. 
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Lemma 3.4. Assume that B is Weierstrass. 

(i) The minimal resolution B/as of B/as is a rational elliptic surface 
with a 6/1 + IQ configuration of singular fibers and B/as —>• IP1 is its 
Weierstrass model. 

(ii) The surface B is the unique double cover of B/as whose branch locus 

consists of the fiber of B/as —> P1 over 0 = (1 : 0) G P1 and the four 

singular points ofB/as- 

Proof. By construction B/otB -> P1 is a genus one fibered surface with 
seven singular fibers - six fibers of type Ii (i.e. the images of the twelve Ii 
fibers of /3 under the quotient map B —> B/OLB) and one JQ fiber (i.e. the 

fiber of B/OLB —> P1 over 00 E P1). Moreover since the section e : P1 —> B is 
stable under CZB we see that e(P1)/aJB C B/OLB will again be a section of the 
genus one fibration that passes through one of the singular points. So the 

proper transform of e(P1)/ajB in B/OLB will be a section of BJOLB —> P1 which 
intersects the Ifi fiber at a point on one of the four non-multiple components. 
□ 

In fact the quotient B —>• B/as can be constructed directly as a double 
cover of the quadric Q = FQ = P1 x P1. In particular this gives a geometric 
construction of B as an iterated double cover of Q. 

Lemma 3.5. Every rational elliptic surface with 6/1 + 1Q configuration of 
singular fibers can be obtained as a minimal resolution of a double cover of 
the quadric Q branched along a curve M E (9Q(2,4) which splits as a union 

of two curves of bidegrees (1,4) and (1,0) respectively. 

Proof. Indeed consider a curve T C Q of bidegree (1,4) and a ruling 
r C Q of type (1,0). Assume for simplicity that T is smooth and that T 
and r intersect transversally. The double cover WM of Q branched along 
M :=TUr is singular at the ramification points sitting over the four points 
in Tflr. The curve T is of genus zero and so for a general T the four sheeted 
covering map pi\T : T —> P1 will have six simple ramification points. Thus 

WM -> Q ^ P1 

has six singular fibers of type Ii and one fiber passing trough the four sin- 

gularities of WM- 
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Let s C Q be any ruling of type (0,1) that passes trough one of the points 
in Tflr. Then s intersects M at one double point and so the preimage of s in 
WM splits into two sections of the elliptic fibration WM —> P1 that intersect 
at one of the singular points of WM- This implies (as promised) that the 
minimal resolution WM of WM is a rational elliptic surface of type 6/i + IQ 

and that WM is its Weierstrass form. 

Alternatively we can construct WM as follows. Label the four points in 
Tflr as {Pi, P2, P3, P4}. Consider the blow-up </>: Q —>• Q of Q at the points 
{Pi,P2,P3,P4} and let T and f be the proper transforms of T and r under 
</>. We have 

0$(T + r) = (t)*0Q(T + r)®0$l-2Y,El 
i=i 

where Ei C Q is the exceptional divisor corresponding to the point P^. This 
shows that the line bundle OQ(T + f) is uniquely divisible by two in Pic(Q) 

and so we may consider the double cover of Q branched along T + f. Since 
each of the rational curves Ei intersects the branch divisor T U f at exactly 
two points it follows that the preimage Di of Ei in the double cover of Q is a 
smooth rational curve of self-intersection —2. But if we contract the curves 
Di we will obtain a surface with four Ai singularities which doubly covers 
Q with branching along M = T U r, i.e. we will get the surface WM- In 
other words the double cover of (^branched along T + r must be the surface 
WM- Let ip : WM -> Q and -0 : WM —> Q denote the covering maps and let 
(j) : WM —>• WM be the blow-up that resolves the singularities of WM- Hence 
the elliptic fibrations on WM and WM are given by the composition maps 
UJ := p1 o i/j : WM —> IP1 and u := pi o -0 o </> : WM —>• P1 respectively. 

Finally to write WM as a quotient WM = B/as (respectively WM as a 

quotient WM — B/as we proceed as follows. If there exists a Weierstrass 
rational elliptic surface /3 : B —>> P1 so that WM — B/aB, then K : B —> WM 

will be the unique double cover of WM branched along the fiber (WM)O " 
a;_1(0) and at the four singular points of WM- In view of the universal 
property of the blow-up we may instead consider the unique double cover 
K : B -» WM which is branched along the divisor (WM)O + Y^t=i ^i- To 
see that such a cover exists observe that a;-1 (00) is a Kodaira fiber of type 
JQ and we have c2;~1(oo) = 2V + J2t=i A, where 2V = ^*(r) is the double 
component of u"1 (00). This yields 
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0WM UWM^ + ^DA =^OP1(2)®0WM(-2V) 

and so O^ {(WM)O + YA=I Di) is divisible by two in PIC^M)- But from 

the construction of WM it follows immediately that TTI^M) = 0 and so 
Y\C(WM) is torsion-free. Due to this there is a unique square root of the line 

bundle O^ ((WM)O + Zl^i A) and we get a unique root cover k : B —> Q 
as desired. 

Let Di C B denote the component of the ramification divisor of k which 
maps to Di. Note that each Di is a smooth rational curve and that since 
k*Di = 2Di we have 

A-A = i«*(z>t
?) = ^2-A? = ^2-(-2) = 

Therefore we can contract the disjoint (—1) curves {bi}j=l to obtain a 
smooth surface B which covers WM two to one with branching exactly along 
(WM)O and the the four singular points of WM- If we now denote the covering 

involution of K : B —>• WM by as we have WM = B/as and WM = B/as- 
This construction is clearly invertible, so the lemma a is proven. □ 

Corollary 3.6. All rational elliptic surfaces (3 : B —> P1 which admit an 
involution OLB, which preserves the zero section e of (3 and induces an invo- 
lution on P1, form a five dimensional irreducible family. 

Proof. According to lemma 3.5 every such surface B determines and is 
determined by the curve M = TUr C Q and by the choice of a smooth fiber 
(WM)O of WM- The curve M depends on dim|0Q(l,4)| + dim|(9g(l,0)| - 
dimAut(Q) = 9 + 1 — 6 = 4 parameters. Adding one more parameter for 
the choice of {WM)O we obtain the statement of the corollary. □ 
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It is convenient to assemble all the surfaces and maps described above in the 
following commutative diagram: 

where the maps </>, (/) and e are blow-ups. The maps ip, -0, K and k are double 
covers and a;, a), /? and $ are elliptic fibrations. 

Now we are ready to look for the involutions TB- 

Let B and as be as in the previous section. As explained in Section 3.1, 
in order to describe all possible involutions TB we need to describe all sections 
C : P1 -> B such that o^C = (-I)BC- 

Remark 3.7. The existence of such a section £ can be shown by solving an 
equation in the group MW. For this, observe that since as preserves the 
fibers of /3 it must send a section to a section. Thus as induces a bisection 

—> MW; which is uniquely characterized by the property 

ci(aMw ([£])) = OB{OLB{0)' 

Also, by the definition of {—1)B we know that ci(—[£]) = (—!)#(£) and hence 
we need to show the existence of a section £, such that aMw([C]) — ~ [C]- 

The first step is to observe that since the isomorphism r^B^B preserves 
the group structure on the fibers, the induced bijection amw on sections is 
actually a group automorphism. 

Next note that for the general B in the five dimensional family from 
Corollary 3.6, the lattice T has rank two since the general such B has only 
singular fibers of type Ii and so T = Ze 0 Zf. Moreover aB\T — 1(

^TJ 
and 

so the space of anti-invariants of a*B acting on P\c(B) ® Q injects into the 
space of anti-invariants o/aMw- But in Section 3.3 we showed that B/OLB is 
again a rational elliptic surface which has four Ai singularities. In particular 
rk(Pic(jB/a_e)) = 6 and so there is a 4-dimensional space of anti-invariants 
for the a*B action on Pic(J5) ® Q. 
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This implies that CXMW has a 4 dimensional space of anti-invariants on 
MW ® Q and hence we can find a section ( ^ e with aMw([C]) — ~[C]- 
The involution TB corresponding to {ctBiO W

^ have only four isolated fixed 
points. 

4    The four dimensional subfamily of special ratio- 
nal elliptic surfaces 

From now on we will restrict our attention to a 4-dimensional subfamily of 
the 5-dimensional family of surfaces of Corollary 3.6. We do this for two 
reasons: 

• Mathematically, this seems to be the simplest family where the full 
range of possible behavior of the spectral involution T = FM~1 or^o 
FM is present, see Proposition 7.1. Indeed, for a generic surface in 
the five dimensional family, T takes line bundles to line bundles, so 
everything can be rephrased without the use of the derived category. 

• In terms of our motivation from the physics, this specialization is 
needed for the construction of the Standard Model bundles. By taking 
fiber products of surfaces from the five dimensional family one indeed 
gets a smooth Calabi-Yau with a freely acting involution. However, 
it turns out that for a generic such B, the cohomology of the result- 
ing Calabi-Yau is not rich enough to lead to invariant vector bundles 
satisfying the Chern class constraints from [DOPWa]. 

4.1    The quotient B/TB 

The starting point of the construction of the four dimensional family is 
the following simple observation: since ( must satisfy a*B(() = (—l)^(C) it 
will help to work with rational elliptic surfaces B for which we know the 
geometric relationship between the two involutions as and (—1)^. In the 
previous section we interpreted the involution as as the covering involution 
of the map K. On the other hand the involution (—1)B was the group 
inversion along the fibers of /3 corresponding to a zero section e : P1 -> B 
which was chosen to be one of the two components of the preimage in B of a 
ruling of type (0,1) in Q which passes trough one of the four points in T Pi r. 
Since in this setup the involutions as and (—!)# are generically unrelated it 
is natural to look for a special configuration of the curves T and r for which 
(—!)# can be related to the maps K, and ip. 
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Lemma 4.1. Consider the family of rational elliptic surfaces B obtained as 
an iterated double cover B —> WM —> Q for which the component T of the 
branch curve M is split further into a union T = s U X where s is a ruling of 
Q of type (0,1) and X is a curve of type (1,3). Let as before e be the section 
of B mapping to s C Q.  Then we have: 

(i)   The involution (—1)^,6 is a lift of the covering involution of the double 
cover ij; : WM —>■ IP1 • 

(ii) For a general pair (B^as) corresponding to a branch curve M — s U 
X U r there exist three pairs of sections of /3 labeled by the non-trivial 
points of order two on /o and such that the two members of each pair 
are interchanged both by CXB and (—1)B- 

Proof. If the curve X is chosen to be general and smooth, then the 
branch curve M has five nodes {P,Pi,P2,P?nP4}. Here as before 
{Pi,P2,P3,P4} = T n r and the extra point P is the intersection point of 
the curves X and s. 

