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Abstract 

In a previous paper [hep-th/0012251] we proposed a simple class 
of actions for string field theory around the tachyon vacuum. In this 
paper we search for classical solutions describing D-branes of different 
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dimensions using the ansatz that the solutions factorize into the direct 
product of a matter state and a universal ghost state. We find closed 
form expressions for the matter state describing D-branes of all dimen- 
sions. For the space filling D25-brane the state is the matter part of 
the zero angle wedge state, the "sliver", built in [hep-th/0006240]. For 
the other D-brane solutions the matter states are constructed using a 
solution generating technique outlined in [hep-th/0008252]. The ratios 
of tensions of various D-branes, requiring evaluation of determinants 
of infinite dimensional matrices, are calculated numerically and are in 
very good agreement with the known results. 
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1    Introduction and summary 

Cubic open string field theory [1] has turned out to be a powerful tool in 
studying various conjectures [2, 3] about tachyon condensation on bosonic D- 
branes [4, 5, 6, 7, 8, 9,10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. One aspect 
of the tachyon conjectures that remains to be confirmed is the expected 
absence of physical open string excitations around the tachyon vacuum. In 
a previous paper we proposed that a simple class of cubic actions represent 
string field theory built upon the tachyon vacuum [22]. As opposed to the 
conventional cubic SFT where the kinetic operator is the BRST operator 
QB, here the kinetic operator Q is non-dynamical and is built solely out of 
worldsheet ghost fields.2 In this class of actions the absence of physical open 
string states around the vacuum is manifest. Gauge invariance holds in this 
class of actions, and therefore basic consistency requirements are expected 
to be satisfied. 

One major confirmation of the physical correctness of the proposed ac- 
tions would be the construction of classical solutions which describe the 
known D-brane configurations. An indirect argument for the existence of 
these solutions was given in [22] where it was also shown that under certain 
assumptions the proposed action reproduces in a rather nontrivial fashion 
the correct ratios of tensions of D-branes of different dimensions. 

In this paper we give a direct construction of the classical solutions rep- 
resenting various D-branes and verify that the ratios of their tensions agree 
with the known answer. We use an ansatz where the solution ^ represent- 
ing a D-brane has a factorized form ^m ® tyg: with 1Ir

m and Skg being string 
fields built solely out of matter and ghost operators respectively.3 Such fac- 
torized form is clearly compatible with the structure of the relevant string 
field equation since the kinetic operator Q does not mix matter and ghost 
sectors,4 and moreover, as is familiar, the star product also factors into the 
matter and ghost sectors. More explicitly, given string fields A = Am 0 Ag 
and B = Bm ® Bg] we have A*B — (Am *mBm) 0 (Ag *

9Bg), where *m and 
*^ denote multiplication rules in the matter and ghost sectors respectively. 
While the matter factor ^m is clearly different for the various D-branes, we 
assume that the ghost factor ^ is common to all the D-branes. 

With this ansatz, and the specific form of the action proposed in [22], 
the string field theory equations of motion Qty + ^ * $ = 0 factorizes into 

2 A subset of this class of actions was discussed previously in ref.[23]. 
3We wish to thank W. Taylor for emphasizing this factorization property to us. 
4This is not true, of course, for the standard BRST operator. 
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a matter part and a ghost part, with the matter part yielding the equation 
$m *m \|/m = $m. We now ask how we can find solutions of this equation. 
In fact, any solution of ^ * $ = $ where the ghost number zero field \I/ 
factors as *m ® ^ provides a solution of \I/m *m \I/m = \I/m. There are 
at least two known translationally invariant solutions of ^ * ^ = *. One 
solution is provided by the identity string field X, and the second is provided 
by the "sliver", the zero angle wedge state S constructed in [10]. This state 
was constructed in background independent language; it only requires the 
total Virasoro operators of the full matter and ghost CFT. For reasons which 
will become clear later, we identify the matter part Sm of the sliver, with 
suitable normalization, as the matter part of the solution describing the D25- 
brane. More recently, Kostelecky and Potting [16] investigated solutions of 
the equation \I/m *m \I/m = \I>m by using an explicit representation of the 
*-product in terms of Neumann coefficients for free (matter) scalars. In 
addition to the matter part of the identity X, they found one nontrivial 
solution Tm. Thus it is natural to ask: what is the relationship between 
the matter component Hm of the sliver and the state Tm found in ref.[16]. 
We study this question using the level truncation scheme, and find very 
good evidence that the two states are really the same. Thus we can use 
either description for representing the D-25-brane. Our understanding of 
the sliver Em shows that the solution describing the D25-brane belongs to 
the universal subspace of the state space [24], the space generated by the 
action of matter Virasoro generators and ghost oscillators on the SL(2,R) 
invariant vacuum. Furthermore, the sliver string field Sm provides a "simple 
closed-form" solution for the matter factor representing the D25-brane in the 
SFT of [22]. By "closed form" we mean that the operational definition of 
Em is explicit. Even more, its geometrical meaning is clear. By "simple" 
we mean that the exact calculation of Em to any given level requires only a 
finite number of operations.5 

We then use the observations of [16] to construct the string field \I/m 

describing a lower dimensional D-brane starting from the expression for the 
matter string field representing the space filling D25 brane. The key point 
noted there is that the properties satisfied by the matter Neumann coef- 
ficients Vmn (wijft- ^ 1) that guarantee the existence of the translational 
invariant solution are also satisfied by the extended Neumann coefficients 
^rnn (m5n > 0) defined by Gross and Jevicki [25] by adding a new pair 
of oscillators to represent the center of mass position and momentum op- 

5In this vein one would say that the description of this state as Tm [16] is of closed 
form, as it is given by an explicit formula in terms of an exactly calculable infinite di- 
mensional matrix. The formula is not simple in that it involves inverses and square roots 
of this infinite matrix, so even the finite level truncation of Tm can only be constructed 
approximately with finite number of operations. 
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erators. Thus the same method used for generating translational invariant 
solution can be used to generate lump solutions. In implementing this pro- 
cedure one requires the background dependent description 7^ of the D25 
string field as a function of matter Neumann coefficients. We carry out the 
construction thus obtaining "closed-form" expressions for the matter string 
fields representing lower dimensional branes. The ratio of tensions of these 
D-branes has an analytic expression in terms of the Neumann coefficients, 
but explicit computation of this ratio involves evaluating determinants of 
infinite dimensional matrices. We calculate this ratio in the level truncation 
using the known expression for the Neumann coefficients. While the conver- 
gence to the answer is relatively slow as a function of the level L, the relative 
simplicity of our expressions allows numerical computations up to levels of 
the order of several thousands! A fit of the data obtained at various levels 
suggests that corrections vanish as inverse powers of ln(L). The numerical 
results at large values of L as well as an extrapolation of these results to 
L = oo via a fit using a cubic polynomial in 1/ ln(L) gives results very close 
to the expected answer. We consider these results to be strong evidence for 
the correctness of the SFT we proposed in [22]. 

Our concrete implementation of the procedure suggested in [16] actually 
finds families of solutions corresponding to lower dimensional branes. The 
solutions have gaussian profiles in the directions transverse to the brane. We 
find that for a D-(25 — k) brane there is a /c-parameter family of solutions, 
with the parameters controlling the width of the lumps in different transverse 
directions. We believe that all these solutions are gauge equivalent. This is 
necessary for the identification with D-branes, since a physical D-brane has 
no moduli other than its position in the transverse space. One indirect piece 
of evidence to this effect is that the ratios of tensions converge to the correct 
values for any solution in the family. Some more direct but still incomplete 
arguments are given in appendix C. In this context it will be interesting to 
explore if the width of the lump in conventional string field theory, studied 
in ref.[9], changes when we use a gauge different from Siegel gauge. 

