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Abstract 

We study D-branes on Calabi-Yau manifolds, carrying charges which 
are torsion elements of the K-theory. Interesting physics ensues when 
we follow these branes into nongeometrical phases of the compactifica- 
tion. On the level of K-theory, we determine the monodromies of the 
group of charges as we circle singular loci in the closed string mod- 
uli space. Going beyond K-theory, we discuss the stability of torsion 
D-branes as a function of the Kahler moduli. When the fundamen- 
tal group of the Calabi-Yau is nonabelian, we find evidence for new 
threshold bound states of BPS branes. In a two-parameter example, 
we compare our results with computations in the Gepner model. Our 
study of the torsion D-branes in the compactification of [1] sheds light 
on the physics of that model. In particular, we develop a proposal for 
the group of allowed D-brane charges in the presence of discrete RR 
fluxes. 
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1    Introduction 

It is by now well established that D-brane charges are classified by K-theory. 
More precisely, for branes on a Calabi-Yau, the even dimensional holomor- 
phic branes are determined by K0 theory, whereas the charges of the branes 
wrapping middle dimensional special Lagrangian cycles are given by K1. As 
one moves around in the closed string moduli space, the group of charges 
is expected to vary. In particular, if one traverses non-contractible loops 
in the bulk moduli space, the group of charges comes back only up to an 
automorphism. K-theory provides a natural framework to study such mon- 
odromies, since those act within K0 and within K1. Monodromy actions on 
the free part of K-theory K0/K^or ( or K1 /K^or) have been studied using 
mirror symmetry. Restricting to the free part of K-theory, it was sufficient 
to study the dependence of K0/K^or on the Kahler moduli and K 1/K^or on 
complex structure moduli. 

The investigation of the dependence of the torsion part of K-theory on the 
bulk moduli was started in [2]. There, examples were presented in which the 
monodromies acted trivially on the torsion subgroup K'or. As predicted in [2] 
this is not the case in general, as will be shown in this paper in examples. It 
turns out that both K^or and K}or undergo monodromy as we vary the Kahler 
moduli. Since the monodromies act nontrivially on the torsion subgroup, it 
follows that they act nontrivially also on the full K-theory. Similarly, we will 
find that K0 undergoes nontrivial automorphisms in the complex structure 
moduli space. 

In addition to D-brane charge, K-theory also classifies the fluxes of the 
RR-fields. The presence of torsion classes in K-theory allows one to turn 
on discrete RR-fluxes. As a result, one might expect that the full moduli 
space of a theory has several branches, corresponding to turning on different 
fluxes. In [3] it was shown that such fluxes can alter the spectrum of allowed 
D-brane charges. We will see an example of such a phenomenon, though our 
criterion for which fluxes survive is different from theirs. 

In general, one is also interested in the physics of D-branes beyond K- 
theory, such as moduli spaces, brane dynamics and stability. In section 3 
we start the investigation of the physics of torsion D-branes, discussing the 
stability of brane configuration carrying torsion charge at various points in 
moduli space. Since these questions depend on Kahler moduli, we cannot 
use large volume concepts everywhere, but have to employ other techniques, 
such as boundary conformal field theory, to get information about the stringy 
regime. 
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We then move on to discuss three different examples, each of which is 
suitable to highlight certain features of torsion D-branes. In §4, we study one 
of the very few examples of a Calabi-Yau with a non-abelian fundamental 
group. This example motivates a conjecture for the general form of the 
monodromy about (the mirror of) the conifold locus, which generalizes a 
previous conjecture which - we now see - holds when the Calabi-Yau is 
simply-connected. 

In [2], we found that, when the Calabi-Yau, X, is not simply-connected, 
there are stable BPS branes carrying 6-brane charge. These are distinguished 
from the usual wrapped 6-brane by a discrete conserved charge - a torsion 
element in K-theory. These branes were associated to one-dimensional irreps 
of the fundamental group of X. In the example if §4, we also "discover" the 
existence of stable BPS branes corresponding to higher dimensional irreps 
of the fundamental group. In contrast to the previous case, these are not 
distinguished by any conserved (discrete) charge from a collection of wrapped 
6-branes. Nonetheless, we argue that they must be present as threshold 
bound states in the multiple 6-brane system in order to account for the 
monodromies that we find. 

The second example, discussed in §5, is a model whose Kahler moduli 
space has complex dimension 2. As usual in studying such two-parameter 
models, the structure of the Kahler moduli space is rather more complicated 
than in the one-parameter case, and it is interesting to see that one can 
produce a consistent set of monodromies acting on the K-theory. We do 
have an advantage in this case; the moduli space contains a Gepner point. 
So we can compare the results of our topological calculations with the results 
from CFT. 

The first two examples are two more examples where the monodromies 
act trivially on the torsion subgroup of the K-theory. The third example, 
discussed in §6 is a free Z2 orbifold of K3 x T2. This manifold played a 
major role in the context of heterotic-IIA duality, and D-branes on it were 
discussed in [4, 5]. It was shown in [1] that IIA theory on this manifold, with 
a discrete RR Wilson line turned on, has a heterotic dual. 

This manifold introduces several new features. Unlike previous cases, the 
torsion in K0(X) is not captured by the flat line bundles on X. Second (and 
related) is the possibility of turning on a flat, but topologically nontrivial 
H-field, which leads to D-brane charge taking values in the twisted K-theory 
(which we also compute). Third, the monodromies do act nontrivially on 
the torsion subgroups. 

