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Abstract 

Link invariants, for 3-manifolds, are defined in the context of the 
Rozansky-Witten theory. To each knot in the link one associates a 
holomorphic bundle over a holomorphic symplectic manifold X. The 
invariants are evaluated for bi (M) > 1 and X Hyper-Kahler. To obtain 
invariants of Hyper-Kahler X one finds that the holomorphic vector 
bundles must be hyper-holomorphic. This condition is derived and 
explained. Some results for X not Hyper-Kahler are presented. 
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1    Introduction 

This paper is concerned with the definition and evaluation of invariants that 
can be associated with knots and links in the context of the Rozansky- 
Witten model [RW]. This theory has as its basic data a 3-manifold M and 
a holomorphic symplectic manifold X. The path integral for this theory is 
a supersymmetric theory based on maps from M to X. I will give a quick 
review of this in the next section. For more details of the construction one 
should consult the references. 

Rozansky and Witten observed that their theory is a kind of Grass- 
mann odd version of Chern-Simons theory where, amongst other things, 
the structure constants, /^c of the Lie algebra in Chern-Simons theory go 

over to R^KTVO  
m the Rozansky-Witten model.    The comparisons that 

are to be made are between the n-th order terms in a l/Vk expansion in 
Chern-Simons theory and the Rozansky-Witten invariant evaluated for some 
dimcX = 2n Hyper-Kahler manifold. More precisely, for a QH5 (rational 
homology sphere), the n-th order term in the Chern-Simons theory for group 
G can be written as 

zZs[M} = Y,brn(G)Y^IrnAM) (1) 

while for the dimcX = 2n Hyper-Kahler manifold the Rozansky-Witten 
invariant reads as 

Z$W[M} = y£bTn(X)Y/Irn,am (2) 

The notation is as follows. The rn represent all the possible Feynman graphs 
of the theory and the sum over the label a is that of all possible ways of 
assigning Feynman diagrams to the same graph. The Feynman diagrams 
and graphs are the same in the Chern-Simons and Rozansky-Witten theories. 
The Irn,a(M) are the integrals over M of products of Greens functions that 
appear in both theories. 

The interesting part corresponds to the weights fern as this is 'all' that 
distinguishes the two theories. Different weight systems will yield topolog- 
ical field theories providing the brn obey the IHX relations [LMO]. Indeed 
both the brn (G) of Chern-Simons theory and the &rn {X) of the Rozansky- 
Witten theory satisfy the IHX relations. 

While one class of knot observables was defined in [RW] (and an algo- 
rithm given for the associated weights) they played no essential role there. 
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However, one can show that the expectation values of Wilson loop observ- 
ables in the Chern-Simons theory, and of the knot observables of Rozansky 
and Witten take a form analogous to (1) and (2) respectively. Once more 
the differences lie in the weights. To obtain a topological theory of knots 
(and links) the weights associated with the knot observables need to satisfy 
the STU relation. This is clearly satisfied by the Wilson loop observables in 
Chern-Simons theory and, as I will show below, also satisfied by the weights 
of the knot invariants in the Rozansky-Witten model. 

Why write this paper? While they are of interest in themselves, I be- 
lieve that, amongst other things, we also need to have a better understand- 
ing of these observables in order to get at the surgery formulae for the 
Rozansky-Witten invariants Z^W[M] when the Hyper-Kahler manifold X 
has dimcX > 4. Of course one of the things one would like to know about 
these invariants is if they are part of the "universal" knot invariants that arise 
in the LMO construction. Another reason for studying these is that recently, 
Hitchin and Sawon [HS] have found that the Rozansky-Witten theory pro- 
vides information about Hyper-Kahler manifolds. Hopefully one will have 
a bigger set of invariants for Hyper-Kahler manifolds by allowing for knot 
observables. 

Before going on it is appropriate to ask why should this topological field 
theory give us invariants of Hyper-Kahler manifolds? In order to answer 
this question let us recall some other topological field theories. We know 
that certain supersymmetric quantum mechanics models yield information 
about a manifold X (the models depend on how much extra structure we 
are willing to place on X). So for example such supersymmetric models 
provide simple "proofs" of the index theorems1. These theories involve maps 
S1 -> X. There are also topological field theories which yield the Gromov- 
Witten invariants of a complex manifold X. These models are based on 
holomorphic maps from a Riemann surface to a compact closed complex X, 

From this perspective one would expect that a theory based on maps 
from a 3-manifold into a Hyper-Kahler X, M -* X, would indeed give rise 
to invariants for X and that the correct question is, instead, why do they 
give invariants of 3-manifolds? 

The crux of the matter is that what we learn depends by and large on 
what we know. A topological field theory from one point of view is a theory 

1In the present setting there are topological field theories that yield the index formulae 
for the Euler characteristic of X (Gauss-Bonnet), the signature of X (Hirzebruch), if X is 
a spin manifold for the A genus (Atiyah-Singer), while if X is a complex manifold one can 
also obtain the Riemann-Roch formula for the Todd genus. 
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defined on the space of sections of a certain bundle. To define the theory 
it may be necessary to make certain additional choices, for example, to fix 
on a preferred Riemannian metric on the total space of the bundle. In the 
best cases this theory will give invariants that do not depend on any of the 
particular choices made. What information there is to extract will depend 
crucially on the bundle in question. In principle, however, the topological 
field theory will provide invariants for the total space of the bundle. If 
either the base or the fibre is well understood then the invariants are really 
invariants for the fibre or the base respectively. 

