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Abstract 

We explicitly determine the locations of G orbifold conformal field the- 
ories, G = ZM, M e {2,3,4,6}, G = Dn, n e {4,5}, or G the binary 
tetrahedral group T, within the moduli space MK3 of N = (4,4) super- 
conformal field theories associated to K3. This is achieved purely from 
the known description of the moduli space [AM94] and the requirement 
of a consistent embedding of orbifold conformal field theories within 
MK3. We calculate the Kummer type lattices for all these orbifold 
limits. Our method allows an elementary derivation of the B-field val- 
ues in direction of the exceptional divisors that arise from the orbifold 
procedure [Asp95, Dou97, BI97], without recourse to D-geometry. We 
show that our consistency requirement fixes these values uniquely and 
determine them explicitly. The relation of our results to the classical 
McKay correspondence is discussed. 
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1    Introduction 

In this paper, we study certain subvarieties of the moduli space M oi N = 
(4,4) superconformal field theories with central charge c — 6. More precisely, 
all theories in M are assumed to be representations of the N = (4,4) linear 
extension of the iV = (2,2) superconformal algebra that contains su(2)i © 
su(2)r, a special case of the Ademollo et al. algebra [ABD+76]. Moreover, 
with respect to a Cartan subalgebra of su{2)i @ su(2)r, left and right charges 
(i.e. doubled spins) of each state in our superconformal field theories are 
assumed to be integral. The structure of M has already been described 
in detail [AM94, Asp97, RW98, Dij99, NW01]. Let us summarize its most 
important features. 

M decomposes into two components, M = M*07"1 U MK^. Every theory 
in M can be assigned to either the torus or the K3 component of the moduli 
space by its elliptic genus, which vanishes in the torus case and reproduces 
the geometric elliptic genus of K3 otherwise [EOTY89, NW01]. Each ir- 
reducible component of M is locally described by a Grassmannian T4>4+5 

[Nar86, Sei88, Cec91] (see Appendix B for notations and properties of Grass- 
mannians). Here, 5 = 0 for the torus component and 6 = 16 for K3. Hence 
the defining data of a superconformal field theory in M. have been encoded by 
a positive definite four-plane x C IR4'4+5. Provisionally, let X denote a com- 
plex two-torus or a K3 surface, depending on which component of the moduli 
space x belongs to. Then M4'4+^ = Heven (X, R), where on cohomology we 
always use the scalar product which is induced by the intersection pairing 
on X. The four-plane x is now interpreted as subspace of jH"even(-X",M). By 
Poincare duality, HeveTl(X, Z) is an even self-dual lattice of signature (4,4+5) 
(see Appendix A for some mathematical background on lattices). Hence by 
Theorem A.l, Heven(X,Z) is uniquely determined up to lattice automor- 
phisms, and we assume that an embedding Heven(X,Z) c-^ Heven(X,R) has 
been chosen. Then the four-plane x C Heven(X, M) is specified by its relative 
position with respect to Heven(X,Z). 

Each theory in M*07"1 has a description as nonlinear sigma model with 
target space a complex two-torus. The moduli space of toroidal conformal 
field theories had originally been given by Narain [Nar86] in terms of the 
odd torus cohomology. To arrive at the above description in terms of the 
even torus cohomology one has to use 50(4,4) triality, see [NW01]. 

For MK^ one uses the isomorphism (B.l) with primitive null vectors 
v^v0 £ Heven(X,Z), {v,v0) = 1, to show that its parameter space agrees 
with the parameter space of nonlinear sigma models with K3 target [AM94]. 
Here, v,v0 are interpreted as generators of H4(X, Z) and H0(X,Z), respec- 
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tively. This description equally holds in the torus case [NW01]. The image 
(£,F,i?) of a given four-plane x under (B.l) is called a geometric inter- 
pretation. Here, the three-plane E C H2(X,R) = E3'3+J is interpreted as 
the subspace of self-dual two-forms and thus encodes an Einstein metric of 
volume 1 on X. The three-plane E is specified by its relative position with 
respect to the even self-dual lattice H2(X,Z) C H2(X, M) (see Theorem 
A.l). The parameter V is interpreted as volume of X, and B E H2(X, M) 
denotes the B-field. We remark that in contrast to higher dimensional Calabi 
Yau manifolds we need not perform a large volume limit in order to study 
nonlinear sigma models on iiT3, since here the metric on the moduli space 
does not receive instanton corrections [NS95]. 

Globally, the irreducible components of M are obtained by modding out 
a discrete symmetry group from their local descriptions. Namely, 

M6 = 0+(iJei;en(X,Z))\0+(ife^(X,E))/50(4) x 0(4 + 8)        (1.1) 

[Nar86, AM94], up to a subtlety that results in the choice of 0+(Heven(X, Z)) 
instead of 0(Heven(X,Z)) above [NW01]. In order to generate the group 
0Jr{Heven{X^rL)) one firstly needs the classical symmetries which identify 
equivalent Einstein metrics thus fixing u, v®. Secondly, we have B-field shifts 
by A G jff2(-X",Z) which induce [v.v^) h-» ('u,^0 + A - ^-v) and for w with 
(w,v) = 0 induce w i-> w — (\,w)v. Thirdly, one can use mirror symmetry 
[AM94, AM], or the Fourier-Mukai transform v 4-* v0 [NW01], where the 
latter approach appears to be the simpler one. 

Given the above description of .M, we formulate the aim of this paper 
as follows: Consider a superconformal field theory in Mtori, specified by a 
four-plane XT £ T4,4, that admits a discrete symmetry G which preserves 
supersymmetry, so G C 517(2). Then for nontrivial non-translational G 
the resulting G orbifold conformal field theory is known to belong to MK3 

(see, e.g., [EOTY89] to check the elliptic genera in the case of cyclic groups 
G = ZMJ M G {2,3,4,6}). For all possible such actions that do not contain 
non-trivial translations (by [Fuj88] this means for G = ZM, M G {2, 3,4,6}, 
G = -Dn, n G {4,5}, and G = T), we specify the location of the resulting 
four-plane x G T4,20 in a way that allows to explicitly read off a geometric 
interpretation of a; on the corresponding G orbifold limit of K3. In particular, 
we show that a consistent embedding of the subvarieties which contain such 
orbifold conformal field theories in MK3 fixes the B-field values of the above 
geometric interpretation in direction of the exceptional divisors of the blow 
up of the orbifold singularities. We determine these B-field values explicitly. 

As a first step, in Sect. 2, we describe the underlying geometric picture. 
In other words, we specify the locations of orbifold limits within the moduli 
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space 0+(iir2(X,Z))\T3'19 of Einstein metrics with volume 1 on K3. In 
contrast to the non-compact minimal resolution of C2/G, the components 
of the exceptional divisors on X do not generate a primitive sublattice of 
H2(X,Z). For G - Z2, in [PSS71, Nik75] it was shown that they are rather 
contained in a finer lattice, the Kummer lattice. We explicitly calculate the 
generalizations of the Kummer lattice to all G listed above. In Sect. 3 we use 
Theorems A.2 and B.l to lift these geometric results to the "quantum level". 
This in particular leads to a short derivation of the correct B-field values 
for orbifold conformal field theories which is essentially independent of the 
technical discussion in Sect. 2. We are in agreement with previous results 
by Aspinwall [Asp95], Douglas [Dou97] and Blum/Intriligator [BI97]. We 
conclude with a summary and discussion of possible further implications our 
techniques might have. We briefly point out their surprisingly simple relation 
to the classical McKay correspondence. There are two appendices to present 
the necessary mathematical background on lattices and Grassmannians. 

Acknowledgements. The results presented in this note were initiated in joint work 
with Werner Nahm [NW01], whom I am also indebted to for numerous fruitful 
discussions during his supervisorship of my doctoral studies, which this work is 
based on. I like to thank Paul Aspinwall, Glaus Hertling, Gerald Hohn, David R. 
Morrison, Werner Nahm, and Andreas Recknagel for helpful comments on earlier 
versions of this work. 

2    Kummer type constructions of K?> 

Apart from notations which are introduced at the beginning of the present 
section, further results of this work can be understood without the techni- 
cal details discussed below. In particular, the proofs in Sect. 3 are mostly 
independent of Prop. 2.1. 