The effect of turning on discrete RR flux is nontrivial.   First of all, it 
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changes the global structure of the moduli space (the moduli space is a 
finite cover of the moduli space without the RR flux). Second, it restricts 
the spectrum of allowed D-branes. In §6.3, we make a proposal for the 
precise form of this restriction. In §6.4, we investigate the physics near 
various singular loci in the moduli space. In particular, we see that our 
proposed restriction on D-brane charges in the presence of discrete RR flux 
is precisely what is required to make sense of the physics near the singularity. 
This "explains" from the Type IIA perspective why it was necessary to turn 
on the discrete flux. 

2    Review 

In this section, we collect some of the results of [2] which will be useful for 
our present investigations. 

Every Calabi-Yau manifold, X, whose holonomy group is 5C/(3), has a 
finite fundamental group, and is the quotient of a simply-connected Calabi- 
Yau, Y by a finite group, G, of freely-acting holomorphic automorphisms 
(which preserve the holomorphic 3-form). The most familiar constructions 
of Calabi-Yau manifolds - as hypersurfaces or complete intersections in toric 
varieties - yield simply-connected Calabi-Yau manifolds, which are candi- 
dates for the covering space, Y. The K-theory of such a Y is torsion-free. 
So, to find a suitable Calabi-Yau manifold, X, with torsion in its K-theory, 
we look for a freely-acting group G to mod out by. 

The first problem is to compute the K-theory of X = Y/G. For this, 
we used a pair of spectral sequences, the Cartan-Leray Spectral Sequence 
- which computes the homology of X from the homology of Y - and the 
Atiyah-Hirzebruch Spectral sequence, which computes the K-theory of X 
from the cohomology of X. Some very useful discussions of the AHSS have 
appeared in the recent physics literature [2, 6, 7, 8]. 

For a Calabi-Yau manifold (indeed, for a 6-manifold with ii/rl(X) = 0), 
the AHSS converges at the E2 term, 

^'q = W(X,irq(BU)) (2.1) 

where 7T2n(BU) = Z, 7{2n+i{BU) — 0. And, after a bit of computation, one 
finds that the torsion subgroups of the K-theory (our main interest) fit into 
exact sequences 

0 - H4(X)ior -► K0{X)tor -* B
2(X)tor -> 0 (2.2) 

0 -> E5(X) -> K^X)^ - E3(X)tor - 0 (2.3) 
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(note that H5(X) is pure torsion). 

The Universal Coefficients Theorem and Poincare duality determine 

H5(X)4or = Hi (XV = (H2(X)tor)* (2.4) 

E4(X)tor - H2(X)tor = (E3(X)torr (2.5) 

and the homology groups can be determined from the CLSS, a homology 
spectral sequence with E2 term 

Elq = Ep(G,nq(Y)) (2.6) 

the homology with twisted coefficients. 

Define the coinvariant quotient, J12(Y)G — JIq(Y)/A, where A is the 
subgroup of H^y)' generated by elements of the form x — g • x. Assuming 
that E.2(Y)G is torsion-free, we find the needed homology groups to be given 
by 

HiPO = Hi(G) = G/[G,G] (2.7) 

and the exact sequence 

0^H2(Y)G^H2(X)-+H2(G)-+0 (2.8) 

where TT* is the push-forward by the projection TT : Y —> X. With this, the 
K-theory of the various examples can be calculated. 

One notational point. We will frequently be interested in the class in 
K0(X) corresponding to a D-brane wrapped on a (holomorphic) submanifold 

Y <—> X. This class is the push-forward in K-theory and should probably 
be written as ijOy. We will abbreviate this as Oy- Some readers will note 
that this is the same notation used for a certain coherent sheaf on X - the 
structure sheaf of Y. We hope that any confusion that arises because of this 
similarity in notation will prove to be beneficial. 

As we move away from large-radius, into the interior of the moduli space, 
the group of D-brane charges is no longer given by topological K-theory 
Still, as a discrete abelian group, it is locally constant. When we traverse 
some incontractible cycle in the moduli space (circle some singular locus), 
the group of D-brane charges comes back to itself up to an automorphism. 

These monodromies must satisfy the following properties 

• They descend to the known action on on Km(X)/K9(X)tor, which can 
be computed, say, using Mirror Symmetry. 
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• They preserve the skew-symmetric intersection pairing 

(,.) : K0(X) x K0(X) -> Z 

given by 

(v, w) = Ind(dv(S)1jj) 

= j   ch(v (g) w)Td(X) 
Jx 

(2.9) 

which annihilates K^or(X) and is nondegenerate on K0(X)/K^or(X). 
They also preserve the corresponding skew-symmetric pairing on iT 1(X). 

• They preserve the nondegenerate torsion-pairing [9, 10, 11, 12] 

(,.>:tf%X')torxtf1POfc>r->R/Z 

• They commute with the quantum symmetry of the Y/G orbifold [13]. 
Since G acts freely, there are no massless states in the twisted sectors. 
Still, in the full CFT, we have an action of the quantum symmetry 
group, GQ. GQ is the character group of G which, in turn, is isomorphic 
to Gab — G/[G,G]. Any character x acts by phase rotation of the 
states in the ^-twisted sector by x(g). (If G is nonabelian, the twisted 
sectors are labeled by conjugacy classes; xid) only depends on the 
conjugacy class of g.) Such characters correspond to the holonomy of 
connections on fiat line bundles, so the quantum symmetry group acts 
on the K-theory by 

v\-+v®C (2.10) 

for C a flat line bundle.   The flat line bundles form a group under 
tensor products, isomorphic to GQ. 