In the case of supersymmetric quantum mechanics we know all there is 
to know about S1 and so the topological field theories will yield information 
about X. The same is true for the Gromov-Witten theory, since Riemann 
surfaces are completely classified. The case of the Rozansky-Witten theory 
is very different. We do not know much about 3-manifolds nor about Hyper- 
Kahler manifolds. By fixing on ones favourite Hyper-Kahler manifold and 
varying the 3-manifold we get invariants for the 3-manifolds. On the other 
hand on picking a particular 3-manifold or by using other knowledge about 
the 3-manifold invariants and varying X we learn about X. 

This paper is organized as follows. In the next section there is a brief 
summary of the Rozansky-Witten theory. In section 3 knot and link ob- 
servables are introduced. The expectation values of the link observables are 
the link invariants. The concept of a hyper-holomorphic bundle is seen to 
arise naturally from the requirement that the observables will correspond to 
invariants for Hyper-Kahler X. That the observables do correspond to link 
invariants for the 3-manifold M requires that they satisfy the STU relation. 
This relation is derived in section 4. Section 5 is devoted to stating some ex- 
plicit results that I have derived, the derivation being postponed till section 
7. Section 6 is by way of a digression on the properties of the theory when 
X = T4n while in section 7 an outline of the proofs is given, the bulk of 
the work being defered to the references. Finally, in the appendix, a slightly 
more general class of observables is introduced. 

All calculations are done using path integrals. The normalization that I 
have taken is so that the Rozansky-Witten for a 3-torus, T3 is the Euler char- 
acteristic of the Hyper-Kahler manifold X (or more generally the integral of 
the Euler density of X if X is non-compact) [T]. 

Some of the results presented here have also been obtained by J. Sawon 
[S]. 

Acknowledgments: Justin Sawon pointed out the relevance of the work 
of Verbitsky to me.  I thank him for this and other correspondence.  Nigel 
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Hitchin kindly explained to me the relevance of the Hyper-Kahler quotient 
construction as a means for finding hyper-holomorphic bundles. Boris Pio- 
line brought my attention to the paper [MS] which in turn led me to Nigel 
Hitchin. I have benefited from conversations with M. Blau and L. Gottsche. 
I am grateful to the referee who suggested numerous improvements. I am 
especially indebted to M.S. Narasimhan for his interest and his kind advice 
at all stages of this work. This work was supported in part by the EC under 
TMR contract ERBF MRX-CT 96-0090. 

2    The Rozansky-Witten Theory 

The construction of the Rozansky-Witten model for holomorphic symplectic 
X is described in the appendix of [RW]. I will not need that level of generality 
here, though to prove some of the results that I present below one does need 
to have the full theory at ones disposal. 

The action, for Hyper-Kahler X can be written down without picking a 
preferred complex structure from the S2 of available complex structures on 
X. In this way one establishes that the theory yields invariants of X as a 
Hyper-Kahler manifold. Since the knot observables, in any case, require us 
to make such a choice fix on the complex structure, /, on X so that the c/)1 

are local holomorphic coordinates with respect to this complex structure. 
The action is, in the preferred complex structure, 

S= [ ^Vh^x +  [ L2 (3) 
JM JM 

where 

Li   =    ^A^W+S/iX^V (4) 

I*    =    l^ejjx'Dx' -^eIjR
J

KL^X
I
X

K
X

Lrl
Wy (5) 

The covariant derivative is 

^7 = ^4+(V)r[7- (6) 

The tensor e/j is the holomorphic symplectic 2-form that is available on a 
Hyper-Kahler manifold. It is a closed, covariantly constant non-degenerate 
holomorphic 2-form. Non-degeneracy means that there exists a holomorphic 
tensor eIJ such that 

e/7e7tf = 4- (7) 
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Both of the Lagrangians Li and L2 are invariant under two independent 
BRST supersymmetries. In fact Li is BRST exact. These super symmetries 
are also defined without the need of picking a prefered complex structure 
on X. But, since a prefered complex structure has already been chosen in 
writing the theory, it is easiest to exhibit the BRST operators in this complex 
structure. Q acts by 

QriI = 0,    Qx^-dcj)1, 

while Q acts by 

Qr]7 = 0, Qx1 - -Tld^ - YI
JKT

I-3r)
JxK 

(8) 

(9) 

where T^ = eIKgKj and represents an isomorphism between TX^1^ and 

TX^0'1). The BRST charges satisfy the algebra, 

Q  =0,   {Q,Q}. = 0,   Q2-0. (10) 

Set rj1 = Tl=riJ in order to make contact with the notation of the bulk of 
[RW] and that used in [T] and [HT]. 

3    The Knot Observables 

I will define knot and link invariants by associating holomorphic bundles over 
a holomorphic symplectic manifold X to the knot or link. However, special 
issues which arise when X is Hyper-Kahler are addressed in some detail. 

3.1    Associating the Holomorphic Tangent Bundle 

The observables associated to a knot, /C, that were suggested in [RW] are 

Oa(K)=TraFe$KA, (11) 

where the sp(n) connection is 

A'j = d^Tij - eIMnMJKLXKVL, (12) 

and a designates a representation Ta of sp(n). Some properties of the con- 
nection are: 
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1. The connection is Q exact 

AIj = -Q(xLrILj). (13) 

This does not mean that it is a "trivial" observable since it is the BRST 
variation of a connection. 