Let {^,^1,^25^85^4} C WM denote the corresponding singularities of 
WM- Observe that for a general choice of the curve X and the point 0 G P1 

the singularity p G WM is not contained in the branch locus (WM)O U 
{PI5P25P35P4} of the map K. In particular the double cover of WM branched 
along (WM)OU{PI,P2JP3JP4} will have two Ai singularities at the two preim- 
ages pi and P2 of the point p. In order to get a smooth rational elliptic surface 
we have to to blow up this two points. Abusing slightly the notation we will 
denote by B the resulting smooth surface and by K : B —> WM the com- 
position of the blow-up map with the double cover of WM branched along 
(W

/
M)O U {^15^25^35^4}- Let ni,n2 C B denote the exceptional curves cor- 

responding to pi and P2 and let 01,02 denote proper transforms in B of the 
two preimages of the fiber LJ~

1
(U(P)) in the double cover of WM branched 

along (WrM)oU{pi,p25^35^4}- Here we have labeled 01 and 02 so that pi G 01 
and P2 G 02. From this picture it is clear that (3 : B -> P1 is a smooth ratio- 
nal elliptic surface with a 8/1 + 212 configuration of singular fibers which is 
symmetric with respect to the involution rpi. 
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Furthermore the two 1% fibers of /3 are just the curves 01 U ni and 02 U122 

and the two fixed points {0,00} of rpi correspond to two smooth fibers /o 
and foo of p. Note also that the proper transform of the section s C Q via 
the generically finite map i/; o « : S -> Q is an irreducible rational curve 
e C B which is a section of /3 : i? —> P1. Moreover the inversion (—l)s with 
respect to e commutes with the covering involution as for the map K and 

descends to an inversion {—1)WM 
along ^e fibers of the elliptic fibration 

(jj : WM -^ P1 which fixes the image of e pointwise. But by construction the 
image of e in WM is just the component of the ramification divisor of the 
cover ip : WM -± Q sitting over s C Q. In particular (—l)wM is just the 
covering involution for the map ip. 

We are now ready to construct a section ( : P1 —>> B of (3 satisfying 

0^(0 = (—1)B(0' Indeed, assume that such a section exists. 

Due to the fact that aj5|/0 = id/0 we have ((0) = — £(0) i.e. £(0) is a 
point of order two on /Q. NOW from the Weierstrass equation (3.2) of B it 
is clear that the general B cannot have monodromy To (2) and so without 

a loss of generality we may assume that C ¥" ~C — aB^- Consider now the 
image K(() C WM = B/as of ( in WM- We have ^(^(Q) = £ U a*B(. On 
the other hand the preimage of the general elliptic fiber of LJ : WM —> P1 via 
K splits as a disjoint union of two fibers of jS and so o^l/o = id/0 we have 
C(0) = —C(0) i.e. £(0) is a point of order two on /Q. Consider now the image 

«(C) C WM = 5/aB of C in WM- We have /c"1^^)) = C U a*B(. On the 
other hand the preimage of the general elliptic fiber of cu : WM —>• IP1 via n 
splits as a disjoint union of two fibers of /? and so 

«(C) • w-^pt) = ^«*(«(C) • oTV)) = i(C + a*C) • (2r1(pt)) = 2 

i.e. the smooth rational curve K(Q is a double section of u. Moreover 

the condition a*B( = —( combined with the property ctB\Boo = (~^^oo 
implies that (a^)C(oo) = C(00) and so the double cover UJ\K(Q ' /c(C) -> P1 

is branched exactly over the points 0, 00. Furthermore since ((0) is a point 
of order two on /o it must lie on the preimage of T in B and so the two 

ramification points of the cover w\K((;) : ft(C) ~^ IP1 must both lie on the 
ramification divisor of the double cover ^ : WM —> Q as depicted on Figure 1. 
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Figure 1: The section ( 

Also note that if we pullback to B the involution of Wu acting along 
the fibers of ^ we will get precisely (—1)^- Combined with the fact that 
a^£ = (—1)^C ^is shows that K{Q is stable under the involution of WM 

acting along the fibers of ^ and so ^~1(/0(/^(C))) — ^(0- Put Q '•— ^(^(C))- 
Then q is a smooth rational curve which intersects each of the curves T and 
r at a single point so that the double cover ipi^) : K(() —> Q is branched 
exactly at q D (T U r). So g is the unique ruling of type (0,1) on Q which 
passes trough the point ^(/^(((O))) E T fl Qo- 

Conversely if we start with any ruling q of type (0,1) that passes trough 
one of the four points in Tfl/o we see that ip~l(q) is a smooth rational curve 
which is a double cover of q with branch divisor gfl (TUr). Since the rulings 
of type (1,0) pull back to a single fiber of u; via ^ we see that 
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and so q is a double section of the elliptic fibration u : WM —^ IP1 which is 
tangent to the fibers (WM)$ and {WM)OO- Also it is clear that for T and 
r in general position the point q D r is not one of the four points in T D r 
and so the point of contact of ,0~1(<z) and (WMJOO is not one of the four 
isolated branch points of the covering K : B —¥ WM- SO 

,ip~1(q) intersects 
the branch locus of K at a single point with multiplicity two - namely the 
point of contact of (WM)O and ^~1(q)- This implies that the preimage of 
f^~l{q) in B splits into two sections of (5 that intersect at a point on the fiber 
/o and are exchanged both by as and (—1)B- The lemma is proven. □ 

Finally, let TB be the involution of B corresponding to the pair (CLBIQ 

constructed in the previous lemma. Then the quotient B /TB is again a genus 
one fibered rational surface which similarly to B/as has four Ai singularities 
all sitting on fiber over oo E P1. However B/TB has also a smooth double 
fiber and so is only genus one fibered. The minimal resolution of B/TB in 
this case has a 4/i + I2 + IQ +2^0 configuration of singular fibers. 

4.2    The basis in H2(B,Z) 

In order to describe an integral basis of the cohomology of B we need to find 
a description of our B as a blow-up of P2 in the base points of a pencil of 
cubics. 

To achieve this we will use a different fibration on j?, namely the fibration 

B *^Q-£Upi. 

induced from the projection of the quadric Q onto its second factor. The 
fibers of S can be studied directly in terms of the degree four map ipon : B -> 
Q but it is much more instructive to use instead an alternative description 
of B as a double cover of a quadric. 
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In section 4.1 we saw that the description of B as an iterated double 
cover 

B^WM^ Q 

of the quadric Q yields two commuting involutions CXB and {—1)B on B. By 
construction the quotient B/as can be identified with the blow-up of the 
rational elliptic surface WM at the Ai singularity p G WM sitting over the 
unique intersection point {P} — s fl X. In particular if we consider the Stein 
factorization of the generically finite map n : B —>» WM we get 

B -+ Wp -> WM- 

Here Wp is the Weierstrass model of (3 : B -> P1 and 5 —> Wp is the blow-up 
the two Ai singularities of Wp and the map Wp -> WM is the double cover 
branched at {WM)O U {PUP2,PS,PA}' 

Similarly we can describe the quotients B/(—1)B and B/((—1)B 
0 CXB) 

as blow-ups of appropriate double covers of Q. Indeed the curves on Q that 
play a special role in the description of B as an iterated double cover are: 
the (1,3) curve % the (0,1) ruling s and the (1,0) rulings r = Too = pj^oo) 
and ro =pjf1(0). 

Consider the double cover u' : WM' —> Q branched along the curve 
M' = TUro — .sUXUro and the double cover Sq : Q —> Q branched along 
the union of rulings ro UTOQ. Clearly Q is again a quadric which is just a the 
fiber product of pi : Q —> P1 with the squaring map sq : P1 —> P1, i.e. we 
have a fiber-square 

The preimage X := Sq""1^) C Q of X in Q is a genus two curve doubly 
covering X with branching at the six points Tfl (ro Uroo). Also, the preimage 
s = Sq~1(«s) is a rational curve doubly covering the ruling s branched at the 
two points s n (ro U roo). In particular, s is a ruling of type (0,1) on Q. 
Similarly, if we denote by ro and r^ the two components of the ramification 
divisor of Sq : Q -> Q, then fo and foo are rulings of type (1,0) on Q. 
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Now it is clear that the Weierstrass model Wp of B can be described as 
either of the following 

Wp -> WM is the double cover branched at the fiber (WM)O and the 
four points {^1,^2,^3,^4} of order two of the fiber (WM)OO' 

Wp —)► WM' is the double cover branched at the fiber (WM)OO and the 
four points of order two of the fiber (WM)O- 

Wp —> Q is the double cover branched at the curve s U Z. 

Furthermore 

The quotient B/ctB -> WM is the blow-up of WM at the Ai singularity 
p sitting over the point P E Q of intersection of s and X. The map 
B -» B/CXB is the double cover oiB/aB branched at the fiber (B/013)0 
and the four points of order two of (B/aB)oo- 

The quotient B/(aB 0 (—1)JB) -> WM* is the blow-up of WM' at the Ai 
singularity sitting over the point of intersection of s and X. The map 
B -> B/(aB o (—1)B) is the double cover of B/(aB o (-1)B) branched 
at the fiber (B/aB)oo and the four points of order two of {B/aB)o' 

• The quotient J3/{—!)# is the blow-up of Q at the two intersection 
points of s and X. The map B -> B/(—1)B is the double cover 
branched at the strict transform of s U X. 

The action of the Klein group (a^, (—1)^) on -B and all of the above 
maps are most conveniently recorded in the commutative diagram 
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(4.1) 

where the solid arrows in the first and third rows are all double covers, the 
solid arrows in the middle row are blow-ups and the dotted arrows are Stein 
factorization maps. 
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In order to visualize the system of maps (4.1) better it is instructive 
to label all the double cover maps appearing in (4.1) by a picture of their 
branch loci. This is recorded in the diagram in Figure 2. 

Figure 2: Wp as a double cover of a quadric 

There is a definite advantage in interpreting geometric questions on B or 
Wp on all three surfaces WM, WM

1
 and Q. For example, by viewing Wp 

as a double cover of the quadric Q we can easily describe the fibers of the 
rational curve fibration 5 : B -> P1 defined in the beginning of the section. 
Indeed, due to the commutativity of (4.1) the map b — p2 OI^OK decomposes 
also as 

where $2 • Q —> P1 is the projection onto the ruling of type (1,0). In 
particular we can view each fiber S~1(x) of the map 5 : B -> P1 as the 
double cover of the fiber p^" (x) of p2 : Q —» P1 branched along the degree 
two divisor Xflp^"1^) C p^ix). This shows that the singular fibers of S 
are precisely the preimages under the map B —» Q of S and of those (0,1) 
rulings of Q which happen to be tangent to the curve i. 
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Since the curve % is of type (2,3) on Q we see by adjunction that *£ 
mustjiave genus two and so by the Hurwitz formula the double cover map 
P2 : £ —> P1 will have six ramification points. This means that there are 
six rulings of Q of type (0,1) which are tangent to X, i.e. generically 5 will 
have seven singular fibers (see Figure 3). Six of those will be unions of two 
rational curves meeting at a point and the seventh one will have one rational 
component occurring with multiplicity two (the preimage in B of the strict 
transform of s in B/(-1)B) and two reduced rational components ni and 
77,2 (the exceptional divisors of the blow-up B -> Wp). Notice moreover that 
(4.1) implies that the preimage in B of the strict transform of s in B/(—1)B 

is precisely the zero section e of the elliptic fibration /? : B -> P1 and so the 
non-reduced fiber of S is just the divisor 2e + ni + n2 on B. 