Some of the monodromies we encountered can be described rather gen- 
erally. Near large radius, shifting B by an integral class £ G H2(X) is a 
symmetry of the CFT, which acts on the D-brane charges as 

v i—> v (8) L 

where L is the line bundle with ci(L) = f. 

Another locus, at which one has a bona fide conformal field theory, 
but nonetheless finds some nontrivial monodromy is given, for example by 
Landau-Ginzburg or orbifold loci. Say one finds that, at some locus, the 
quantum symmetry group GQ is enlarged to GQ.  One then finds that this 
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locus is a GQ/GQ orbifold locus in the moduli space. The monodromy about 
it has finite order, 

Mk = 1 

where k = \GQ/GQ\. 

At the (mirror of the) conifold locus, certain wrapped D-branes become 
massless, giving rise to massless hypermultiplets in the 4-d effective theory. 
On y, it is the D6-brane, whose K-theory class is the trivial line bundle, 
O which becomes massless. By the Witten effect, circling this locus in the 
moduli space shifts the charges of all the other D-branes by 

v^v-(v,0)0 (2.11) 

In [2], we saw that, for abelian G, all of the flat line bundles (D6-branes 
carrying torsion charge) become massless, and (2.11) should be replaced by 

v^v-\G\{v,0)0 (2.12) 

For nonabelian G, the number of flat line bundles is |Ga^| < |G|. But, as we 
shall see in §4, at the conifold locus there are other branes, corresponding 
to flat bundles of higher rank which also become massless, and (2.12) is the 
correct formula even when G is nonabelian. 

More generally, say that at some singular locus in the moduli space there 
is a collection of D-branes, Wi, which become massless. Provided the W; are 
mutually local i.e. provided (W;, Wj) = 0, the monodromy about this locus 
is 

v»v-Y^v>Wi)Wi (2-13) 

This certainly does not exhaust the list of possible classes of monodromies. 
One, which will appear in slightly disguised form in §6 is as follows. Say one 
has two K-theory classes, x, y, with (x,y) = —2. Then let 

v >—> v — (v, x — ny)y + (i>, y)x (2-14) 

be the monodromy. This gives rise to extra vector multiplets, enhancing one 
of the f/(l)s to SU(2) (at higher codimension in the moduli space, one can 
get higher rank gauge groups), and n + 1 massless hypermultiplets in the 
adjoint (see [14, 15] for n > 1). We will see other examples later. 

Further insight was gained studying boundary states at the Gepner point. 
Building on [16, 17], a set of A-type and B-type branes for the orbifold X was 
found. Relative to the states at the Gepner point of the covering space, these 
states have extra labels, corresponding to the torsion charge. By comparing 



318 I BRUNNER, J. DISTLER, and R. MAHAJAN 

the intersection form (the Witten index in the open string sector, trji(—l)F) 
and the action of the quantum symmetry with the geometrical calculations, 
the K-theory classes of these branes could be explicitly identified. By stack- 
ing these branes together, it was possible to construct the torsion branes at 
the Gepner point. 

3    Beyond K-theory 

K-theory, of course, classifies only the conserved charges carried by D-branes. 
We would ultimately like to know about the branes themselves - which 
are stable, which are unstable - and not just about their charges. In the 
topologically-twisted theory, a complete classification of the D-branes them- 
selves is given by the derived category. Here, one keeps track of all the 
massless Ramond fields propagating between a given pair of D-branes. The 
"topological" D-branes described by the derived category do not depend 
on the Kahler moduli. To proceed from topological to physical branes one 
therefore has to add in all Kahler dependent information, in particular a 
notion of stability. 

Here, we are interested in physical D-brane systems carrying only torsion 
charge. As a first step, we examine those in the context of the derived cate- 
gory. Moving on to the physical theory, we discuss the physics at large and 
small volume separately. As opposed to the theory of BPS branes, where H 
[18] and a-stability [19] have been formulated as stability criteria depending 
on Kahler moduli, a similar criterion for non-BPS or torsion branes has not 
been formulated. Here, we therefore look for tachyon-free systems, which 
are stable classically. Beyond that, we try to find the energetically favor- 
able configurations of a given charge, arguing that those provide the stable 
ground states. 

3.1     The derived category 

One important class of torsion branes is constructed as follows. Given a flat, 
but nontrivial, line bundle, £, we can construct a torsion class in K-theory 
by subtracting the trivial line bundle 

This cancels the 6-brane charge, and a is a torsion element of the K-theory. 
If X — ci (£) satisfies nx = 0, then n'a = 0 for some n' such that n divides 
n'. 
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There's an obvious object in the derived category whose K-theory class 
is a, namely 

{0-> 0-^ £-► 0} (3.1) 

a two-term complex, consisting of O and £, with the zero map between 
them. 

In the physical theory, one would like to condense the tachyon field in 
the D6D6 system and reach the "pure" torsion brane, which is supported 
on a tubular neighborhood of the (torsion) 4-cycle Poincare dual to x- 

In the derived category approach, one "understands" the decay of this 
D6D6 system by first passing to another object which is isomorphic to it 
in the derived category (nucleating some brane-antibrane pairs). Then one 
deforms that object by turning off certain maps in the complex and turning 
on others (turning off and on certain tachyon fields). One then shows that 
the resulting object is isomorphic in the derived category (quasi-isomorphic 
in the original category of complexes of coherent sheaves) to another object 
which is the end product of tachyon condensation. The first step (nucleating 
some brane-antibrane pairs) is sometimes dispensable. 