2. On a general holomorphic symplectic manifold X, the connection is 

A'j   =   -Qix^ij) 

=   d<i>ITI
Lj + RI

JKZxKriL (14) 

where r£j is some symmetric connection on the holomorphic tangent 
bundle and 

RlJKL='BLTJK, (15) 

is the Atiyah class of X. The Atiyah class is the obstruction to the 
connection being holomorphic [A]. 

3. If X is Hyper-Kahler then we might also want to be sure the observ- 
able does not depend on the particular choice of the S2 of complex 
structures. This is indeed the case since, 

QA'j = dAk'j = dA'j + [A, AYJ, (16) 

where A^ = r/^T^j. A Q transformation is, therefore, equivalent to 
a gauge transformation and we are assured that the Wilson loop is 
Q invariant since it is gauge invariant. (The situation will be made 
clearer below) 

3.2    Associating Holomorphic Vector Bundles 

Let E —> X be a holomorphic vector bundle over a holomorphic symplectic 
X with fibre V. The reason for choosing E to be a holomorphic bundle 
is that we want the STU relations to be satisfied, see section 4. In trying 
to mimic the construction of the observables (11) we will find some more 
stringent conditions on E. Let a; be a connection on E whose, on fixing the 
complex structure of X, (0,1) component, in a holomorphic frame, vanishes 
that is 

u    =   JW, 
=   ojjdz1. (17) 
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Since $ : M —> X one can pull E back to the 3-manifold M and consider 
the connection 

A   =   -Q(xV) 

=   ^Vr + d^/xV, (18) 

which, due to the presence of the fermion terms, is not just the usual pull 
back $*(a;). Associate to a knot the observable 

OE{K) = T±v P exp f <b A\. (19) 

Next we list the relevant properties of this connection and specify extra 
requirements on E so that we obtain a good observable: 

1. The connection A is Q exact but non-trivial. 

2. If X is Hyper-Kahler and one wants (19) to also be invariant under Q 
(and so not to depend on the choice of complex structure on X) then 
the connection must satisfy 

if'0) = 0, (20) 

as well as 

Tldjujj^TjdjUK. (21) 

The condition (20) can be satisfied by choosing a Hermitian metric on 
the bundle and then taking UJ to be the unique hermitian connection. 
Holomorphic bundles E that also satisfy (21) are said to be hyper- 
holomorphic: a term coined by Verbitsky [V]. It is an immediate 
consequence that such bundles are stable, since contracting (21) with 
eIK yields 

9
I1

FIJ = 0, (22) 

which was conjectured to be equivalent to the condition of stability 
by Hitchin and Kobayashi and proven to be so by Donaldson and 
Uhlenbeck and Yau. One easy result, by counting equations, is that 
(21) and (22) are equivalent when X is a Hyper-Kahler surface. There 
is an important converse due to Verbitsky [V]. Let E be a stable 
holomorphic bundle over a Hyper-Kahler manifold for a given complex 
structure / then, if ci (E) and C2 (E) are invariant under the natural 
Sp(l) action, E is hyper-holomorphic. 
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If the holomorphic bundle is hyper-holomorphic then 

QA = dAA,     A = riJTjJujj, (23) 

and, consequently, a Q transformation is equivalent to a gauge trans- 
formation. 

Remark: Q and Q are the components of the sp(l) doublet BRST operator 
QA in the preferred complex structure for X (For this see equations (2.17) to 
(2.22) in [RW].) Invariance under both of these operators means invariance 
under the action of QA- However, Q and Q are essentially to be identified 
with the twisted Dolbeault operators, d^ and d respectively, in the preferred 
complex structure. Invariance under QA means that if we choose a different 
complex structure (say I') then the knot observables will be invariant un- 
der the corresponding BRST operators Qf and Q , which in turn are to be 
identified with d'^ and d . 

Remark: If one is only interested in obtaining 3-manifold invariants, then 
all one really requires is that E be holomorphic with respect to the given 
complex structure / on X. 

3.3    The Meaning of Equation (21) and Hyper-holomorphic 
Vector Bundles 

There is a nice geometric interpretation of the equation (21), already men- 
tioned above, which is tjiat it is the condition for which the holomorphic 
vector bundle E is holomorphic for the entire sphere's worth of complex 
structures. Let us see that this is the case in a more mundane manner. 

Let / be a given complex structure on X. The complexified tangent 
and cotangent bundles, TXc and T*Xc split into a sum of holomorphic 
and anti-holomorphic bundles as T^'^XQT^^X and T^^X ®T<0^X 
respectively. The decomposition is such that (1 - iI)/2 : T*Xc -> T^1'0)^. 

Since X is Hyper-Kahler , with complex structures I, J, and K satisfying 
the usual quaternionic rules, /' = I+81 = I+SbJ + ScK is an infinitesimally 
deformed complex structure. Denote the the splitting of T*Xc with respect 
to P by T**1'0)*' 0 T*^1)*'. If dz is a basis for T^1'0^, dz is a basis for 
T^0'1)^, dw is a basis for T^1'0)^' and dw is a basis for T^^X7 we find 

dw = (l - aT) dz + aTdz (24) 

where a = (Sc + i8b)/4) and T = (J - %K) : T^0'1^ -+ T<X^X or put 
another way Tdz G H1^,^1'0^).   All of this fits within the Kodaira- 
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Spencer theory of complex deformations. The spheres worth of complex 
structures means that we only look at the one (complex) dimensional sub- 
space of H^X, T^1'0)*) spanned by T. 

