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led to gauge invariant actions which manifestly implement the absence 
of open string dynamics around this vacuum. We test this proposal 
by showing the existence of lump solutions of arbitrary codimension in 
this string field theory. The key ingredients in this analysis are certain 
assumptions about the analyticity properties of tachyon Green's func- 
tions. With the help of some further assumptions about the properties 
of these Green's functions, we also calculate the ratios of tensions of 
lump solutions of different dimensions. The result is in perfect agree- 
ment with the known answers for the ratios of tensions of D-branes of 
different dimensions. 
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1    Introduction and Summary 

The 26-dimensional bosonic string theory contains D-p-branes for all integer 
p < 26. Each of these D-p-branes has a tachyonic mode. It has been con- 
jectured [1, 2] that there is a local minimum of the tachyon potential which 
describes the closed string vacuum without any D-brane. At this minimum 
the negative contribution from the tachyon potential exactly cancels the ten- 
sion of the D-brane. Furthermore, since the brane disappears, this vacuum 
cannot support conventional open string excitations. It has also been con- 
jectured that a codimension q lump solution on the D-p-brane represents a 
D-(p—g)-brane in the same theory. Support for these conjectures comes from 
the analysis of the world-sheet theory [1, 3, 4, 5, 6, 7, 8], cubic open string 
field theory [9, 10, 11, 12, 13,14, 15, 16, 17, 19, 20, 21, 22, 23, 24], noncommu- 
tative limit of the effective field theory of the tachyon [25, 26, 27, 28, 29, 30], 
background independent open string field theory [31, 32, 33, 34], as well as 
various simple models of tachyon condensation [35, 36, 37, 38, 39, 40]. 

One of the promising approaches to the study of this subject matter in- 
volves the use of cubic open string field theory (SFT) [41]. Indeed, much work 
has already been done with it using the level truncation scheme [9, 10, 11]. 
While complete analytic solutions of the equations of motion of this string 
field theory are still missing, the solutions found by combination of ana- 
lytic and numerical work gave some of the strongest evidence for the con- 
jectures, as well as demonstrated that string field theory contains non- 
perturbative physics. More recently, work in boundary string field theory 
(B-SFT) [42, 43, 44, 45, 46, 47], - a version of string field theory incorporat- 
ing a certain degree of background independence, — confirmed the form of 
the tachyon potentials proposed in [37, 38] and established conclusively the 
energetics aspect of the tachyon conjectures [31, 32, 33]. Whereas in conven- 
tional SFT the tachyon string field condenses, namely an infinite number of 
scalars acquire expectation values, in B-SFT only the tachyon field acquires 
a vacuum expectation value. This is quite fortunate, as it appears to be very 
difficult to formulate B-SFT in generality. Due to this problem in B-SFT, at 
present cubic string field theory seems to be the only complete framework 
where we can analyze concretely the fate of the open string field excitations 
around the vacuum where the D-brane has disappeared. Indeed, it seems to 
provide a completely non-singular framework to study the tachyon vacuum. 
Starting from a D-brane background one appears to reach the tachyon vac- 
uum with room to spare and without any indications of singularities in field 
variables. 

In principle the analysis of the tachyon vacuum is straightforward. One 
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must: (i) find the classical solution $o representing the vacuum with no 
D-brane, (ii) expand the string field action setting $ = $o + ^S where * is 
the fluctuation field, and (iii) analyze the spectrum of \I/ using the resulting 
kinetic term. Nevertheless, in practice this has not been simple to carry out, 
first and foremost because there is no known closed form expression for $o 
yet. The accurate numerical approximations to $o may allow, however, an 
analysis of the spectrum around the vacuum [17, 18]. 

In this paper we shall analyze the problem from a different angle. In- 
stead of trying to construct the classical solution $0? expand the SFT action 
around $0? an(l attempt field redefinitions to bring the kinetic term to a 
simple form, we shall make an inspired guess about the form of the SFT ac- 
tion expanded around the tachyon vacuum. Then we will try to check that 
this action satisfies the various consistency requirements. Since the string 
field theory action is cubic in the string field, shifting the string field by a 
classical solution does not change the cubic interaction term. Thus we only 
need to guess the quadratic term of the shifted action. The requirement 
that the new action is obtained from the original one by a shift of the string 
field by a classical solution of the equations of motion puts constraints on 
the possible choices of the quadratic term, — these basically correspond to 
the requirement that the shifted action also has an infinite parameter gauge 
invariance like the original SFT action. Besides these constraints the action 
must satisfy the following additional requirements: 

1. The kinetic operator must have vanishing cohomology. This would im- 
ply absence of physical open string states around the tachyon vacuum. 

2. The action must have classical solutions representing the original D- 
brane configuration, as well as lump solutions representing D-branes 
of all lower dimensions. 

Indeed, our work began with the simple realization that the reparametriza- 
tion ghost zero mode CQ was an obvious replacement for the BRST operator 
that would lead to vanishing cohomology, and thus no physical states.2 More 
striking, however, is the fact that the Riemann surface description of the star 
product makes it evident that CQ is a derivation. Thus, we noted that re- 
placing the BRST operator QB by Q = CQ would lead to a string field action 

So 
i(¥, Q*) + i(*,***) ,    Q = co,        (1.1) 

2This possibility may have occurred to many physicists, but we heard it first from E. 
Witten [48]. 
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that would have the* expected (vanishing) spectrum and would be gauge 
invariant. It is straightforward to see that more general operators lead to 
the same conclusions. In fact 

oo 

71=0 

with arbitrary constants an's would also lead to gauge invariant actions with 
no physical states. As we will show, many of these actions are related by 
field redefinitions. 

In fact, long time ago, Horowitz et.al [49] constructed a class of formal 
solutions of the purely cubic string field theory action [50, 51] which lead to 
actions of the above form, with an extra regularity condition Q\l) = 0, where 
\I) is the (formal) identity of the star algebra. In particular, these authors 
noticed that such string field theory would describe no physical excitations 
around the vacuum in question. Furthermore, since a subclass of the above 
actions is obtained by shifting the string field in the purely cubic action, 
which in turn is obtained by shifting the string field in the original SFT 
action, we can, at least formally, regard the above actions as the result of 
shifting the string field in the original SFT action.3 

We will not be able to determine here the precise form and normalization 
of Q and we take the above class of actions as confimation that the condi- 
tions of zero cohomology, gauge invariance and universality of the kinetic 
operator can be satisfied. There may even be more general forms of kinetic 
operators built purely from the ghost sector and satisfying these conditions. 
Such kinetic terms make the universality of the action expanded around the 
tachyon vacuum manifest. Indeed, since the tachyon vacuum, representing 
the closed string vacuum without any D-brane, should not depend on which 
D-brane configuration we start from, we should expect that the string field 
theory action expanded around this vacuum should lose all knowledge about 
the matter conformal field theory (CFT) describing the original D-brane 
configuration.4 

Given the class of actions exemplified by eqns.  (1.1) and (1.2) the non- 

3These solutions, however, have the unwanted feature that at least formally they have 
the same energy density as the original D-brane configuration. This is not what is expected 
of the solution describing the tachyon vacuum. This would suggest that we only consider 
those Q's which do not satisfy the regularity condition Q\X) = 0. In fact, co\X) ^ 0. 

Since the interaction term involves correlation function in the combined matter-ghost 
CFT, it does depend on the matter CFT. For this CFT we use the canonical choice 
corresponding to the maximal dimension space-filling D-brane. However, since the three 
string vertex involves complete overlap of the three strings the interaction can be made 
formally background independent by a rescaling of the string fields. 
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trivial part of the problem is to construct the classical solutions in this 
string field theory representing the original D-brane as well as various lump 
solutions representing the lower dimensional D-branes, and compare their 
tensions with the known tensions of the D-branes. At present we have only 
been able to partially determine the space-time dependence of the solutions 
and to calculate the ratio of the tension of a p-brane lump to that of a (p+1)- 
brane lump for arbitrary integer p. Under certain assumptions which will 
be explained in section 3, this computation can be done without a detailed 
knowledge of the quadratic term in the action as long as it does not involve 
any matter sector operator. The final result for the ratio of tensions involve 
certain function B (a) (defined in eqs. (3.34), (3.37), (3.40)) which, if zero, will 
produce the desired value. Although we cannot at present give an analytic 
proof of the vanishing of this function, we have checked numerically that 
this function indeed vanishes to very high degree of accuracy. This in turn is 
evidence that our guess about the SFT action expanded around the tachyon 
vacuum is the correct one. 