IP
1 

Figure 3: The singular fibers of S 

In fact, one can describe explicitly the (0,1) rulings of Q that are tangent 
to the curve Z. Indeed let pt G ro fl % be one of the three intersection points 
of ro and X. Choose (analytic) local coordinates (sc, y) on a neighborhood 
pt G U C Q so that pt = (0,0), ro has equation x = 0 m U jmd the 
(0,1) ruling through pt G Q has equation y = 0 in U. Let U C Q be the 
preimage of U in Q. Then there are unique coordinates (u,v) on U such 
that the double cover U —> U is given by (^,t>) i->> (u2,v) = (x,y). Due to 
our genericity assumption1 the local equation of X in U will be x =J^y + 
(higher order terms) for some number a. Thus the pullback of ro to U will 
be given by u = 0 and X will have equation u2 = av + (higher order terms). 
Since by construction v — 0 is the local equation of a (0,1) ruling of Q it 
follows that X is tangent to the three (0,1) rulings of Q passing through the 
three intersection points in Xnfo. In the same way one sees that X is tangent 
to the three (0,1) rulings of Q passing through the three intersection points 
in XDroo. This accounts for all six (0,1) rulings of Q that are tangent to X. 

1We are assuming that T meets ro and 7*00 transversally. 
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We are now ready to describe B as the blow-up of P2 at the base locus 
of a pencil of cubics. Each component of a reduced singular fiber of 5 is 
a curve of self-intersection (—1) on B. For every such fiber choose one of 
the components and label it by e^, i = 1,2,... ,6 (see Figure 3). Now 
e, ei, 62, • • • , ee is a collection of seven disjoint (—1) curves on the rational 
elliptic surface B. The curves rti and n2 are rational (—2) curves on B 
and so if we contract e each of them will become a (—1) curve. So if we 
contract e, ei, 62,... , e^ and after that we contract ni we will end up with 
a Hirzebruch surface. Moreover numerically e, e + ni, ei, 62,... ,66 behave 
like eight disjoint (—1) curves on B and so the result of the contraction of 
e, ni, ei, 62, ■ • • , ^e should be Fi. Contracting the infinity section of Fi we 
will finally obtain P2 as the blow down of nine (—1) divisors on B. Let 67 
denote the infinity section of Fi. To make things explicit let us identify 67 as 
a curve coming from Q. Denote by e C Q the image of 67 in Q. Then e is an 
irreducible curve which intersects the generic (0,1) ruling at one point. This 
implies that e is of type (!,&) on Q and so e must be a rational curve. In 
particular the map 67 —>> e ought to be an isomorphism and 67 U (—1)^(67) 
is the preimage in B of the strict transform of e in B/(—1)^. Equivalently 
67 U (—1)^(67) is the strict transform in B of the preimage of e in Wp. This 
implies that the preimage of e in Wp is reducible and so e must have order 
of contact two with the branch divisor sUZ of the covering Wp —> Q at each 
point where e and s U % meet. Since e • s = (!,&)■ (0,1) = 1 this implies 
that e must pass through one of the two intersection points of 5 fl X and be 
tangent to T at (e ■ % — l)/2 points. But 

e-5-l_(l,fc)-(2,3)-l _,. , , 
_^— - 2 ~k + 1 

and so 67 • (—1)^67 = k + 1. From here we can calculate k. Indeed, on one 
hand we know that e2 = — 1 and so 

(67 + (-l)Be7)2 = -2 + 2 + 2k = 2k. 

On the other hand 67 + (—1)^67 is the preimage in B of the strict transform 
of e in B/(—1)B' But B/(—1)B is simply the blow-up of Q at the two 
intersection points of s and X and e passes trough only one of those points 
and so the strict transform of e in B/(—1)B has self-intersection e2 — 1. In 
other words 

(67 + (-l)^)2 = 2(e2 - 1) = 2(2k - 1) = 4A; - 2, 

and so k = 1. 
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Therefore, in order to reconstruct 67 starting from Q we need to find a 
(1,1) curvej on Q which passes through one of the two points in s D X and 
tangent to X at two extra points. But curves like that always exist. Indeed, 
the linear system |C?g(l, 1)| embeds Q in P3.  Pick a point J G s D X and 

let j : Q —> F2 be the linear projection of Q from that point. Now the 
(1, l)-curves passing through J are precisely the preimages via j of all lines 
in P2 and so the curve £ will be just the preimage under j of a line in P2 

which is bitangent to j(X). To understand better the curve ^(X) C P2 note 
that it has degree (1,1) • (2,3) — 1 = 4 and that the map j : X -> ^(X) is 
a birational morphism. Furthermore any (1, l)-curve passing trough J and 
another point on the (1,0) ruling through J will have to contain the whole 
(1,0) ruling. Since the (1,0) ruling trough J intersects X at J and two extra 
pointsJ' and J", it follows that j(Jf) — 3{J")- Therefore ^(X) is a nodal 
quartic in P2 and the curve e C Q corresponds to a bitangent line of this 
nodal quartic. The normalization of this nodal quartic is just the genus two 
curve X and the lines in P2 correspond just to sections in the canonical class 
CJJ that have poles at the two preimages of the node. But a linear system of 
degree 4 on a genus two curve is always two dimensional and so the space 
of lines in P2 is canonically isomorphic with 1^(7' -f J")\' In other words, 

finding the bitangent lines to j(i) in P2 is equivalent to finding all divisors 
in |a;^( J' + J")! of the form 2V where V is an effective divisor of degree two 

on X. Since every degree two line bundle on a genus two curve is effective 
we see that finding e just amounts to choosing a non-trivial square root of 
the degree four line bundle a;j(J1 + J"). 

Going back to the description of B as the blow-up of P2 at the base points 
of a pencil of cubics assume for concreteness that J is the point in s fl X 
corresponding to the exceptional curve niC. B. Let e C Q be a (1,1) curve 
which passes trough J and is bitangent to X at two extra points. Let ej C B 
be one of the components of the preimage in B of the strict transform of 
67 in B/(—1)B- Label by ei,... ,65 the components of the reduced singular 
fibers of 5 : B —> P1 which do not intersect 67. Then ei,... ,66 and e and 67 
are disjoint (—1) curves on B. After contracting these eight curves and the 
image of the curve ni we will get a P2. 

Let c : B —> P2 denote this contraction map and let £ = c*(9p2(l) be the 
pullback of the class of a line via c. Thus Pic(B) is generated over Z by the 
classes of the curves £, ei,... , ee, e, 67 and ni- In particular, if we put 
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eg := e 
es := e + ni 

we see that 

with I2 = 1, £ • ei = 0 and ei • ej = —Sij. 

Note that in this basis we have 

m = eg - eg 

(4.2) ox = / - e8 + e9 

^2 = £ - e7 - es - eg 

02 = 2£ — 61 — 62 — 63 — 64 — 65 — 65. 

4.3    A synthetic construction 

Before we proceed with the calculation of the action of TB on H2(B^Z) it 
will be helpful to analyze how the surface B and the map c : B -> P2 can be 
reconstructed synthetically from geometric data on F2. 

First we will need a general lemma describing a birational involution of 
P2 fixing some smooth cubic pointwise. 
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Lemma 4.2. Let T C P2 be a smooth cubic and let b G F. There exists a 
unique birational involution a : P2 — •> P2 which preserves the general line 
through b and fixes the general point of T. Let 61, 625 ^3 5 ^4 £ T 6e tte /cmr 
ramification points for the linear projection of T from b.  Then 

(i) a sends a general line to a cubic which is nodal at b and passes through 
the bi 7s. 

(ii) a sends the net of conies through 61,62,63 to the net of cubics that are 
nodal at 64 and pass through 6, 61,62, 63. 

Proof. Let a : P2 —> P2 be a birational involution which fixes the 
general point of the cubic F and preserves the general line through 6 E F. 
If 6 £ L C P2 is a general line, then L fl F consists of three distinct points 
{6, 0^, OO^}. Since a preserves L it follows that a^ is a birational involution 
of L which fixes the points 0^ and oc^- But any birational involution of P1 is 
biregular, has exactly two fixed points and is uniquely determined by its fixed 
points. Thus the restriction of a on the generic line through 6 is uniquely 
determined and so there can be at most one such a. Conversely we can 
use this uniqueness to show the existence of a. Indeed, choose coordinates 
(x : y : z) in P2 so that 6 = (0 : 0 : 1) and F is given by the equation 
F(x,y,z) — 0 with F a homogeneous cubic polynomial. Since b £ F we can 
write F = Fiz2 + F2Z + F3 with F^ a homogeneous polynomial in (x,y) of 
degree d. Let (x : y : z) be a point in P2 and let L = {(x : y : z + t)}teFl 

be the line through 6 and (x : y : z). The involution a^ will have to fix the 
two additional (besides 6) intersection points of L and F. The values of t 
corresponding to these points are just the roots of the equation F(x,y,z + 
t) = 0, that is the solutions to 

(4.3) Fi (z, y)t2 + Fz (x, y, z)t + F{x, y, z) = 0. 

On the other hand since t is the affine coordinate on L the involution a\L : 
P1 —)> P1 will be given by a fractional linear transformation 

at + b 

ct + d 

for some complex numbers a, 6, c and d. The condition that a^ / idz, but 
a?L = id^ is equivalent to d = —a. 
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In these terms the fixed points of a^ correspond to the values of t for 
which 

(4.4) ct2 -2at-b = 0. 

Comparing (4.3) with (4.4) we conclude that a = -(l/2)Fz(x,y,z), b = 
—F(x,y,z) and c = Fi(x,y) and so 

„ ,  .»      f Fz(x,y,z)t + 2F{x,y,z) 
a\L((x :y:z + t))=[x:y:z- 

2F1(x,y)t + Fz{x,y,z) 

In particular for t = 0 we must have 

(4.5) a((x :y:z)) = alL((x : y : z)) = (x : y : , - 2^^) • 

Now the formula (4.5) clearly defines a birational automorphism a of P2 and 
it is straightforward to check that a2 = idF2. This shows the existence and 
uniqueness of a. 

To prove the remaining statements note that the a that we have just de- 
fined lifts to a biregular involution a on the blow-up g : P2 -> P2 of P2 at the 
points 6,61,62,63,64. Let E, Si, £2, ^XU C P2 denote the corresponding 
exceptional divisors and let £ = g*Of 2(1) be the class of a line. By definition 
a preserves the general line through 6 and the cubic F. Hence a will preserve 
the proper transforms of F and the general line through 6, i.e. 

a{£ - E) = I - S 

a I U - E - ^ Ei ] = 3£ - E - ^ E*. 
V i=l      / i=l 

Also it is clear (e.g. from (4.5)) that a identifies the proper transform of the 
line through 6 and bi with E^ and so 

d(Ei)=^-S-Si 

for z = 1,2, 3,4. Therefore we get two equations for &.{£) and a(E): 
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a{£) - d(S) = £ - S 
4 

3a(^) - a(S) = 7^ - 5S - 2 J^ S^, 
2=1 

which yield d(£) = U - 2S - X)-=i 2* and d(S) = 2^ - E - ]£-=i S^. 