Let T denote a complex two-torus with Einstein metric of volume 1 
specified by the positive definite three-plane E C H2(T, M) of self dual two- 
forms. Assume that T possesses a nontrivial discrete symmetry G C SU(2)^ 
such that the induced action on S is trivial. The variety T/G has a set S of 
singularities of ADE type [Val34, Art66], which we assume to be nonempty. 
By S C T we denote the pre-image of S in T. The minimal resolution 
p : X —> T/G produces a K3 surface X in the orbifold limit. This means 
that on X we use the metric which is induced by the flat torus metric and 
assigns volume zero to all components of exceptional divisors p~1(s): s G S. 

Here, we restrict considerations to groups G that do not contain non- 
trivial translations.   In [Fuj88], such G actions have been classified, and 
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our discussion below covers all these cases (see (2.2)). In fact, this means 
that we omit only two further orbifold constructions of if 3 where G does 
contain translations [Mor], [dBDH+, Table 18]. To locate all such G orbifold 
limits within the moduli space of volume 1 Einstein metrics on if 3, we 
will determine the appropriate embedding of the image of G invariant torus 
forms ii2(T, Z)G in H2(X, Z). Since the geometric data of Einstein metrics 
on T, X are given by three-planes in iJ2(T, M), H2(X, R) which are specified 
by their relative position with respect to these lattices, such an embedding 
indeed is all we need to find. 

As to notations, for s G S the irreducible components of the excep- 
tional divisor p~l(s) are rational spheres with intersection matrix the nega- 
tive of the Cartan matrix corresponding to the type of singularity s. Their 
Poincare duals are lattice vectors in H2(X, Z), which in this section we de- 

note* Es\ (Es   )2 = —2, and which span an ADE type root lattice IY We 

set £|G| :=   U {E{
s
j)} and r^i := 0 Ts C H2(X,Z).   Note that T\G\ is a 

ses ses 
root lattice with fundamental system £\Q\. 

On T, we choose complex coordinates zi,Z2 compatible with the Einstein 
metric and split T into T = T2 x T2 with elliptic curves T2, T2. Both curves 
are assumed to be Z^ symmetric, but the metric need not be diagonal with 
respect to 21,22. If M G {2,3,4,6}, we consider the algebraic G = ZM 

action, where ZM is realized as group of Mth roots of unity in C: 

(*i,*2) GC2, ZM^C: (-{21,22) = (0*1,0*2); 

if T2 = T2 and M .G {4,6} we also have algebraic 1)^/2+2 actions with 
additional generator i, 

(21,22) GC2  :       i.(2i,22) = (-22,2!). 

We have to rewrite the results of [Fuj88, Table 9] to notice that the above 
D4 action is algebraic as well on tori 

TT .:=   <C2/AD4, 

AD4    :=    Fspanz{(l,0), (»,0), (*£,*£), i^,^)} ,     VGR, 

but with different fixed point sets (see (2.2)). To distinguish the two cases, 
the latter is denoted D^. On Tj as in (2.1) there also is an algebraic action 
of the binary tetrahedral group T which is obtained from the D^ action with 
additional generator 

(zuz2) G C2 :     J.(2i,22) = ^ (i(si - 22), -(21 + 22)). 

*This is a slight abuse of notation as we will see in Sect. 3, where the Es    are replaced 
by SP. 
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From the torus geometry it is natural to label Z2 and Z4 type fixed points 
by vectors i G F2, whereas Z3 type fixed points carry labels t G F3 (¥p: p 
prime, denotes the unique finite field with p elements). The integral two- 
forms dual to the components of exceptional divisors in the blow up of an 
ADE singularity are labeled as follows: 

At-    ^    A,- EP   
Ei2)  A,- EUEWEW   *    .   Ej1} EVEMEWEW 

D4 • ^W^ D5 • E\4y0y» E6 ■ ^ ^W4^' 

Recall that a Zm type fixed point gives an Am-i type singularity on T/G, 
whereas Z)n type and T type fixed points correspond to Dn and E§ type 
singularities, respectively. Then for the various orbifold limits of if 3 we 
have 

G r|G|(-i). £\G\ 

Z2 Af Ei, iewl, 

Z3 A Ell},t&¥ll€{l,2}, 

Z4 44 m 46 E^,i € IW := {(j,k), j,ke {(0,0), (1,1)}} , 
IE {1,2,3}, 

Ei,   ielW:={(j,l,0),(l,0,j),j€F2
2}, 

(1,0,1,0) -(0,1,0,1), 

z6 -A5 © A2 © A^ 4'\ze{i,...,5}, 
^^^{(l^),^!),^,!)^!^)},^^^}, 
^,   iG {(1,0,0,0), (0,0,0,1), 

(1,0,1,0), (1,0,0,1), (0,1,0,1)} 

^4 Dl®Al® A\ £f,t€{0,l},Z€{l,...,4}, 
EP,ie{(i,i,o,o),(i,o,i,o),(i,o,o,i)}, 

/e {1,2,3}, 
^i,   *€{(!, 0,0,0), (0,1,1,1)}, 

D', Di®Al ^l\tei<4):={(3,*)>i>fce{(0>0)>(l,l)}}, 
ZG{1,...,4}, 

^, «e{(i,o,o,o),(o,o,o,i),(i,o,i,o)}, 

(2.2) 
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G iW-i) ^|G| 

% D$®Al®Al® Ai 

E}0,. G {(1,0,1,0), (1,0,0,1),(0,1,0,1)}, 
le {1,2,3}, 

£f,t€{(l,0),(l,l)},le{l,2}, 
Ei,   i = (0,0,0,1). 

f EG © D4 © A% © Ai S^,             /G{1,...,6}, 

^iififiV    ' €{!,... ,4}, 
Ej0,iG{(l,0),(0,l),(l,l),(l,2)},/e{l,2}, 
■^(1,0,0,0) • 

(2.2) 

From the very definition of the orbifold construction we have a rational map 
TT : T —>• X of degree |G|, which is defined outside the fixed points of G. 
By -K"|G|J n^j we denote the primitive sublattices of H2(X,Z) that con- 
tain n*(H2(T,Z)G), r|G|, respectively. Prom (2.2) one checks that rk K\G\ + 
rk EI^I = 22 = rk H2(X,Z), confirming that X indeed is a K3 surface. 
K\G\ ± II|(3!| by construction, since all exceptional divisors have volume zero 
with respect to any Hermitean metric compatible with the Einstein metric 
in the orbifold limit. Hence by Theorem A.2 there is an isomorphism 7 : 
(liC|G|)*/if|G| -> (n|G|)*/n|G|. Moreover, the embedding 7r*(iI2(T,Z)G) ^> 
H2(X,Z) is determined, once we know the lattices J^|G|5 n|G|, and 7. The 
rest of this section therefore is devoted to a geometrically motivated con- 
struction of these data. 

Note that 7r*(ff2(T,Z)G) ^ H2{T,Z)G(\G\) by [Ino76, Prop. 1.1]. Since 
we prefer to work with metric isomorphisms, we denote the TT* image of 
K e ff2(T, Z)G by y/\G\K. This is also in accord with the fact that TT^TT* = |G| 
and 7r*7r* = |G| by [Ino76, Prop. 1.1]. 

Let us recall Nikulin's solution to our problem in the case G = Z2, i.e. 
for classical Kummer surfaces. In [PSS71, Nik75], it is proven that K2 = 
H2(T, Z)(2), and El := 112, the Kummer lattice, is determined to 

11 = spanz{JBi, i E F2;     h Y^ Ei, H C F2 a hyperplane}. (2.3) 
ieH 

We interpret the description of H2(X,Z) that arises from Theorem A.2 as 
follows: Clearly, H2(X,Z) contains 11 and K2. The latter consists of the 
Poincare duals V2K of images of torus two-cycles that correspond to K G 
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H2(T, Z). These cycles must be in general position, i.e. must not meet Z2 
fixed points, for K to have a well defined image in H2(X,Z). Suppose the 
cycle does meet fixed points with labels in P C F^. Then the Z2 quotient 
produces a 2:1 cover of a sphere with branch points s G P, which on blowing 
up are replaced by the corresponding exceptional divisors. Hence A/2^ — 
J2sepEs is Poincare dual to a 2:1 unbranched covering of a K3 cycle, i.e. 
775^ ~ h^2sepEs £ H2(X,Z). Indeed, the above describes a well defined 
map 

7 : K*2/K2 —► iT/n,     7(^«):=-!E^' 

since for P, P' corresponding to two different non-generic positions of our 
cycle, § E.GP 

Es - \ EseP* E8enby (2.3). 