Since besides the sliver state Sm, the identity state lm also squares to 
itself under the *m product, it is natural to ask why we identify the sliver 
and not the identity as the solution representing the D25-brane. While we 
do not have a concrete proof that lm cannot be the matter part of the D25- 
brane solution, we offer the following observations. First of all, as we have 
discussed, starting from the sliver state we can construct lump solutions 
of arbitrary co-dimension with correct ratios of tensions as expected of D- 
branes. If we apply the same procedure to Xm, we get back Im and not a 
lower dimensional brane. Thus, for example, there is no obvious candidate 
for a 24-brane solution with tension 27r times the tension associated with the 
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state Xm, as would be expected of a D24-brane solution if Xm represented 
the D25-brane. This clearly makes Sm a much stronger candidate than Xm 

for the D25-brane solution. lm suffers from the further complication that 
its normalization properties are much worse than those of Sm. Whereas the 
normalization of Em involves an infinite dimensional determinant which is 
finite at least up to any given level (although it could vanish as the level goes 
to infinity), the normalization of lm involves a determinant which vanishes 
at any finite level. 

In the proposal of [22] the explicit form of the kinetic operator Q was 
not fixed. In fact, we discussed two classes of such operators. In the first 
class, exemplified by Q = CQ, the operator does not annihilate the identity 
string field 1. In the second class, exemplified by Q = CQ + |(c2 + c_2), 
the operator does annihilate the identity string field I. Both yield gauge 
invariant actions without physical open strings around the tachyon vacuum. 
A proper understanding of the ghost factor representing the D25 brane (and 
in fact all other D-branes, since we assume that this factor is universal) 
would be expected to yield some information on Q, since the ghost equation 
is of the form Q^g = — tyg *9 tyg. Given that the matter part of the string 
field for the D25-brane is the sliver state Hm, we expect ^Jg to be closely 
related to the ghost part Eg of the state. Since Eg is of ghost number zero 
and "Qg must be of ghost number one we conjecture that tyg — CEg where C is 
a ghost number one operator built solely out of ghosts. It may turn out that 
both Q and C are determined by demanding the existence of a non-trivial 
solution to the field equation. Knowledge of C and Q would amount to a 
complete specification of the SFT action, and a complete knowledge of the 
string fields representing D-branes. 

The rest of the paper is organized as follows. In section 2 we discuss the 
factorization properties of the field equations, and give the construction of 
the matter part of the D25-brane solution in the oscillator representation. 
We also produce numerical evidence that this solution is identical to the 
matter part of the sliver state constructed in ref.[10]. In section 3 we con- 
struct the lump solutions, compute the ratio of tensions of lump solutions 
of different dimensions numerically and show that the result is in very good 
agreement with the known results. We conclude in section 4 by listing some 
of the open questions. Appendix A contains a list of Neumann coefficients 
needed for our analysis. Appendix B discusses the transformation of the 
3-string vertex when we go from the momentum basis to the oscillator basis. 
It also contains the precise relationship between our variables and those used 
in ref.[25], and some properties of the Neumann coefficients which are impor- 
tant for our analysis. Appendix C explores the possibility that a parameter 
appearing in the construction of the lump solution is a gauge artifact.   In 
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appendix D we derive some properties of the sliver state. 

2    Construction of the D25-brane solution 

We begin with the string field theory action: 

(2.1) S(*)S-1 
#0 

5<tf, Q*) + ^(#,***) 

where \I/ is the string field represented by a state of ghost number one in the 
combined matter-ghost state space, go is the open string coupling constant, 
Q is an operator made purely of ghost fields and satisfying various require- 
ments discussed in ref.[22], (, ) denotes the BPZ inner product, and * denotes 
the usual *-product of the string fields. This action is supposed to describe 
the string field theory action around the tachyon vacuum. Although the 
action is formally background independent, for practical computation (e.g. 
choosing a basis in the state space for expanding $) we need to use a con- 
formal field theory (CFT), and we take this to be the CFT describing the 
D25-brane in flat space-time. 

2.1     Factorization property of the field equations 

If (2.1) really describes the string field theory around the tachyon vacuum, 
then the equations of motion of this field theory: 

Qq = -***, (2.2) 

must have a space-time independent solution describing the D25-brane, and 
also lump solutions of all codimensions describing lower dimensional D- 
branes. We shall look for solutions of the form: 

* = ^m ® Vg , (2.3) 

where Slfg denotes a state obtained by acting with the ghost oscillators on 
the SL(2,R) invariant vacuum of the ghost CFT, and ^/m is a state obtained 
by acting with matter oscillators on the SL(2,R) invariant vacuum of the 
matter CFT. Let us denote by *^ and *m the star product in the ghost and 
matter sector respectively. Eq.(2.2) then factorizes as 

Q^g   =    -^g   ^   ^g   , (2.4) 
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and 

*m = *m *m *m • (2.5) 

Such a factorization is possible since Q is made purely of ghost operators. 
Note that we have used the freedom of rescaling tyg and \I/m with A and A-1 

to put eqs.(2.4), (2.5) in a convenient form. 

In looking for the solutions describing D-branes of various dimensions 
we shall assume that \I/p remains the same for all solutions, whereas \l/m 

is different for different D-branes. Given two static solutions of this kind, 
described by \I/m and ^f

ml the ratio of the energy associated with these two 
solutions is obtained by taking the ratio of the actions associated with the 
two solutions. For a string field configuration satisfying the equation of 
motion (2.2), the action (2.1) is given by 

Thus with the ansatz (2.3) the action takes the form: 

<% =   - A  < ^9 I Q ^9 )9 (^m|*m)m = K(^m\^m)m , (2.7) 
"So 

where (| }g and (| )m denote BPZ inner products in ghost and matter sectors 
respectively. K = —(6^o)~1(^r^|Q^p)p is a constant factor calculated from 
the ghost sector which remains the same for different solutions. Thus we see 
that the ratio of the action associated with the two solutions is 

5k (*m|*m)m ' 

The ghost part drops out of this calculation. 

The analysis in the rest of this section will focus on the construction 
of a space-time independent solution to eq.(2.5) representing a D25-brane. 
As pointed out in the introduction, there are two ways of doing this. One 
method [10] gives a description of this state in terms of matter Virasoro 
generators and the other method [16] describes this state in terms of the 
oscillators of the matter fields. Since the second method can be generalized 
to describe lump solutions, we first describe this method in detail, and then 
compare this with the first description. 
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2.2    A solution for the D25 brane 

Following ref.[25, 26, 27] we represent the star product of two states \A) and 
\B) in the matter CFT as6 

\A*mB)3=  iiAlziBlVs), (2.9) 

where the three string vertex IV3) is given by 

IVz) = Jd26p{1)d
2%{2)d

26p{3)5^(p{1) +p{2) +p{3))exp(-E)\0,p)U3 , 

(2.10) 

and 

E = \   E   VrWVZW* + E ^P?r)tft<#M + I E VrfaVSWr) ■ 
r"»5 r,s Z      r 

m,n>l n>l 

(2.11) 

Here a^ ^j a^ are non-zero mode matter oscillators acting on the r-th 
string state normalized so that 

[«$", ^} = rTSmnr8,        m, n > 1. (2.12) 

P(r) is the 26-component momentum of the r-th string, and |0,p)i23 = 
b(i)) ® b(2)> ® b(3)> is ^e tensor product of Fock vacuum of the three 

strings, annihilated by the non-zero mode annihilation operators a^, and 
eigenstate of the momentum operator of the rth string with eigenvalue pf . 
\p) is normalized as 

(p\pf) = 526(p + p,). (2.13) 

The coefficients F™n for 0 < m, n < oo can be calculated by standard meth- 
ods [25, 27] and have been given in appendix A.7 Some properties of V™n 

have been discussed in appendix B. Since we are interested in this section in 
space-time translational invariant solutions, we can ignore the momentum 
dependent factors in the vertex, and the relevant form of E is: 

E=jE^a(rM-^5-a(5M' 2 
r,5 

(2.14) 

6Whenever we use explicit operator representations of the string product string fields 
will be denoted as kets or bras as appropriate. 