If now L is a line not passing through any of the points 6,6i, 62? ^ ^4 we 

see that the proper transform L of L in IP2 is an irreducible curve such that 
a(L) is in the linear system |3£ — 22 — ^=1 Si|. In particular a(L) intersects 
S at two points and intersects each S^ at a point. So OL{L) = <7(a(L)) is a 
cubic which is nodal at b and passes through each of the fe^'s. This proves 
part (i) of the lemma. 

Similarly if C is a conic through 61, 62 and 63, then C is an irreducible 
curve in the linear system \2t — Si — S2 — S3I on P2. Hence (i(C) is an 
irreducible curve in the linear system \M — S — Si — S2 — S3 — 2S4I and so 
a(C) = 5(a(Cf)) is a cubic passing through 6, 61,625 ^3 which is nodal at 64. 
The lemma is proven. □ 

For our synthetic construction of B we will start with a nodal cubic 
Fi C P2 and will denote its node by A$ E Ti. Pick four other points on 
Fi and label them Ai, A2, A3, A?. For generic such choices there is a unique 
smooth cubic F which passes through the points Ai, A2, A3, A^^As and is 
tangent to the line (AjAi) at the point Ai for i = 1,2,3 and 8. Consider 
the pencil of cubics spanned by F and Fi. All cubics in this pencil pass 
through Ai, A2, A3, A7, As and are tangent to F at Ag. Let A4,A5,A6 be 
the remaining three base points. Each cubic in the pencil intersects the line 
N2 '.= (AyAg) in the same divisor A7 + 2As G Div(iV2). Therefore there is a 
reducible cubic r2 = N2 U O2 in the pencil. Generically O2 will be a smooth 
conic as depicted on Figure 4. 
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Figure 4: The pencil of cubics determining B 

By Lemma 4.2 there is a birational involution a of P2 corresponding 
to F with b = Aj. Note that by construction bi = Ai for i = 1,2,3 and 
64 = Ag. By Lemma 4.2(ii) we know that a(02) is a nodal cubic with a 
node at As which passes through Ai,A2,A$ and Aj. Since the involution 
a fixes ^4,^5,^6 £ F it also follows that a(02) contains 744,^5,^6. The 
intersection number a(02) with Fi is therefore at least 6 + 2 • 2 = 10 and so 
^{02) = Fi. Moreover a collapses iV2 to A$. This shows that a preserves 
the pencil. 

We define B to be the blow-up of IP2 at the points A;, i = 1,... ,8 
and the point Ag which is infinitesimally near to As and corresponds to the 
tangent direction N2. The pencil of cubics becomes the anticanonical map 
(3 : B —>> F1. The reducible fibers are fi = n^Uo^, i = 1,2 where n2,02 are the 
proper transforms of ^2, O2, 01 is the proper transform of Fi and ni is the 
proper transform of the exceptional divisor corresponding to Ag. In order 
to conform with the notation in Section 2 we denote by ei for i — 1,... , 7 
and 9 the exceptional divisors corresponding to A^ i = 1,... ,7 and 9 and 
by eg the reducible divisor eg + ni. 

The involution a : P2 — -> P2 lifts to a biregular involution 0*3 - B -> B. 
The induced involution rpi of P1 has two fixed points 0, 00 G P1. One of 
them, say 0, will be the image /3(r). We will use eg as the zero section 
e : P1 -» B.  Note that (—1)^6; = a*Bei for i = 1,2,3 and so we can take 
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5    Action on cohomology 

First we describe the action of the automorphisms (—1)#, a^, t^ and rg on 

5.1     Action of (—1)B 

From the discussion in section .4.2 it is clear that (—1)B preserves the fibers 
of 5 : B —> P1 and exchanges the two components of the six singular fibers of 
8 which are unions of two rational curves meeting at a point. Furthermore 
from the description of B as a blow-up of P2 at nine points (see section 4.2) 
it follows that the class of the fiber of 8 is l — ej. Hence (—l)^^ —ey) = l — e? 
and (—l)B{ei)+ei — ^—ej for i = 1,... , 6. Also, by the same analysis we see 
that (—1)^ preserves ni and n2 and since (—!)# preserves / by definition, 
it follows that (—1)B preserves oi and 02 as well. Similarly (—1)B preserves 
eg by definition and so (—l)^(e8) = (—1)^(69 +ni) = eg + ni = eg. Finally 
we can solve the equations (—1)^(^ — ej) = £ — ej and (—1)^(02) = 02 to 
get (-I)B(^) = / + ^ - 2e7 + e8 + e9 and (-l)^) = / - e7 + e8 + eg. 

5.2    Action of as 

Again from the analysis in section 4.2 and the geometric description oiB/aB 
and its Weierstrass model WM we see that OLB preserves the classes of the 
fibers of the two fibrations /? : B —>> P1 and 8 : B -> P1. In particular we have 
OL*B{f) = /, a*B{l - ej) = £ - 67 and 0(5(eg) = eg. Also OLB interchanges 01 
and 02 and hence interchanges ni and n2. From the relationship between the 
ramification divisors defining WM and Q we see that as will exchange the 
two components of the three singular fibers of 8 corresponding to the three 
intersection points in ID ro, i.e. a^(ej) + ej —l — e-j for jf = 1,2,3. Similarly 
a^ will preserve the two components of the singular fibers of 8 corresponding 
to the three intersection points in Tfl Too, that is a^(ei) = e^ for i = 4,5,6. 
Finally, solving the equations a^(^ - ey) = -^ — 67 and a^(oi) = 02 we get 
OL*B(JL) = M-ei -62-63-267-68 and 0^(67) = 2£-ei -62-63-67-68. 

5.3    Action of t^ 

By definition we have tUf) = /.   In order to find the action of t^ on the 
classes e^ we will use the fact that if is defined in terms of the addition law 
on p# : B# -»► 
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Since t^ preserves each fiber of (3 : B —> P1, the curve ^(ni) will have to 

be either ni or oi. But C — ei and so ^-ni = 0 and (-oi = 1, so since nf is the 
identity component of the disconnected group nfuof — (niUoi) —(nifloi), 
we must have tUni) = oi- In the same way one can argue that tUn2) = 02 
and tUoi) = ni for i = 1,2. 

Next note that since t^ is compatible with the group scheme structure 
of B# we must have t*A£) = ci([£] — [Q) for any section £ of /3. Using this 
relation we calculate: 

*£(ei) = ci([ei] - [ei]) = eg, 

^(eg) = ci([e9] - [ei]) - (-l)B([ei]) =e-e1-e7, 

which in turn implies tUeg) = tUeg + ni) = £ — ei — e7 + 01 — f +1 — ei — 
67-68 + eg. 

The previous formulas identify cohomology classes in H2(B: Z) or equiv- 
alent ly line bundles on B. However observe that the above formulas can also 
be viewed as equality of divisors, due to the fact that the line bundles in 
question correspond to sections of /?, and so each of these is represented by 
a unique (rigid) effective divisor. 

Also since the addition law on an elliptic curve is defined in terms of the 
Abel-Jacobi map we see that for a section £ of /3, the restriction of the line 
bundle ci([£] — [ei]) ® OB(—69) to the generic fiber of (3 will be the same as 
the restriction of OB{^ — ei). By the see-saw principle the difference of these 
two line bundles will have to be a combination of components of fibers of /?, 
i.e. 

*c(0 = ci(K] " N) = e - ei + eg + aim + a^ + rff. 

Intersecting both sides with ni and taking into account that (t7 )*{ni) = 01 

we get 01 ■ £ = £ • ni + 1 — 2a^. Similarly when we intersect with 77,2 we 
get 02 • £ = £ • n2 + 1 — 2^. In particular since for i = 2,... , 6 we have 
d • ni = ei • 712 — 0 and ei • 01 = e^ • 02 = 1 we get a^ = a^ = 0 and so 
tl(ei) — ei ~ ei + e9 + aei/- Using the fact that {tUei))2 = —1 we find that 
aei — 1 and thus 

tl(ei) = ei -ei + eg + / 

for i = 2,... ,6. 

Finally, for 67 we have 67 • ni = 67 • 02 = 0 and 67 • 77,2 = 67 • 01 = 1 and 
so tUer) = 67 — ei + eg + n2 + ae7f. From (tUe7))2 — —1 we find a67 = 0 
and therefore tUe?) — 67 — 61 + 69 + 712- 
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This completes the calculation of the action of t? on H2
(B,1J).   The 

action of r^ is easily obtained since by definition we have r^ — a^ o tl. 

All these actions are summarized in Table 1 below. 

(-1)^ ^ ^ rh 
/ / f / f 
ei i-d-er eg ^-61-67 eg 

.7=2,3 

i-ej-er f+Bj-ei+eg ^-6^-67 /-ej+61+69 

^Z5 

z=4,5,6 

t-ei-ej f+ei-ei+eg ei /-^+ei + 

+ei+e7+eg 

e? /-ey+es-feg i-ei-es 2l-(ei+e2 + 

+ 63+67 + 63) 

^-62-63 

eg es f+l+e9- 

-61-67-68 

^-67-68 f-£+ei + 

+67 + 68 + 69 

eg eg ^-ei-er eg ei 

i l+f- 
-2e7+e8+e9 

2/+2^-3ei- 

-e7-e8+2eg 

3^-(ei+e2 + 

+ 63+267 + 68) 

2/+2(ei+e9)- 

-(e2+e3)+e7 

Table 1: Action of (—!)#, a^, t^ and TB on H*(B^Z) 

6    The cohomological Fourier-Mukai transform 

For the purposes of the spectral construction we will need also the action 
of the relative Fourier-Mukai transform for ft : B —>- P1 on the cohomology 
of B. By definition the Fourier-Mukai transform is the exact functor on the 
bounded derived category Db(B) of B given by the formula 

FMB Db{B) Db(B) 

T^- R'VxAvl? ®VB)- 

Here pi,£>2 are the projections of B Xpi B to its two factors, and VB is the 
Poincare sheaf: 

VB := 0J5(A - e xPi S - B xPi e - g*0Pi(l)), 
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with q = (3 o p1 = (3 o p2. Using the zero section e : ¥l -^ B we can 
identify B with the relative moduli space M{B/¥l) of semistable (w.r.t. to 
a suitable polarization), rank one, degree zero torsion free sheaves along the 
fibers of /3 : B -> P1. Under this identification, the sheaf VB -► B xPi JB = 
B Xpi M(B/Fl) becomes the universal sheaf. This puts us in the setting of 
[BM, Theorem 1.2] and implies that FMB is an autoequivalence of Db(B). 
In particular we can view any vector bundle V —> B in two different ways - 
as V and as the object FMB{V) G Db(B). 

The cohomological Fourier-Mukai transform is defined as the unique lin- 
ear map 

fmB:H9(B,Q)^H*(B,Q) 

satisfying: 

(6.1) fmB och = cho FMB. 

Explicitly, 

fmB{x) = pr2,(pr*(x) ■ ch(j*V) ■ td(B x B)) ■ td(B)-\ 

where pr^ are the projections of B xB to its factors and j : Bx^iB ^ BxB 
is the natural inclusion. 