Vice versa, Theorem A.2 together with (2.3) shows that H2(X,Z) is 
generated by 

i. 7r*(JH
r2(T,Z))^if2(T,Z)(2), 

ii. £2, the Poincare duals of the rational spheres comprising the excep- 
tional divisors in the blow up, 

hi. forms of type -^K - \ £5eP Es G i?2(X, Z), where V^ G 7r*i72(T, Z) 
determines P as explained above. 

In particular, the entire lattice H2(X, Z) is given in terms of two-forms that 
correspond to torus cycles or exceptional divisors, so for G = Z2 the desired 
embedding ^{H2{T,Z)G) ^ H2{X:Z) is found. 

It is obvious how to generalize i., ii. above to the other groups G. To 
understand forms of type hi. consider the following calculation in terms 
of local coordinates for G = ZM' We choose ZM invariant polynomials 
{xi,X2,xs) := (zf4\z^1",Z1Z2) as coordinates on T/ZM near the fixed point 
{ziiZi) = (0,0). The blow up of (0,0) is the closure of 

{(x = (xl,X2,x3)', s) G (C3 -{0}) xQP2 I rr ~s, x1X2 = x$r}. 

Near the point (#; s) — (0,0,0; 1,0,0) we use xi, 53 as coordinates and write 
(xi,X2, xz] si, 82,82) — {x\,x]^~1 s^ ,x\8z\\-)x

]^~2 8^ ,8^)- In this coordi- 
nate patch, the Poincare dual of E§ is given by the equation x\ = 0. Let 
K G H2(T, Z) correspond to the cycle (z2 — (£ for some Mth root of unity (, 
e — const.), then its image y/Mn G KM corresponds to (x^^s^1 — eM). So, 
as e —± 0, our cycle decomposes into (M — l)(^i) + M{s$). In other words, 
we can calculate the Poincare dual F of (53) from y/Mn — (M — l)e + MF, 
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where e G TM with e = EQ + • • •, the dots denoting contributions from 
further blow ups. This way, we can construct forms JP of type iii. for all 
relevant G. 

We conclude that for general G, H2(X,Z) contains 

L 7r*(if2(T,Z)G) = if2(T,Z)G(|G|), 

11. £|<3|, the Poincare duals of the rational spheres comprising the excep- 
tional divisors in the blow up listed in (2.2), 

III. forms of type -7=^ + j^j-e, where for the dual of K £ H2(T,Z)G we 

pick a non-generic position on T. Then the fixed point s G S occurs on 
that cycle with multiplicity a5, and e = X^SGS 

as^s for an appropriate 
Es G rs, such that |r„L ,ES G F* is primitive if K G H2(T, Z)

G
 is. 

For all but D4 type singularities 5 G <S, since r*/rs is cyclic, .p^p |J5S is 
already determined by III. up to a sign and contributions from II. In all cases, 
the remaining ambiguities can be cleared up by the fact that H2(X, Z) is an 
even lattice. Moreover, in a case by case study we find that as in the Kummer 
case the vectors listed in I.-III. already generate H2(X, Z). Namely, those of 
type III. allow to read off generators of K?GI/K\Q\ and K\G\/7r*(H2(T,Z)G) 
(or analogously for II\G\)] this turns out to determine K\Q\ already, thus 
\K?GJK\c\\ is known. Now one uses 

\KyKlGl\ = |nfG|/n|G|| = ^Tw (2.4) 
L11^!: l \G\\ 

to check that all generators of II\G\/T\Q\ have been found. 

To illustrate the above recipe we present the case G = Z4; see Prop. 2.1 
for notations. Pick generators {/ii,/i2}j {ns,^} of ^(T2,!*), Hl(T2,Z) 
with Hi = dxi with respect to coordinates z\ = xi + 1x2, £2 = #3 + ^4- 
Then JJLI A ^2 is Poincare dual to (zi — const.) and for non-generic const. 
may contain the fixed points {(i, 0,0), (i, 1,0), (2,0,1), (i, 1,1)} with i G Frj. 
Since for i = (0,0) and i = (1,1) the Z4 action identifies (i, 1,0) with (i, 0,1), 
we find the following lattice vectors of type III. 

—Ml A ^2 + 4(2-E(o,0,l,0)+e(l,l,0,0) + -B(0,0,0,0)+e(l,l,0,0) + ■^(0,0Jl,l)+e(l,l,0,0))j 

e G {0,1}. The cycles with i = (1,0) and i = (0,1) must be added to be Z4 
invariant and then give 

T^Ml A /i2 + 5(^(1,0,0,0)+ ^(1,0,1,0) + ^(1,0,0,1) + ^(1,0,1,1))- 



438 CONSISTENCY OF ORBIFOLD CONFORMAL FIELD THEORIES 

The latter vector is spurious as can be seen from the list in Prop. 2.1. The 
other elements of M4 in that proposition are obtained analogously from 
cycles (Z2— const.), (£++£_— const.) + (£+— £_— const.) where£± := zi±iz2, 
and with r]± := z\ ± z^ from (77+ + T\_ — const.) + (77+ —rj_— const.). The 
relative signs of the Ei are determined by the fact that H2(X, Z) is an even 
lattice. 

So far, we have found a set M4 C H2(X,Z) from which we can read 
generators of TI4/T4 as listed in Prop. 2.1. Moreover, we find //1 Afxs+^A^-) 
Hi A 1^4 + fJ>2 A ^3 G K4. We remark that these forms can be used to generate 
H2>0(T, Z) and H0'2(T, Z) for T = M4/Z4, and by the above observation the 
transcendental lattice of the corresponding Z4 orbifold has quadratic form 
diag(2,2). This is in agreement with [SI77, Lemma 5.2]. 

As to the construction of H2(X, Z), since from M4 we find ^1 A/i2, ^/is A 
/M, 5(^1 A //3 + /i4 A /i2), jC/ii A ^4 + /i2 A /is) E iCI, we conclude 

^4 = spanz(2/ii A /i2,2/i3 A /i4, /ii A ^3 + /i4 A /i2, m A fa + ^ A Ms), 

and \Kl/K4\ = 43. Hence (2.4) shows [114: r4] = 16 and proves that the 
three vectors listed in Prop. 2.1 generate 114^4 = Z4 x Z2 and therefore 
together with 64 suffice to generate 114. 

Proposition 2.1 
Let X denote an orbifold limit T/G of K3, where G does not contain non- 
trivial translations. In other words [Fuj88], G = ZM witi M £ {2,3,4,6}, 
G = Dn, n e {4,5}, G - D'4, or G = f. Then H2(X,Z) is generated by 
7r*(H2(T,Z)G) ^ H2(T,Z)G(\G\), the Poincare duals £\G\ of components of 
exceptional divisors listed in (2.2), and the set M\G\ given by Hi. for G = Z2 
or otiierwise listed below. 