7In our conventions we take a' = 1. 
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where the dots represent sums over mode numbers, and V^ for m, n > 1 is 
written as the Vrs matrix. For the analysis of lumps, however, we will need 
the full vertex. 

Some appreciation of the properties reviewed in Appendix B is necessary 
for structural reasons. Equation (B.15), in particular, gives 

Vrs = \(C + ujs-rU + ujr-sU), (2.15) 

where CJ = e27™/3, U and C are regarded as matrices with indices running 
over ra,n > 1, 

CWm = (-ir<W,     m,n>l, (2.16) 

and U satisfies ((B.17)) 

U = U* = CUC,        U2 = U2 = 1,        U^ = U,    U] = U.        (2.17) 

The superscripts r, s are defined mod(3), and (2.15) manifestly implements 
the cyclicity property Vrs = T/(r+1)(s+1). Also note the transposition prop- 
erty (Vrs)T = Vsr. Finally, eqs.(2.15), (2.17) allow one to show that 

[CVrs,CVr,s'} = 0   V   r,^/,^, (2.18) 

and 

{CV12)(CV21) - (CV21)(CV12) = {CV11)2 - cv11, 

{CV12y*+ {CV21)S = 2{CVn)3;- 3{CVn)2 + 1. (2.19) 

Equations (2.15) up to (2.19) are all that we shall need to know about the 
matter part of the relevant star product (as given in eqs. (2.9), (2.10) and 
(2.14)) to construct the translationally invariant solution. In fact, since 
(2.18), (2.19) follow from (2.15) and (2.17), these two equations are really 
all that is strictly needed. Such structure will reappear in the next section 
with matrices that also include m = 0 and n — 0 entries, and thus will 
guarantee the existence of a solution constructed in the same fashion as the 
solution to be obtained below. 

We are looking for a space-time independent solution of eq.(2.5).   The 
strategy of ref.[16] is to take a trial solution of the form:8 

|tfro) = Af26 exp ( - i Vlu/  £ Smn <t<t) |0), (2.20) 
m,n>l 

8We caution the reader that although in this section and in section 3 we shall follow 
the general strategy described in [16], our explicit formulae differ from theirs in several 
instances. 
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where |0) is the SL(2,R) invariant vacuum of the matter CFT, J\f is a nor- 
malization factor, and Smn is an infinite dimensional matrix with indices 
m,n running from 1 to oo. We shall take S to be twist invariant:9 

CSC = S. (2.21) 

We shall check in the end that the solution constructed below is indeed twist 
invariant. 

(2.22) 

If we define 

-(-)•     - 

/yll     yl2\ 
[y21     V22)   , 

and 

yiT = (a(3MF31 )    a(3)^t732) j 
/V13a{3)rt 

X    - 1 F23a(3)Mt (2.23) 

l WX^U - EVJ-^Jx" + a(3W ■ F33 • a^}] |o>3 

then using eqs. (2.9), (2.10), (2.14) we get 

|*m**m)3    =   A/^detKl-EVr1/2}26 (2.24) 

x exp 

In deriving eq.(2.24) we have used the general formula [16] 

(0| exp ^Ajflj - -Pijaidj) exp (/^a] - -Q^4a]) l0^ (2-25) 

= det^-^exp^i^-^-^A^i^-^-^^if-^/i), K = 1-PQ. 

In using this formula we took the e^ to be the list of oscillators (a^ , a^) 
with m > 1. (2.24) then follows from (2.25) by identifying P with S, Q with 
V, // with x and setting A to 0. 

Demanding that the exponents in the expressions for |\I/m) and |\I/m*\I/m), 
given in eqs.(2.20) and (2.24) respectively, match, we get 

S = Vn + (V12 , V2l)(l - SV)-1^ (J^2) , (2-26) 

where we have used the cyclicity property of the V matrices and the mod 3 
periodicity of the indices r and 5 to write the equation in a convenient form. 
To proceed, we assume that 

[CS,CVrs} = 0    V    r,5. (2.27) 

9Due to this property the BPZ conjugate of the state l^m) is the same as its hermitian 
conjugate. Otherwise we need to keep track of extra — signs coming from the fact that 
the BPZ conjugate of a^ is (-l)m+1am. 
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We shall check later that the solution obeys these conditions. We can now 
write eq.(2.26) in terms of 

T = CS = SC,        Mrs = CVrs, (2.28) 

and because of (2.18), (2.27) we can manipulate the equation as if T and 
Mrs are numbers rather than infinite dimensional matrices. We first multiply 
(2.26) by C and write it as: 

T = X + (M12 ,M21)(1 - SV)-1 (C™i221) , (2.29) 

where 

X.= Mn = CV11. (2.30) 

We then note that since the submatrices commute: 

= ((i-raf-r^M^M21)-1^-™ j™1^ 

Finally, we record that 

det(l - SV) = det(l - 2TX + T2X), (2.32) 

where use was made the first equation in (2.19) reading M12M21 = X2 - X. 

It is now a simple matter to substitute (2.31) into (2.29) and expand out 
eliminating all reference of M12 and M21 in favor of X by use of eqs.(2.19). 
The result is the condition: 

(T - 1)(XT2 - (1 + X)T + X) = 0 . (2.33) 

This gives the solution for S':10 

S = CT,        T = -Ul + X - y/(l + 3X)(l-X)). (2.34) zx 
We can now verify that S obtained this way satisfies equations (2.21) and 
(2.27). Indeed, since CS is a function of X, and since X(= CV11) commutes 
with CVrs, CS also commutes with CVrs. Furthermore, since V11 is twist 
invariant, so is X. It then follows that the inverse of X and any polynomial 

10 Of the two other solutions, T = 1 gives the identity state |Xm), whereas the third 
solution has diverging eigenvalues and hence is badly behaved. 
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in X are twist invariant. Therefore T is twist invariant, and, as desired, S 
is twist invariant. 

Demanding that the normalization factors in |\I/m) and |\]/m *\I/m) match 
gives 

Af = det(l - EV)1/2 = (det(l - X) det(l + T))1/2 , (2.35) 

where we have used eqn.(2.32) and simplified it further using (2.33).  Thus 
the solution is given by 

|*m) = {det(l-X)1/2det(l+T)1/2}26exp(-i7?/i;,  £  Smna£a$)\0). 

(2.36) 

2 
m,n>l 

This is the matter part of the state found in ref.[16] (referred to as |7m) in 
the introduction) after suitable correction to the normalization factor. From 
eq.(2.7) we see that the value of the action associated with this solution has 
the form: 

S\* = KM52 <0| expt-^v E SmwaCtf,) expf-iv ^2Smna^)\0). 