Of course, whether this decay is actually favoured energetically is not a 
question the topological string theory can answer - the "tachyons" are not 
actually tachyonic in the topological theory. But, assuming that the decay 
is energetically-favoured, the interpretation of what happens in the physical 
theory depends radically on whether we had to nucleate some D6D6 pairs 
in order to facilitate the decay. If all we had to do was turn on some tachyon 
fields, then - in the physical theory - the decay can proceed by classically 
rolling down the potential hill. If we had to nucleate some D6D6 pairs 
first (which would have an energy cost which scaled like the volume of the 
Calabi-Yau), then the decay actually proceeds by barrier-penetration. 

Let us apply this procedure to (3.1).  Can we turn on a nontrivial map 

O —> C? In the derived category approach, the answer is no. £ has no 
holomorphic sections, so, in the topological theory, there is no tachyon field, 
0, that we can turn on. (£ does have meromorphic sections, but those do not 
correspond to allowed deformations of the object in the derived category.) 
Instead, the decay must proceed by barrier-penetration. 

For concreteness, let us work with the first example of [2], which is the 
quintic in P4 modded out by the freely-acting Z5, 

(xi,X2,X3,X4,X5) —> (xi,CJX2,a;2X3,CJ3X4,CJ4X5), u5 = 1 

The divisor [xk+i] — [xk] is a representative of the divisor class corresponding 
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to the nontrivial flat line bundle £. We start with (3.1), which we write as 

{o -> 0 - O - 0([x2] - N) -, 0} 

where maps without explicit labels over them denote the zero map. We 
nucleate a 6-brane-anti-6-brane pair and pass to the isomorphic object 

{0 _> Oi-lxt}) ^O® C?(-[xi]) - (9(M - [xx]) -> 0} 

where c is multiplication by a constant. Now we deform this object by 
turning off the tachyon field c, 

{o _> oHm]) ->0e o(-[xi]) -> o([x2] - [xx]) ^ 0} 

and then turn on the tachyon fields <f> € H0(X, 0([xi])) and ^ € H0(Z, 0([x2])), 

{0 _ ^(-[x!]) -t O © 0(-[xi]) ^ 0([x2] - [xx]) ^ 0} 

Finally, we condense these tachyons and pass to the isomorphic object 

{0^0^O[xi]-*O[x2]® £->0} (3.2) 

The object (3.2) has the interpretation of an anti-D4-brane wrapped on the 
divisor [xi] and a D4-brane, with a flat line bundle on its world-volume, 
wrapped on the divisor [£2]. This configuration is supported purely on the 
divisor [X2] — [xi] and, at least at large radius, it is energetically favorable 
for (3.1) to decay to it. 

3.2    Physics at large volume 

While this description of the decay of (3.1) was extremely pretty (or ex- 
tremely ugly, depending on your tastes), it is not the dominant decay mode 
in the physical string theory. In the physical string theory, at large radius, 
there is a tachyon in the D6D6 system, and we can classically roll down the 
potential hill. This classical rolling dominates over any decay process, such 
as the one described above, which proceeds by barrier-penetration. This 
tachyon, however, is not related by spectral flow to a Ramond ground state, 
so it does not appear in the topological theory. That is why the above de- 
scription of the decay had to proceed by such a circuitous route - the relevant 
tachyon was absent from the derived category description. 

So the derived category is not as helpful as one would like in studying 
the decay of (3.1). We need to work directly in the physical string theory. 
Let us proceed physically and estimate the mass of the tachyon in the D6D6 
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system (3.1). For a large Calabi-Yau, of volume V, the mass of the tachyon 

behaves like m2 = — -^ + 771735 for some positive numerical constant c. 
This becomes less and less tachyonic as we shrink the Calabi-Yau. One 
might wonder whether, at sufficiently small volumes, this mode ceases to be 
tachyonic at all. We will turn back to that question in the next section. For 
now, we see that the D6D6 system will decay due to the presence of the 
tachyon. It is energetically favorable to decay to a torsion DA brane. 

We have already seen one such configuration, the D4.D4 system (3.2). 
Naively, this is a 2-particle state and, in the topological theory, there is no 
tachyon that can condense to form a single-particle bound state. But, since 
we have already noted that not all of the potential tachyons in the physical 
theory have corresponding fields in the topological theory, we need to look 
more carefully. 

The divisors [xi] and [22] intersect along a holomorphic curve in X. If 
the volume of X is sufficiently large, we can treat the region of intersection 
of these 4-branes as approximately flat. Let's say the D4 brane extends in 
the directions 1256, and the DA in 3456. The curve along which the divisors 
intersect turns into the 56 plane. Since the number of ND+DN directions 
is 4, the flat space limit has exactly marginal operators, parametrizing two 
branches of the moduli space. In a T-dual setup, this is like the DODA 
system, where the Coulomb branch corresponds to the branes separating and 
the Higgs branch corresponds to the DO dissolving as an anti-instanton inside 
the DA. Here the locus of intersection of the branes has real codimension-two 
inside the world-volume of one of the branes. The Higgs branch corresponds 
to puffing it up to a finite-size vortex. 