Here, for each type of fixed point s G S we fix generators .p^p >ES or 

E(a,b) 0fY*s/rs With 

teFJ: Et 

G = Z6: E^ 

G = D^: E^b) 

G = D5: E** 

G = f : E^6 

= EP + 2E?\ i e I^: Ei := E™ + 2^ + 3^3); 
= 41)+242)+343)+444)+545); 
- ^W+^W    (2G{0,l}oriG/(4);a,6G{l,2,3}); 

= 543)+645)+344)+4E«+242); 

Witli standard basis {fj} of ¥% let Pjk := spanp^/j,/^}. Moreover, {/ij, 
j G {1,... ,4}} aiwajs denotes an appropriate basis of Hl(T,Z) such that 
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Mj A /i/c, j, k e {1,..., 4} generate H2(T, Z). More precisely, if Z4 C G; then 
a generator ( G Z4 acts by 

C :   (/ii, /i25 M3, Afc4) '—^ (^2, -/^ij -^4, Ms), 

and for G = Z3, Z6 and D5 a Z3 generator £' acts by 

C7 :   (Ml? M2, M3, A*4) ' > (^2 - Ml, "Ml, -M4, M3 - M4)- 

We Gnd: 

'  75M1 A ^2 + i (J5(i>o) + ^,1) + S(i>2)) ,    i G F3, 

^/i3 A /i4 " 5 (^(0,0 + ^(l,i) + ^(2,0) >      iG F3 > 

M3=<   ^(Mi-M3) A(M2- 5M1+M4- 5M3) >, 

+ 5 (^(0,0) + ^(1,2) +£(2,1)) , 

^(^1 - /i4) A (/i2 - /i3) + H£(0,0) + £(1,1) + £(2,2)) 

generators of Ha/Fa: 

3 ( E ^ ~ Yl Et' ) '    jL' ^ C F3 ^araiiei ii22es- 

/    1 
i/il A /i2 + ^(0,0,l,0)+e(l,l,0,0) 

+ 1      I]     ^+£(1,1,0,0)^ 6 {0,1}, 
ieF34n/(4) 

^3 A /i4 - 2£(1,0,0,0)+£(0,0,1,1) 

M4=^ "i     E     £^(0,0,1,1)^6 {0,1},   >. 
26Fi2n/(4) 

^(MiAM3+M4A/i2)-^ E Ei+J+EJi     iG7(4)' 
iGFis 

i 0*1 A /i4 + M2 A M) - 5 E Ei+i + ^i'    J G /(4) 

generators of n4/r4; 

5 (£(0,0,0,0) + £(1,1,0,0) - £(0,0,1,1) - £(1,1,1,1)) 

+ ^ (£(1,0,0,0) -£(1,0,1,1)) > 

5 (£(0,0,0,0) + £(1,0,0,0) + £(1,0,1,0) + £(1,0,0,1) - £(0,0,1,1) + £(1,0,1,1)) , 

I (£(0,0,0,0) + £(0,0,1,0) + £(1,0,1,0) + £(1,0,0,1) - £(1,1,0,0) + £(1,1,1,0)) • 
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/    i 
^r/ii A 112 + 5^0 6 + 5E(0,l) + 5-^(0,0,0,1). 

76^3 A /i4 - g^o 6 _ ^(1,0) - 5-^(1,0,0,0), 

^Ml A M2 +| (-^(1,0) + #(1,1) + ^(1,2)) , 

^/i3 A ^4 - 5 (£(0,1) + £(1,1) + £(1,2)) , 

Me = ^    ^TgMl A M2 + 5 (£(1,0,0,0) + £(1,0,1,0) + £(1,0,0,1) + £(0,1,0,1)) ,    > , 

^M3 A /i4 - \ (£(0,0,0,1) + £(1,0,1,0) + £(1,0,0,1) + £(0,1,0,1)) , 

^(A*i - M3) A (/i2 - 5M1 + M4 - 5M3) 

+ g£o 6 + I£(1,2) + 5-^(1,0,0,1), 

,   7f (Ml - M4) A (/i2 - Ms) + e^ 6 + 3£(1,1) + 5-^(0,1,0,1) 

generator of He/re: 

6-^0 6 + 5 (^(1,0) + ^(0,1) + £(1,1) + £(1,2)) 

+ 5 (£(1,0,0,0) + £(0,0,0,1) + £(1,0,1,0) + £(1,0,0,1) + £(0,1,0,1)) • 

M8 

^(Ml A M2 + M3 A ^4) - ^(i.o.O.O) - I£(1,1,0,0) - 5£o '    > 

^(/il A ^2 + M3 A /i4) + 5£(0,1,1,1) + ?£(1,1,0,0) + ^l1'^' 

^(Mi A M2 + M3 A ^4) - \ Y^ £(i,o,i), 
t€Fl 

^g(Ml A M3 + M4 A Hi) - 5£(1,0,0,0) - i£(l,0,i,0) - 5£o '   , 

^(Ml A /is + /i4 A M2) + 5^(0,1,1,1) + ?£(1,0,1,0) + S^i1'3*' 

^(Ml AM3 + M4 AM2)-5     XI    £(<i,l,i2,0). 
U,J2GF2 

^(Ml A /i4 + M2 A ^3) - ^(^o.O.O) - ££(1,0,0,1) - 5£o '    > 

^g(/il A ^4 + M2 A M3) + 5^(0,1,1,1) + ?£(i,o,o,i) + ^f'^' 

^g(/il A ^4 + M2 A Ms) - i X £(l,t,0) 

>, 

i6Fl 
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generators of ns/Fg: 

5 (£(1,0,0,0) + ^(0,1,1,1) + £(1,1,0,0) + 41,2) + £i1,2)) > 

I (£(i,o,o,o) + £(0,1,1,1) + £(i,o,i,o) + 41,3) + £!1'3)) > 

5 (£(1,0,0,0) + £(o,i,i,i) + £(i,o,o,i) + £f3) + £i2'3)) • 

/   i 

ML = l >, 

^(A*! A ^3 + ^4 A ^2 + ^1 A )U4 + /i2 A ^3 + 2/1/4 A //a) 

+ 2 1^(0,0,0,0) + ^(1,1,0,0) + £(0,0,0,1) J , 

75(^i A M3 + M4 A /Lt2 + Ml A /U4 + ^2 A Hz + 2/L/4 A Hz) 

,1 ^(1,2) „(2,3) „(2,3) p(l,2) „ \ 
^2 ^(0,0,0,0) + ^(1,1,0,0) + ^(0,0,1,1) + ^(1,1,1,1) + ^(0,0,0,1)^ , 

^(Ml A /Z3 + Ai4 A /i2 + /il A /i4 + //2 A ^3 + 2//4 A /ia) 

+ 2 ^(0,0,0,0) + ^(1,1,0,0) + ^(0,0,1,1) + ^(1,1,1,1) + ^(0,0,0,1)) , 

fym A H2 + M3 A //4) + 5 (£(1,0,0,0) + £(0,0,0,1)) , 

^(//l A /i3 + //4 A //2 + M4 A M3) + 5 (£(1,0,1,0) + £(0,0,0,1)) , 

^(Ml A M3 + M4 A /ia + M4 A //s) + £ (£(1,0,1,0) + £(0,0,0,1)) 

+ i £ ^(.tf o,6e{l,2,3},a/6, 

^(Mi A //4 + M2 A //3 + /i4 A MS) + 5 (£(1,0,1,0) + £(0,0,0,1)) , 

^(Mi A M4 + M2 A M3 + M4 A Ms) + I (£(1,0,1,0) + £(0,0,0,1)) 

+ i Y,Ela'b\        a,6e{l,2,3},a^6 

generators of rtg/r^: 

if^(1'3) ,+JE;
(2

'
3)
    +JB

(1
'
2)
   ^   i^2-3)    +p(1'2)     . F(^)   \ 2 ^(1,1,0,0) + ^(0,0,1,1) + ^(1,1,1,1); '    2 ^(1,1,0,0) + ^(0,0,1,1) + £(1,1,1,1)J ' 

i 2 4a'6),     a, 6 G {1,2, 3}, a ^ b. 
ieiw 
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M12 = < 

^(^l AM2 +M3 A//4) - ^(f5 - 1-5(1,0) - ^(1,0,0,0)) 

^(Ml A ^2 + M3 A ^4) - 5 5^ ^(1,0,*)' 

^(Mi A M2 + M3 A ^4) + 5-5(1,0), 

^(/ii A /i4 + /i2 A /Its + ^3 A ^ii) 

1   TTlDs 1   TT" 1   Z? 
-2^0     - 3-^(1,1) - 5^(1,0,1,0)1 

^ Tn^i A M3 + M4 A /X2) - 5-E^5 - ^(1,1) - 1-5(1,0,0,1)   , 

generator ofH^/V^: 

i ^5 + £(1,0,1,0) + #(1,0,0,1) + ^(0,1,0,1)) ■ 

>, 

^4(^1 A M3 + M4 A /i2 + j"! A ^ + /i2 A (is + 2/i4 A ^3) 

+ l{E(l,l,0fi)+ £(0,0,0,1)), 

M24= < 

^(/ii A ^2 + M3 A ^4) + ^(JJco)' 

^j(Ml A M3 + M4 A /i2 + M4 A /X3) 

+ 3^0     + 3-^(1,1) + 2^(1,1,0,0)' 

^(Ml A /i3 + M4 A /i2 + M4 A ^3) 

- I (£(1,0) + £(0,1) + £(1,2)) + 5-E(?,f,o,0)> 

^|j(/il A /X4 + IJ-2 A M3 + ^4 A /is) 

+ |£o6 + 5-^(1,1)+ lE(i,i,o,oy 

^|j(Ml A M4 + ^2 A /i3 + /i4 A ^3) 

- 5 (£(1,0) + £(0,1) + £(1,2)) + 5£(i,'i,o,o)' 

generator of 1124/^4.' 

l3E06 + I (£(1,1) + £(1,0) + £(0,1) + £(1,2)) ■ 
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Prop. 2.1 pinpoints the characteristic distinction between our discussion 
of compact orbifolds as opposed to the approach of [Dou97, BI97]. On Y = 

C2 /£?, the components of exceptional divisors generate 3*2 (Y,Z), whereas 
on our K?> surface X it is a nontrivial problem to determine the primitive 
sublattices of H2(X,Z) that contain the exceptional divisors. 