(2.37) 

o'//X-|/-   /    J   ~ III II■ — 777/-71'/  —Jr-V        o ' 

m'jTi'yi m,n>l 

By evaluating the matrix element using eq.(2.25), and using the normaliza- 
tion: 

y(26) 
<0|0>=^26)(0) = ^, (2.38) 

where V^ is the volume of the 26-dimensional space-time, we get the value 
of the action to be 

^(26) 
=   JR:7^-r2g{det(l-X)3/4det(l + 3X)1/4}26. (2.39) 

In arriving at the right hand side of eq. (2.39) we have made use of eqs.(2.34) 
and (2.35). Thus the tension of the D25-brane is given by 

T25 = K -^ {det(l - X)3/4 det(l + 3X)1/4}26 (2 40) 
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2.3    Identification with the sliver state 

In [10] a family of surface states was constructed corresponding to once 
punctured disks with a special kind of local coordinates. They were called 
wedge states because the half-disk representing the local coordinates could 
be viewed as a wedge of the full unit disk. The puncture was on the boundary 
and the wedge has an angle 360°/n at the origin, where n is an integer. A 
complete description of the state |n) is provided by the fact that for any 
state 10),11 

(n\(f>) = (fn o m), (2-41) 

where /„ o 0(z) denotes the conformal transform of <f)(z) by the map 

fn{z) = | tan (- tan"1^)) . (2.42) 

In the n —> oo limit this reduces to 

f(z) = f<x(z) = Un-1(z). (2.43) 

It was found in [10] that the states |n) can be written in terms of the full 
Virasoro operators as: 

\                 /   n2-4 _          n4-16 r ,n AA. 
V   =   eXP(-^-L-2 + -30^L-4 (^ 

(n2 - 4)(176 + 128n2 + lln4) \ 
" 1890^ L-6 + ---JI0>- 

For n = 1 the state reduces to the identity string field: \n = 1) = \I). For 
n = 2 we get the vacuum: |n = 2) = |0). For n —> oo, which corresponds 
to a vanishingly thin wedge state, and will be called the sliver state |H), we 
find a smooth limit 

IS) = loo) = expf--L_2 H 1/-4 L_6 H 1/_8 H 110). 1   /     '    / PV   3     2     30     4     1890     6     467775     8 Jl ' 
(2.45) 

It was also shown in [10] that 

|n) *|m) = |n + ra-l). (2.46) 

Thus the state |S) has the property that |n) * |S) = |S) for any n > 1. 
In particular, |H) squares to itself. Some properties of this state have been 
discussed in appendix D. 

11For brevity, we have modified the notation of [10]. The states |^~) are now simply 
called |n). Also we have included an extra scaling by n/2 in the definition (2.42) of the 
conformal map fn compared to ref.[10]. This does not affect the definition of |n) due to 
SL(2,R) invariance of the correlation functions. 
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L Sn S22 S13 S33 $24 Su 

20 0.2888 -0.0627 -0.1263 0.0706 0.0440 -0.0347 

40 0.2970 -0.0638 -0.1316 0.0740 0.0451 -0.0358 

80 0.3033 -0.0647 -0.1356 0.0766 0.0459 -0.0365 

160 0.3081 -0.0652 -0.1387 0.0785 0.0465 -0.0371 

oo 0.3419 -0.0665 -0.1588 0.0905 0.0476 -0.0382 

Table 1: Numerical results for the elements of the matrix S. We compute 
S by restricting the indices m, n of V^ and Cmn to be < L so that V11 

and C are L x L matrices, and then using eq.(2.34). The last row shows the 
interpolation of the various results to L = 00, obtained via a fitting function 
of the form ao + ai/ ln(L) + a2/(ln(L))2 + a3/(ln(L))3. 

Given the split L — L171 + L9 of the Virasoro operators into commut- 
ing Virasoro subalgebras, the state |S) can be written in factorized form: 
an exponential of matter Virasoros, and an identical exponential of ghost 
Virasoros: 

|S)   =   |3m)   ®   \Eg)  . 

In particular, it follows from (2.45) that 

i^_*»,,(-i^+i£=»£=i+...)i« 

(2.47) 

(2.48) 

where Af is a normalization factor to be fixed shortly.  The property |H) * 
|S) = |S) implies that 

|Sm)*m|Sm) = AAr^|Sm), (2.49) 

where the constant A could possibly be vanishingly small or infinite.   We 
shall choose J\f such that XAf52 = 1, so that |Sm) squares to itself. 

In order to show that this sliver state is the matter state identified in the 
previous subsection for the D25-brane, we must compare (2.48) with 

|*m) =Af26eXp[~r,^-S-a^)\0), (2.50) 

where S is the matrix calculated in the previous subsection.  Since the Vi- 
rasoro operators contain both positively and negatively moded oscillators 
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a comparison requires expansion. While we have done this as a check, the 
techniques of ref.[28] enable one to use the local coordinate (2.43) to give a 
direct oscillator construction of the sliver state 

\Em) = AT26 exp(- L^ ■ S ■ a't), (2.51) 

where, 

^rrm — 
1        f dw    f dz 

fmn J  2m J  2m , fmh J   2m J   2m znwm{l + z2)(l + w^tan^iz) - tan"1^))2 " 
(2.52) 

f denotes a contour integration around the origin. As required by twist 
invariance, Smn vanishes when m + n is odd. Explicit computations give: 

Sn = i ~ .3333,        S22 = -^ - --0667,     S13 = --^ ^ -.1540, 

& = S = ^ ■    a. - f^ = .0470,     Stt . -H , -.0384 . 
(2.53) 

On the other hand a level expansion computation for Smn, together with a 
fit, has been shown in table 1. The data shows rather remarkable agreement 
between Smn and Smn. The errors are of the order of 3%. Once Smn and. 
Smn agree, the normalization factors must agree as well, since both states 
square to themselves under *m-product. This is convincing evidence that 
the matter part of the state representing the D25-brane solution is identical 
to the matter part |Sm) of the sliver state up to an overall normalization. 

3    Construction of the lump solutions 

In this section we shall discuss the construction of lump soiutioiiS of eq.(2.5) 
representing lower dimensional D-branes. We are able to give these solu- 
tions in closed form and to express the ratio of tensions of branes of different 
dimensions in terms of determinants of infinite dimensional matrices. Nu- 
merical calculation of these ratios in the level expansion gives remarkable 
agreement with the expected values. 

3.1     Lump solutions and their tensions 

We begin by noting that the solution (2.36) representing the D25 brane has 
the form of a product over 26 factors, each involving the oscillators associated 
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with a given direction. This suggests that in order to construct a solution of 
codimension k representing a D-(25 — fc)-brane, we need to replace k of the 
factors associated with directions transverse to the D-brane by a different 
set of solutions, but the factors associated with directions tangential to the 
D-brane remains the same. (This is precisely what happens in the case of 
p-adic string theory [29, 30, 31], background independent open string field 
theory [32, 33, 34, 35, 36, 37, 38, 39, 40], as well as non-commutative solitons 
[41, 42, 43].) A procedure for constructing such space(-time) dependent 
solutions was given in ref.[16]. Suppose we are interested in a D-(25—k) brane 
solution. Let us denote by x^ (0 < ft < (25 — k)) the directions tangential 
to the brane and by xa ((26 — k) < a < 25) the directions transverse to 
the brane. We now use the representation of the vertex in the zero mode 
oscillator basis for the directions xa^ as given in appendix B. For this we 
define, for each string, 

a% = ±Vbpa--^ix«,        a^ = ^Vbpa + ^ixa, (3.1) 

where b is an arbitrary constant, and xa and pa are the zero mode coordinate 
and momentum operators associated with the direction xa. We also denote 
by IO5) the normalized state which is annihilated by all the annihilation 
operators CLQ, and by l^m the direct product of the vacuum \Qb} for each 
of the three strings. As shown in appendix B (eq.(B.6)), the vertex IV3) 
defined in eq.(2.10) can be rewritten in this new basis as: 

\V3)    =   ld26-kp{1)d
26-kp{2)d

2&-kp{3/
26-^{p{1)+p{2)+p(3)) 

exp(-^  £ Vt^VZa^ - J2 VuPP^a^ (3.2) 
r,s r,5 

771,n>l 71>1 

4Ewfr)WP(r))|0,P)l /123 

^     W + 5))"*exp(-i  £ ^)atO#)at)l«6> (27r63)1/4 123 ■ 

In this expression the sums over /2, is run from 0 to (25 — &), and sum over 
a runs from (26 — k) to 25. Note that in the last line the sums over ra, n 
run over 0, 1, 2  The coefficients V£n have been given in terms of V™n 

ineq.(B.7). 