Let us now pass on to the case of holomorphic vector bundles. Our holo- 
morphic bundles over X come equipped with a connection w that satisfies 

u/0'1) = 0 (25) 

42'0) - 0, (26) 

where the holomorphic splitting is with respect to the given complex struc- 
ture, I, on X. 

In this section by a hyper-holomorphic vector bundle I will mean a holo- 
morphic vector bundle equipped with a given connection which has curvature 
of type (1, l)j for all of the J e S2 of complex structures on X. Now sup- 
pose that we want that E be hyper-holomorphic this means, in particular, 
that for the deformed complex structure I', that F^ be of type (1,1)7. Given 
that Fu with respect to /' should be of type (1,1)7 but of type (1,1) with 
respect to / means that one gets conditions on the (1,1) component of the 
curvature. These conditions are obtained on perusal of the following 

-J F^    =   Fjji^dwUvP 

=    FIj(u;)(dz-aTdz + aTdz)1 (dz - aTdz-\- aTdzY 

=   Fjjifjj) (dz1dz1' - d/a(T dz)1' + dz1a(T dz)1 

-a^TdzYdz1 + aiTdzYdz7) , (27) 

the (0,2) and (2,0) components on the right hand side will vanish iff 

TLFI1(UJ)=TJFIK(UI). (28) 

These are precisely the equations (21) that we found in the previous section 
and so the current definition of a hyper-holomorphic vector bundle agrees 
with that of Verbitsky given in the previous section. 

What is particularly satisfying is that the physics, demanding that (19) 
also be invariant under Q, leads naturally to this definition of a hyper- 
holomorphic bundle. This is the way I came to it before I was informed 
that this definition had already appeared in the mathematics literature [V]. 
Indeed the definition is older than this reference having already appeared 
in [MS] and the demonstration that the bundles in question are hyper- 
holomorphic is attributed, in that reference, to N. Hitchin. 
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3.4    On The Existence of Hyper-Holomorphic Bundles 

Clearly the holomorphic tangent bundle of a Hyper-Kahler manifold is hyper- 
holomorphic, but apart from on a Hyper-Kahler surface I did not know of any 
general results on the existence of hyper-holomorphic bundles. N. Hitchin 
[H] has kindly answered the following question in the affirmative: Are there 
examples of hyper-holomorphic bundles over a hyper-Kahler X other than 
its holomorphic tangent bundle? Indeed he shows that there is a procedure 
for constructing such bundles which follows directly from the hyper-Kahler 
quotient construction [HKLR]. The details of the construction have also 
appeared in [GN]. I give a very brief description of the salient features. 

Let G be a compact Lie group acting on a hyper-Kahler manifold Y, 
with either iJ^YjZ) = 0, or H2(G) = 0, which preserves both the metric 
and the hyper-Kahler structure. Consequently the group preserves the three 
Kahler forms, UJA, corresponding to the three complex structures A = /, J, 
K. For each Kahler form there is an associated moment map, HA '-> 0*, to 
the dual vector space £j* of the Lie algebra. 

Each element ( of the Lie algebra g of G defines a vector field, denoted C, 
which generates the action of £ on Y. Then, up to a constant for connected 

d/4 = i-^uJA, (29) 

defines /i^. The moment maps HA are defined by 

(tiA(m),0=A(m), (30) 

and they can be grouped together into one moment map 

//: Y->R3®0*. (31) 

Fact 1 [HKLR]: For any C* 6 R3 <8> 0* fixed by the action of G, the 
quotient space X = /i-1 (£*)/£? has a natural Riemannian metric and hyper- 
Kahler structure. 

Fact 2 [H, HKLR, GN]: Let TT : /x"1^*) -> H^iO/G = X be the 
projection. Then, TT : /i~1((*) -> X is a principal G-bundle which comes 
equipped with a natural connection O, where the horizontal space is the 
orthogonal complement of the tangent space of the orbit T2/^~1(C*) with 

Fact 3 [H, GN]: The natural connection is hyper-holomorphic. 
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The upshot is that if the hyper-Kahler manifold of interest comes from 
a hyper-Kahler quotient construction then it comes equipped with a natural 
hyper-holomorphic principal bundle. Given a representation of G we can 
construct an associated hyper-holomorphic vector bundle, which is what we 
are after. In the case of infinite dimensional quotients (on the space of 
connections for example) the associated hyper-holomorphic vector bundles 
are index bundles, universal bundles, etc.. Explicit examples in the case of 
the monopole moduli space can be found in [MS] while for instantons one 
may refer to [GN]. 

4    The STU Relation 

In the physics approach to topological field theory it is formally enough that 
one can exhibit metric independence via standard physics arguments. (A 
metric variation is BRST exact, for example, which is the case in Chern- 
Simons theory when one includes gauge fixing terms.) The essence of the 
argument in the case of Chern-Simons theory for 3-manifold invariants has 
been distilled, made mathematically precise and then abstracted. The net 
result is the so called IHX relation. 