3    Consistent embedding of orbifold conformal field 
theories in MK3 

Prop. 2.1 serves to explicitly locate G orbifold limits of Einstein metrics of 
volume 1 on K3 within the moduli space 

0+{H2{X,Z))\0+(H2(X,R))/SO(3) x 0(19) 

of such metrics. Analogous reasoning should enable us to locate G orbifold 
conformal field theories in the moduli space 

0+(H™en(X,Z))\0+(Heven(X,R))/S0(4:) x 0(20) 

of conformal field theories associated to K3. Again, the construction of 
the appropriate embedding i?*(Heven(T, Z)G) <-* Heven(X: Z) is all we need, 
where TT* is an extension of TT*. Hence we must require the image x C 
Heven(X, R) of a four-plane XT G T4,4, which describes a toroidal conformal 
field theory with G symmetry, to admit a geometric interpretation on the 
corresponding G orbifold limit of if 3. This statement is made precise by the 
use of (B.l), which assigns a geometric interpretation to any of our conformal 
field theories: 

Suppose v,v® G Heven(T:Z) are primitive null vectors with (v,v0) = 1 
such that XT has geometric interpretation (Sy,T^n,By). We need to find 
primitive null vectors 57,v0 E Heveri(X,Z) with (57,0°) = 1 such that x has 
geometric interpretation (E, V, f?), where E = TT^E^. The location of this 
three-plane in H2(X, M) is fixed by Prop. 2.1. In particular, for each G 
orbifold, the two-forms corresponding to exceptional divisors of the blow up 
must be contained in Heven(X, Z) in such a way that the exceptional divisors 
have volume zero: 

span^ic^CV nHeven(X,Z) D U\G\ 9* U\G\. (3.1) 

Let A|£| denote the primitive sublattice of Heven(X,Z) which contains the 
lattice 7r*(Heven(T,Z)G). Then A|G| ^ K\G\ 0 J7(|G|), where U(\G\) is gen- 
erated by the TT* images y/\G\v, ^/\G\v0 of v,v0. Any ansatz with non- 
primitive vlG^ or vT^I1'0 leads to contradictions by the methods presented 
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below, cf. our comment below Theorem 3.3. Here, y/|G|'u is the Poincare 
dual of a generic point on X, and >/|G[i;0 denotes the dual of the cycle 
obtained as closure of 7r(T — S) on X; this interpretation is in accord with 
(V\G\vi y/\G\v0) = |G|, since TT is |6r|:l outside the set S of fixed points. 
The ad hoc assignment of equal scaling factors y/\G\ to both v and v0 is 
chosen for ease of notation; this freedom of choice drops out in all results 
below, see (3.7). 

It follows that we cannot use y/\G\v, ^/\G\v0 for v^v0: 

(A|GI)7A|GI = (K]G\r/KlGl x zfG| ^ (n|G|)7n|G| x zfG|      (3.2) 

by Theorem A.2, so again by Theorem A.2, (AIGI)
1

 n Heven{X, Z) ^ n|G|. 

Since \/fG[f has a good geometric interpretation as Poincare dual of the 
generic point on X, we use the ansatz 

v := y/fflv,    0° := ^0 - ^B^ - ^VWW, (3-3) 
\G\ 

with B\G\ -L ^5^° to be determined. By [LP81, NikSOb] the automorphism 
group 0+(Heven(X, Z)) in (1.1) acts transitively on pairs of primitive lattice 
vectors of equal length. Hence (3.3) is also the most general ansatz we need. 
Assume that for given G we have found B\G\ such that (3.1) holds for v^v0 

as in (3.3) (we will show that B\G\ is uniquely determined up to lattice 
automorphisms). All calculations below are carried out in Heven(X, Q). By 
Y : Heven(X,Q) —> Heven{X,Q) we denote the orthogonal projection onto 
v1- fl (v0)1- and (by a slight abuse of notation; see the footnote on page 433) 
set n|(3| := Y^GI), because indeed HI^I = HI^I since HI^I ± v. Then 

Lemma 3.1 
Suppose that v.v0 G Heven(X, Z) have the form (3.3) and that for every G 
orbifold conformal field theory determined by x — TT^XT they give a geometric 
interpretation on the corresponding G orbifold limit ofKS with (3.1). Then 

B\G\ € n|Gh      ll|G[S|C?|ll       e     2Z' 

(B\G\,E)   =   -1    mod |G| for some E e n|G|. 

Set M|G| := M|G| U {v^v0} with M\G\ as defined in Prop. 2.1, and 

VE e UlGl :     E :=E-(E,&)v = E+-j>-(BlGbE)v. 

Then MJG| and %| := {E \ E e U\G\} generate Heveri(X:Z) ^ T4'20. 
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Proof: 
By Theorem A.2, we need to find P\G\ := {k^)1- nHeven{X,Z), then 
A?GJA\G\ = P|^|/P|Gf|, with isomorphism denoted by 7, and the discrimi- 
nant forms agree up to a sign. This will give 

fT™(X,Z) - {(x,y) e AfG| ©PfG| |7(x) = y}. (3.4) 

We claim that P|G| = P|cf| with 

^^{peniciKp.^ez}. 

Namely, for p e P\G\ by construction we can find p G Heven(X, Z) such 
that p-p = av, a G R  Since Z 3 (p.v0) = —S== + (p,^0), a is an integral 

y/\G\ ^ 

multiple of y/\Gl and therefore P|G| C Heven(X, Z). But PjG| OR = P|G| ®R 

is clear from P^i C ni^i on dimensional grounds, so P^i = P|G| since both 
are primitive sublattices of Heven(X, Z) by construction. 

From Theorem A.2 we conclude that P^i must be chosen such that 

P|G|/P|G| = AJ^./AI^I with discriminant forms of opposite sign. Because 

P\G\ C n^i C nr^i C P.^., we can use the decomposition 

P*G\/P\G\ = ^Gi/nfc, x nfG1/n|G| x n|G|/^G|, (3.5) 

so from (3.2) we deduce 

R\G\/P\G\ - P*G|/n*G| - Z\G\- 

Moreover, J^|P|G| generates P<*GJT[?G^ thus B\G\ G nj^.. Since the quadratic 

forms of P|G|/P|G| and ATQJA\Q\ agree up to a sign as forms with values in 

Q/2Z, we conclude ||J^JP|G|I|
2
 € 2Z> and by (3.5) there exists E G n|G| 

which generates 1LL\Q\/P\Q\ such that (B\G\,E) = —1  mod |G|. Furthermore, 

by (3.3) P|G| G P|G| = P\G\ C IL\G\. The generators of Heven(X,Z) can now 
be read off from (3.4) and Prop. 2.1. □ 

The properties listed in Lemma 3.1 do not determine P|G| in (3.3) uni- 
quely. But since a shift of 0° by an element of Heven(X,Z) corresponds to 
an integral shift of the B-field in the geometric interpretation and thus is 
irrelevant to our discussion (see (1.1)), we can restrict ourselves to a finite 
number of candidates for P|G|- A 1°^ 0f them will be equivalent by lattice 

automorphisms in 0+(#2(X,Z)). The lift B\G\ of P|G| G n|G| to n|G| will 

determine the offset |^|P|G| of the B-field induced on the exceptional divisors 
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of the blow up by the orbifold process (see (3.7)). Since this is a local effect 
for each fixed point, the result for G = Z2 will determine the contribution 
of Z2 fixed points for all G etc. 