We will need an explicit description of the cohomological spectral invo- 
lution 

tB := fm^1 OTB o fmB. 

For this we proceed to calculate the action of fmB and frrig1 in the obvious 
basis in cohomology. 

Let pt E if4(i?,Z) denote the class Poincare dual to the homology class 
of a point in B and let 1 G H0(B,Z) be the class which is Poincare dual 
to the fundamental class of B. The classes 1, /, ei, ... , eg, pt constitute a 
basis of iJ#(£,Q). 

To calculate fmB we will use the identity (6.1) together with a calcula- 
tion of the action of FMB on certain basic sheaves, which is carried out in 
Lemma 6.1 below. 

The first observation is that there are two ways to lift a sheaf G on P1 

to a sheaf on B. First we may consider the pullback P*(G). Second, for any 
section £ : P1 -> B of {3 we may form the push-forward £*G. These two lifts 
behave quite differently. For example, if G is a line bundle, then (3*0 is a 
line bundle on i3, whereas t;*G is a torsion sheaf on B supported on £. The 
action of FMB interchanges these two types of sheaves (up to a shift): 
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Lemma 6.1. For any sheaf G on F1 and any section £ of (3 we have: 

FMB((3*G) = e*(G® 0Pi(-l))[-l] 
FMB{^G) = f3*G ® OB{Z - e) ® /3*0Pi(-e •£ - 1), 

w;/iere as usual for a complex Km = (K\dl
K) and an integer n € Z we put 

K*[n] for the complex having (K[n]y = Kn+l and dK[n} = (—l)ndK- 

Proof. By definition we have FMB((3*G) = Rp2*{plf3*G ® PB). But 
(3 o pi = (3 o p2 and so by the projection formula we get FMB(P*G) — 
RP2*(P2I3*G ® P5) = /3*G ® Rp2*'PB' In order to calculate RP2*VB, note 
first that RP2*PB is a complex concentrated in degrees zero and one since ^2 
is a morphism of relative dimension one. Next observe that R0

P2*VB — 0. 
Indeed, by definition P^ is a rank one torsion free sheaf on B Xpi B, and so 
R

0
P2*'PB must be a torsion free sheaf on B. On the other hand, from the 

definition of VB we see that both R0
P2*'PB and R1

P2*'PB are torsion sheaves 
on B whose reduced support is precisely e C B. Therefore R

0
P2*VB is 

torsion and torsion free at the same time and so R0
P2*'PB — 0 . This implies 

that RP2*VB = R1
P2*'PB[—]]' NOW, since R2

P2*VB = 0 we can apply the 
cohomology and base change theorem [Har77, Theorem 12.11] to conclude 
that R1

P2*VB has the base change property for arbitrary (i.e. not necessarily 
flat) morphisms. In particular considering the base change diagram 

B = B xPi ec ^ B xPi B 

P P2 

B 

we have that 

e*Rlp2*VB = Rlp,(VB\BxFle) = R^.OB = (P^B/^Y 

= mOB(-f) ® /3*(9(2)))v = OPI(-1). 

Since e C B is the reduced support of R1
P2*VB and (R1P2*'PB)\e is a line 

bundle, it follows that e C B is actually the scheme theoretic support of 
R

1
P2*'PB and so R1

P2*PB — e*C?pi(—1), which finishes the proof of the first 
part of the lemma. 

Let now f : P1 -* B be a section of/?. Then FMjB(^G) = Rp2*{Pi£*G® 
VB)- But pJ^G is a sheaf on 5 Xpii? supported on £ Xpi 5 C 5 Xpi JB and is 
in fact the extension by zero of the sheaf /3*G on B = £ Xpi S. Moreover by 
definition we have P^lf x iB = C?B(^ — e — (e ■ ^ + 1)/). Taking into account 
that ^2 : ^ Xpi B -> B is an isomorphism, we get the second statement of 
the lemma. D 
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With all of this said we are now ready to derive the explicit formulas for 
frriB- First, observe that ch(OB) — 1 and so by (6.1) and Lemma 6.1 we 
have 

fmB(l) = ch(FMB(0B)) = ch(FMB((3*0Fi)) 
= cMe,(0pi(-l))[-l]) = -c/i(e*(0Pi(-l)). 

But from the short exact sequence of sheaves on B 

0 -+ 0B(-e - f) -+ 0B(-f) -> e#Opi(-l) ^ 0 

we calculate 

ch(e*(0Fi(-l)) = ch(0B(-f)) - ch(0B{-e - /)) 

= (l-/ + 0-pt)-(l + (e-/) + ipt 
1 

= e--pt. 

In other words fmsil) = -e + (1/2) pt = -eg + (1/2) pt. 
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Next we calculate /m^pt).   Let t G P1 be a fixed point.  Then pt = 
ch(Oe(£)) = ch(e*Ot) and so 

fmB(pt) = ch(FMB(e*Ot)) 
= ch(Of) = ch(0B) - ch(0B(-f)) 
= l-(l-/ + 0-pt) = /. 

To calculate fmsif) note that ch(OB(f)) = 1 + / and so 

fmuif) - ch(FMB(0B(m - fmB(l) 
= ch(FMB(t3*Ori(l))) - fmB(l) 

= ch(e*Opi[-i\) - (-e + - pt j 

= -[ch(0B) - ch(0B(-e))} + e - \ pt 

l-(l-e-ipt + e-ipt 

= -pt. 

Finally we calculate fmB(ei). If i = 1,... ,7, the class ej is a class of a 
section e* : P1 -> -B of /? and so we can apply Lemma 6.1 to Oei. We have 
chiOei) = ej + (1/2) pt and hence 

fmsiei) = ch(FMB(Oei)) - -fmB{pt) 

= chiFMBiei.Opi)) - -fmB{pt) 

= ^((95(6.-69-/))-^/ 

= l + (ei-e9-/)-pt--/ 
3 

= 1 + (Ci - eg - -/) - pt. 

For eg we get in the same way 

fmB(e9) = ch(0B) - 1/ = 1 _ I/, 

and so it only remains to calculate /rra^es). 
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Unfortunately we can not use the same method for calculating /m^eg) 
since eg is only a numerical section of /3 and splits as a union of two ir- 
reducible curves es = eg + ni- However, recall that the automorphism 
OIB : B —> B moves a section to a section. Consequently O^B^I) will be 
another section of /5. Let a : P1 —)> B denote the map corresponding to 
asiej). Then 

ch{OaB{e7)) = chiJDB) - ch{OB(-aB{e7)) = aB{e7) + - pt. 

Thus 

fmB(aB(e7)) = ch(FMB(a*0Fi)) - ±f 

= ch{OB{oLB{e7) - eg - (eg • 0^(67) + 1)/) - -/. 

But according to Table 1 we have e§-aB{e7) = eg-(2£—61—62—63—e7—eg) = 0 
and so 

3 
fmB(aB{e7)) = 1 + 0^(67) - e9 - -/ - pt. 

In terms of eg this reads 

3 3 
2fmB{£) - frrtBieg) = 1 + 2i - ^T e^ - 67 - e8 - eg - -/ - pt 

2=1 
3 

+ /mB(^ei + 67) 
2=1 

3 3 
= 1 + 2£ - J^ a - e7 - e8 - eg - -/ - pt + 

2=1 

+ U + ^Te^ + 67 - 469 - 6/ - 4pt ) 

= 5 + (21 - — f - eg - Seg) - 5 pt. 

Also from fmsif) = — pt we get 

3fmB(i) - fmB{es) = 8 + (3£ - 12/ - eg - Seg) - 8pt. 

Solving these two equations for /ra^eg) results in 

3 
fmsies) = 1 + (eg - e9 - -/) - pt, 

which completes the calculation of frriB- 
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fmB /"^B1 

1 -eg + \ pt e9 + i pt 
pt / -/ 
/ -pt pt 

i#9 
1 + Cj - eg - |/ - pt -l + ej-eg-fZ + pt 

eg 1-*/ -1-4/ 

Table 2: Action of the cohomological Fourier-Mukai transform 

*B 
1 1 
pt pt 

/ / 

3 = 1,2,3 
2/ + 2e9-ei-2pt 

ej, 
i = 4,5,6 

2/ - £ + 269 + 67 + 6; - pt 

67 / + I - 61 - 62 - 63 + 69 - pt 

68 2/ - £ + 269 + 67 + e8 - pt 

eg eg 

£ 5/ - 61 - 62 - 63 + 67 + Seg - 3 pt 

Table 3: Action of fmB  o r^ o /m^ on cohomology 

In summary, the action of t and the auxiliary actions of frriB and fm^ 
are recorded in tables 3 and 2 respectively. 

7    Action on bundles 

In this section we show how the cohomological computations in the previous 
section lift to actions of the Fourier-Mukai transform FMB and the spectral 
involution TB := FM^1 o r^ o FMB on (complexes of) sheaves on B. 
Recall that the Chern character intertwines FMB and frriB' fmB 0 ch = 
ch o FMB- Similarly, it intertwines TB and ts'- t>B 0 ch = ch o T^. 
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Note that the Fourier-Mukai transform of a general sheaf !F on B is a 
complex of sheaves, not a single sheaf. Nevertheless, all the sheaves we are 
interested in are taken by TB again to sheaves. To explain what is going 
on exactly we will need to introduce some notation first. Put ci : Db(B) —>> 
Pic(B) for the first Chern class map in Chow cohomology. In combination 
with TB , the map ci induces a well defined map 

(7.1) Vic(B) -+ Coh{B) c Dh(B) T-4 Db(B) % Pic(B), 

where Vic(B) denotes the Picard category whose objects are all line bundles 
on B and whose morphisms are the isomorphisms of line bundles. Since TB 

is an autoequivalence, the map (7.1) descends to a well defined map of sets 

TB : Pic(S) = iTo{Vic(B)) -» Pic(J3). 

If we identify Pic(-B) and H2^B,Z) via the first Chern class map, we can 
describe TB alternatively as TjB(-) = [*B(exp(ci(-)))]2 G H2(B,Z). 

Denote by Picw(B) C Pic(B) the subgroup generated by / and the 
classes of all sections of (3 that meet the neutral component of each fiber. 
A straightforward calculation shows that Picw(B) = Span(/, eg, {/ + ez- — 
ei + eg}^? 2e7 — eg + 2/) (note that / + ei — ei + eg is the class of the 
section [e^] — [ei] and 2er — e$ + 2f is the class of the section 2[e7]) and that 
Span(oi,02)"L = Span(e9, {ei — ei}^_2,^ —ey —2ei, 2£ — e8—4ei). In particular 
Picw(B) is a sublattice of index 3 in Span(oi,02)"L. With this notation we 
have: 
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Theorem 7.1. Let L be a line bundle on B. Then 

(i) The complex TB{L) G D^0^(B) becomes a line bundle when restricted 
on the open set B — (o\ U 02). More precisely, the zeroth cohomology 
sheaf H0(TB{L)) is a line bundle on B and the first cohomology sheaf 
^(TsiL)) is supported on the divisor 01+02- 

(ii)  The map TB satisfies 

TB(L) = T*B(L) ® OB((CI(L) • (e - C))/ 

+(c1(L)-/ + l)(c-C + /)). 