A crucial feature of the Rozansky-Witten theory is that the IHX relation 
is satisfied by the weights &r(^0- A proof of this statement for QH5 goes 
along the following lines (this is taken from [RW]). Vertices in a closed 
2n-vertex graph in this theory carry the curvature tensors R

I
JKT- Their 

holomorphic labels are contracted with eIJ (thanks to the x propagator). 
The anti-holomorphic labels are totally anti-symmetrized (since this involves 

products of T/Q) and from the Bianchi identity one has dj^R1 y = ^L^J^TT 

and so one obtains a d-closed (0,2n) form on X, that is a map 

rn,3 -»• H2"(X). (32) 

The weight functions br(X) satisfy the IHX relations by virtue of the fact 
that 

QW^MR^^VOVO 

= (RIPMNR JKL + R PKNR JML + R JPNR KMh) % %       (33) 

This tells us that the right hand side is cohomologous to zero. 

Chern-Simons theory has the IHX relation, essentially the Jacobi identity 
for the Lie algebra used in the definition of the theory, encoded in it in two 
different ways.   Firstly, it is subsumed in the whole construction of gauge 
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theories. Secondly, it is explicitly required in order for the BRST operator, 
Q, to be nilpotent Q2 = 0. How is the IHX relation "built in" in the 
Rozansky-Witten theory? More concretely how is (33) manifest from the 
beginning? It is clear from (8) that it is not required for nilpotency of the 
operator Q. However, the IHX relation (33) follows from the Bianchi identity 
for the curvature form and it is the Bianchi identity that ensures that the 
action (3) is BRST invariant. So in this sense the IHX relation is subsumed 
from the start. It is in this way that the formal physics proofs of metric 
independence and the mathematical proofs are connected. 

Now in order to have a good knot or link invariant one would like the 
analogue of the STU relation (see for example [B]). In Chern-Simons theory 
this amounts to the Lie algebra commutation rules. Let Ta be a basis of 
generators for the Lie algebra in the T representation. Basically the STU 
relations says, [Ta,Tb] = fab^c- The representation matrices are attached to 
the 3-point vertices in the loop observables. In the present context the STU 
relation is the following, 

d^LFa rgrj? = - {R^ FN1 + [F^, Fn]) vM, (34) 
again this equation tells us that the right hand side is cohomologous to 
zero. In analogy to the Chern-Simons theory the curvature tensor plays 
the role of the structure constants and the curvature 2-form the role of the 
representation matrices. 

One derives (34) from the Bianchi identity for the curvature two form of 
the holomorphic vector bundle, as follows: Let E be a holomorphic vector 
bundle, choose the connection so that c^ = 9, then2 

40'2) = 0. (35) 
The Bianchi identity d^F^ = 0 tells us that 

duFW = 0,    dwF^ = dF^\   dF^) = 0. (36) 

We want to get a formula for 

djFiMFij-tJK^l) 
= [%, VLM] FJJ + VL(u;)dwFa -{K^ J). (37) 

The last term in this equation vanishes by virtue of the last equality in (36), 
so that 

d-^VMFj-j-iK^l)^ 

= [dK,VL(u>)]FIj-(K<*J)   _ 

= -R
"LK 

F
NJ - FLK , Ffj] -&***), (38) 

2If we choose a Hermitian structure we could then fix on the unique Hermitian connec- 
tion for which du = d and F^0) = Fi0'2) = 0. 
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as required. 

5    Claims 

We are interested in evaluating, for a knot K and holomorphic vector bundle 
E, 

ZX[M, OE(K)} = [DQe'SW OE(K), (39) 

and, more generally, for a link made up of a union of non-intersecting knots 
Ki with a holomorphic vector bundle Ei associated to each knot 

Zx[M, Ho^iKi)} = [D$e-SW HO^Ki). (40) 
i J i 

The linking number, Link(Ki, Kj), of the knots Ki and Kj in a QHS' makes 
an appearance and I use a definition tailored to our present needs. Let Ki 
denote the z-th knot in a QHS M. Since Hi(M,Q) = 0, we have that 
Hi(M, Z) is a finite group and the integral homology classes represented by 
the Ki are of finite order, say of order m^, so that rriiKi (no sum over i) is 
null-homologous. Let mi Ji be the de Rham 2-currents Poincare dual to the 
rriiKi. Then we have that mi Ji is trivial and so there exist fii such that 

djjii^miJi. (41) 

Observe that the singular support of mi Ji (resp. /i;) does not intersect the 
singular support of d^k (resp. dJ^ = 0) for i ^ k (see [dR] §20 (e) for 
details). Set A; = Hi/mi. The linking number is now defined to be 

Link(Ki,Kj)=  /   XiJj=  /   Xj Ji = Link(Kj,Ki). 
JM JM 

(42) 

In section 7 I will prove some of the following claims. M is a 3-manifold 
and, for the first three claims, X is a Hyper-Kahler manifold and the Ei are 
holomorphic vector bundles over X associated to a link. 

Claim 5.1. Ifbi(M) > 2 then 

Z|^[M, H 0Ei (Ki)] = a. ZJT[M], (43) 
i 

with 

a = Y[rank{Ei). (44) 
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We need some more notation.  Let F^ denote the curvature 2-form of 

tFu. 

ch{Eh t) - Try. e 2*^. (45) 

For a holomorphic line bundle L and t 6 Z one has ch(L,t) = c/i(L(8>t). 