Moreover, algebraic symmetries of the underlying toroidal conformal 
field theory induce symmetries of the orbifold conformal field theory that 
must not be destroyed by the B-field. In particular, B\Q\ is invariant un- 
der all algebraic automorphisms of the orbifold limit of K3. For G = Z2 
and G = Z4 we can use the results [NW01, Thms. 2.7, 2.12] on algebraic 
automorphisms of orbifold conformal field theories obtained from toroidal 
theories on T = E4/Z4 to verify that all Z2 and all Z4 type fixed points are 
related by symmetries, respectively, and therefore confirm that they must 
give the same contribution to B\G\. Moreover, in the Z4 case, all El- ' , 
i G /(4), must carry the same B-field flux. Analogous reasoning severely 
restricts the number of candidates for B\G\ in all cases. Actually, 

Lemma 3.2 
For G C SU(2) as in (2.2), the vector B\G\ in (3-3) is uniquely fixed, up to 
lattice automorphisms in 0+(iI2(X, Z)) and shifts of v0 by lattice vectors, 
by the properties listed in Lemma 3.1 and consistency with symmetries of 
G orbifold conformal field theories. 

denote the highest For 
root in 

a G' C G type fixed point s E S let ^T, .• n^; 

Ts. Then we can characterize B\Q\ by 
'^ 

V5 € S, V j : |G|<*K*#,> = \G'\ 

Proof: 
The result B2 = — ^ YlieW4 ^ ^OI G = Z2 follows immediately from Lemma 
3.1 together with the observation that all fixed points contribute equally. 

We only add the proof for G = Z4, since the other cases are obtained 
analogously. The most general ansatz for B4 G 114 that is consistent with 
the symmetries of the Z4 orbifold of the toroidal model on M4 /Z4 and our 
knowledge of the B-field over the Z2 fixed points is 

where we can restrict to a, /3 G {0,..., 3}. Then " ^ G Z, which must hold 
by Lemma 3.1, iff (a,/3) e {(1,2), (1,3), (3,1), (3,2)}. For (a,/?) = (3,1) 
there is no E G 114 with (B^E) = —1 mod 4. We claim that the remain- 
ing three cases are equivalent by lattice automorphisms in 0+(H2(X,Z)). 
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Indeed, (<*,/?) = (!, 3) turns into (a, fi) = (1,2) by 

E(l;3) ^ .^IjS) _ jB(2)) ^(2) _> ^(1) + E(2) + E(3)) 

and (a,/?) = (1,2) turns into (a,/3) = (3,2) by 

E^ _> -Sp3),        E® ^ ^ + ^ + i^. 

Both maps induce identity on 114/114 and hence can be trivially continued 
to elements of 0Jr{H2{X,Z)) by [NikSOa, Prop. 1.1]. D 

Lemmata 3.1, 3.2, and Theorem B.l determine the desired embedding 
it*(Heven(T,Z)G) M> Heven{X,Z).   Note that apart from the observation 

that \Y,ie¥\Ei £ n25 jEie/C4)^ +£?)) G n4 etc-  the result for B\G\ 
is independent of the explicit calculations that led to Prop. 2.1. It is crucial 
to understand that for E G 11 we found that in general E 0 Heven(X,'L). 
Lemma 3.1 shows that there is a lift E G Heven(X, Z) for every such vector. 
In particular, only E can have a geometrical meaning. We lift 

^0\^     -       D .    \\B\G\ B\G\:=BlGl-(B\G\,x?)v    =   %,+ 
112 

-v 
G\ (3.6) 

=   BlGl-2\G\v     e   Heven(X,Z) 

to find that for generators of TT^XT 

with     B  :=  -k^BT + ^B\G\ : 
/\G\ 

Ma G ST 
: a — {a^B^v    —   a— (a,B)v, ^j\ 

^+ * + (*""W  - s0 + B+te-^!)«- 
Compare with Theorem B.l to see that this proves 

Theorem 3.3 
Let (ST, VT,BT) denote a geometric interpretation of a toroidal nonlinear 
sigma model on the torus T that admits a G symmetry, G C SU(2) not 
containing non-trivial translations; all such G actions are specified in (2.2). 
Then its image x G T4,20 under the G orbifold procedure has geometric 
interpretation (S, V, B) where S G T3'19 is found as described by Prop. 2.1, 
V = Jgj, and B = -^BT + ^B^, %, G H™n(X,Z) as in (3.6) with 

(B\G\,Eij)) = (BlG\,E{
s
j)) the \G:G'\-fold coefficient of E^ in the highest 

root ofTs, s £ S a G' C G type fixed point (see Lemma 3.2). 

With (3.7) we can confirm that the primitiveness of ^/JGJi;, ^/JGJu0 in 
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Heveri(X,Z) indeed follows from our requirement that orbifold conformal 
field theories are consistently embedded in MK3. This can either be seen 
from consistency with the symmetry v *-> v0 on M107"1 or the rescaling of BT 

under the embedding that follows from (3.7).  Namely, assuming —^=t>0 G 

Heven(X,Z) and hence B\G\ = B\G\ = 0 in (3.3), (3.7) directly leads to a 
contradiction: BT and BT + A, A G H2(T, Z), give equivalent torus theories 
by (1.1), but B = BT/^/WI and B = (BT + X)/y/\G\ in general do not give 
equivalent K3 theories. Not so if we use (3.7) with B\Q\ as determined above, 
by the results of Prop. 2.1, since then the shift by A can be compensated by a 
lattice automorphism. Any other ansatz with non-primitive ^/JGJt;, y^JG]?;0 

leads to an analogous contradiction by the methods presented in Lemma 3.2. 

4    Discussion 

Let us summarize the results of this work: By Prop. 2.1 and Theorem 3.3, 
for all orbifold constructions of K3 obtained from non-translationary groups, 
the precise location of the corresponding orbifold conformal field theories 
within the moduli space MK3 of theories associated to K3 has been deter- 
mined. To arrive at Prop. 2.1, we have presented a technique to calculate 
the generalization of the Kummer lattice to all these orbifolds. The fact 
that the components of the exceptional divisors of the blow up do not gener- 
ate primitive sublattices of H2(X,Z) distinguishes our compact X from the 
minimal resolution of C2/G. The explicit results listed in Prop. 2.1 should 
allow a detailed analysis of D-branes on orbifold limits of K3 in the spirit 
of [RW98, BER99]. Sect. 3 contains an elementary new proof for the fact 
that the orbifold procedure forces fixed values on the B-field of the orbifold 
conformal field theory in direction of the exceptional divisors [Asp95]. Our 
proof is mostly independent of the technical discussion in Sect. 2. It merely 
uses the known description of the moduli space M.K3 [AM94] and shows that 
the B-field flux can be interpreted as artifact from a consistent embedding 
of orbifold conformal field theories in M,K3. We also prove that our con- 
sistency requirement already fixes the B-field values uniquely up to lattice 
automorphisms, and we are able to read them off explicitly. For the cyclic 
groups, we are in agreement with [Asp95] (G — Z2), and with [Dou97, BI97] 
where mass formulae and tadpole cancellation conditions for D-branes were 
used; the author did not find the explicit results for the binary dihedral and 
tetrahedral groups in the literature. 

Theorem 3.3 indicates a connection to the classical McKay correspon- 
dence [McK80, McK81], which has also inspired very recent work in the 
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physics literature [DD, GJ01, TomOl, MayOl]. All of the latter publications 
concentrate on higher dimensional cases where large volume limits are used, 
though. Consider the local picture near any of our fixed points s E S. With- 
out loss of generality 5 = 0, and we are studying the minimal resolution Y 
of C2 /G\Gf C G. By Theorem 3.3, the contribution from this fixed point 

to %, is IGiG'lBfa with Bfa := E^ra^i^)*, where ^n^E^ is the 

highest root of rs, and {(Eg )*} C r5 ® Q denotes the dual basis of the 

fundamental system {Eg } of rs. Recall that the jth node in the extended 
Dynkin diagram of G' labels an irreducible representation pj of G' of di- 

mension n^ , where n^ = 1, and po is ^he trivial representation. On the 
other hand, the McKay correspondence as proven in [GSV83, Kn685, AV85] 

states that (Eg )* is the first Chern class of a locally free sheaf on Y that 
is built from the associated bundle on C2/Gf — {0} given by pj. Since the 

regular representation p of Gf decomposes as p — Y^j nJ Pj, B?G\ is the first 

Chern class of the extension to Y of 'K*0£2_{Q}(
(
&

G
 ') with regular G' ac- 

tion on OG
 I It appears reasonable to assume that similarly to [Kob90] the 

construction of [GSV83, Kn685] can be carried over to X by gluing appro- 
priate sheaves near each fixed point in a deformation of X and taking the 
orbifold limit. For the present case this in fact follows from the results in 
[BKR99]. Then B\G\ is the first Chern class of a sheaf £ —> X obtained from 
TT^OT_§{C\

G
\) by continuation. For G = ZM,M e {2,3,4,6}, we find that 

the corresponding Mukai vector [Muk84, Muk87] obeys 

ch(S)y/A(X)   =   [ik^vP + aW+fa-^mm + llfptiXflv 

\G\v0 + BlGl + |G| v (3-3)=(3-6) yW\v0 = TT^0     (4.1) 

r(ch(£)y/2(X?)=\G\v0. 