In Appendix B it is shown that Vfrs, regarded as matrices with indices 
running from 0 to oo, satisfy (see (B.19) and (B.21)) 

V,rs = \(Cf + u;s-rU, + ujr-sUf), (3.3) 
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where we have dropped the explicit b dependence from the notation, C^n = 
(-l)mSmn with indices m,n now running from 0 to oo, and E/7, Uf = U'* 
viewed as matrices with ra, n > 0 satisfy the relations: 

U' - C'U'C',        U'2 = U'2 - 1,        C/'t = U'. (3.4) 

We note now the complete analogy with equations (2.15) and (2.17) [16]. 
It follows also that the V' matrices, together with C will satisfy equations 
exactly analogous to (2.18), (2.19). Thus we can construct a solution of 
the equations of motion (2.5) in an identical manner with the unprimed 
quantities replaced by the primed quantities. Taking into account the ex- 
tra normalization factor appearing in the last line of eq.(3.2), we get the 
following form of the solution of eq.(2.5): 

|^>   ={det(l-X)1/2det(H-r)1/2}26^exp(_l?7.p  £5mnaM)|0) 
m,n>l 

(2^174 W + ^)) Vet(l - X'^detd +T')^f 

exp(4  ^  S'mna
a^)\^b), (3.5) 

m,7i>0 

where 

S' = C'T',        T' = -i-(l + X' - y/(l + ZX'){l-X')), (3.6) 
ZJL 

X' = C'V'n. (3.7) 

Using eq.(2.7) we can calculate the value of the action associated with this 
solution. It is given by an equation analogous to (2.39): 

y(26-A0 
<V    =   K (27r)26_fc {det(l - Xf* det(l + 3X)1/4}26-fc (3 8) 

(27r63)1/2 (VSo + ^)2)  {det(l - X')3/4 det(l + SX')1/4}" , 

where V^26 k^ is the D-(25 — fc)-brane world-volume. This gives the tension 
of the D-(25 — A;)-brane to be 

r25-fc   =   K^igri{det(l-X)3/4det(l + 3X)1/4}26-fc (3.9) 

3 
x " 

(27r63)1/2 

)k 

{deta-X'^deta + SX')1/4}* 
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L 
fcr&H fOT 

b =.5 

2 J+1 tor 

6 = 1 

27r7fc+i 

6 = 2 

9^- for 27rTfc+i 

6 = 4 

*5+1 
fOT 

6 = 8 

(27r) 

.( fas. AM 

0 1.38117 1.08677 .96195 .94748 1.00992 1 

50 .94968 .95490 .96518 .98485 1.02101 .69705 

100 .95488 .95959 .96884 .98659 1.01946 .64875 

200 .95906 .96333 .97172 .98789 1.01802 .60244 

400 .96250 .96640 .97408 .98891 1.01672 .55839 

800 .96539 .96898 .97606 .98976 1.01558 .51718 

1600 .96785 .97118 .97775 .99048 1.01456 .48082 

3200 .97007 .97316 .97927 .99113 1.01361 .44664 

oo 1.00042 1.00061 1.00063 1.00031 .99939 -.12638 

Table 2: Numerical results for the ratio ^^—* ^^ ^rs^ column shows the 
level up to which we calculate the matrices V^ and V^. The second to 
sixth column shows the ratio ^^— for different values of the parameter b. 

The last column gives (27r)26T25/K. The last row shows the interpolation 
of the various results to L = oo, obtained via a fitting function of the form 
ao + ai/ ln(L) + a2/(ln(L))2 + a3/(ln(L))3. 

Clearly for k = 0 this agrees with (2.40). From eq.(3.9) we get 

724- 

27r75, 15-/5 v^ far + s) 
6\2 {det(l - X')3/4det(l + 3X')1/4} 
27    {det(l-X)3/4det(l + 3X)1/4} (3.10) 

This ratio can be calculated if we restrict m, n to be below a given level L, 
so that X = CF11 is an L x L matrix and Xf = C'F'11 is an (L +1) x (L +1) 
matrix. The values of V11 and V'11 can be found from eqs.(A.3) and (B.7). 
In particular for L — 0 only the matrix X' contributes. From eq.(3.7), (B.7) 
and (A.3) we get 

V11 In 
27 
16' 

Yf    — T/711 — 1 L00 '00 3 ln(27/16) + I 
(3.11) 
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Thus in the L — 0 approximation, the ratio (3.10) is given by 

(^)3/4(41n(27/16))1/4(ln(27/16) + ^)6-3/4. (3.12) 

For larger values of L the ratio is calculated numerically. The results of 
the numerical analysis are given in table 2. As seen from this table, the 
ratio TkI'(ZnTk-i) approaches 1 as L —> oc for all b. This is exactly what 
is expected if the lump solutions discussed here describe lower dimensional 
D-branes. It is also seen from the table that Tis/^ extrapolated to L = oo 
gives a negative number. We take this as an evidence that it approaches 0 
as L -> oo. This indicates that the matter component |\I/m) of the string 
field has zero norm. We expect that this will be compensated by the ghost 
sector contribution K, so that the contribution to the action from the full 
string field approaches a finite limit as we take the level of approximation L 
to oo. 

As in the previous section (footnote 10), one can construct two other 
solutions to eq.(2.5). For one of them T' is the inverse of the solution for T' 
given in eq.(3.6). For this solution the eigenvalues of Tf diverge and so the 
state is not well behaved. The other solution corresponds to T^n = Smn^ 
i.e. S^ = Cf

mn. Using eq.(B.5) for pa = 0 to go from oscillator basis to the 
momentum basis, one can easily verify that this again is the identity string 
state \Im). Thus we do not get a new solution. 

3.2    fe-dependence of the solution 

The analysis of the last section generates a one-parameter family of lump 
solutions characterized by the parameter b.12 Thus we are now faced with an 
embarrassment of riches, — for these solutions to have the interpretation as 
D-branes there should be a unique solution (up the possibility of translating 
the solution in the transverse direction) and not a family of solutions. There 
are two possibilities that come to mind. 

1. Although in the oscillator basis the solution seems to depend on b, 
the relationship between the oscillator and the momentum basis is b- 
dependent, and when we rewrite the solution in the momentum basis 
it is actually 6-independent. 