(iii) For every L E Picw(B) the image TB(L) is a line bundle on B and 
so 

TB(L)=T*B(L)®OB((c1(L).(e-C))f 

+(c1(L)./ + l)(e-C + /)). 

In particular TB : Picw{B) -> (Picw(B) + (e - C + /)) C Pic(B) is 
an affine isomorphism. 

Proof.   The proof of this proposition is rather technical and involves 
some elementary but long calculations in the derived category Db(B). 

Since TB = FM^1 o T*B O FMB we need to understand FM^1.  The 
following lemma is standard. 
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Lemma 7.2. The inverse FM^1 of the Fourier-Mukai functor FMB is 
isomorphic to the functor 

DB O FMB O DB : Db(B) -+ Db{B), 

where DB is the (naive) Serre duality functor DB(F) := R"Hom(F:ujB) 
with UB being the canonical line bundle on B. 

Proof. It is well known (see e.g. [Orl97, Section 2]) that FMB has 
left and right adjoint functors FM*B and FM'B which are both isomorphic 
to FMg1. Furthermore, these adjoint functors can be defined by explicit 
formulas, see [Orl97, Section 2], e.g. the right adjoint is given by: 

FMB(F) = Rwu(W2F ® VV
))®UJB[2}. 

Here pr^ : B x B -> B are the projections onto the two factors, V —> B x B 
is the extension by zero of VB and Ky := R9/Hom(K^OBxB)- Using e.g. 
the formula for the right adjoint functor, the relative duality formula [Har66] 
and the fact that UJB is a line bundle, one calculates 

FMB(F) = RWu(p4F ® VV
)®UJB[2} 

= i?pr1#((pr5 F ® Vv) ® pr^ UB[2] ® pr^ CJ^
1
) ® UB 

= RpTU(pT%(F ® UJ-
1
) ® Pv ® pr^ CJBP]) ® CJB 

= (2Jprls|t(pr5(jFv ®UB) ® VY ®UB 

^{FMB{DB{F))Y ®LOB 

= DB°FMB°DB(F). 

which proves the lemma. □ 

Next observe that Pic(J3) is generated by all sections of/?. Indeed Pic(j3) 
is generated by 0, and ei, 62,... ,69. The divisor classes ei,... ,67 and eg are 
already sections of /?. Also aj3(ei) = £ — ei — eg is a section and so £ is 
contained in the group generated by all sections. Furthermore, 0^(67) = 
21 — ei — 62 — 63 — 67 — e$ is a section and so eg is contained in the group 
generated by all sections. 

In view of this it suffices to prove parts (i) and (ii) of the theorem for 
line bundles of the form L = OB(^2 a>iii) where ai G Z and £$ are sections of 

/?• 

Put Vo := e*Opi(—1). Consider the group Ext^VojOs) of extensions of 
Vo by OB- 
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Since e2 = —1 we have Vo = e*e*OB{e) and so Vo fits in a short exact 
sequence 

(7.2) 0 -► OB -> Osie) -> Vo -» 0. 

In particular we have a quasi-isomorphism [Ojg —>► 0JB(e)]^Vo where in the 
complex 

[OB^OB(e)l 

the sheaf 0j5 is placed in degree —1 and OB(G) is placed in degree 0. Thus 
we have 

Ext^Vo^B) = HomD&(jB)(Vo,OB[l]) = HomD6(5)([Ofl -> C?B(e)], OB[1]) 

= BP(5, [OB -> OB(e)]v[l]) = e0^, [OB(-e) -> OB]), 

where in the complex [Osi-e) ->► (PB] the sheaf OB is placed in degree 
zero. In particular we have a quasi-isomorphism [OB(

—e) —> OB]
-

^
6

*^?
1 

and hence Ext^VcOs) = i?0(5,e*OPi) = C. This shows that there is a 
unique (up to isomorphism) sheaf Vi which is a non-split extension of Vo by 
OB- But from (7.2) we see that the line bundle OB{^) is one such extension, 
i.e. we must have Vi = OB^). 
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Next consider the group of extensions Ext1(Vi,C>B(/)) = Hl(B,Vi 
®0(/)). By the Leray spectral sequence we have a short exact sequence 

O-+fl"1(lP,\(&V1
v)®0(l))    ->   JH

rl(B,V1
v®C?(/)) 

-)■   ff^P1, (il1i9.V1
v) ® C(l)) ->• 0. 

But /3,(V1
V) = /3*0(-e) = 0 and i?1/?*^) = B^^O^-e) = O(-l). Thus 

Ext1(Vi,OB(/)) = ^(P1,^) = C and so there is a unique (up to isomor- 
phism) non-split extension 

0 -► OBU) -+ "^2 -* Vi -> 0. 

Arguing by induction we see that for every a > 1 there is a unique up to 
isomorphism vector bundle Va —> B of rank a on B satisfying /3*(Va) = 0, 
^♦(Va ) = O(-a) and Ext1 (Va, OB (a/)) = C is generated by the non-split 
short exact sequence 

O^0£(a/)-+Va+i^Va-^O. 

Alternatively, for each positive integer we can consider the vector bundle \I/a 

of rank a which is defined recursively as follows: 

• $1 — OB, and 

• ^a-j-i is the unique non-split extension 

0-> (^(a/)-^a+i ^ ^a-> 0. 

The fact that the \]/a's are correctly defined can be checked exactly as 
above. Moreover for each a > 1 Va can be identified with the unique non-split 
extension 

0 -> *a -» Va -* e*0Pi(-l) -> 0. 

Let now £ : P1 —>► B be a section of /?. The first step in calculating TB 

is given in the following lemma. 
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Lemma 7.3. For any integer a we have 

FM(OB(aO) = { 

V-a®0B(£-e-(£-e + l)/)[-l], 
for a < 0 

Va
v ® 0B(-f) (8> OB(Z - e - (£ • e + 1)/), 

for a > 0 

Proof. By Lemma 6.1 we know that FMB{OB) = e*0(-l)[-l] which 
gives the statement of the lemma for a = 0. To prove the statement for 
a = — 1 consider the short exact sequence 

(7.3) 0 -> 0B(-£) -)• OB -)• ^Opi -> 0 

of sheaves on B. For an object K e Db(B) let FM^K) denote the «- 
th cohomology sheaf of the complex FMB(K). Since FMB is an exact 
functor on Db(B) it sends any short exact sequence to a long exact sequence 
of cohomology sheaves. Applying FMB to (7.3) and using Lemma 6.1 we 
get 

FM0
B(OB(-t)) 0 OB(e-e-(l+e-e)/)^ 

CT 
FM

1
B(OB(-0) e,0(-l) 0. 
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Thus FM
0

B(OB{-Q) = 0 and FMk(C?£(-£)) fits in a short exact sequence 

(7.4) 

0 -> 0B{-e) -> FM^(OB(-0) ® 0(-^ + (1 + f ■ e)/) "^ c*^ -+ 0- 

Since (7.3) is non-split and FMB is an additive functor, it follows that (7.4) 
will not split. But Ext^Opi, 0B{-e)) = Ext^e^Op^e), OB) = C as we 
saw above and therefore we must have 

FMB(OB(-0)    =   C?B«-(l + e-e)/)[-l] 

=   Vi®0B(£-e-(l+ £•*)/)[-!]. 

Assume that the Lemma is proven for ©^(-a^) for some positive a. Then 
we have a short exact sequence of sheaves on B 

(7.5) O-»0B(-(a + l)£)-»0B(-a£)-K.0pi(a)-->O. 

Applying FMB to (7.5) and using Lemma 6.1 we get 

0 »- FM^(0(-(a+l)e))  ^0 ^ o(g-e+(a-l-€-e)/)-) 

^ FM^(O(-(o+l)0)  »■ FM^(0(-of))  ^ 0- 

and so again FM0
B(OB(-{a + 1)^)) = 0. Furthermore, by the inductive 

hypothesis we have FM^(0(-a^)) = Va <g> OB(Z - e - (1 + f • e)/) and so 
by the same reasoning as above the short exact sequence 

0 -»• e>B(a/) -> FM^(CB(-(a + 1)0) ® 0{e - £ + (1 + Z ■ e)f) -»• Va -»• 0 

must be non-split. Since Va+i is the only such non-split extension, we must 
have 

FMB(OB(-(a + 1)0) = Va+1®0B(ti-e-(l + t- e)f)[-!]. 

This completes the proof of the lemma for all a < 0. The argument for a > 0 
is exactly the same and is left as an exercise. □ 

The next step is to calculate the action of TB on line bundles of the form 

OBH)- 
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Due to Lemma 7.2 we have TB = DB ° FMB ° DB 
0
TQO FMB- Since 

TB is an automorphism of B we have DB ° rj, = r^ o I?B and so 

(7.6) TB = (DB O FMB) O T^ O (Z>B O FMB). 

To calculate DB(-P
1
-M"B(C

>
B(QO) 

we need to distinguish two cases: a = 0 and 
a ^ 0. When a = 0, we have DS((FMB(OB)) = DB(C»0(-1)[-1]). But 
as we saw above the short exact sequence (7.2) induces a quasi-isomorphism 

OB    ' 
4 

. 0B(e) . 

0 

1 
(-i) hi]- 

Applying duality one gets 

£>B(e,C?(-l)[-l])    = 
" 0B(-e) 1 

4 
-i 

®C?B(-/) 
0 

= 
"OB(-e- 

4 
.  OB(-/; ) 

-1 
= e*Opi(-l). 

0 

But for a ^ 0 the sheaves FM3(03(0,^)) are locally free and so we get 

f-wv 

JDB°-F
,
MB(OB«)) = < 

VVa®OB(e-^ + (^-e)/)[l],     fora<0 

Vo, for a = 0 

[ Va ® CMe - £ + (1 + £ • e)/),     for a > 0. 

To apply ?£ next we need to calculate r^Va. For this recall that Va is 
isomorphic to the unique non-split extension 

0 -+ ya -> Va -> e*0Pi(-l) -+ 0. 

Since rsif) = / and \I/a is built by successive extensions of multiples of /, it 
follows that Tg^a = ^a for every a. So VVa := r^Va is the unique non-split 
extension 

o -> *a -> wa -> c*e>pi(-i) -> o, 

where as before £ = T^(e). With this notation we have 

'>VYa ®OB((- T*B(Q + (? • e)/)[l], for a < 0 

T*BODBO FMB(OB(aO) =< C*CPi(-l), for a = 0 

Wa ® 0B(C - 4(0 + (! + £■ e)/), for a > 0. 
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Now to finish the calculation of TB(C'B(OC)) 
we have to work out FM£(Wa® 

OsiC - 4>)) and FMB(W% ® OB(( - i)) for all a > 0 and all sections 
<(> : P1 —>• S of (3. Again we proceed by induction in a. 

Let a = 1. By definition Wi is the unique non-split extension 

0 -> OB ->• Wi -»• C*0(-1) -»• 0, 

and hence Wi = OB(C) and Wj' = OB(-C)- In particular W^OB^-^) = 
OB(—4>)- Consequently by Lemma 7.3 we get 

FMB(>vre«>e>B(C-</>))    =   Vi®0B(0-e-(l + 0-e)/)[-l] 
=   <!?B(^-(i + ^.e)/)[-i]. 