Since it only remains to be shown that (c2 — |c2)(£)[X] = 2\G\ for binary 
dihedral and tetrahedral G, too, we conjecture (4.1) to hold in general. In 
Heven(T,Z), \G\v0 is the Mukai vector of a flat bundle of rank |G| that 
naturally carries the regular representation p of G on the fibers, yielding a G 
equivariant flat bundle. Hence (4.1) is in exact agreement with the McKay 
correspondence. We regard this as confirmation of Theorem 3.3, though 
Mukai vectors do not capture any information on G equivariance, the basic 
ingredient of the McKay correspondence. That we need to choose the regular 
representation on the fiber has to do with our choices on the representative 
of B\Q\, or more precisely 0°, above. Namely, at the end of Sect. 3 we have 
remarked that a shift of the B-field on the underlying torus theory by an 
integral form induces an integral shift of v0 by some b E TLN/ ®S TS, that 
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changes the representation on our bundle of rank |G| above. This freedom of 
choice is readily checked to correspond to the freedom of coordinate choice 
on the space of G equivariant flat bundles on the underlying torus T. 

It is tempting to search for a direct geometric interpretation of our meth- 
ods: Recall the geometric picture of Sect. 2. Here, the key point was the 
construction of homology classes of type III. which arise from non-generic 
torus cycles by removing the branch locus and then taking a single sheet 
of an etale covering. Similarly, the fact that ^/fGJ^0 — JB^I in (3.3) splits 
into |G| lattice vectors should be interpreted such that ^I^I corresponds 
to the branch locus of a |G|:1 branched covering of X. For G = Z2 such 
a covering exists [Nik75, (9)], and for the cyclic groups similar ones have 
been constructed* [Tib99], but in general not of type |G|:1. Moreover, we 
are lacking a precise mathematical formulation for the mixing of degrees in 
Heveri(X,Z) that would be needed for such an interpretation. The deter- 
mination of the exact form of B\G\ from this approach also remains under 
investigation, though intuitively the characterization of B\G\ directly relates 
to that for the Es in III., Sect. 2. 

However, since our lattice calculations imply an interpretation in this 
spirit, it shall be interesting to find the appropriate mathematical framework. 

Note added. After completion of this work we learned that the Kummer type lat- 
tices for cyclic groups have already been determined by J. Bertin in [Ber88]. Prop. 
2.1 is in agreement with these results on Abelian orbifold constructions of K3. 

A    Lattices 

The following material is taken from [NikSOa, NikSOb, Mor84]. 

A lattice F C W>q is called integral, if the associated symmetric bilinear 
form is an integral form. It is even, if the associated quadratic form is 
even. By T(N) we denote the same Z module as F, but with quadratic form 
rescaled by a factor of N. The discriminant disc(r) is the determinant of the 
associated bilinear form on F. The lattice F is nondegenerate if disc(r) 7^ 0, 
and unimodular if |disc(r)| = 1. If F is a nondegenerate integral lattice, 
then disc(r) = |r*: r|, where F* denotes the dual lattice of F and F ^ F* 
by using the bilinear form on F. The signature (p, q) of F is the multiplicity 
of the eigenvalues (+1,-1) for the induced quadratic form on F (g> R.  The 

*I thank Glaus Hertling for his explanations on this point and for prodding me to the 
relevant literature. 
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discriminant form qr associated to an even lattice Y is the map qr : T*/r —> 
Q/2Z which is induced by the quadratic form of F, together with the induced 
symmetric bilinear form on r*/r with values in Q/Z. 

The examples of even unimodular lattices most frequently used in our 
work are the hyperbolic lattice U with quadratic form given by 

0 1 
1 0 

and the lattice E$ with quadratic form given by the Cartan matrix of I^s- 
Moreover, one has 

Theorem A.l [Mil58] 
If F is an even unimodular lattice with signature (p,p + 5), p > 0, S > 0, 
then 

S = 0(8),     r ^ Tp>p+d := IP 0 (Es(-1))6/S. 

A sublattice A C T is primitive iff F/A is free. A vector A G F is primitive, 
if A := ZA C F is primitive. 

Embeddings of primitive sublattices in unimodular lattices are charac- 
terized by 

Theorem A.2 [NikSOa, Prop. 1.6.1], [Nik80b, §1] 
Let A denote a primitive nondegenerate sublattice of an even unimodular 
lattice F. Then the embedding A M> F with A1 n F = V is specified by 
an isomorphism 7 : A*/A —> V*/V, such that for the discriminant forms 
QA = — qv 0 7- Moreover, 

r^{(A,^) GA*©V* |7(A)=IJ}, 

where I denotes the projection ofleL* onto L*/L. 

B    Grassmannians 

By Ta,b we denote the Grassmannian of oriented positive definite subspaces 
W C IT'6 with dim W = a. Hence 

~a,b ra'b^O+(a,b)/SO(a) xO(6), 
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where 0{a,b) = 0(Ma'6) and analogously for 0+(a,6), SO(a,b), 0(a,6), 
and 0(a) = 0(a, 0) etc. Here, for any vector space W with scalar product, 
0(W) denotes the group of orthogonal transformations of W. Its subgroup 
0+(W) contains all elements that do not interchange the two components of 
the space of maximal positive definite subspaces of W. Note that for positive 
definite W, SO(W) = 0+{W). For a lattice r C W the group 0(r) is the 
group of lattice automorphisms of T, and 0+(r) = 0(r) fl 0+(W) etc. 

With the techniques of [BS73] one shows: 

Theorem B.l 
For a, b G N7 there is an isomorphism 

-y-a+M+l ^ ra,6 x M+ x Ra,b^ 

which is specified by the choice of two null vectors v,v0 E IRa+1>6+1 with 
(v,v0) = 1 such that Ea'6 J. v,v0, and Ta>b is built on Ma'6 in the above 
product. Explicitly, we have 

a;i-+(E,F,J3)     <=*     x   =   spanE (^(S), i;0 + B + (V - B2/2)v) , 

^)    =   a-(S,a)t;. (B.l) 

The above isomorphism induces the structure of a warped product on Ta,b x 

References 

[ABD+TG] M. ADEMOLLO, L. BRINK, A. D'ADDA, R. D-AURIA, E. NA- 

POLITANO,   S.   SCIUTO,   E.   DEL   GlUDICE,    P.   Dl   VECCHIA, 

S. FERRARA, F. GLIOZZI, R. MUSTO, AND R. PETTORINO, 

Supersymmetric strings and color confinement, Phys. Lett. B62 
(1976), 105-110. 

[Art66]        M. ARTIN, On isolated rational singularities of surfaces, Amer. 
J. Math. 88 (1966), 129-136. 

[AV85]        M. ARTIN AND J.-L. VERDIER, Reflexive modules over rational 
double points, Math. Ann. 270 (1985), 79-82. 

[AM] P.S. ASPINWALL AND D.R. MORRISON, Mirror symmetry and 
the moduli space of K?> surfaces, to appear. 



KATRIN WENDLAND 453 

[AM94]        ,   String  theory   on  K3  surfaces,   in:    Mirror  symmetry, 
B.  Greene and S.T.  Yau,  eds.,   vol.  II,  1994,   pp.  703-716; 
hep-th/9404151. 