The strategy that we follow for this computation is as follows. Since the 
kinetic term and hence the propagator does not involve any matter oper- 
ator we are able to find the exact momentum dependence of an arbitrary 
n-tachyon Green's function. Prom the generating functional W[J] of the 
tachyon Green's functions we can find the tachyon effective action by Legen- 
dre transformation. Missing the overall (n-dependent) normalization of the 
n-tachyon Green's function, we only have a partial knowledge of the effec- 
tive action. We now assume that the tachyon equations of motion derived 
from this effective action have a space-time independent classical solution 
which can be identified with the original D-brane. Using this assumption, 
together with certain other assumptions about the analyticity of the gen- 
erating functional of the tachyon Green's function stated in section 3, we 
show that the tachyon equation of motion also has lump solution of every 
codimension. Some further assumptions allow us to calculate the ratios of 
tensions of these lumps without knowing the detailed form of the effective 
potential. As already stated, the result is in perfect agreement with the 
known answers for the ratios of tensions of D-branes. 

Clearly many things remain to be done. First and foremost is to repro- 
duce correctly the overall normalization of the D-brane tension. For this 
we need to fix unambiguously the form of the kinetic term Q in the shifted 
vacuum.5 Some aspects of our analyticity assumptions may require more 
information about Q. The action around the tachyon vacuum is expected to 

5While 2 = 0, leading to the purely cubic action [50], is universal, the resulting back- 
ground is not suitable for the present analysis since with vanishing kinetic term the Feyn- 
man rules used for computing the tachyon effective action are not well defined. In addition, 
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possess many novel properties. In particular many of the symmetries which 
are spontaneously broken in the background of a D-brane are expected to be 
restored in this vacuum [52, 53, 54]. It will be interesting to analyse our pro- 
posal to check these properties. Another important problem is to generalize 
this analysis to the case of sup erst ring field theory (SSFT) [55, 56, 57] where 
analogous conjectures exist [58, 59, 60, 61, 62, 63] and some have already 
been tested using the level truncation scheme [64, 65, 66, 67]. It is again 
natural to conjecture that at the tachyon vacuum the kinetic term does not 
involve any matter sector operator. 

The paper is organised as follows. In section 2 we discuss the properties 
that we expect of the open string field theory action expanded around the 
tachyon vacuum, and construct examples of actions satisfying these prop- 
erties. In section 3 we show how, starting from this action, and assuming 
the existence of a space-time independent solution of the equations of mo- 
tion describing the original D-brane, we can calculate the ratio of tensions 
of the lump solutions of different dimensions. In the concluding section 4 
we discuss various issues which are important for further extension of our 
analysis. These include a study of the uniqueness of the proposed action, the 
possibility of using level truncation scheme for calculating the overall nor- 
malization of the lump tension, an analysis of gauge fixing, generalization to 
superstrings, and a discussion on closed string states. 

2    String Field Theory Around the Tachyon Vac- 
uum 

Here we begin by considering open string field theory formulated on the 
background of a specific D-brane, focusing on its algebraic structure both 
before and after tachyon condensation to the vacuum where the brane dis- 
appears. After a discussion of the properties expected from the kinetic term 
of the string field theory around the tachyon vacuum we propose an ansatz 
consistent with such expectations. 

as opposed to the string field tachyon condensate, the string field taking the original D- 
brane configuration to the one with vanishing kinetic term is annihilated by the BRST 
operator. Thus the purely cubic action is unlikely to represent the tachyon vacuum. 
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2.1     Algebraic structure before and after condensation 

We begin with the cubic string field theory action describing the world- 
volume theory of a D-(N — l)-brane: 

SW = - i i($,QB$) + i($,$*$) (2.1) 

where g0 is the open string coupling constant and $ is the open string field, 
conventionally taken to be Grassmann odd and of ghost number one for the 
classical action. In addition, QB is the BRST operator, (•, •) is a bilinear 
inner product based on BPZ conjugation and * denotes star-multiplication 
of string fields. The consistency of this classical action is guaranteed by the 
following identities involving the BRST operator 

QB(A * B) = (QBA) * B + (-1)AA * (QBB), (2.2) 

{QBA,B) = -(-)A{A,QBB), 

and identities involving the inner product and the star operation 

(A,B) = (-)AB(B,A) 

(A,B*C) = (A*B, C) (2.3) 

A * {B * C) = (A * B) * C. 

In the sign factors, the exponents A,B,--- denote the Grassmanality of the 
state, and should be read as (—)A = (—)€^ where e(A) = 0 (mod 2) for 
A Grassmann even, and e(A) = 1 (mod 2) for A Grassmann odd. We also 
have: 

€(A*B) = e(A)+e(B) 

gh(A*B)=g}i(A)+gh(B), (2.4) 

where gh denotes ghost number, and we take the ghost number of the 
SL(2,R) vacuum to be zero. Equations (2.2) and (2.3) guarantee that the 
above action is invariant under the gauge transformations: 

(J$ = <9BA + $*A-A*$, (2.5) 

for any Grassmann-even ghost-number zero state A. 

Let $o be the string field configuration describing the tachyon vacuum, 
a solution of the classical field equations following from the action in (2.1): 

QB$O + $O*$O = 0. (2.6) 
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If $ = # — #o denotes the shifted open string field, then the cubic string 
field theory action expanded around the tachyon vacuum has the form: 

9o 
i($,Q$) + i(*>$*$) (2.7) 

Here S'($o) IS a constant, which according to the energetics part of the 
tachyon conjectures equals the mass M of the D-brane when the D-brane 
extends over a space-time of finite volume.6 Indeed, the potential energy 
V^o) = — S($o) associated to this string field configuration should equal 
minus the mass of the brane. The kinetic operator Q is given in terms of 
QB and $o as: 

Q$ = QB$ + $o * ^ + $ * $o ■ (2.8) 

More generally, on arbitrary string fields one would define 

QA = QBA + $o * A - {-1)AA * $o . (2.9) 

The consistency of the action (2.7) is guaranteed from the consistency of 
the one in (2.1). Since neither the inner product nor the star multiplication 
have changed, the identities in (2.3) still hold. One can readily check that 
the identities in (2.2) hold when QB is replaced by Q [41]. Just as (2.1) is 
invariant under the gauge trasformations (2.5), the action in (2.7) is invariant 
under 5<& — QA + <J>*A — A*$for any Grassmann-even ghost-number zero 
state A. 

Since the energy density of the brane represents a positive cosmological 
constant, it is natural to add the constant — M = —S(<fro) to (2.1). This 
will cancel the 5f($o) term in (2.7), and will make manifest the expected 
zero energy density in the final vacuum without D-brane. For the analysis 
around this final vacuum it suffices therefore to study the action 

9i 
i($,Q$) + ^,$*$) (2.10) 

2.2    An ansatz for the SFT after condensation 

If we had a closed form solution $o available, the problem of formulating SFT 
around the tachyon vacuum would be significantly simplified, as we would 
only have to understand the properties of the new kinetic operator Q in 

6 As suggested in [10], we shall assume that the time interval has unit length so that the 
action can be identified with the negative of the potential energy for static configurations. 
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(2.9). In particular we would like to confirm that its cohomology vanishes in 
accordance with the expectation that all conventional open string excitations 
disappear in the tachyon vacuum. Even the numerical approximations for 
$o niay give some indication if this is the case [9, 1.7, 18]. 