2. Even after rewriting the solution in the momentum basis it is 6-dependent, 

12 Actually for a codimension k lump we have a k parameter family of solutions since we 
can choose different parameters b corresponding to different directions. 
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L S'w for 

6 = 1 

S'm for 

6 = 2 

S'm for 

6 = 4 6 = 6 

Soo for 

6 = 8 

20 .25980 .08001 -.10718 -.21475 -.28836 

40 .25796 .07692 -.11183 -.22034 -.29458 

60 .25711 .07548 -.11403 -.22302 -.29758 

80 .25659 .07460 -.11539 -.22469 -.29947 

100 .25623 .07398 -.11636 -.22588 -.30081 

120 .25596 .07352 -.11709 -.22678 -.30184 

00 .2497 .0619 -.1372 -.2534 -.3333 

Table 3: Numerical results for 5Q0. The first column shows the level up to 
which we calculate the matrices V™n and V^J. The second to sixth column 
shows S'0Q for different values of the parameter b. The last row shows the 
interpolation of the various results to L = oo, obtained via a fitting function 
of the form ao 4- ai/ ln(L) + a2/(ln(L))2 4- a3/(ln(L))3. 

but the solutions for different values of b are related to each other by 
gauge transformation. 

We shall begin by exploring the first possibility. In order to get basis 
independent information about the lump solution, we can calculate its inner 
product with states in the momentum basis. Let us, for example, consider 
the inner product ({pa}|^). Using eqs.(B.5), (3.5) and (2.25) we get 

({K}|^)ocexp(-^ + 6T^-)),        p2 : p^ . (3.13) 

The numerical results for the values of Sf
0Q for different values of b are shown 

in table 3, and the values of b/2 + bSf
00/(l — SQQ) have been shown in table 

4. From this we see clearly that ({p05}!*^) is not independent of b. 

This brings us to the second possibility: could the different solutions 
be related by gauge transformation? Since the different solutions have the 
same ghost component, such a gauge transformation must be of a special 
kind that changes the matter part but not the ghost part. So the question 
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b 1 2 4 6 8 

b/2 + bS'QQ/(l-S'0o) .833 1.132 1.517 1.787 2.000 

Table 4: Numerical results for 6/2.+ &Soo/(l - S'oo) for different values of b. 
We use the results for S'QQ given in the last row of table 3. 

is: are such gauge transformations possible? If we choose the gauge trans- 
formation parameter |A) to be of the form \Ag) ® |Am), then, under a gauge 
transformation 

<J(|^> ® |*m)) (3.14) 
= Q|AS) ® |Am) + \yg *9 Ag) (g, |^m *m Am) _ |As ^ ^^ g, |Am ^m ^ _ 

Now suppose |Ap) is such that 

Q|A9}=0,        \Ag *!>%) = \*g *<> Ag) = |^). (3.15) 

In that case (3.14) can be written as 

5(\yg) ® |*m)) = |*s) ® (|*m *TO Am) - \Am *m *m)). (3.16) 

Thus effectively the gauge transformation induces a transformation on the 
matter part of the solution without any transformation on the ghost sector. 
It is our guess that solutions with different values of b are related by gauge 
transformations of this kind. Although we do not have a complete proof of 
this, a partial analysis of this problem has been carried out in appendix C. 
If this is indeed true, then this will imply that the width of the solution in 
the position space, given by y/b/2 + &SQ0/(1 

quantity. 
S'QQ), is a gauge dependent 

Without having detailed knowledge of the operator Q we cannot know 
whether there is some ghost number zero state |A^) in the ghost sector 
satisfying eq.(3.15). Note however that if Q annihilates the identity \I) of 
the * product then taking \Ag) = \Ig): where \Ig) denotes the component of 
\I) in the ghost sector, automatically satisfies eq.(3.15). On the other hand 
since eq.(3.15) needs to be satisfied only for a special 1^) which represents 
D-brane solutions, there may be other |A^) satisfying these equation. 

Note that even if we did not discover the existence of multiple solutions 
labeled by different values of 6, we would still have an embarrassment of 
riches if there were no [A^) satisfying eq.(3.15). This is due to the fact that 
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given any solution of eq.(2.5), we can generate other solutions by deforming 
|\I/m) as follows: 

*|*m> = |*m *m Am) " |Am ^ *m) • (3-17) 

In order to make sense of these solutions, we must show that when we com- 
bine them with |^) to construct solutions of the full string field theory 
equations of motion, they are related by gauge transformations. The postu- 
late of existence of a \Ag) satisfying eq.(3.15) makes this possible. 

4    Open questions 

Clearly many questions remain unanswered. In this concluding section we 
shall try to make a list of questions which we hope will be answered in the 
near future. 

1. The most pressing question at this time seems to be understanding 
the ghost sector of the solution. We expect that a proper analysis 
of the ghost sector will not only lead to the solution, but will also fix 
uniquely (up to the field redefinition ambiguity) the form of the kinetic 
operator Q. Since the matter part of the D25-brane solution is given 
by the matter part Em of the sliver state, our guess is that the full 
solution is given by a ghost number one operator built purely out of 
ghosts acting on the full sliver state S. 

2. For the D-branes of dimension < 25, we have found families of candi- 
date solutions labeled by the parameter b. Since a physical D-brane 
does not admit continuous deformations other than the translational 
motion transverse to the brane, we need to show that these additional 
deformations are gauge artifacts. We have given some arguments to 
this effect in appendix C, but a complete proof is lacking. 

3. Although we have shown that the ratios of tensions of our solutions 
agree very well with the expected answer, in order to establish conclu- 
sively that these solutions describe D-branes, we need to analyze the 
fluctuations of the string field around these solutions and show that the 
spectrum and interaction of these fluctuations agree with those of con- 
ventional open strings living on the D-brane. Clearly, the knowledge 
of Q is crucial for this study. 

4. Although the matter parts of our solutions are given in analytic form, 
calculation of the ratios of tensions of these solutions, involving com- 
putation of determinants of infinite dimensional matrices, was done 
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numerically.   It will be nice to have an analytic expression for this 
ratio. 

5. If our solution really describes D-branes, then we expect that there 
should be static multiple lump solutions representing multiple D-branes. 
One should be able to construct such solutions in our string field the- 
ory. It is natural to assume that these multi-lump solutions will also 
have factorized form, with the ghost part being described by the same 
universal state as the single lump solutions. Thus this analysis can be 
carried out without a detailed knowledge of Q. 

6. The procedure that we have followed to construct lower dimensional 
branes from the D25 brane solution bears a suggestive formal similarity 
with the solution generating techniques which have appeared recently 
in studies of non-commutative solitons and have been conjectured to 
be relevant to string field theory [41, 44, 45]. In that context, new 
space-time dependent solutions are obtained by acting on a transla- 
tional invariant solution with anon-unitary isometries", like the "shift 
operator" in an infinite dimensional Hilbert space. The construction 
of the matrix T" from T is quite reminiscent of some sort of shift oper- 
ation. It would be interesting to investigate this connection precisely. 
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The coefficients VI rs 
mn 

In this appendix we give the coefficients V™n introduced in the text. These 
results are taken from refs.[25, 26]. First we define the coefficients An and 
Bn for n > 0 through the relations: 

(^t;)1/=E^"+'£4,x», (^|)2/!=E iw+<I>i". 
^      ' neven nodd neven nodd 

(A.1) 
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In terms of An and Bn we define the coefficients N^ts as follows: 

J^^r    ~ QZTT—V (-l)n(AnBm ± BnAm)    for    m + n even, m^n, 

= 0 for    m + n odd, 

Nnm r = g/   _£_    x (-l)n+1(AnSm ± ^A.n)    for    m +n even, m 7^ n, 

= /,/    ,—r v3 (AnBm =F BnAm)    for    m + n odd, 

Nnm{r~l)    = 6(n T m) (-l)nihl(^^m T ^nAm)    for    m + n even, m ^ n , 

= -^7—"—rV/3(AnBm±JBriAm)    for    m + nodd. (A.2) 

The coefficients V™n are then given by 

Vnm    =    -Vmn(iV^ + iV^5)    for    m^n, m,n^0, 

^    -    -^2E(-ir-^-(-ir-A2],     for    n^O, 

V^+1)    =    ^t+2)-5[(-ir-^]    for    n^O, 

T/0-    =    -V2n(JVSr + JVj--)    for    n^O, 
^    =   lii(27/16). (A.3) 

The value of V£ quoted above corrects the result for N^n(= -V£/n) quoted 
in eqn.(1.18) of [26]. In writing down the expressions for V^ and V$ we 
have taken into account the fact that we are using ar = 1 convention, as 
opposed to the a' = 1/2 convention used in refs.[25, 26]. 