[Asp95] P.S. ASPINWALL, Enhanced gauge symmetries and if 3 surfaces, 
Phys. Lett. B357 (1995), 329-334; hep-th/9507012. 

[Asp97]  , if 3 surfaces and string duality, in: Fields, strings and du- 
ality (Boulder, CO, 1996), World Sci. Publishing, River Edge, 
NJ, 1997, pp. 421-540; hep-th/9611137. 

[Ber88] J. BERTIN, Reseaux de Kummer et surfaces if3, Invent. Math. 
93 no. 2 (1988), 267-284. 

[BI97] J.D. BLUM AND K. INTRILIGATOR, Consistency conditions for 
branes at orbifold singularities, Nucl. Phys. B506 (1997), 223- 
235; hep-th/9705030. 

[BS73] A. BOREL AND J.-P. SERRE, Corners and arithmetic groups, 
Comment. Math. Helv. 48 (1973), 436-491, Avec un appendice: 
Arrondissement des varietes a coins, par A. Douady et L. Herault. 

[BKR99] T. BRIDGELAND, A. KING, AND M. REID, Mukai implies 
McKay: the McKay correspondence as an equivalence of de- 
rived categories, J. Amer. Math. Soc. 14 no. 3 (2001), 535-554; 
math.AG/9908027. 

[BER99] I. BRUNNER, R. ENTIN, AND CH. ROMELSBERGER, D-branes on 
T4/Z2 and T-Duality, JHEP 9906:016 (1999); hep-th/9905078. 

[Cec91] S. CECOTTI, N = 2 Landau-Ginzburg vs. Calabi-Yau a-models: 
Non perturbative aspects, Int. J. Mod. Phys. A6 (1991), 1749- 
1813. 

[dBDH+] J. DE BOER, R. DIJKGRAAF, K. HORI, A. KEURENTJES, 

J. MORGAN, D.R. MORRISON, AND S. SETHI, Triples, flu- 
xes, and strings, Adv. Theor. Math. Phys. 4 no. 5 (2000); 
hep-th/0103170. 

[DD] D.-E. DlACONESCU AND M.R. DOUGLAS, D-branes on stringy 
Calabi-Yau manifolds', hep-th/0006224. 

[Dij99] R. DlJKGRAAF, Instanton strings and hyperkaehler geometry, 
Nucl. Phys. B543 (1999), 545-571; hep-th/9810210. 

[Dou97] M.R. DOUGLAS, Enhanced gauge symmetry in M(atrix) theory, 
JHEP 9707:004 (1997); hep-th/9612126. 



454 CONSISTENCY OF ORBIFOLD CONFORMAL FIELD THEORIES 

[EOTY89] T. EGUCHI, H. OOGURI, A. TAORMINA, AND S.-K. YANG, SU- 

perconformal algebras and atring compactification on manifolds 
with SU(n) holonomy, Nucl. Phys. B315 (1989), 193-221. 

[Fuj88] A. FUJIKI, Finite automorphism groups of complex tori of di- 
mension two, Publ. Res. Inst. Math. Sci. 24 no. 1 (1988), 1-97. 

[GSV83] G. GONZALEZ-SPRINBERG AND J.-L. VERDIER, Construction 
geometrique de la correspondance de McKay, Ann. Sci. Ecole 
Norm. Sup. 16 no. 3 (1983), 409-449. 

[GJ01] S. GOVINDARAJAN AND T. JAYARAMAN, D-branes, Exceptional 
Sheaves and Quivers on Calabi-Yau manifolds: From Mukai to 
McKay, Nucl. Phys. B600 (2001), 457-486; hep-th/0010196. 

[Ino76] H. INOSE, On certain Kummer surfaces which can be realized as 
non-singular quartic surfaces in P3, J. Fac. Sci. Univ. Tokyo Sec. 
IA 23 (1976), 545-560. 

[Kn685] H. KNORRER, Group representations and the resolution of ratio- 
nal double points, in: Finite groups—coming of age (Montreal, 
Que., 1982), Amer. Math. Soc, Providence, R.L, 1985, pp. 175- 
222. 

[Kob90] R. KOBAYASHI, Moduli of Einstein metrics on a K3 surface and 
degeneration of type I, in: Kahler metric and moduli spaces, Aca- 
demic Press, Boston, MA, 1990, pp. 257-311. 

[LP81] E. LOOUENGA AND C. PETERS, Torelli theorems for K3- 
surfaces, Compos. Math. 42 (1981), 145-186. 

[MayOl] P. MAYR, Phases of supersymmetric D-branes on Kahler man- 
ifolds and the McKay correspondence, JHEP 0101:018 (2001); 
hep-th/0010223. 

[McK80] J. MCKAY, Graphs, singularities, and finite groups, in: The 
Santa Cruz Conference on Finite Groups (Univ. California, Santa 
Cruz, Calif., 1979), Amer. Math. Soc, Providence, R.L, 1980, 
pp. 183-186. 

[McK81]      , Cartan matrices, finite groups of quaternions, and Kleinian 
singularities, Proc. Amer. Math. Soc. 81 no. 1 (1981), 153-154. 

[Mil58] J. MlLNOR, On simply connected J^-manifolds, in: Symposium 
Internacional de Topologia Algebraica, La Universidad Nacional 
Autonoma de Mexico y la UNESCO, 1958, pp. 122-128. 



KATRIN WEND LAND 455 

[Mor] D.R. MORRISON, private communication. 

[Mor84]       , On K3 surfaces with large Picard number, Invent. Math. 
75 (1984), 105-121. 

[Muk84] S. MUKAI, On the symplectic structure of the moduli spaces of 
stable sheaves over abelian varieties and K3 surfaces, Invent. 
Math. 77 (1984), 101-116. 

[Muk87]      , On the moduli space of bundles on K3 surfaces /, in: Vector 
bundles on algebraic varieties, Tata Inst. Fund. Res., Bombay, 
1987, pp. 341-413. 

[NS95] M. NAGURA AND K. SUGIYAMA, Mirror symmetry of K3 and 
torus, Int. J. Mod. Phys. A10 (1995), 233-252; hep-th/9312159. 

[NW01] W. NAHM AND K. WENDLAND, A hiker's guide to K3 - Aspects 
of N — (4,4) superconformal field theory with central charge c — 
6, Commun. Math. Phys. 216 (2001), 85-138; hep-th/9912067. 

[Nar86] K.S. NARAIN, New heterotic string theories in uncompactified 
dimensions < 10, Phys. Lett. 169B (1986), 41-46. 

[Nik75] V.V. NIKULIN, On Kummer Surfaces, Math. USSR Isv. 9 (1975), 
261-275. 

[NikSOa]      , Finite automorphism groups of Kaehler K3 surfaces, Trans. 
Mosc. Math. Soc. 38 (1980), 71-135. 

[NikSOb]  , Integral symmetric bilinear forms and some of their appli- 
cations, Math. USSR Isv. 14 (1980), 103-167. 

[PSS71] I.I. PJATECKII-SAPIRO AND I. R. SAFAREVIC, Torelli's theorem 
for algebraic surfaces of type if 3, Izv. Akad. Nauk SSSR Ser. 
Mat. 35 (1971), 530-572. 

[RW98] S. RAMGOOLAM AND D. WALDRAM, Zero branes on a compact 
orbifold, JHEP 9807:009 (1998); hep-th/9805191. 

[Sei88] N. SEIBERG, Observations on the moduli space of superconformal 
field theories, Nucl. Phys. B303 (1988), 286-304. 

[SI77] T. SHIODA AND H. INOSE, On singular K3 surfaces, in: Complex 
Analysis and Algebraic Geometry, W.L. Bailey and T. Shioda, 
eds., Cambridge Univ. Press, 1977, pp. 119-136. 

[Tib99] M. TlBAR, Monodromy of functions on isolated cyclic quotients, 
Topology Appl. 97 no. 3 (1999), 231-251. 



456 CONSISTENCY OF ORBIFOLD CONFORMAL FIELD THEORIES 

[TomOl] A. TOMASIELLO, D-branes on Calabi-Yau manifolds and helices, 
JHEP 0102:008 (2001); hep-th/0010217. 

[Val34] P. Du VAL, On isolated singularities which do not affect the 
condition of adjunction, Proc. Cambridge Phil. Soc. 30 (1934), 
453-465. 