Previous experience with background deformations (small and large) in 
SFT indicates that even if we knew $0 explicitly and constructed 5o($) using 
eq.(2.10), this may not be the most convenient form of the action. Typically a 
nontrivial field redefinition is necessary to bring the shifted SFT action to the 
canonical form representing the new background [73]. In fact, in some cases, 
such as in the formulation of open SFT for D-branes with various values 
of magnetic fields, it is simple to formulate the various SFT's directly [74], 
but the nontrivial classical solution relating theories with different magnetic 
fields are not known. This suggests that if a simple form exists for the SFT 
action around the tachyon vacuum it might be easier to guess it than to 
derive it. 

In proposing a simple form of the tachyon action, we have in mind field 
redefinitions of the action in (2.10) that leave the cubic term invariant but 
simplify the operator Q in (2.9) by transforming it into a simpler operator 
Q. To this end we consider homogeneous field redefinitions of the type 

$=eKy, (2.11) 

where K is a ghost number zero Grassmann even operator. In addition, we 
require 

K(A * B) = (KA) * B + A * (KB), 

(KA,B) = -(A,KB). (2.12) 

These properties guarantee that the form of the cubic term is unchanged 
and that after the field redefinition the action takes the form 

sm'-h i<tt, Q*) + l(*,***) (2.13) 

where 

Q=e-KQeK. (2.14) 

Again, gauge invariance only requires: 

<22 = 0, 

Q(A * B) = (QA) * B + {-l)AA * (QB), (2.1.5) 

(QA,B) = -(-)A(A,QB). 
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These identities hold by virtue of (2.12) and (2.14). We will proceed here 
postulating a Q that satisfies these identities as well as other conditions, since 
lacking knowledge of $o the above field redefinitions cannot be attempted. 

The choice of Q will be required to satisfy the following properties: 

• The operator Q must be of ghost number one and must satisfy the 
conditions (2.15) that guarantee gauge invariance of the string action. 

• The operator Q must have vanishing cohomology. 

• The operator Q must be universal, namely, it must be possible to write 
without reference to the brane boundary conformal field theory. 

The simplest possibility would be to set Q = 0. This would result in 
the purely cubic version of open string field theory [50]. Indeed, it has 
long been tempting to identify the tachyon vacuum with a theory where the 
kinetic operator vanishes, especially because lacking the kinetic term the 
string field gauge symmetries are not spontaneously broken. Nevertheless, 
there are well-known complications with this identification. At least in the 
construction of [50] the string field shift $ relating the cubic to the purely 
cubic SFT's involves the subtle identity operator 1 and appears to satisfy 
Q$ = 0 as well as $ * $ = 0. The tachyon condensate definitely does not 
satisfy these two identities. We therefore search for nonzero Q. 

We can satisfy the three requirements by letting Q be constructed purely 
from ghost operators. In particular we claim that the ghost number one 
operators 

Cn = cn + {-)n c-n ,    n = 0,1, 2, • • • (2.16) 

satisfy the properties 

Cn(A * B) = (CnA) * B + (-l)AA * (CnB), (2.17) 

{CnA,B) = -(-)A(A,CnB). 

The first property is manifest. The last property follows because under 
BPZ conjugation cn —> (—)n+lC-n. The second property follows from the 
conservation law 

(Me^+C^+C^HO, (2.18) 
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on the three string vertex [15]. These conservation laws arise from consid- 
eration of integrals of the form J dzc(z)(p(z) where (p(z)(dz)2 is a globally 
defined quadratic differential. In fact, the conservation law for Co arises from 
a familiar Jenkins-Strebel quadratic differential with a second order pole at 
each of the three puntures. This quadratic differential, in fact, defines the 
geometry of the vertex. Its horizontal trajectories show the open strings and 
their interaction. 

Each of the operators Cn has vanishing cohomology since for each n the 
operator Bn = ^(bn + (-)nb-n) satisfies {Cn,Bn} = 1. It then follows that 
whenever Cnip = 0, we have ip = {Cn,Bn}ip = Cn(jBn^), showing that ip is 
Cn trivial. Finally, since they are built from ghost oscillators, all Cn's are 
manifestly universal. 

It is clear from the structure of the conditions (2.15) that they are sat- 
isfied for the general choice: 

Q = Y/anCn, (2.19) 
n=0 

where the an's are constant coefficients. We will discuss in section 4.1 how 
different choices for these constants result in kinetic operators that are some- 
times related by field redefinitions. 

A subset of the above kinetic operators were considered by Horowitz 
et.al. [49], as they discussed how the purely cubic SFT could have solutions 
leading to forms different from the conventional cubic SFT. In particular 
they noticed that operators built just with ghost oscillators could appear as 
the kinetic term of an action obtained by shifting by a (formal) solution of 
the cubic theory. 

There may be other choices of Q satisfying all the requirements stated 
above. Fortunately, our analysis of section 3 will not require the knowledge 
of the detailed form of Q, as long as it does not involve any matter operators. 
To this end, it will be useful to note that since Q does not involve matter 
operators, we can fix the gauge by choosing a gauge fixing condition that 
also does not involve any matter operator. In such a gauge, the propagator 
will factor into a non-trivial operator in the ghost sector, and the identity 
operator in the matter sector. Some details of gauge fixing are discussed in 
section (4.3). 
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3    The Lump Solutions and Their Tensions 

In this section we shall analyze classical solutions of the string field action 
(2.13) introduced in the previous section. The analysis will proceed in three 
steps: 1) analysis of the tachyon effective action, 2) construction of the 
lump solution, and 3) computation of the ratio of the tensions of the lump 
solutions. 

3.1     Analysis of the tachyon effective action 

We shall consider a situation where we start with an unstable D-(iV — 1) 
brane of the bosonic string theory, and consider the string field theory ac- 
tion expanded around the tachyon vacuum of this theory. According to 
our postulates of the previous section this action will have the form given 
in eq.(2.13). Given this action and a suitable gauge fixing which does not 
involve any matter operator, the propagator involves purely ghost sector op- 
erators. Since both the vertex and the propagator now factorize into matter 
sector contribution and ghost sector contribution, a general TV-point func- 
tion will also factorize into a matter sector contribution and a ghost sector 
contribution. 

We shall now concentrate on the n-tachyon Green's function. If we denote 
by J(p) the current coupling to a tachyon of momentum (— _p), then the 
generating functional of the tachyon Green's functions has the form: 

oo     1      r n 

WW = E -   / ^Pl ■ ■ ■ dNPn9{nHPl, ■ ■■Pn)J(Pl) ■ ■ ■ J(PnM(Eft) ' 
n=2 ^ J i=l 

(3.1) 

Here g^n\pi^.. -Pn)fi'(527=1 Pi) ls ^e ^-tachyon off-shell amplitude obtained 
by adding all tree level connected Feynman diagrams. Note that since we 
consider a propagator that involves just simple ghost factor, its world sheet 
interpretation is that of gluing with a zero length strip and inserting a ghost 
operator. Thus the propagator collapses to an overlap with a ghost inser- 
tion.7 Recall that the cubic vertex corresponds to the symmetric gluing of 
three semi-infinite strips across the open edges, half edges at a time. It fol- 
lows that for n external tachyons any connected Feynman graph constructed 
with this vertex and the overlap propagator will simply be built by the sym- 
metric gluing of n-semiinfinite strips across their open edges, half edges at 

7If the ghost kinetic operator does not have a simple inverse the fact remains that in 
the matter sector the propagator will act as an overlap. 
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a time. Mapping this world sheet into a unit disk, each strip turns into a 
wedge of angle 27r/n. Except for the gKosij^sertions this can be viewed 
as the iterated star product of n tachyon vertex operators. In fact, such 
iterated products are precisely the ones used in the WZW-like superstring 
field theory [55] as discussed in detail in [65]. 