When the volume of X is not strictly infinite, the exact degeneracy along 
these two branches is lifted. The branes are no longer precisely orthogonal, 
and so they carry (equal and opposite) charges under the same RR sector 
U(l). Thus the degeneracy along the Coulomb branch is lifted and there is 
a net attractive force between the branes. The Higgs branch is harder to 
analyse, but typically one expects the vortices of the non-supersymmetric 
2+1 dimensional gauge theory to have a characteristic (nonzero) scale size. 
Thus, one expects to find the wave function localized on the Higgs branch - 
i.e. one expects that these 4-branes form a bound state. 

3.3    Physics near the conifold point 

When there is a tachyon in the open string spectrum between the brane and 
antibrane, the depth of the tachyon potential represents the binding energy 
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of the bound state that they form. At large radius, the binding energy is 
large because the masses of the 6-branes scale like V, while the mass of the 4- 
brane scales like T/2/3 (the af corrections are small for large V). Whether the 
end-product of the decay of the D6D6 system is a DADA pair, or whether the 
latter form a single-particle bound state is a more delicate matter, involving 
subleading corrections to the above formulae. 

At sufficiently small volumes, the energetics that lead to these conclusions 
can change completely. Near the conifold point, the volume of the Calabi- 
Yau becomes very small, and the D6-brane becomes the lightest BPS particle 
in the spectrum. At least in the examples of [2], it has been shown that the 
torsion D-brane is unstable to decay into a D6D6 pair, carrying net torsion 
charge [20] (see also [21]). So there is a curve of marginal stability for the 
torsion D-brane and this curve contains the conifold point. 

3.4    Physics near the Gepner point 

Let us now go beyond the naive estimate for the tachyon masses at small 
volume and investigate the physics of the D-branes using the methods of 
boundary conformal field theory. More specifically, we are considering free 
ZAT orbifolds of theories with J\f = 2 worldsheet supersymmetry. We will 
argue that in this context tachyon-free brane-anti-brane pairs can be found, 
indicating that this is a stable two particle system. Since there is no other 
charge present in this setup, its stability shows that there is a net conserved 
torsion charge. This is of some importance, since it is not known how to de- 
tect the torsion charge of a boundary state in BCFT by direct measurement, 
like for example taking the overlap with a vertex operator. 

At small volume, D-branes are described as boundary conditions pre- 
serving an A/* — 2 worldsheet supersymmetry. B-type boundary conditions 
for BPS D-branes can be regarded as Neumann boundary conditions for 
the boson representing the U(l) current of the supersymmetry algebra. Ac- 
cordingly, BPS D-branes preserving different space-time supersymmetry are 
distinguished by "Wilson lines" for that boson, determining the phase of 
the central charge of the BPS state. The charges of the fields propagating 
in the open string sector are modulo 2Z given by the difference of the Wil- 
son lines characterizing their boundary conditions. In particular, the open 
string fields propagating between a brane and an anti-brane (those have 
anti-parallel central charges) carry even integer charge. Such configurations 
do in general allow for tachyons, since the vacuum has charge 0 and is not 
removed from the open string sector. 
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To find a stable system, an additional projection is needed in the open 
string sector. We can find free ZN orbifold where there are N branes carrying 
the same RR charges. The individual branes are distinguished by represen- 
tations pi of the orbifold group. Open strings in the Z^r projected theory 
transform in the representation p* ® pj. This projection is therefore suit- 
able to project out the vacuum from the brane-antibrane system. All that 
needs to be done is to attach different representation labels to the brane and 
anti-brane. 

A concrete example which makes this idea work is the small volume limit 
(described by a Gepner model CFT) of the orbifold of the quintic considered 
in the previous section. A set of basic brane constituents is given by the 
rational L — 0 boundary states. These branes are labeled by two integers 
M = 0,2,4,6, 8 and M' = 0,2,4,6,8, which can be understood as irreducible 
representations of the Z5 x Z5 orbifold group. One factor originates in the 
GSO projection and the other one represents the additional geometric scaling 
orbifold. Accordingly, the quantum symmetry of the model is Z5 x Z5, 
generated by g : M -> M + 2, M' -> M7 and h : M -> M, M7 -> M' + 2. 
A tachyon free brane-antibrane system can be found by taking a fractional 
brane (M, M7) and its /i-transformed anti-brane (M,M/ + 2). the GSO- 
projection in the open string channel is then on even integer charges and 
the only potential tachyon, the vacuum, is removed from the open string 
spectrum by the Z5 orbifold action. In this way, we found a tachyon-free 
two particle system that is stabilized by the conservation of torsion charge. 
Since we started with an arbitrary brane (M, M7) there are altogether 25 
configurations of this type, which are related by symmetry operations. 

All of these are two-particle states. We have seen earlier that at large vol- 
ume there is a one-particle state carrying only torsion charge, which becomes 
unstable as we approach the conifold. An obvious question to ask is what 
exactly the range of stability for the single particle state is, in particular, if 
it includes the Gepner point. 

There is an altogether different way to cancel the RR charge while keeping 
net torsion charge [2]: One can use a g-orbit of 5 fractional branes (not 
including anti-branes) with suitable h dependence, such as 

4 

\T>=h\B>+^2gn\B> . (3.3) 
n=l 

There are 5 tachyons involved in this configuration of branes, meaning that 
it is unstable. The decay product has to carry the conserved torsion charge. 
Condensing four of the tachyons would lead to a brane-antibrane pair; as 
discussed previously, this removes the fifth tachyon. An inequivalent decay 
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process is induced if all five tachyons are turned on at once. This should lead 
to a different decay product and it is suggestive that this is an /^-invariant 
single particle state. Processes involving all five tachyons (or more generally 
all links in a quiver diagram) are rather special, and one usually excludes 
one type of fractional brane from the discussion. In the discussion of [22] 
removing a link from the quiver enabled a map of the small volume quiver 
to the Beilinson quiver describing bundles on Pn. Exactly which link was 
removed singled out a particular large volume limit and a particular conifold 
locus. Also here, we see that the condensation of only four tachyons produces 
a stable brane-antibrane pair, which forms the preferred configuration at the 
conifold point. 