Finally we would like to point out that our convention for \A *m B), 
defined through eq.(2.9), differs from that in refs.[25, 26]. In particular, 
with the values of V™n give in eq.(A.3), our \A *m B) would correspond to 
\B*mA) in ref.[25]. Since the string field equation of motion involves |**^), 
it is not affected by this difference in convention. However, if we want our 
convention for \A *m B) to agree with that of ref.[25], we should replace Vrs 

by Vsr everywhere in eqs.(A.3). 
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B    Conversion from momentum to oscillator basis 

We start with the three string vertex in the matter sector as given in section 
(2.2): 

IV3) = J^2V(i)d2V(2)d26P(3)<5(26)(P(i) +P(2) +P(3))exp(-£)|0,p)123 

(B.l) 

where 

(B.2) 
7n,n>l n>l 

Note that using the freedom of redefining VQQ using momentum conserva- 
tion, we have chosen VQQ to be zero for r ^ s. Due to the same reason, a 
redefinition V^f -> Vgjf + A^ by some r independent constant A^ leaves the 
vertex unchanged. We shall use this freedom to choose: 

EFon=0. (B.3) 

It can be easily verified that VQ* given in eq.(A.3) satisfy these conditions. 

We now pass to the oscillator basis for a subset of the space-time coor- 
dinates xa ((26 — k) < a < 25), by relating the zero mode operators xa and 
pa to oscillators ao and 0%. For this one writes: 

a% = ±>/bpa-±ixa,        a^ = ^Vbpa + ^ixa, (B.4) 

where b is an arbitrary constant. Then CLQ , CLQ   satisfy the usual commutation 

rule [ao5ao ] ~ ^ (we are assuming that the directions xa are space-like; 
otherwise we shall need 7/a^), and we can define a new vacuum state |f2&) 
such that ag \ttb) — 0- The relation between the momentum basis and the 
new oscillator basis is given by (for each string) 

\{pa}) = (2n/b)-k^ exp [~pV + Vbatfp* - ^atfatf] \nb).       (B.5) 

In the above equation {pa} label momentum eigenvalues. Substituting eq.(B.5) 
into eq.(B.l), and integrating over p?\, we can express the three string vertex 
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as 

|l/3)     =     |d26-fcp(1)d
26-fcp(2)d

26-fcp{3)^26-fc)(p(1)+p(2)+p(3)) 

exp(-i '£ ^paW^t^^)^ _ J^VfiPP^a^ (B.6) 
r,5 r,s 

m,n>l n>l 

/123 -^E^4)ForoH))i0'P>^ 
r 

((2^74 W + 5)) "" exP (- ^E^)Qt^^M) in*)^ • 
m,n>0 

In this expression the sums over ft, it run from 0 to (25 — k), and the sum 
over a runs from (26 — k) to 25.  Note that in the last line the sums over 
m, n run over 0, 1, 2 The new 6-dependent V coefficients are given in 
terms of the V coefficients by 

1 3 

V00   + 2   t=i 

^00  + 2 

^ ^00  + 2 

^ ^00  + 2 

In deriving the above relations we have used eq.(B.3).  These relations can 
be readily inverted to find 

VZ    =   Oft) + | 1 _ y^ib) E V^m<?nS(b), rn,n>l, 

_    &l + 3Vff-(6) 
Ko0    _    6  1-F07(6) • (B-8) 

We shall now describe how our variables V^n and V^ are related to the 
variables introduced in ref.[25]. For this we begin by comparing the variables 
in the oscillator representation. Since ref.[25] uses the a' = 1/2 convention 
rather than the a' = 1 convention used here, every factor of p (x) in [25] 
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should be multiplied (divided) by \/2c7, and then af should be set equal to 
one in order to compare with our equations. With this prescription eqs.(2.5b) 
of [25] giving ao = ^P — ix becomes ao = -j^P - Tpfi-* which corresponds to 
our (B.4) for 6 = 2. Thus, we can directly compare our variables with those 
of [25] for the case b — cl. 

Ref.[25] introduced a matrix XJ which appears, for example, in their 
eq.(2.47). We shall denote this matrix by U9^. This matrix appears in the 
construction of the vertex in the oscillator basis ([25], eqn.(2.52) and (2.53)). 
This implies that the V coefficients for b — 2 can be expressed in terms of 
XJ9* using their results. In particular, defining V,TS to be the matrices V^J 
with m,n now running from 0 to oo, we have (see [25], eqn.(2.53)):13 

F,r5(2) = J(C' +.uj3-rU9i +u;r-sU9J), (B.9) 

where u — exp(27r2/3), C'mn = (-l)m5mn with m, n > 0, and the matrix U9:j 

satisfies the relations (eq.(2.51) of [25]): 

Ijgj t = i/gj j    ijgj = (jjgjy = c'U^C,    U9JU9J = 1. (B.10) 

Eq.(B.9) gives us, V^r{2) = \{l + 2Ug).   With this result, the last 
equation in (B.8) can be used with b — 2 to find 

Similarly, the second equation in (B.8) gives: 

Fon = r-^J^^(2)'      for  n^1- (B-12) 

Making use of (B.9) and U^3
n = (U{jl)* we find that we can write, for n > 1: 

VSn8 = l^s-rWn +ur-sW*), (B.13) 

where 

Wn = ^EoL. (B.14) 
1 - XT93 

13As explained at the end of appendix A, U9J should really be identified with U of 
ref.[25]. 
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The first equation in (B.8) together with (B.9) gives us [16] 

Vra = hc + ua-rU + u)r-sU), (B.15) 
o 

where Vrs, U and C are regarded as matrices with indices running over 
m, n > 1, Cmn = (—l)m5mn 

and [/" is given as 

TT93 TT93 

Umn = U%n + -f^. (B.16) 

By virtue of this relation, and the identities in (B.10) we have that the 
matrix U satisfies 

U = U* = CUC,        U2 = U2 = 1,        U* = U,    W = U.        (B.17) 

It follows from (B.10) and (B.14) that Wn satisfies the relations: 

w: = (-irwn,    J2w"u"p = wr'    Y,w™w™ = 2Voor- (B-18) 
n>l 77Z>1 

Finally, using (B.7), (B.13), (B.15), the coefficients V'(b) for arbitrary b 
can be made into matrices with m, n > 0, and, just as for the case b = 2 in 
(B.9), can be written as 