It follows from the above remarks that the n-tachyon off shell amplitude 
can be written as the following correlation function on a unit disk: 

g(n)(pi,...Pn)6(J2Pi) = Cniflif^ oC**-*<0>)), (3.2) 
1=1 k=l 

where (•■•) denotes matter sector correlation function, Cn is a constant 

representing contribution from the ghost sector correlator, /^ o eipk'x^ 

denotes the conformal transform of etpk'x^ by the function fl   (z): 

fW 0 jPk-x{0) = \fw<mPijPk-x(fin)m ^ {33) 

and [65]: 

/W(z)=e^(*-i)/»(i±H)2/B. (3.4) 

Using the relations: 

fln\0) = e^*-!)/*, /^'(O) = e2^^-1)/"-*, (3.5) ,1 
n 

and 
n 

(11 e^^B)(0»> = S(£pk) 11 V^W - fln\0)rp', (3.6) 
k=l k=l k^l 

we get 

A n n 

5(n)(Pi,---Pn) = C„exp[(ln-)^pl+^^-Wln(2sin(^A;-/|)) 
1.1 U   7 — 1 k=l ^,1 = 1 

k^zl 

forn>3{3.7) 

While g^ given above is cyclically symmetric in pi,.. .pn, only the fully 
symmetric part of g^ contributes to W. The tachyon propagator g^ is a 
momentum independent constant. 

We now perform a series of manipulations familiar in path integral quan- 
tization of field theories. The tachyon effective action can be obtained from 
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the generating functional W by taking the Legendre transform.  As usual, 
we introduce the classical field expectation value as 

<l>(q)=<l>c[q,J], (3.8) 

where 

5W 

oo „ 

=   E 7 TTT / dNP2 ■ ■ ■ dNPn9{n)(Pi,■■■Pn)      (3.9) 

n 

'fi(52Pi)J(P2)".J(Pn). 

n-2 

i=l 

Note that (/>c[g, J] is a function of the momentum variable q and a functional 
of J(p). In deriving the above equation we have used the cyclic symmetry 
of gv1'. The effective action, a functional of classical fields 0(g), is given by, 

m - JdNpj(p)cp(-p)-w[j}, (3.io) 

where J above is the source that gives rise to (j)(q) through (3.8), (3.9). 
Since g^ is momentum independent, the coefficient of the quadratic term 
in r[(/>] will be momentum independent and the higher order terms will have 
exponential dependence on the momenta. This resembles the action of the 
p-adic string theory expanded around the tachyon vacuum[68, 35] after a 
momentum dependent rescaling of the tachyon field. As in p-adic string 
theory we shall see that gaussians play an important role in constructing 
lump solutions. 

It follows from equation (3.10) that 

Thus, a solution to the equations of motion arising from setting the variation 
of the effective action to zero amounts to setting the current J to zero. 
Therefore, classical solutions are of the form: 

0(g) = 0cb,Jr(p)=O]. (3.12) 

Since 0c[g, J] has a Taylor series expension in J starting with linear 
power, this would seem to always give the trivial solution (f)(q) = 0. However, 
W and (j)c have branch points in the complex [J(p)] space, and by going 
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around these branch points, one may get <^c[g, J(p) = 0] 7^ 0. Every such 
path in the J space will give rise to a valid solution of the equations of 
motion.8 

3.2    Setup for lump solutions 

We shall begin by examining translationally invariant solutions of the equa- 
tions of motion. (The original D-(JV — l)-brane configuration will be repre- 
sented by such a solution.) In momentum space a translationally invariant 
solution (f)(p) is proportional to 5(p) where p is an iV-dimensional momentum 
vector. Consider eq. (3.9) with a delta function source J(p) = uS(p). We 
find 

Mq,u5(p))=F(u)6(q), (3.13) 

with 

00 .j 00 1 

n—9    V ' -n— 9    V / 

(3.14) 
n=2 v / n=2 

where use was made of (3.7) for zero momentum. Now suppose that the 
function F(u) has a branch point u^ in the complex u plane such that as u 
returns to 0 after going around this branch point, F(u) returns to 00. Thus 
in this branch 

limF(u) = (j)o, (3.15) 

where 0' is used to denote the origin on this branch. Hence lim^^o7 0c(3S u6(p)) 
= (j)Q8{q). Eq.(3.12) then implies the existence of a translationally invariant 
solution of the equations of motion of the form 

<!>{?) = <hS{p). (3.16) 

Conversely, existence of a solution of the form given in (3.16) implies that 
the function F(u) has a branch point u^ in the complex u plane such that as 
u returns to 0 after going around the branch point, F(u) returns to fo. We 

8The situation can be illustrated by considering the zero momentum sector of the 
(j)3 field theory. In this case, at the tree level, r[0] = —\m2(j)2 + |A03. This gives 
J = —m2(j) 4- A(/>2, and 0 = jx(m2 ± \/m4 + 4A J) = ^[J]. If we choose the - sign in front 
of the square root, (f)c[J] vanishes at J = 0 and has a Taylor series expansion in J starting 
at linear order. But going around the branch point at J = —m4/(4A) in the complex J 
plane, we can move to the other branch with +■ sign in front of the square root. Now if 
we return to the origin J = 0, we get 0C[O] = m2/A. This is indeed the location of an 
extremum of r[0c] and hence represents a solution of the equations of motion. 
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shall choose 0o to be the value that describes the original D-brane solution 
before tachyon condensation; such a solution exists by assumption. In what 
follows, we shall assume that the branch point ui is the closest singularity to 
the origin in the complex u plane, so that the growth of the coefficients in the 
Taylor series expansion of F(u) is controlled by u^. In this case, the radius 
of convergence of the Taylor series expansion of F(u) given in eq.(3.14) is 

Now suppose we find a pair of functions ip(p) and x(p) such that, 

H(u, q) = cj>c [q, u^ip)} - F(u)x(g) (3.17) 

has the property that the rate of growth of the coefficients in the Taylor 
series expansion of H(u, q) in u is slower than that of F(u)x{q)- In this case 
we can conclude that 

1. H(u,q) does not have a singularity for |^| < |^|. 

2. H(u, q) either has no singularity at u = u^ or its singularities at u — u^ 
are non-leading compared to that of F(u)x{q)- 

We can now consider tracing the path around u^ in the complex u-plane 
so that F(u) approaches </>o as u returns to the origin. If H(u,q) has no 
singularity at u = ^5, then it will return to zero. Otherwise it will return to 
some function h(q) 

lim H(u,q) = h(q). (3.18) 

As a result, on this branch (3.17) gives: 

lim (/)c [q,u^(p)] = </>ox(9) + HQ) • (3.19) 

Eq.(3.12) then implies that 

m = hx(q) + Kq), (3.20) 

is a solution of the equations of motion. Thus given two functions ip (q) 
and X(Q) satisfying the property stated below eq.(3.17), and a translation- 
ally invariant solution 0o<5(q), we can find a space-time dependent solution 
(froxiq) + h(q). Note that we have defined xio) to be such that F(u)x{q) is 
the leading contribution to (frdq, ^{p))] so by definition, the left-over piece 
H is sub-leading i.e. its power series expansion should converge faster than 
that of F{u)x{q)- However, the existence of such a xiv) is not guaranteed 
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a priori since the ^-dependence of 0c(g, uij)(p)) could be very different from 
that of (/>c(g, uS(p)). 

We shall now make the convergence condition precise. Let us define 

fdNp2 ■ ■ ■ dNpng^(p1, . ..Pn)S(ZtlPi)^(P2) ■ ■ ■ HPn) 
Rn(-Pl) = 

0<">(O,...O)x(-pi) 
(3.21) 

Making use of this definition, and of eqs. (3.9), (3.14) and (3.21), equation 
(3.17) gives 

oo ri_i 

H{u, -p) = x(-p) E 7^7yCnlRn(-P) " !] ■ (3-22) 
n=2 ^ ^ 

We need to ensure that the Taylor series expansion of H(u, q) converges more 
rapidly than the Taylor series expansion of F(u)x(q) given in eq.(3.14). This, 
in turn requires that 

lim Rn(-p) = 1. (3.23) 
n—>oo 

Note that the dependence on the constants Cn arising from ghost correlators 
in (3.7) drops out for Rn defined in eq.(3.21). Equation (3.23) will be the 
key equation in the analysis that follows. 