In the derivation of the low-energy theories of combinations of L = 0 
branes by adapting orbifold techniques [23] the presence of all links pre- 
vented a consistent assignment of boson masses. In [23] it was proposed 
that this signals the breakdown of the low energy field theory description. 
Our analysis has shown that such processes are relevant for a full under- 
standing of torsion branes at small volume. 

4    The Beauville Manifold 

In [2], we were careful not to assume that the fundamental group of the 
Calabi-Yau was abelian. But there are, in fact, very few known examples of 
Calabi-Yau's whose fundamental group is a nonabelian finite group. 

The main example is due to Beauville [24]. Let Q be the group of unit 
quaternions, 

g = {±l,±/,±J,±if} (4.1) 

with multiplication law 

IJ = K        (and cyclic) 
I2 = J2 = K2 = _! (4-2) 

Let Q act on V = C8 via the regular representation. This induces an action 
of Q on the complex projective space, P7 = P[V]. Let Y = P7[2,2,2,2] be 
the intersection of four homogeneous quadrics in P7. Beauville showed that 
it is possible to choose quadrics such that Y is smooth and Q acts freely 
on Y. The quotient, X = Y/Q is a Calabi-Yau manifold with fundamental 
group 7ri(X) = Q. 

Let us recall some facts about the group theory of Q. First, there is an 
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exact sequence, 
■0->-Z2-»Q-*Z2xZ2->0 (4.3) 

where the commutator subgroup of Q is the Z2 subgroup, {1, -1} and its 
abelianization, Q/[Q, Q] = Z2 x Z2. 

The irreducible representations of Q are as follows. There are four 1- 
dimensional irreps: the trivial rep Vi and the representations V/, Vj, and V/^. 
In Vjr, ±1 and ±7 are represented by 1 while ± J and ±if are represented by 
— 1 (and similarly for Vj^). There is also a 2-dimensional representation, 
V2 by Pauli matrices. 

The representation ring is 

Vz ®V2 = V1®VI®Vj®VK 

Va®V2 = V2        a = lJ,J,K (4.4) 

Vj ® Vj = V/r        (and cyclic) 

The group homology of Q is 

Hi(Q) - Q/[Q, Q] - Z2 0 Z2,        H2(Q) - 0 (4.5) 

The Hodge numbers of the covering space, Y, are h1,l(Y) = 1, h2,1(Y) = 
65. In particular, Q must act trivially on ^(Y). Plugging into the Cartan- 
Leray Spectral Sequence, 

(4.6) 
Hi(x) = Z2ez2 

H2(X)4or = 0 

EF^X) is generated by l,^,Xi,X2,'? and p, with relations 

C2 = 27?,        d? = p 

The Xi € H2(X) are two-torsion, 2xi = 2x2 — 0. The total Chern class of 
Xis 

c{X) = 1 + 8T? - 16/0 

A basis for tf0(X) is 

r ci C2 C3 

e» 1 0 0 0 
oD = iJ - c 0 e 0 0 
ai = A-e> 0 Xl 0 0 
02 = ^2 - o 0 X2 0 0 

Oc 0 0 -f\ 2p 

ov 0 0 0 2p 
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Here H is the hyperplane line bundle, £j are nontrivial flat line bundles on 
X. C is a genus-zero curve in X and, by Oc, we denote the K-theory class 
of a 2-brane wrapped on C. Op is the class of a DO-brane at a point p e X. 

In the above basis (omitting the aj, which are torsion elements of the 
K-theory) the intersection form, {y, w) = Ind{dv^uj) is given by the matrix 

f2 = 

/0   -1    -1    -1\ 
10      10 
1-10      0 

\l     0      0      0 ) 

(4.7) 

The quantum symmetry group, GQ, is isomorphic to the abelianization 
of Q 

GQ = Z2 x Z2 (4.8) 

and acts on the D-branes by tensoring with a flat line bundle, 

v\->v®£i (4.9) 

The Kahler moduli space is the 3-punctured sphere. About the large- 
radius point, the monodromy is generated by 

Mr\vv->v®H (4.10) 

At the conifold point, certain branes become massless. From our previous 
experience, we expect that these are the flat line bundles. There are four 
such line bundles, (9,£i,£2 and Ci®C2. These do, indeed, become massless 
at the conifold. But, in addition, there's something else which becomes 
massless. As we saw above, ^i{X) has a 2-dimensional irrep, out of which 
one can build a rank-2 flat bundle on X. This rank-2 bundle (a threshold 
bound state of a pair of 6-branes, if you wish) also becomes massless at the 
conifold. 

Indeed, we conjecture that this is a general phenomenon. Given any 
Calabi-Yau manifold, X, whose holonomy group is SU(3) (and not a proper 
subgroup thereof), we can always write it as X = Y/G, for Y a simply- 
connected Calabi-Yau^ and G a finite group. The monodromy about the 
conifold locus (principal component of the discriminant locus) is always of 
the form 

v^v-^2(v,WR)WR (4.11) 
R 

where the sum is over all irreps, i?, of G and WR is the flat bundle built 
using the irrep R of G. On the level of K-theory, it is not hard to see that 
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this can be simplified to 

Mc:v-+v-\G\(v,0)0 (4.12) 

This generalizes an old conjecture of Morrison (see [25] and [26, 27]). 