When X is Hyper-Kahler denote the Chern roots of the holomorphic 
tangent bundle by ixi,... ,±xn. Denote by A^f(t) the Alexander poly- 
nomial of M normalized so as to be symmetric in t and t~l and so that 
AM(1) = |ToriJi(M,Z)| and set 

AM(X) = f[AM{exi). (46) 
2=1 

Claim 5.2. If bi(M) - 1 then 

Z$w[M,l[0Ei(Kl)} = - [ A(X)AM(X) UchiEiMKi)),       (47) 

where u is the generator o/Hi(M, Z) and 

uiKi) = [  CJ, (48) 

is ^/ie intersection of the Poincare dual of the knot with u. 

Claim 5.3. IfM is a QjilS and dimcX — 2 we have that 

i 

= a.2'|w[M] + |H1(M,Z)| ( ^^LmA;^,^) j ch{Ei) 

+ Y,aij LinkiKi, Kj) j ciiEiYxiEj)    , (49) 
Kj 

where 

ctj = jTranA;(^),   a^ = TT Yank(Ek). (50) 

Remark: For S*2 x 51, a knot can wrap say k times around the 51, so 
that (jo(Ki) = ki and we have 

Z^w[S2 x 51, JJ^TO] = - / A(X) HchiE^h). (51) 
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This partition function with knot observables can be understood, for com- 
pact X and ki = 1, as the index of the twisted Dolbeault operator, coupled 
to Y[i®^i (see ^e appendix). In fact the Rozansky-Witten path integral 
yields a proof of the Riemann-Roch formula for the index of the twisted 
Dolbeault operator. 

There are two more claims that I will not prove, but that can be es- 
tablished by slight variations of the proofs for the claims above. In these 
claims X is a holomorphic symplectic manifold, M a 3-manifold and the Ei 
are holomorphic vector bundles over X associated to a link. The Hyper- 
Kahler condition on X is dropped. 

Claim 5.4. For bi(M) >3 

Z$W[M] = 0. (52) 

Claim 5.5. If bi(M) > 2 then 

Z^lMtHOEiiKi)] = f nranfc(^) ) .Z^W[M}. (53) 

Remark: Once more we see that these invariants, for &i(M) > 0, are 
essentially classical invariants of the 3-manifold. To get something new one 
must take M to be a QHS*. 

6    Some Observations on the Invariants for X a 4n- 
Torus 

At first sight it is quite odd to realize that while the Rozansky-Witten in- 
variants vanish for any 4n-torus (since the curvature tensor vanishes) this is 
not true for the link invariants. A glance at claim 5.2 shows us that instead, 
providing &i(M) < 1, that Z^[M, H; ^(^Q)] need not vanish. Indeed 
for bi (M) = 1 we have 

Z^[M,n^M] = - / 11 ch(EiMKi)), (54) 
i Jx   i 

though the right hand side of this expression has very little dependence on 
the 3-manifold M. We do not fare much better with M a QHS' either as we 
see next. 
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6.1    The Rozansky-Witten Path Integral For X a 4n-Torus 
and M a QRS 

For T4n the path integral can be exactly performed since the theory is a 
"Gaussian". Fix on the standard flat metric on T4n. With this choice the 
metric connection on the holomorphic tangent bundle and the corresponding 
Riemann curvature tensor vanish. Consequently, the path integral becomes 

ZT4n[M, UOEtiKi)] =  /^e-5o($) YlOE-iKi), (55) 
i J i 

where 

So = I   fyij dtf * <#> + eux1 * drf + ie/jx^X-7) • (56) 

The fields that appear in the link observable are the the field x1 the constant 
map (% and the constant T/Q . 

The STU relation (34) for tori reads (in Dolbeault cohomology) 

[Fn,FjK]4ii~^ (57) 

which means that the matrices (irrespective of the holomorphic label), when 
evaluated in the path integral, are essentially commuting. Consequently one 
can drop the path ordering and simply use the exponential 

Try^ P exp (ij>   A J - Try. exp U &   A j. (58) 

In order to proceed I use a standard 'trick'. Write 

Try exp U I A\ = ^T (CD\ exp (i I AA
B C

B C^\ \CD), (59) 
D 

—A 
where CA and C    are Grassmann odd operators with values in V and F* 

 A 
(the dual vector space) respectively. The operators CA and C   satisfy the 
usual algebra 

{CA,CB}=5B
AJ (60) 

and the states are defined by 

CA|0) = 0,      and   CB|0) = \CB). (61) 
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Introduce such variables for each knot Ki and index them also with the label 
i. Then the effective action in the path integral is 

S^So + iY" [ CiAidJi. (62) 

We can perform the path integral to obtain, up to an integration over 
the zero modes, 

£(Cz>|exp(-i;£L^^ \CD),   (63) 
D \ id J 

where, 

with 

AIj=TiKdK(jIj, (64) 

Wj, (65) 

the connection on the bundle Ej. A quick way to arrive at this formula is 
to use the equation of motion 

dx^i^Y^AjiJiCid, (66) 
i 

the fact that the equation of motion saturates a Gaussian integral and to 
recall (42). 

Since the self linking number appears in the formula (63) one must fix 
on some framing of the knots that form the link. Preliminary calculations 
[HT2] indicate that the theory comes prepared with the framing for which 
the self linking numbers are zero. If one takes, for simplicity, the framing 
for which Link(Ki:Ki) = 0, (63) becomes 

Tr^.y. exp    - Y, LinkiKi, Kj) eIJ AM ® Aj,    , (67) 

in general one has 

Tr®.vi exp ( ~ J] Unk{Ku Kj) eIJ Aji ® Ajj J, (68) 
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with some framing understood. Only the n-th term in the expansion of the 
exponential will survive the T/Q integration. 