3.3    Equations for lump solutions 

In order to proceed further, we need to have an ansatz for ^(p) and xip)- 
We use the following ansatz: 

fl>{p) = Kexpi-aplfflSbw),        xip) = 7Kexp(-^1/2)6^),    (3.24) 

where if, a, (3 and 7 are constants to be determined, and (P||,P_L) denotes a 
decomposition of the vector p into two orthogonal subspaces of dimensions 
N± and iVy respectively (Nj_ + iVy = N). In position space labelled by 
(x\\)X±) this corresponds to a configuration which is independent of x^ and 
has the form of a gaussian along x±. Thus a natural interpretation of this 
solution is that of a solitonic (iVy — 1) brane along x\\. Substituting (3.24) 
into eq.(3.21), we get 

7 KRni-p^Ho,... 0) exp(-PpiJ2)6(pM\) 

=   Kn-1 jdNp2...d
Npng{-n\pl,...pn) (3.25) 

n n n 

• <*cpi) ex? (-1 x^-O n ^W) ■ 
i=l i=2 i=2 
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Using (3.7) in eq.(3.25), performing the integrals over ^y, with i = 2, • • • n, 
and using the freedom of setting p^ = 0 in g^(pi^.. -Pn) and Rn{—Pi) due 
to the accompanying factors of #(pi||) we get 

7.Rn(-Pi±) exp^ p1±J 
/n n 

^p2±...^pnJL^m)exp(5] aib_iPifej.-m) ,(3-26) 
2=1 fc,/ = l 

where 

.   4      a 
ao    =   In  , 

n      2 

ak    =   ln2sin(—)     for    k^O. (3.27) 
n 

We now multiply both sides of the equation by eipi-L'a;-L for some iVj^ dimen- 
sional vector x± and integrate over pij_. Demanding that in the n —>• oo 
limit i?n should approach 1, we get 

/n n n 

JJ dN'LPk±S(^2pi±) exp (ip1A_ • xj. + ][] ak-ipk± • P/_LJ   . 
A:=l i=l A;,«=l 

(3.28) 

In order to do the integral over pi± on the right hand side, we take help of 
the discrete Fourier transform. We introduce new variables </>/_L as follows: 

<t>i± = 4= itp*±e~2Kilk~l)l,n '        1 < ^ < ^ • (3-29) 

Then 
n 

1    i 

Pk± 
1       n 

=-^Y <l>i±e2*i{k-1)l/n • (3.30) 
n 

1=1 

The reality condition on (j)i±_ is of the form: 

$A_ = (f)(n-l)L     for     l<f<(ra-l), 0n± = ^n±- (3.31) 

Let us first take n to be odd.  In that case we can introduce a new set of 
variables ^s±^ r]sj_ through the relations: 

1 n — 1 
&± = -^(&.L + wfcJL)        for    1<5<-^-. (3.32) 
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We take </>n_L, ^5_L and r)s± as independent variables, and express the right 
hand side of eq.(3.28) in terms of these variables. This gives 

7 

=     lim 
n—>oo 

/   27r   NiVx/2 xl 

r (ri-l)/2 

K"-2j dN^n±    H   (dN±UdN±r,a±)8(VZ<l>n±) 
s=l 

(n-l)/2 (n-l)/2 

s=l s=l 

(3.33) 

where 

, v^ {2'Kks\ n      a     v-^ i   f^  ■   /7r^\\        f2Tiks\ 

/c=0 /c=l 

(3.34) 

We can now perform the integrals over 0n_L, £S_L and r]s^ explicitly.   This 
gives 

/    27r    NiVx/2 ^ 27r   \iVx/2 

.("-1)/2   _.   .   w. . n (»-l)/2 
=     lim 

n—>oo 
V S=l 5=1 5 

(3.35) 

Using the symmetry bs = bn-s, we can rewrite this equation as 

27r   \^±/2 -2 

7 

=     lim 
n—>-oo 

/   27r   yvx/^ a;i      , 

For n even,.we take the independent real variables to be (f)nLi $^±1 t,sA. and 
r]sj_ for 1 < 5 < (n — 2)/2. Repeating the analysis, we arrive at exactly the 
same equation (3.36). Thus eq.(3.36) is valid irrespective of whether we take 
the limit n —> 00 keeping n even or odd. This is the main equation that 
must be analyzed. 
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3.4    Solving the lump equations 

We shall now try to examine if we can find solutions of (3.36) where a, /3, 7 
and K are finite. To this end let us define the functions: 

n—l 1  n—1   .. 

f(a,n) = 5^ln7- -Inn,        k{a,n) = - ^T - 
5=1 

nS6* 
Comparing the two sides of equation (3.36) we find that 

2 
/3=  lim 

TWOO /c(a,nj 
— a = C(a), 

(3.37) 

(3.38) 

lim  [(n - 2) In if + -N±f(a,n) - Inj - -N± In—^ 
n->oo L 2 I a + p 

= 0. (3.39) 

Equation (3.38) arises from comparing the coefficients of the gaussians in X_L 

in the two sides of equation (3.36). These coefficients must coincide. Once 
the gaussians coincide, the prefactors must coincide as well. Eqn. (3.39) 
arises by taking the logarithms of the prefactors in (3.36). 

1.5 

0.5 

alpha 

Figure 1:   The function A[OL) for n — 50 (dashed) and n — 500 (continuous). 
Actually the error is so small that the lines are essentially on top of each other. 

Numerical analysis shows that the function A:(a, n) defined through eq.(3.37) 
remains finite in the n -> 00 limit. Hence C[a) is well defined. Furthermore, 
/(a,n) defined in eq.(3.37) has the form 

/(a, n) = A(a)n + Z?(a) + sn(a), (3.40) 
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Figure 2: The function B(n,a) (equation (3.41)) plotted for n = 50 (dashed) and 
n = 500 (continuous). 

1.5 

0.5 

alpha 

Figure 3: The function C(a) (eqn. (3.38)) for n = 50 (dashed) and n = 500 
(continuous). Actually the error is so small that the lines are essentially on top of 
each other. 

where sn(a) vanishes in the n —>> oo limit. In fact the function B(a) appears 
to vanish identically, but we shall for the time being, not explicitly set it to 
zero. We show in figure 1 a plot of A(a) calculated numerically as /(a, n + 
1) — /(a,n) for n = 50 (in dashed lines) and for n = 500 (in continuous 
lines). Actually the error is so small that the lines are essentially on top of 
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each other. In figure 2 we plot the quantity 

B(n, a) = 2/(a, n) - /(a, 2n) = B(a) + 25n(a) - 52n(a). (3.41) 

With 5n —> 0 as n —> oo, for sufficiently large n we have that 23(n, a) ap- 
proaches S(a). Thus a nonzero 5(a) would show as a constant function in 
the plot of B(n, a). Nevertheless, the numerical evidence is that jB(n, a) goes 
to zero accurately as n is made large. Indeed, as can be seen in figure 2 even 
for n = 50 (dashed line) #(n, a) is quite small over the considered range. 
When n = 500 (continuous line) 23(n, a) becomes much smaller. We have 
explored this vanishing taking n ~ 5000 and have concluded that with very 
high accuracy (about one part in ten thousand) 

B(a) ~0, (3.42) 

for the range of a shown in the figure. Having concluded that B(a) = 0, the 
graph of 2?(n, a) gives us information about the sn(a) terms. We have found 
that the leading sn(a) term is of order 0(l/n). With sn(a) ~ 1/n, and for 
large n we have that £?(n, a) ^ 3sn(a)/2 (see (3.41)). Thus figure 2 is giving 
us a plot of the leading sn(a) term. Note, that there is a value a for which 
B(n,a) — 0. We determined numerically this value to be a. ~ 2.772588 and 
believe that it corresponds exactly to a = 41n(2). Moreover the dependence 
of sn(a) on a seems linear to high accuracy for a large range around a (see 
figure). We have determined that 

sn{a)~=- ^^-{a-a) + 0(l/n2) ,        a = 41n(2). (3.43) 
2       n 

The coefficient 0.3333 may really take the exact value of 1/3 but we do not 
know for certain. Our investigations also suggest that for a = a the 1/n2 

corrections vanish while the 1/n3 corrections are nonzero. It is hoped that 
these observations may help develop an analytical approach to this large n 
problem. Finally in figure 3 we show the function C(a). This concludes our 
discussion of the properties of (3.40). 