In the present case, this is 

Mc:v-^v- 8(v,0)0 (4.13) 

Finally, the monodromy about the third point, 

Mh = (MrMc)-1 (4.14) 

has, in our example, the property1 that its square is unipotent of index 4, 

(M,2-1)4 = 0 (4.15) 

A more refined characterization is 

(Mh + 1)A = 0 (4.16) 

i.e. that Mh has a single Jordan block with eigenvalue —1.  Note that the 
multiplicity 8 in (4.13) was crucial to obtaining (4.16). 

The existence of the flat rank-2 bundle as a stable single-particle state 
was not guaranteed by the BPS condition (it is degenerate with a pair of 
D6-branes), nor by K-theory (it does not carry any K-theory charge by 
which it might be distinguished from a pair of D6-branes). Nonetheless, 
we deduced its existence from the consistency of the monodromies that we 
compute. This is another example of how studying the behaviour of string 
theory near singularities can shed light on many subtle issues (in this case, 
on the existence of certain threshold bound states). 

1This is a particular example of the monodromy about a "hybrid point" in the moduli 
space, where the "hybrid theory" has the structure of a Landau-Ginsburg orbifold fibered 
over a Fk. If the LG orbifold has a Zn quantum symmetry, we find, rather generally, that 
the monodromy about the hybrid point satisfies 

(M? - l)p = 0 

for some p. In particular, repeating the calculation of the monodromies for the covering 
space, Y (where there is no question that the conifold monodromy is simply v H-» V — 
(v,0)0), one finds that (4.16) also holds for the monodromy Mh in the moduli space of 
Y. 
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5    A Two-Parameter Example 

In this section we will study an example of torsion D-branes in which the 
Kahler moduli space is 2-dimensional. 

The covering space, Y, is the toric resolution of a hy- 
persurface in weighted projective space, Y — Pf 113 3[9]. 
Resolving the orbifold singularities of the weighted pro- 
jective space yields a smooth toric variety, T, which can 
be realized (in the language of Gauged Linear a-Models) 
by six chiral multiplets (the homogeneous coordinates of 
T), charged under C/(l) x C/(l), with charges given in Ta- 
ble 1. Adding one more field, p, of charge (0,-3) and 
a gauge-invariant superpotential, W = pP(zi), we obtain 
the GLaM for Y. 

To obtain X = Y/Zs, we mod out by a Z3 action, 

(21,22,23,24, ^5, ze) i-> (22, ^3, 21, ^4, e27rz/32:5, e47rz/3z6) 

91 <12 
Zl 1 0 

Z2 1 0 
Z3 1 0 
Z4 -3 1 

Z5 0 1 
Z6 0 1 

Table   1:     Ho- 
mogeneous 
coordinates for 
the       resolved 
model 

(5.1) 

The Kahler moduli space of Y is 4-dimensional. The exceptional divisor 
of T, [24], intersects the Calabi-Yau hypersurface in three disjoint P2s, and 
there is a Kahler modulus corresponding, roughly, to the size of each of the 
P2s. Only a 2-dimensional subspace (in which each of the P2s has the same 
"size") is represented by toric deformations. This subspace of the moduli 
space is parametrized by the complexified Fayet-Iliopoulos parameters of the 
17(1) x 17(1) gauge theory in Table 1. 

Happily, the orbifold projection (5.1) projects out the nontoric Kahler 
deformations, and the (2-dimensional) Kahler moduli space of X coincides 
with the subspace of toric Kahler deformations of Y. 

5.1    Phases of the model 

Let us start out with a brief discussion of the phase structure of Gauged 
Linear a-Model for this manifold. Actually, we'll describe the Gauged Linear 
cj-model for the covering space, Y, understanding that we will have to mod 
out by (5.1) by hand. 

As described above, the linear sigma model has gauge group 17(1) x U(l) 
and 7 chiral multiplets zi,...Z6,p.   A choice of gauge-invariant (and Z3- 



RETURN OF THE TORSION D-BRANES 329 

invariant) superpotential is given by 

W = pPizi) = ptfzl + zlz\ + zlzl + zl + zl). (5.2) 

The possible vacuum configurations have to fulfill the D- and F-flatness 
conditions: 

F=IPI
2
+IPI

2
X; 

dP_ l 

dzi 
L 

D\ = \zi\2 + \Z2\2 + \z3\2 - 3|z4|2 - ri 

D2 = M2-+ \zs\2 + kel2 - 3|p|2 - r2 

(5.3) 

The model has four phases, depending on the values of the parameters r;. 
The limit points of each phase lie at the origin of coordinates for certain 
readily-defined coordinate patches on the moduli space. We will discuss the 
structure of the moduli space and define the coordinate patches Uij in §5.3. 
In the meantime, we just label the phases by the corresponding patches: 

C/34 Phase: ri > 0, r2 > 0. The excluded gauge orbits in this case are 
the orbits with {zi — z<i — Z3 = 0} and {2:4 = Z5 = z§ = 0}. The F-terms 
require the vanishing of P and p. As a consequence, the low energy modes 
in this limit are a nonlinear a-model on the (smooth) Calabi-Yau manifold. 