For example, consider a single knot with self-linking number L, then 
(68), after integration over all the modes, becomes 

|Hi(M,Z)|nLn /  ch{E): (69) 

so that the invariant enters in a trivial way, meaning that it is not so interest- 
ing as an invariant for Hyper-Kahler manifolds. Recall that, the Rozansky- 
Witten invariants for a rank zero 3-manifold (i.e. bi(M) = 0) do not depend 
on X simply through its Chern numbers. If they did there would be precious 
few invariants. In the example that we have just considered we have seen 
that for a knot and X a torus the holomorphic bundle enters only through 
its Chern numbers. 

6.2    Comparing with Chern-Simons Theory 

Now consider the U(l) Chern-Simons theory. There is no perturbation ex- 
pansion beyond the lowest order (the theory is quadratic). The lowest order 
term is essentially the square root of the inverse of the Ray-Singer Torsion 
of M. On the Rozansky-Witten side the compact manifolds for which the 
Rozansky-Witten invariant vanishes are clearly 4-tori, since the curvature 
tensor vanishes, and products of compact Hyper-Kahler manifolds with a 
4-torus. From this point of view the lowest order in perturbation theory is 
the 0-torus (point), but this is hardly insightful. 

It is possible to compare not just the "pure" theories but also those with 
knot or link observables as well. For Chern-Simons theory one can introduce 
Wilson loops 

JJexp liqjf    A], (70) 

where the qj are charges. The path integral can again be evaluated directly 
and yields, up to a factor of the Ray-Singer torsion, 

exP (-ijr E ^ L(^' Ki) - y E w L(^'KJ) ) ■ (71) 
\ 3 i<3 / 

As before some framing must be chosen for the self linking numbers L(Kj,Kj). 
Expand the exponential (71) out to n-th order. Let products of the linking 
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numbers be a "basis" for which to group the terms that arise in such an 
expansion. The coefficients will be certain polynomials in the charges. The 
comparison with (68) can now be completed, the only difference is in the 
coefficients, here they are polynomials in the charges while in the Rozansky- 
Witten theory they are integrals of products of curvature 2-forms. 

As an example let n = 1. Then on the Chern-Simons front we get 

-^E^2 ■ HK^K^-i^Y.m - HK^Kj), (72) 
j i<3 

while on the Rozansky-Witten side we have, up to a factor of the first ho- 
mology group of M, 

^aj f chiEj) . UKj^Kj)-^^ f c^EJaiEj) . L(i^,i^),(73) 
j JX i<3 JX 

where 

aj = Yl^ankiEk),   aij = JJ mnk(Ek). (74) 

This example exhibits the general nature of the expansion of the invariants 
and the fact that the basis (3-manifold information) is the same for the 
Chern-Simons theory and for the Rozansky-Witten model while the weights 
(products of charges for the U(l) Chern-Simons theory, Casimirs for the 
non-Abelian Chern-Simons theory, integrals of Chern classes and perhaps 
other objects in the Rozansky-Witten theory) encode the differences. 

7    Calculations 

In this section I will calculate the invariants for 3-manifolds with bi(M) > 1. 
One can do certain calculations for rational homology spheres, especially for 
low dimensional X, and I will present some of those here as well. Many 
of the details of the calculations are variations on themes taken from [RW], 
[T], [HT] and so I will be somewhat brief here and refer the reader to the 
references for more detail. 

7.1     Zero Mode Counting 

Various arguments, (see [RW], [T] and [HT]) allow one to conclude that the 
only relevant parts of the connections that appear in perturbative calcula- 
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tions of Feynman diagrams from Li (4), L2 (5) and (40) are 

V,    =   gjjfo) R^ifoh'riUtl^ (75) 

V2   =    -leIj(<f>o)RJ
KL-M(h)xIXKXLv¥ (76) 

VE   =   djMMx'ril (77) 

respectively. In (77) the 0 subscript means the harmonic part of the field 
while the _L subscript means modes orthogonal to the harmonic part. To 
ease the burden of notation, from now on all tensors are understood to be 
evaluated on the constant map </>o. 

The Feynman diagrams that need to be evaluated now arise from con- 
tractions of all of the possible vertices 

(V{V2
SV£). (78) 

A constraint comes from the fact that for dimcX = 2n the maximal 
possible product of TJQ is 2n. Consequently, 

r + s + t = 2n, (79) 

in order to soak up the TJQ zero modes. In the following we will look at 
constraints that arise by counting x1 zer0 modes. The x1 zero modes can 
only appear in the vertices (75-77) with at most one such mode in Vi, three 
in V2 and one in VE- The number of x1 zero modes is 2n x 61 (M) (2n because 
of the holomorphic tangent space label and 61 (M) as it must be a harmonic 
1-form on M). The largest number of zero modes that can be soaked up 
arises when all the x1 appearing in the vertices are zero modes that is 

r + 3s + t=:2nxbi(M). (80) 

Together with (79) this implies 

5 = nx(&i(M)-l), (81) 

but is incompatible with (79) if bi(M) > 3. Consequently 

Z|w[M,n^(^)] = 0,    if MM) > 3. (82) 

It is easy to see that for &i(M) > 1 that the x1 that appears in (75) and 
(77) must be a zero-mode. In the following I will take this for granted. 
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7.2 Proof of Claim: 5.1 

Since, in any case Z$W[M] = 0 if &i(M) > 3, (82) partially establishes the 
claim. When bi(M) = 3, one finds from the discussion above that 5 = 2n 
and r = t = 0 which means that no vertices from the link observables can 
participate in the calculation of the expectation value of the link observable. 
So we have established the claim for &i(M) = 3. 