Substituting (3.40) into (3.39) and comparing terms linear in n as well 
as the constant terms in both sides of the equation we get:9 

\nK   =    -IjVjAfa), 

ln7   -    ^Nj-\n-^+B(a) + 2A(a)y (3.44) 

9Note that the existence of K and 7 satisfying eq.(3.39) depends crucially on the asymp- 
totic form (3.40) of /(a, n). This, in turn, is a non-trivial consequence of the specific form 
of the n-tachyon vertex given in eq.(3.7). For example, if g^ had been momentum inde- 
pendent then we would get bs = a/2 and /(a, n) = (n — 1) ln(27r/a) — Inn. This does not 
have the form (3.40). 
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For a given value of a, the above, together with (3 = C(a) (eqn. (3.38)) 
determine the functions ipfe) and x(p) through eq. (3.24). These functions, 
in turn, generate a solution of the equations of motion of the form (j)ox{p) + 
h(p) (eqn (3.20)). 

As already pointed out, the natural interpretation of this solution is that 
of a (iV|| — l)-brane; we shall refer to this as a solitonic (A/y — l)-brane. We 
would like to identify this with D-(iV|| — l)-brane. However, since there seems 
to be a one parameter family of solutions labelled by the parameter a, we 
have the embarassment of riches. We shall now argue that the full solution 
foxip) + Mi9) is independent of the choice of a. To this end, note that 
using different values of a corresponds to moving along different paths in the 
complex J(p) plane and returning to the origin. Indeed, we are considering 
the subspace of the full J(p) space characterized by the parameters a and u 
as follows: 

J(p) - ue-^A(a)/2e-ap3V2<J(p||). (3.45) 

In the complex (w, a) plane we go around u — u^ and return to u = 0 for 
a fixed a. For u — 0 which is the initial and final value of u, different a 
correspond to same J(p), so the different paths characterized by different 
values of a have the same initial and final points. As we change a we change 
the path in the complex (u, a) space keeping fixed the initial and the final 
points. Since we do not cross any branch point during such deformation of 
the path, we should expect to have the same change in </>c[p, J] for different 
a. As a result the final solution (fioxip) + ^(p) should be independent of 
a, even though individually x{p) an(:i MP) depend on a. In the absence of 
knowledge of the h(p) term, however, we cannot determine the explicit form 
of the solution. 

3.5    Computation of ratios of lump tensions 

We shall now compute the tension associated with this solution and compare 
with the known tension of the D-(JV|| — l)-brane. For this we need to evaluate 
the effective action r[<p] at (f) — </>ox(p) + h(p).- Since at the solution of the 
classical equations of motion r[<£| = — W[J], the value of the action for this 
solution is given by: 

r^ox(p) + h(p)] = - lim W[ui/>(p)]. (3.46) 
it—^O7 

In taking the u -» O' limit, we need to choose the branch in the complex u 
plane along which F(u) approaches ^o-  Now from eq.(3.1) we see that on 
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the trivial branch, 

oo      n     „      n n 

W[uil>{p)\ = E ^T / (H ^Pk) 9(n)(Pl, ■ • -PnMPl) • • • ^(PnWEPi) • 

(3.47) 

Using the form (3.7) for g^ and (3.24) for ^(p), and explicitly performing 
the integration over the p^i, we get 

oo    1 »   n 

n n 

£(]r)m) exP ( XI ak-iPk± • W±) •  (3-48) 

72=2 

k,l=l 

a/c's have been defined in eq.(3.27), and 5\\(0) stands for 5(p\\ = 0). Using the 
standard finite volume regularization we can identify 5\\(0) with Vj|/(2^)^11, 
where V|| is the total volume spanned by the coordinates xy. The integral 
appearing in eq.(3.48) is the same integral that appears in eq.(3.28) with x± 
set to zero. Performing the integral as before, we get 

v      '       n=2 s=l 

We now use eqs.(3.37), (3.40), (3.44) to write this as 

W[uiJ>{p)] = 
Vw      ^ 1 

(27r) Nu 
n=2 

J^-Cnu
nexp  —- (B (a) + sn (a)) (3.50) 

where the coefficients sn, introduced in (3.40) approach zero as n —>> oo. If 
we define 

oo     ^ 

G(u) = '£-;Cnun, (3.51) 
71=2 

and 

P(«) = exp (^Biaj) Y, ^Cnun (eN^W2 - l) , (3.52) 
71=2 

then we can rewrite (3.50) as: 

(2*)' 

-AT 
WW(p)] - —^[exp (-±B{a))G{u)+P(u)] . (3.53) 
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Since limy^oo sn = 0, the coefficients of the Taylor series expansion in u of 
P(u) grows at a rate slower than that of G(u). 

Comparison with eq.(3.14) shows that JP(^) = dG(u)/du. Thus G(u) 
must also have a branch point at u = u^. On the other hand, since the 
Taylor series expansion of P(u) converges faster than that of G(u), P(u) 
has no branch point for \u\ < |?i&|, and may or may not have a branch 
point at u = u^. We now analytically continue u around u^ and return to 
the origin. Suppose during this process G(u) returns to some constant Go- 
It is important to note that Go does not depend on N_\_, as is clear from 
eqn. (3.51). If P(u) does not have a branch point at u^ then it returns to 
zero, otherwise it returns to some value PQ- Thus using (3.46) and (3.53) we 
get 

rfeoxCp) + h{p)] = -J^{eN±Bia)/2Go + Po) • (3-54) 

We shall refer to PQ as the sub-leading contribution since it comes from the 
function P(u) with a milder singularity at u^ than G(u). Note that P(u) and 
hence PQ vanishes for ATJL = 0. Thus if PQ does not vanish it is necessarily 
iVj_ dependent. We shall now make the final assumption in our analysis, 
namely that the sub-leading contribution PQ vanishes.10 Using this critical 
assumption in eq.(3.54), we can identify the tension of the solitonic (iV|| — 1) 
brane to be: 

(ZTTJ   II 

where we have used iV = N\\ + N±. We now note that the function G(u) 
and hence the constant Go does not depend on iVj_. Thus eq.(3.55) gives the 
prediction: 

27r71v,|-i 

Using the numerical result that B(a) vanishes identically, we see that the 
right hand side of eq.(3.56) becomes 1. This is in perfect agreement with 
the exact answer. 

With our present knowledge, however, we cannot prove that PQ vanishes. 
Nevertheless, the remarkable agreement described above can be taken as 

10 This is not in contradiction with the earlier claim (previous subsection) that the sub- 
leading contribution h(q) to the classical solution must be non-vanishing so that </>ox((/) + 
h(q) is independent of a. Indeed, Po receives contribution only from the sub-leading 
terms Sn in /(a,n), whereas h(q) receives contributions also from the sub-leading terms 
in A;(a,n). 
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an evidence for the underlying assumptions in our analysis, namely that the 
quadratic term in the string field theory action expanded around the tachyon 
vacuum is made solely of the ghost operators, and also that the non-leading 
contribution from the function P(u) vanishes at u = 0. Further analysis 
of the non-leading terms sn is required to establish if PQ vanishes. In fact, 
even the knowledge of Cn may be important for this analysis, in which case 
a specific choice of the kinetic operator would be required. 