Substituting 0 = r^(^) we get 

FMOT%ODBO FMB(OB(-0) = ^(^(0 - (1 + T^(0 ■ e - £ • e)/) 
= OB(T^(e)-(i+e-c-e-e)/). 

Let now a = 2. We have a short exact sequence 

O-+0B(/)-»W2->C?B(C)->-O 

and so 

(7.7) 0 -» Ofl(-^) ^ >V2
V ® OB(C - 0) -► Ofl(C - ^ - /) ^ 0. 

In particular we need to calculate FMB{OB{( — (I))). For this note that since 
OB(C — 0) is a line bundle which has degree zero on the fibers of/?, the sheaf 
FM%(OB(C — 0)) will have to be torsion free and torsion at the same time 
and so FM

0
B(OB(C - 0)) =0 (see the argument on p. 536). Consequently 

if we apply FMB to the exact sequence 

o -► 0B(C - 0) -> 02?(0 -> 0*Opi(C ■ 0) -> o, 

we will get a short exact sequence of sheaves 

O^0B(C-2e-2/)    _>   Oett-e- (1 + 0 • e - 0 • ()/) 

->   FM^(OB(C-0))->O. 

In other words FM^((!)B(C-0))(S)C)B(e-0+(l + 0-e-</)-C)/) = OD, where 
D is an effective divisor in the linear system lOef^—C + e+(l — ^•e+(/)-^)/)|. 
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To understand this linear system better consider the section fj, : F1 -» B 
for which [/J] = [0] — [£] in MW(5, e). Then as in section 5 we can write 

OB{^ - C) = OB(I* - e + a/ + 6ni + ens). 

Taking into account that fj, • ni — 1 — (j) • rii and that //2 = — 1 we can solve 
for a, 6 and c to get 

a = — 1 + (f) • e — (f) - ( + (f) • ni + (j) • n^,        b = — ^ • ni,        c = — ^ • n27 

which yields 

OB^ -C + e + (l-0-e + 0- C)/) = OB(/i + ((/> • ni)oi + (0 • n2)o2) 
= Os(^ + (M • 01)01 + (/i • 02)02). 

Therefore, the numerical section /i + (0-ni)oi + (0-712)02 is the only effective 
divisor in the linear system |C?j5(0 — ( + e + (l — (j) • e + (j) - C)/)| and so 
D = /J, + (</) • rtijoi + (</> ■ 712)02 as divisors. Note that the fact that 0 is a 
section implies that 0 • n^ is either zero or one, and so D is always reduced. 

This implies FMB(OB((-(J))) = ir>#OD®OB(^-e-(l+^e-^C)/)[-l], 
where ip : D ^ B is the natural inclusion. Next note that by definition of 
FMB we have FMB(K ® /?*M) - FMB(K) ® /3*M for any locally free 
sheaf M-^P1. Thus 

FM5(OB(C - ^ - /)) = ^*^ ® C?B(^ " e - (2 + 0 • e - cj> • Qf)[-l]. 

We are now ready to apply FMB to (7.7). The result is 

0— > 0 > 5° ^ 0 -) 
(-^0B{^-{l + ^- e)f)  ^ S1  ^D*^^(0-e-(2+0-e-^C)/)  ^0, 

where Si := FM2
B(W^ ® 0s(C " </>))• 
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Writing £:=0B(-e-(l-0-C)/) and jr := <S
1®e»B(-(/>+(l + ^-e)/), 

we find a non-split short exact sequence 

(7.8) 0 -> OB ->• ^ ->• iLi*io>C -»■ 0. 

Next we analyze the space of such extensions. We want to calculate 

Ext^ioJ^C.OB) = HomDb{B)(iDJ*DC,OB[l}) =^(B,(iDJ*D^[l})- 

As before, after tensoring the short exact sequence 

0 -► OB{-D) -»• OB -> «r>*Ou -> 0 

of the effective divisor D by £ we get a quasi-isomorphism 

£(-£) 

c 

-1 

0 

q.i, 
«£)*«£)£, 

and so 

(t2>*i?)£)v[l] = 
_ £v(i)) 

-i 

0 
= tjD*^(/:v(i?))- 

In particular Ext1 [ID^D^OB) = H\B,iDJ*D{Cw {D))) = H0(D,i*D(£
y'(D))). 

Since D is a tree of smooth rational curves, the dimension of the space of 
global sections of the line bundle i*D(C

w(D)) will depend only on the degree 
of CV(D) on each component of D. But D = fi + ((f) - ni)oi + ((/) • 712)02 = 
fj, + (fi • 01)01 + (/i • 02)02 and since /i is a section of /3 we know that fj, • oi is 
either 0 or 1. We can distinguish three cases: 

(a) /i • 01 = // • 02 = 0, i.e. /x G Pic^^) and D = /x; 

(b) /i intersects only one of the o^'s, i.e. 2? is the union of /i and that o^; 

(c) /i • o\ — \i • 02 = 1 and so D = \i + 01 + 02. 

Also since D is linearly equivalent tO(/)-( + e + (l-</>-e + </)-C)/we find 

£ ■ [i = —1,        £ • 01 = £ • 02 = 0. 

This gives the following answers for Ext1(2JD*^£, OB): 

in case (a):   Since D  = fi we have (/:
V
(£>))|D   =  (^(/x))^  =  ^(1) ® 

C?M(-1) = OM and so Ext1^*^/:,^) = H0(^O^ = C. 
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in case (b): Say for concreteness fi • oi = 1 and fx • 02 = 0. Then D = /i + 01 
is a normal crossing divisor with a single singular point {x} = /i fl 01. Then 
(£V(I>))|M = O^l) ®Olx = O^l) and 0Cv(D))|Ol - ^ ® ^(-l) = 
00l{—1). Hence (£V(JD))|2:) is the line bundle on D obtained by identifying 
the fiber (OM(1))X with the fiber (00l(-1))*. Since i?0(OOl(-l)) - 0 it 
follows that Ext1^*^/:,^) = iy0(A (^V

(^))|D) 
can be identified with 

the space of all sections of 0^(1) that vanish at x G /i, i.e. we again have 
Ext1^*^/:,©*) =C 

in case (c): The divisor D = fi + 01 + 02 is again a normal crossings divisor 
but has now two singular points xi and X2, where {x^} = /i fl o^ for i = 1, 2. 
In this case we have {Cv(D))lfM = (9^(2) and (/:v(£>))|0. = 00.(-l). Hence 
Ext1(zJo*^>C, OB) gets identified with the space of all sections in 0^(2) 
vanishing at the points xi and X2 and is therefore one dimensional. 

In other words we always have a unique (up to isomorphism) choice for 
the sheaf J7. In fact, it is not hard to identify the middle term of the non- 
split extension (7.8). Indeed, let o := D — /i be the union of the vertical 
components of D. We have a short exact sequence: 

0 -> 0o(-/i) -> H0(o, Oo(n)) ® 00 -» a(/i) -> 0. 

When we pull it back via 

we get a non-split sequence 

0 -»• Oo(-fi) ->■ ^' ->• OB(M) -»• 0. 

Since we have already seen that such an extension is unique, we conclude 
that F = T. 
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We have shown that FM^W^ ® OB(C - 0))[1] is a rank one slieaf on 

B such that: 

• The torsion in FMB(W2
V
 ® OB(( - 0))[1] is 00(-jLt). 

• FMB(W2
v®0B(C-(/>))/(torsion) -(9JB(2(/)-C + e + ((/)-C-2(/)-e)/-o). 

• The sheaf JFM^W^ ® C?B(C - </>))[!] is the unique non-split extension 
of the line bundle e>£(2</> - £ + e + (0 ■ C - 20 • e)/ - o) by the torsion 
sheaf C>0 (—/i). 

Let a = 3. Then the short exact sequence 

0-^(9B(2/)->W3^W2->0 

induces a short exact sequence 

0 -» W2
V ® OB(C - </>) "^ ^ ® (9B(C - 0) -> OB(C - 0 - 2/) -> 0. 

Applying FM^ one gets again that FM^)^ ® OB(( - (f))  = 0 and 
FMl

B{yV^ ® ©^(C — 0)) fits in the non-split short exact sequence 

0^FMk(W2
v(C-</>))    -+    FM^(W3V(C -0)) 

^   FM^(C7(C-0))®O(-2/)-^O. 

Now recall that 

FMB(OB(C - 0)) - ID^DOB^ - e - (1 + ^ • e - 0 • C)/), 

where D = /i + (/i • 01)01 + (/i • 02)02 is the unique effective divisor in the 
linear system |0B(0 - C + e + (1 - </> ■ e + ^ ■ ()/)!• 

In particular we have 

li- e — (j) • e — 1 + 1 — (f) - e-\- (j)- C, — (j)- C, 
H-^^'C + l + l-^-e + cfr'^-n- 01 - /z • 02 

= 2 — 0 ■ e + 20 • £ — /i • 01 — /i • o2 

^.0=:-l-0.( + 0.e + l-(/)-e + (/)-C-(^- 01) (0 • 01) - (/i • o2)(</> ■ 02) 

and hence 

ilOB{cj>- e- (1 + 0. e-^-C)/) = CV(-l-0- e). 

We are now ready to calculate FMBIOBIC - 0)) ® 0{-2f) for the three 
possible shapes of the divisor D. 
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Case (a) D = p and so FMB{OB^ - 4>)) ® 0{-2f) = O^-S -<j>-e). 

Furthermore we showed that in this case we have FMgCW^iC — 0)) = 
OBW ~C + e +{<(>■(-2<f)- e)f) and so after twisting (7.9) by OB(2<P - C + 
e + (<f> ■ ( — 2(f) ■ e)/)_1 we get a non-split short exact sequence 

0 -»■ OB ->? -> ^(o) -»• 0, 

where 

? = FM^(>V3V(C - 0)) ® OBW - C + e + (^ • C - 24) ■ e)/)"1, 

and 

a = -3-0-e + /i- (-2^ + C-e-(^-C-2^- e)/) = -1. 

Therefore we must have ? = ^(/i) = (9^(0 -C + e + (l-^-e + ^- ()/) 
and so 

FM^^CC - <£)) = OB(30 - 2C + 2e + (1 - 30 • e + 2^ - C)/). 

Case (b) In this case ji intersects exactly one of the o^, say oi. Then 

-D = /i + oi and so FM
1

B{OB^ - </>)) ® 0B{-2f) = OM(-3 - 0 • e) U^ O^ 
Moreover the torsion in FM^(W2

V(C - 0)) is 0Ol(-l) and FM^(W2
V(C - 

0))/(torsion) = OJB(2</> - C + e + (</> • C - 2^ • e)f - oi). Tensoring (7.9) with 
e>0l and taking into account the fact that FM^W^C - 0))|oi = C2 ® C?0l 

we get a long exact sequence of Tor sheaves 

■^Tor^B(OIM(-3-(/>-e)Ux0ol100l) ^ 

0®001  ^FM^(W3V(C-0))|oli  ^00l 

Next we calculate rorfB((9/i(-3 - 0 • e) Ux 00l, 00l). 