If fri(M) = 2, the rule (80) does not hold (since one cannot have all three 
X1 being harmonic), rather, one can have at most two x1 harmonic in V2 
hence, 

r+ps + t = 4n, (83) 

where p = 0, 1 or 2. p = 0 and 1 are ruled out by (79) leaving only 
p = 2, s = 2n and r = t = 0. Once more the vertices VE do not make an 
appearance, and so we have established claim 5.1. 

7.3 Proof of Claim: 5.2 

For 61 (M) = 1 the counting of x1 zer0 modes tells us that indeed one of 
the x1 appearing in V2 must be a zero mode xi- Such a mode is actually 
decomposable as 

Xi^c1^ (84) 

where c1 is an anti-commuting scalar (on M) and CJ is the generator of 
H1 (M, Z). Which means that for a given knot Ki and associated holomorphic 
vector bundle Ei that 

OEtiKi)    =   Try. P exp (JAH i   uA 

=   Try, exp^AjMKi)). (85) 

The second equality in (85) comes about as follows. Since the matrix ^An 
is position independent one can drop the path ordering. Without the path 
ordering the integral in the exponent is really $Km UJ which is the linking 
number between the knot Ki and the fundamental cycle Poincare dual to u. 

The path integral is still to be performed. However, a glance at (85) 
tells us that the insertion of these observables only effects the zero mode 
integration of the path integral. The integration over the other modes has 
been performed in some generality in [HT] the result being equation (8.34) 



G. THOMPSON 479 

in that reference. One now needs to multiply that result with products of 
(85) and integrate over the zero modes of the theory. The integration over 
the zero modes turns the objects that appear into differential forms (the 
emergence of factors of 27r is explained in [HT]). After these gymnastics one 
obtains claim 5.2. 

7.4    Proof of Claim: 5.3 

Here we are interested in &i(M) = 0 and n = 1. From the selection rule (79) 
we see that 

r + s + t = 2. (86) 

Let us write the final result as a sum of three terms. The first is, t = 0, the 
second t = 1 and the third comes from t = 2. 

When t = 0, we have r + s — 2 and the only vertices that appear are 
those in the calculation of Z^W[M]: so from these diagrams we get 

[HvankEi) Z§W[M]. (87) 

When t = 1, r = 1 and s = 0 or r — 0 and s = 1. In the first case 
the vertex Vi is contracted with itself along the (j)1 legs. But this vanishes 
because the 0* propagator contains a gIJ which when contracted with the 
vertex yields R^j gIJ = 0 since X is Ricci flat. In the second case the 

vertex V2 is contracted with itself along the two of the three x1 legs- This 
vanishes as well and for the same reason as for the Vi vertex. So there is no 
contribution from the t = 1 diagrams. 

For t = 2 we necessarily have r = s = 0. This means that we may as 
well set the curvature term in the Rozansky-Witten theory to zero for the 
purposes of the present calculation. But then the calculation is the same as 
that for the 4n-torus of the previous section. In fact the answer, for n = 1 
is given in (73), thus completing the proof of the claim. 

Coupling to Supersymmetric Quantum 
Mechanics 

In this appendix I would like to mention one small generalization that can 
be made with regards knot invariants. Witten [W] suggested that the cor- 
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rect way to treat knot observables, Wilson loops, in Chern-Simons theory 
is by making use of the Borel-Weil-Bott theorem to replace Wilson lines by 
functional integrals over maps from S4 into G/T. In the present setting a 
functional integral formulation of the knot observables is also available. This 
path integral representation has a number of uses. 

Let E be a holomorphic vector bundle over X.   One can add to the 
Rozansky-Witten action the following supersymmetric action 

fc^ + dj'ur-Fnx'v^ C (88) 

where C and C are Grassmann odd maps from the knot K to sections of E 
and E respectively. This action is also Q invariant if we set 

QC = 0 = QC. (89) 

If we would like this also to exhibit Q invariance then we must take E to be 
hyper-holomorphic. If E is hyper-holomorphic then, since Q acts by a gauge 
transformation (23), invariance of (88) is guaranteed if we perform a gauge 
transformation on C and C, that is, 

QC   =   -rfT/ujC, 

QC   =   Cr/T/uj. (90) 

One picks out the path ordered exponential by projecting onto the one 
particle sector of the theory. This is the equivalent of (59) and can be 
achieved by placing a projection operator in the path integral over C and C. 
But one is not restricted to this, rather, one is free to look at any sector of 
the Hilbert space that one likes. Consequently, there are many more objects 
that one can associate to a knot (and hence to a link). 

Note also that on the 3-manifold S2 x S'1 one can essentially squeeze 
away the non-harmonic modes to be left with a theory on S4 [T]. If one 
picks the knot K to be {x} x S1 for some, immaterial, point {x} G S'2 then 
the combined theory, (3) together with (88), is a standard supersymmetric 
quantum mechanics which represents the index of the Dolbeault operator 
coupled to a holomorphic bundle [AG]. 

It would be interesting to have a topological field theory whose bosonic 
field is a section of TX <g> E and not just to couple E to a knot. 
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