4    Further studies and open questions 

In this section we discuss important issues for which our understanding is 
fairly incomplete. We begin by exploring how much freedom there is in 
choosing a kinetic operator built exclusively from the ghost sector. Then we 
discuss some attempts to use level expansion to understand the proposed 
actions around the tachyon vacuum. We discuss some difficulties with the 
use of the Siegel gauge, and some alternative gauges. Finally we give some 
remarks on extensions to superstring theory, and on implications for the 
search of closed strings states. 

4.1     On the uniqueness of Q 

Our discussion of kinetic operators Q that are constructed purely of ghost 
operators identified a family of them, and thus the general form in (2.19) 
Q — ^2nyoCLnCn- More general Q's made of purely ghost operators might 
exist, but we will focus here on this family. 

The key question is whether all these operators are actually equivalent. If 
they are, anyone of them could be chosen, making Q = CQ the most obvious 
choice. If they are not equivalent, one must search for the correct one. 

As discussed in section 2.2 and in particular in equations (2.12), field 
redefinitions preserving the cubic structure of the theory arise from BPZ odd 
ghost number zero operators that are derivations of the star algebra. There 
is a well-known family of such operators, they are conformal transformations 
that leave the string midpoint fixed [75] 

Kn = Ln-(-l)nL-n,        n>l. (4.1) 

With Cn = cn + (—)nc-n we have the algebra 

[Kn,Cm] = -[(2n + m)Cm+n + (-)n(2n-m)Cm-n]. (4.2) 



380 RASTELLI, SEN, and ZWIEBACH 

For example [ifn,Co] = —4nCn, and this indicates that the operator Q = Co 
can be deformed infinitesimally in every direction except along itself by a 
field redefinition of the form ^ -> exp(enKn)^. A change of Q along itself 
corresponds to a change in coupling, and we do not expect such changes to 
be possible by field redefinitions. 

For more general Q, even the infinitesimal deformation problem is some- 
what nontrivial. Consider an arbitrary Q = J2n>o an^n and &n arbitrary 
deformation into Q' — Q + eAQ with AQ = J2n>o enCni where only a finite 
number of en's are nonzero. We ask if Q and Q' are equivalent up to an 
infinitesimal scaling. With K = ^n dnKn such equivalence will hold if there 
exist constants GL 'S and a constant r such that 

e 

*"n 

eKn^-eK Qe-cK = (l + €r)Q/     -^     [K,Q]=rQ + AQ. (4.3) 

If the solution involves an infinite number of non-vanishing dn's, one must 
study their large n behaviour to decide if the infinitesimal conformal trans- 
formation associated to K exists. While it follows from the earlier remarks 
that for Q = CQ all infinitesimal deformations with CQ — 0 yield equivalent ki- 
netic operators, we suspect that this will not be the case for general Q. One 
way to see this is to recall that the identity string field (X| is not annihilated 
by co [15]: 

(X|co^O. (4.4) 

This is some sort of anomaly, since any derivation of the star product, such 
as CQ, would be expected to annihilate the identity of the product. On the 
other hand ([15], eqn. (6.16)) 

<X| (co + ^(c2 + c_2))   =0. (4.5) 

Since (Z\Kn = 0 for all n, we cannot expect that 

(Co + Cs + 6Co) - exp(]r dnKn) (Co + C2) exp(- J^ dnKn) (4.6) 

with the exponentials defining regular transformations. This is clear since 
the right hand side would annihilate the identity while the left hand side 
would not. 

It would therefore appear that up to rescaling there are at least two 
classes of inequivalent kinetic terms, those which annihilate the identity and 
those which do not. In fact, ref. [49] restricts its attention to those operators 
that annihilate the identity, as this string field plays an important role in 
the conjectured purely cubic form of SFT. 
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4.2    On the use of level truncation 

For the standard cubic open string field theory with the usual BRST operator 
QB, there is overwhelming numerical evidence (but yet no proof) that the 
level truncation scheme [9] provides results that converge to the correct non- 
perturbative answer. It is therefore of interest to ask whether level truncation 
can be used to test possible choices for the BRST operator Q around the 
tachyon vacuum. So far we have only obtained some partial and somewhat 
problematic results for the simplest choice Q — ACQ. We allow for the 
presence of an unknown normalization constant A. By a rescaling of^the 
string field, we choose to write Q = CQ and put an overall costant A — A3 in 
front of the string field theory action. 

We first look for a translationally invariant solution of the truncated 
string field theory which corresponds to the space filling D-25 brane - the 
original vacuum before condensation. The potential for a static configuration 
is 

-5(.*) = -TiTV(*) (4.7) 
92o 27r2 

with 

V(tf) = A ■ 2TT
2 -(*,co*> + g (*,***) (4.8) 

By construction, the zero of the energy corresponds to the tachyon vacuum 
\I/ = 0, V(^r = 0) = 0 and all physical excitations are expected to have 
positive energy above this ground state. We adopt the normalization con- 
ventions of [76], in which the space filling solution \I/£)25 obeys V(\I/D25) = 1. 
This in turn should allow to fix the constant A. 

We work in the Siegel gauge 6o^ = 0. In the level (0,0) approximation, 
the effect of replacing QB by CQ is simply to change the sign of the kinetic 
term. From the results in [10] we readily find the translationally invariant 
solution *(0'0) = tcci|0) with tc = -(4\/5/9)3. This gives V^0'0) w 0.684 A 
We simply quote the results that we find at higher levels: l/2,6) « 0.1849^4, 
V^4'8) « 0.09656 A. Unlike the case of the action with the standard BRST 
operator QB, here we do not find any evidence of convergence to a finite 
limit in the level truncation. Rather, the energy of the space filling brane 
seems to be pushed towards zero as the level is increased. 

We have also looked for solitonic solutions ^#24 corresponding to D-24 
branes, in which the string field has the shape of a lump along a direction 
X and approaches asymptotically the tachyon vacuum. As in [14], in order 
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to implement systematically the level truncation scheme we compactify the 
direction X on a circle of radius R. For each zero momentum state 1^) that 
we had before, we obtain a tower of Fourier modes l^n)? ^ = 0,1, 2..., 
of momentum p = n/R along the X direction. Level is now defined as 
n2/R2 + Ni — NQ, where Ni is the number operator and NQ = — 1 is the 
number eigenvalue of the zero momentum tachyon. 

We have considered the case R = y/3 and performed the computation up 
to level (3,6). As for finite A the energy of the D25-brane appears to go to 
zero in our calculations, we considered an energy ratio where this fact would 
not affect the result. Indeed, the ratio 

v(«'<r,> (4-9) 

#25 

does not depend on the unknown constant A and is expected to converge to 1. 
We find: T^1/3'2/3) « 1.11056, 7^4/3'8/3) « 0.958355, ft(7/3,i4/3) ~ 1.07661, 
7^(3,6) rg 12141. Although not far from the expected answer, it is not clear 
we are finding convergence to the correct value. 

The conclusion is that level truncation with Q = CQ and in the Siegel 
gauge is somewhat problematic. This could be (i) a general problem with 
level expansion around the tachyon vacuum whenever the kinetic term has 
been brought to a purely ghost form, (ii) a problem with the specific choice 
Q — CQ as opposed to other choices in the general family Q = Y^UnCn, or? 
(iii) a problem with the Siegel gauge. Indeed, there are reasons to believe 
that this may not be a legal choice, as we shall discuss in the next subsection. 

4.3    On gauge fixing 

Our analysis of the tachyon effective action in section 3 assumes that given 
a string field theory with a purely ghost BUST operator Q, one can find 
a suitable gauge fixing which does not involve matter operators. We be- 
lieve on general grounds that this should always be possible. However we 
would like to point out some complications which arise in the application of 
the standard Siegel gauge to string field theories with non-standard BRST 
operators, like the family Q = Xm>o anCn- 

We focus again on the simplest case of the string field theory with Q = CQ. 