V'r8(b) = \{C' + (vs-rU' + (jr-aU'), (B.19) 

where 

UL   =   1- 00 -*■       T/rr   i   b ' V00  + 2 
\/b 

UL    =    W = -l—TWn,    n>l, 
K00  + 2 

ULn   =   Umn--^-^    m.n>l. (B.20) 
M)0   + 2 

Using eqns.(B.17) and (B.18) one can show that U', U1 = U'* viewed as a 
matrix with ra, n > 0 satisfies the relations: 

fj' = C'U'C,        U'2 = U'2 = 1,        U* = U'. (B.21) 
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C    On the 6-dependence of the lump solution 

In this appendix we shall address the question as to whether the apparent 
6-dependence of the lump solution given in eq.(3.5) could be a gauge artifact. 
In order to avoid cluttering up the formulae we shall focus on the matter part 
associated with a single direction transverse to the lump: 

|^)=^exp(-i   Yl   S'mn*i*lWb), (Cl) 
ra,n>0 

where 

*' = (-~~r4 Wor + 5)) {det(l - X')1/2 det(l + T')1/2} .        (C.2) 

Since all states under discussion are in the matter sector associated with 
this single direction, we shall refrain from adding the subscript m to various 
states and the * operation. The b dependence of the state given above comes 
from four sources: 

1. b dependence of A/7 (including implicit b dependence of X' and T" 
through eqs.(B.7), (3.6), (3.7)). 

2. b dependence of 5^n through eqs.(B.7), (3.6), (3.7). 

3. b dependence of aj through eq.(3.1). Under an infinitesimal change in 
6, eq.(3.1) gives 

^ = 2Jb ^        Sa() = 26a^ ^C'3^ 

4. b dependence of |fib) due to the change in the definitions of ao, %. 
Requiring that (ao + Sao) annihilates |$\) + <y|fi&) gives 

5|n6> = -^(aJ)2|ft6>. (C.4) 

A straightforward calculation (involving expansion of the exponential to 
first order in 6b using the Baker-Campbell-Hausdorff formula) gives: 

8\*') = (sinAf' -±j S'0Q) I*') - \{sS'mn + |(-^m^n + <W<W)}c44l*,> 
(C.5) 
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We would now like to ask if the expression for S^') given above can be 
represented as a gauge transformation of the kind given in eq.(3.16) 

WI*OH*'*mAMA*mtt'>, (C-6) 
for some state |A) in the matter sector. Eq.(C.5) suggests that we look for 
a |A) of the form: 

|A)=Aw44l*'>- (c-7) 
(Note that we could have included a term in |A) proportional to I*'), but 
this does not contribute to the gauge transformation of I*7)-) Using eq.(2.9) 
and the general formula (2.25) together with the identity 

(0| exp [Xidi - -Pijaiajjapaq exp ^aj - ^Qu^j) 1°) (C-8) 

=    dx dx  I (0| exp (Xidi - -Pijaia^j exp ^af. - -Qy-ajat J |0) J , 

we can show that 

Wl*'>    =    -Tr{BV{l-VV)-l)\V) (C.9) 

+| ^,3i) v/32) (1 _ S'V')-
I
H(I - vs')-1 (^s) }mn

ai°tm, 

where 

_     f-C'AC       0    \      y,_(S'    0\      vl_(V'n   V^\ 
B={   0      CAC)'        {0  s'J'   v " V^'21 v22) ■ 

(CIO) 

Thus requiring that 8gauge\^') is equal to 6]^') given in eq.(C.5) gives, 

1 5b 

and 

Tr(BV'(l - SV)-1) - -(dlnW --^-f S'00) ] (C.ll) 

{ (V**, V"*) (1 - S'V')-^(1 - V'E')"1 (^Z) }mn 

(C.12) 

These give a set of linear equations for Amn. In order to show that the change 
in b corresponds to a gauge transformation, we need to show the existence 
of Amn satisfying these equations. Although we do not have a proof of this, 
the fact that S\^f) given in eq.(C.5) satisfies the various consistency relations 
(e.g. |^' * SV) + {SV * *'} = 0, which follows from the fact that I*') + <J|tf') 
satisfies eq.(2.5)) gives us hope that the solutions to these equations do exist. 
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D    Conservation laws for the sliver 

In this section we derive conservation laws obeyed by the sliver state, follow- 
ing the methods of [10]. The surface state (S| is defined by the conformal 
map 

dz _      1 .   -     _   , 2 
*     d^~ 1 + z2 z = tan  1(z) S(z,z) = (D.l) 

(1 + z2)2' 

Here z is the global coordinate on the once punctured upper half plane Im 
(z) > 0 with the punture at z = 0, and z is the local coordinate around the 
puncture. 5(5, z) denotes the standard Schwartzian derivative. 

To obtain Virasoro conservations laws, we consider a globally defined 
vector field #(£), holomorphic everywhere except for a possible pole at the 
puncture z — 0. The standard contour deformation argument then gives [10] 

(E\fdzv(z)(T(z)-~S(z,z))=0, (D.2) 

where contour integration is around the origin, and v(z)  — v(z) (^|) 
Taking v(z) =.zp (with p < 2 so that there is no pole at z = oo), we get 

v(z) = [tan-1(^)f(l + ^2). 

We can write explicitly the first few conservation laws: 

(5 

(3 

(2 

Li + ^Ls 

T 2T 

-i5 + ...)=o 
2    r 2    r 

15   4     35 )- 

L-i+L 
) = 

0 

_ c     29 r       128 
L-2 + 6 " 45L2 + 945L4 

61 2176 
3     189 14175 ^5 + 

c     608_        629 _ 
3     945 4725 

848 
14175 

••) = » 
1312 

+ 22275 

^6 + 

L6 + ---)=0 

(D.3) 

(D.4) 

(D.5) 

(D.6) 

(D.7) 

(D.8) 

(D.9) 

Here Lm could stand for either matter or ghost Virasoro operators (or even 
the Virasoro operators associated with a subsector of the matter conformal 
field theory) and c is the corresponding central charge. The perfect conser- 
vation of Ki = Li + L-i holds more generally for any "wedge state" (n|, 
defined by the conformal map (see (2.42)) 

n f2 
z = — tan    — tan 

2 In 
-1 (D.10) 
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Indeed, with v{z) = z2 + 1 we get v(z) = (z2 + 1) and deduce that for all n, 

(n|#i=0. (D.ll) 

The operator Ki is a derivation of the * product, and the observation that 
it annihilates all wedge states fits nicely with the fact that the wedge states 
form a subalgebra under * multiplication. 

Conservation laws for the antighost b are identical to Virasoro conserva- 
tions with vanishing central charge, since 6 is a true conformal primary of 
dimension two. 

Conservations laws involving cn
5s can be derived analogously, 

need to consider holomorphic quadratic differentials (f(z). We can 
1/5P, with p > 4 for the quadratic differential to be regular at z -». 
in z coordinates one has 

Tz)   ^^[tan-Wa+ *»)»• 

Contour deformation argument now gives 

(S| ® dz (p(z)c(z) = 0 . 

The first few conservations read 

2co     29c2     6O8C4 

(S 

(2 

C-2"T-+ 45 945 
c_i  ci  6IC3 

+ 

C_3 h —  + • • 6      3   3  189 
2co  128C2  629C4 

c-4 + — ^r- + 15 945 4725 
, Tc,!  7ci , 2176C3 

5  45   45  14175 
2co  848C2  1312C4 

C~6 ~ ^5" + 14175 ~ 22275 

Here we 
take (f = 
oo.  Back 

(D.12) 

(D.13) 

•••)=•> 
(D.14) 

).o (D.15) 

H-o (D.16) 

f • ■ • ) = 0 (D.17) 

+ ••• ) =0. (D.18) 
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