Lemma 7.4. rorfB(0/i(-3 - 0 • e) Ux 00l, 00l) -0 

Proof.  Recall that for any integer a we have the following short exact 
sequence of sheaves on B: 

0 -> 001 (-1) -► 0M(a) Ux Oo1 -> C7M(a) -> 0. 

Tensoring this sequence with Oo1 we obtain a long exact sequence of Tor 
sheaves: 
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rar^(00l(-l),Oo1)^rorfB(Otl(a)Ux00l,Oo1)^rorfB(0^a),00l)~) 

^ 001 (-1)  001  Ox  0. 

In order to calculate the sheaves Tor?B (00l (-1), Coi) and Tor?B {O^(a),O0l) 

recall that we have Tor°B{K,M) = n'^K ®oB M) for any two objects 
K,M € Db{B). Now note that 00l(-l) = 00l ® CB(-M) 

and that 

o  q=- 
OB(-OI) 

OB 

-1 
q.i. 

OJa) ^ 
OB(af-ii) 

I 
OBM 

-1 

and so 

Cya) ® 0oi - 

OB(-M-OI) 

OB(-M)©CB(-OI) 

OB 

-2 

-1   ®OB{af). 

Similarly 

q.i. 
001{-1)®001 

H= 

OB(-2OI) 

4 
C?B(-Oi)e0B(-Oi) 

0B 

-1  ®OB(-M)- 

Consequently rorffl(C?0l(-l),C70l) = rorfs(0M(a), C0l) = 0 for all t ^ 0. 
This proves the lemma. D 

The previous lemma implies that FM^(W3V(C - ^)) |0l = C3 O C0l and that 
FMl

B(W^{C - <!>)) fits in the commutative diagram 
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0 0 0 
|                                                      f                                                Y 

0 >■ Ciij(2^-C+e+(0C-20e)/-2Oi)  *- ? ^ ^(-4 - (^e)  ^ 0 
I' V v 

0 »- FAr^(w2
v(c-*)) »■ FM^(W3V(C-«)) >- OM(-3 - ^e) Ux 00l >- 0 

r y y 
0  C2 ® 0O1  c3 ® o01 —  00l  0 

y y y 
0 0 0 

where ? is a non-split extension of ^(—4 - </>e) by OB{^4> — C + e + (^C _ 

20e)/ - 2oi). This implies that ? = Os(20 - C + e + (^ - 2^e)/ - 3oi) and 
that FMl

B{Wz(C, — 4>)) fits in a short exact sequence 

0   ->   OB(3</»-2C + 2e + (l + 2</>C-3(/)e)/-3oi) 

In particular we see that the torsion in J^Af^VV^^ — (j))) is supported on 
oi. 

The same reasoning applied to the restriction of (7.9) to [i instead of 
oi implies that FM^W^C - 0))/(torsion) is isomorphic to the line bun- 
dle OB^ - 2C + 2e + (1 + 20C - 30e)/ - 2oi). Since Os(30 - 2C + 
2e + (1 + 20C - 30e)/ - 2oi)|0l = 00l{2) we conclude that the torsion in 
FM^W^C-^)) is isomorphic to the kernel of the natural map C3 ®00l = 
H0(ouOOl(2x)) ® 001 -> C?0l(2a;) = C?0l(2). In particular we see that the 
torsion in FM^W^C -(/>)) is a rank two vector bundle on oi, which has 
no sections and is of degree —2, i.e. is isomorphic to 00l(—l) © 00l(—l). 

Case (c) In this case D = n + oi + 02. An analysis, analogous to the 

one used in case (b), now shows that the torsion in FM^W^C — </>)) is 
isomorphic to (9Ol(-l)e20OO2(-l)e2 and that FM^(W3V(C-0))/(torsion) 
is isomorphic to the line bundle OB(34>—2£+2e+(l+2(/>£ — 30e)/ — 2oi— 202). 
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Continuing inductively we get that for every a > 1 the object FM^W^ ® 
OB{( - </>))[!] is a rank one sheaf on B such that 

• The torsion in FM^VV^ 0 OB(C - 0))[1] is isomorphic to 

(9e(a-l)(^ni)/_-|_\ 0 0e(a-l)(0-n2)/    i^ 

(In this formula it is tacitly understood that the direct sum of zero 
copies of a sheaf is the zero sheaf.) 

• The sheaf FM^W^ ® OB(( - <£))[!]/(torsion) is isomorphic to the 
line bundle 

OB W> - (a - 1)C 4- (a - l)e + ((a - 2) + (a - 1)0 • C - acf) • e)f 
- (a - !)((/) • ni)oi - (a - !)(</> • 712)02). 

Now by substituting 0 = r^(^) in the above formula and by noticing 
that D{00i(-1)) = 00i{-l)[-l} we obtain 

n0TB(OB(-a0) = 
= OB(TZ(-aZ) + ((-<) • (e - C))/ + (1 - a)(e - C + /) 

+ (a - l)(e • 01)01.+ (a - 1)(£ • 02)02), 

^TBiOBi-aO) = Of^-W'01^-!) eo®2
(fl"1)K"02)(-i), 

for all a > 1. We have already analyzed the case a = 0 above and so this 
proves the theorem for L = (9B (-af) and a > 0. The cases L = Oj3(a0 
with a > 0 or L = OB{^2 

ai^i) witl:l different ^'s are analyzed in exactly the 
same way. n 

Remark 7.5. (i) The calculation OJTB{L) in the proof of Theorem 7.1 
works equally well on a rational elliptic surface in the five dimensional family 
from Corollary 3.6 (with the choice of ( as in Remark 3.7). Since in this 
case Pic^ {B) — Pic(I?); we see that for a general B in the five dimensional 
family we have TB\V\Q,{B) —^B- In particular TB sends all line bundles to 
line bundles and induces an affine automorphism on Pic(J3). 

(ii) In the proof of Theorem 7.1 we also showed that the statement of The- 
orem 7.1 (Hi) admits a partial inverse. Namely, we showed that if L is a 
multiple of a section, then TB{L) is a line bundle i/and only if L G V\cw(B). 
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The previous theorem shows that the TB action on Pic(i?) is somewhat 
complicated. If we work modulo the exceptional curves 01,02, the formulas 
simplify considerably. (Working modulo 01,02 amounts to contracting these 
two curves.) 

Corollary 7.6. The action OJTB induces an affine automorphism of 
Pic(B)/'(Zoi 0 Z02); namely: 

TB(L) = a*B(L) ® 0B(e - C + /)        mod (01, o2). 

Proof. Apply Theorem 7.1 together with (4.2). □ 

Using these two results we can now describe the action of TB on sheaves 
supported on curves in B. Let C C B be a curve which is finite over P1. 
Denote by ic ' C <L-> B the inclusion map. For the purposes of the spectral 
construction we will need to calculate the action of the spectral involution 
TB on sheaves of the form ic*icL for some L E Pic(S): 

Proposition 7.7. Let C C B be a curve which is finite over P1 and such 
that OB(C) £ Picw(B) (for example we may take C in the linear system 
\re + kf\ for some integers r, k). Let L G Pic(5). Put D := o^C).  Then 

(a) TB(ic*icL) = ^^(TBW). 

(b) TB(ic*icL) = iD*i*D(<xUL) ® 0B(e - C + /))- 

Proof. Since C is assumed to be finite over P1 it follows that i^L will 
be flat over P1 and so V = FMB(L) will be a vector bundle on B of rank 
r = C - /, which is semistable and of degree zero on every fiber of /?. But 
then TgV will be again a vector bundle of this type. Moreover if ft is a 
general fiber of fi then we can write V\ft = ai © ... © ar, where a^ are line 
bundles of degree zero on ft. In fact if we put {pi,... ,pr} = C fl ft for the 
intersection points of C and ft we have a^ = Oft(pi — e(t)). Now TB induces 
an isomorphism TB : /r ^t) "^ /t anci 

(r57)|/rpl(o =^aie.,.er^ar. 

By definition TB = t^ o as- Since every translation on an elliptic curve 
induces the identity on Pic0 it follows that r^ai = a*Bai = OfT   {t){(^B{Pi) — 

e(/T !(*)))■ This shows that JFM^^V) will be a line bundle supported on 
D = a£(<7) and so to prove (a) we only need to identify this line bundle 
explicitly. 
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Consider the short exact sequence 

0 -> L{-C) ^L^ ic*i*cL -> 0- 

Applying the exact functor Tg we get a long exact sequence of sheaves 

0 —-* n0TB(L(-C)) >- n0TB(L) >- TB{ic*i*cL) ^ 

nlTB(L(-C))  H^eiL)  0. 

However, by parts (i) and (iii) of Theorem 7.1 we have 

^1TJ3(L(-C')) = ^1Ti?(L) 

and so TB^C^CL) fits in a short exact sequence 

0 -> H0TB(L(-C)) -+ n0TB{L) -> TB(ic*i*cL) -> 0. 

But in the proof of Theorem 7.1 we showed that for any line bundle K G 
Pic(J5) one has 

n0TB(K) = TB(K) ® OB((CI(K) ■ 01)01 + (c^K) • 02)02). 

Taking into account that 0(oi)\c — Oc we can twist the above exact se- 
quence by 

0B(-(CI(1O-01)01-(ci(liQ-02)02) 

to obtain 

0 -> TB(L(-C)) -»■ fB(L) -+ TB(icJ*cL) -> 0. 

To calculate TB(L(-C)) let fi : Pic(B) -> Pic(B) denote the linear part 
of the affine map TB. In other words Q,(L) = T^(L) + (ci(L) • (e — ())/ + 

(ci(£)-/)(e-C + /)andTB(£)=w(I) + (e-C + /). Then TB(L(-C)) = 
TB{L)®0B(-n{C)). 
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Using the formula describing ft one checks immediately that ft is a linear 
involution of Pic(B) which preserves the intersection pairing. Also we have 
ft{oi) = —02 and 0(02) = —02 and so 0 preserves Span(oi,02)J". But 
according to Corollary 7.6 the restriction of ft to Span(oi,02)"L D Picw(B) 
coincides with the restriction of a^, which yields 

TB(L(-C))   =   TB(L)®0B(-n(C)) 
=   TB{L)®OB{-a%{C)) = TB(L)®OB{-D). 

Consequently TB(ic*icL) fits in the exact sequence 

0 -> TB(L) ® OB(-D) -> fB{L) -> TB(ic*i*cL) -> 0. 

But as we saw above TB(ic*icL) is the extension by zero of some line bundle 

on D and so we must have TB(ic*icL) = iD*i*DTB(L). Finally note that a^ 
preserves Picw(B) since a^(oi) = 02. Therefore D is disjoint from 01 and 
02 and so the restriction of TB(L) to D will be the same as the restriction of 
the projection of TB(L) onto Span(oi,02)"L. Applying again Corollary 7.6 
we get that i£>*i*DTB(L) — iD*i*D0B(a*BL + (e — ( + /)). The Proposition 
is proven. □ 
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