Let us consider imposing the Siegel gauge condition 60^ = 0. This is always 
possible at the linearized level, since if 60^ / 0, then ^5■ = ^ — Q(&o*) = 
\& - CQ&o^ satisfies 60*5 =-'0. Moreover, the Siegel condition fixes the gauge 
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completely. Indeed if 5^ is pure gauge, and in Siegel gauge, then Q 5"$ = 0 
and bo S1® = 0, leading necessarily to J* = 0.11 

Consider now computing perturbative amplitudes in this string field the- 
ory. We shall find that tree level Green's functions diverge in the Siegel 
gauge. The only modification of the conventional Feynman rules [41] is that 
the propagator is bo instead of boL^ . This is however a dramatic difference. 
The factor LQ

1
 = JQ

00
 e~tLo had the interpretation of an integral over strips 

of any length. In the present case, the strip has collapsed to zero length, 
and there is no integration over moduli space, but simply a ghost insertion 
bo — f da(bzz +'bzz) across the collapsed strip. Any term in the n-point 
amplitude requires (n — 3) ghost insertions of the form 

/ 
(dz Kfln\z)) z (&-)* + a.h.) (4.10) 

7/2 x " x   dz 

where f^iz) were defined in (3.4). Each integral across a collapsed strip has 
been referred to the local coordinates z of the relevant half-strings. One of 
these contributions is what is shown in the above formula. Thus 7/2 means 
either the right or the left half-boundary of a canonical upper-half unit disk. 
In addition, the b(z) appearing in this half-string integral has been mapped 
into the global uniformizing disk where all the strings are glued together. 
This is necessary because all correlators are computed on the uniformizing 
disk. Near z = i the integrand behaves as ~ (1 + iz)~2+4/n, which is a 
non-integrable singularity for n > 4. Thus in Siegel gauge, the coefficients 
Cn in (3.2) appear to diverge. 

There is a simple cure for this problem, which consists of considering a 
gauge-fixing condition B^I = 0 with B = f zg(z)b(z), where g(z) ~ (l+iz)m 

near z ~ i, and m > 1. We also demand that g(z) contains a constant in 
its Laurent expansion, so that B has some amount of bo: this is required to 
have {B,co} 7^ 0 so that the gauge condition can be imposed (at least at 
the linearized level). For example, with g(z) = 1 + (z2 + l/z2)/2 we have 
B — bo + (62 + 6-2')/2. The extra double zero ~ (1 + iz)2 of the propagator 
near z = i ensures now the convergence of string amplitudes. It would 
be interesting to explore these 'finite' gauge choices in the level truncation 
scheme. 

11 As long as LQ^ 7^ 0, this analysis is entirely parallel to the one with QB, for which 
{&O,QB} = LQ. 
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4.4    On superstring field theory and closed strings 

As was the case for the bosonic theory we may conjecture that at the tachyon 
vacuum the kinetic term of superstring field theory does not involve a matter 
sector operator. We will offer some remarks that may help in constructing 
an appropriate action. 

The algebraic structure of the open Neveu-Schwarz (NS) superstring field 
theory of refs. [55, 56, 57] demands the existence of two Grassmann odd 
operators QB and TJQ anticommuting with each other, both of which square 
to zero, satisfy the same BPZ conjugation property, and are derivations of 
the star algebra. The operator 770, having picture number minus one, is the 
zero mode of the Grassmann odd field 77(z) arising from fermionization of 
the superghosts. If the BRST operator QB is replaced by CQ or any of the 
Cn operators, the algebraic structure will remain in place, for this operator 
would still commute with 770 and, as we have discussed before, satisfies all 
the other requisite properties. Thus an action with Q = Yin anCn would 
satisfy the conditions of gauge invariance. Moreover, there would be no 
physical states around this vacuum. Indeed, in this string field theory the 
linearized equations of motion are Qryo^ = 0 where $ is a string field of 
ghost number zero and picture number zero in the so-called large Hilbert 
space. The gauge invariance 5$ = 770O allows one to write $ = ^QV where 
V is a conventional picture number minus one field of the NS sector. In this 
partial gauge the equation of motion reduces to QV = 0 which, for Q — QB 

is the standard BRST cohomology problem in the conventional small Hilbert 
space. If Q — ]r anCn, we will have no physical states. 

While it seems tempting to simply replace QB by the appropriate ghost 
operator to obtain an action around the tachyon vacuum, there are some 
questions that suggest that this change may not suffice to obtain the desired 
action. In particular, the Chan-Paton like factors that implement the Z^ 
symmetry under which the GSO odd states change sign [64, 65] must some- 
how change in the tachyon vacuum. Indeed, while the tachyon potential is 
even with respect to the field variable which vanishes at the unstable vac- 
uum, it is not even with respect to the field variable which vanishes at any 
one of the tachyon vacua. 

It is perhaps worthwhile to note that the replacement QB -> Y^anCn 
does not preserve the algebraic structure of cubic superstring field theory 
[75]. The problem is that the picture changing operator X(z), that must be 
inserted at the string midpoint in the definition of the star product, while 
BRST invariant, is not Cn invariant.   This spoils the derivation property 
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which is necessary for gauge invariance. This cubic string field theory, in 
any case, has long been known to be problematic [77], and does not appear 
to give a sensible tachyon potential either [78]. Interestingly, the double 
picture changing insertion used in the cubic superstring field theory action 
advocated in refs.[69, 70, 72] does commute with the Cn operators, and it 
therefore appears that gauge invariant actions without cohomology could be 
constructed. 

We can now ask if a similar replacement of the BRST operator with 
another having trivial cohomology can be done in closed string field theory 
[80]. The answer is no. The problem here is that the interactions beyond 
the cubic one involve the integration of correlators over finite pieces of the 
moduli spaces of Riemann surfaces. Key to the algebraic structure of the 
theory is the fact that the BRST operator acts as a total derivative on moduli 
space. This arises because forms on moduli space involve the antighost field 
b(z) and {QB, b(z)} ~ T(z), where the energy momentum tensor T generates 
deformations of correlators. Such property will not hold upon replacing QB 

with an object constructed purely from ghosts. 

A final question is whether closed strings arise from the kind of open 
string field theory we have been considering here, namely one with a ki- 
netic opertor having no cohomology. We have no definite answer. Recall 
that in cubic open string field theory closed string poles definitely arise in 
string loop amplitudes [81]. A subset of open string propagators in a string 
diagram, represented by a strip of total length T E [0,oo], whose middle 
line defines a nontrivial closed curve, will give rise to closed string poles via 
integration over the neighborhood of T = 0. In the kind of actions we have 
considered here, the propagator collapses to an overlap with some antighost 
insertion. It does hot seem possible to obtain closed string poles from an 
amplitude that just includes the contribution from the point T = 0. On the 
other hand, there are well known complications with the precise Batalin- 
Vilkovisky quantization of conventional cubic open string field theory, and 
they precisely arise from the T —> 0 limit of a one-point one-loop ampli- 
tude [82, 83]. The whole issue surrounding closed strings in open string field 
theory after tachyon condensation is subtle enough [84, 85, 86, 87, 88] that 
further work seems necessary to attain definite conclusions. 

4.5    Concluding remarks 

The open string field theories studied in this paper manifestly implement the 
absence of conventional open string dynamics on the vacuum of the tachyon. 
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They naturally implement gauge invariance and are rather reminiscent of 
the p-adic string theory, where after a simple invertible field redefinition 
the kinetic operator is just a constant. In addition, they are in many ways 
strikingly simple, much more so than the conventional cubic open string 
field theory in the background of a D-brane. For example, while we were 
able here to compute the exact momentum dependence of the off-shell n- 
tachyon amplitudes, such computation appears to be prohibitively compli- 
cated in conventional cubic string field theory. If the normalization of the 
n-tachyon amplitudes can be computed, perhaps along the lines of comments 
in sect. 4.3, we may then be able to find the explicit solutions representing 
D-branes, to obtain the precise form of the kinetic term Q, and to settle the 
outstanding assumptions of our analysis. 
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