Uis Phase: ri < 0, 3r2+r*i > 0. The orbits {2:4 = 0} and {zi = z^ = Z3 = 
z^ — ZQ = 0} have to be excluded. In a generic D-flat configuration, 2:4 is 
not zero. The Calabi-Yau develops a Z3 orbifold singularity at the location 
of the blown-down exceptional divisor. 

Uu Phase: ri < 0, 3ri +r2 < 0. To fulfill D-flatness, the orbits {^4 = 0} 
and {p = 0} have to be excluded. The F-terms require that zi = z<i — 
z3 = Z4 = Z5 = ZQ = 0. A gauge transformation by eieqi leaves p invariant, 
while rotating 24. A gauge transformation by e26,/^1+3^2) leaves 2:4 invariant, 
while rotating p. We can use these two C/(l) actions to fix the values of 2:4 
and p completely, so that the vacuum consists of one point. Around this 
vacuum, there are fluctuation of the fields zi, 2:2,2:3,2:5, ZQ. The VEVs for 
2:4 and p leave unbroken a Zg subgroup of the U(l) x C/(l), generated by 

e27r2(gi+392)79 jn addition, we have to mod out the theory by the Z3 action 

(5.1). Altogether, we arrive at a C5/Zg x Z3 orbifold model. Taking into 
account the superpotential, the resulting model is a Zg x Z3 orbifold of a 
Landau-Ginzburg model. This Landau-Ginzburg model has an IR descrip- 
tion in terms of the Gepner model (k = 7)3(A: = I)2, on which (5.1) translates 
into a permutation of the first three minimal model factors accompanied by 
a phase multiplication in the two remaining factors. 
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U24 Phase: ri > 0, r2 < 0. The orbits {p = 0} and {zi = Z2 = £3 = 0} 
have to be removed. This phase corresponds to a hybrid phase: The fields 
zi, z2, z2> parametrize a P2, over which the fluctuations of the fields 2:4,..., ZQ 

behave like in a LG theory. The model has to be modded out by (5.1). 

5.2    The K-theory 

Since ^(Zs) = 0, the CLSS tells us that Hi(X) - Z3, ^{X) = Z 0 Z. We 
can write a basis for Hev(X), l,^!,^^7?!?^ and p. The ring structure is 

f 1 = %,    66 = V1 + sm,    £2 = 3(m + 37?2) (     . 

where x ^ H2(X) is 3-torsion, 3% = 0. 

A basis for if0(X) is 

r Cl C2 C3 

0 1 0 0 0 
0Dl =Li-0 0 £1 0 0 
0D2 =L2-0 0 6 0 0 

a = C-0 0 X 0 0 
Oc 0 0 -m 2p 

OE 0 0 -m 0 

°v 0 0 0 2p 

Here C is a genus-zero curve representing the cohomology class 771 and E is 
an elliptic curve representing the cohomology class 772 • 

In this basis (omitting, as always, the torsion class, a) , the intersection 
form is 

/0   -1    -4   -1   0   -1\ 
10      1       10     0 

fi = 
4-10      0     10 
1   -.1     0      0    0    0 
0     0-1000 

\l     0      0      0    0    0/ 

(5.5) 

5.3    The monodromies 

Now, before discussing the monodromies, we need to explain a bit about 
the structure of the Kahler moduli space, M. M is, itself, a toric variety. 



RETURN OF THE TORSION D-BRANES 331 

Again, we can describe it most succinctly by giving the GLaM data necessary 
to construct it: aC/(l)xf/(l) gauge theory, with charged fields (homogeneous 
coordinates for M) listed in Table 2. M is constructed by taking the Fayet- 
Iliopoulos parameters £1,2 > 0, imposing the D-flatness conditions 

3|si|2-|s2|2 + M   =Ci 
N2 + M2 = C2 

(5.6) 

and modding out by U(l) x (7(1) gauge transformations. Note that the loci 
{51 = 54 = 0} and {52 = S3 = 0} are excluded, as one cannot satisfy (5.6) 
there. Also note that the locus {54 = 0} is a Z3 orbifold locus in M, as 
5i 7^ 0 leaves an unbroken Z3 subgroup of the first U(l). 

M can be covered by coordinate patches Uij in which 
si and Sj are nonvanishing. Each of these coordinate 
patches corresponds to a "phase" of the GLcrM analysis 
of X, which we reviewed in 55.1. 

Qi Q2 
Sl 3 0 

S2 -1 1 

S3 0 1 

54 1 0 

Table   2:      Ho- 
mogeneous 
coordinates   for 
Kahler    moduli 
space, M. 

The boundaries of the moduli space are the four divi- 
sors [si] as well as the "discriminant locus", which has two 
components, the conifold locus, AQ = [si^i — ^(^^ — 

37S3)3], and another locus, Ai = [si — ^s3]. The inter- 
sections of these divisors are depicted in Figure 1. The 
figure is a bit deceptive. AQ intersects almost every divi- 
sor represented by a horizontal line in the figure in three 
points. The exceptions are [si], which it meets tangen- 

tially, and the orbifold locus, [54]. We placed an extra white dot on Ai to 
remind you that it intersects twice more (off this real slice) with AQ. 

The divisors [si] and [52] correspond, respectively, to the ri —» 00 and 
r2 —> 00 limits on the Calabi-Yau X. The "large radius limit" is located at 
the intersection of these two divisors. The monodromies about these divisors 
are 

Mri = 

M ri : v i-> v ® Li 

MT2 : v 1—> v <g> L2 

of (5.5), these are represented by the matrices 

/I   0   0   0   0   0\                        /I   0   0   0   0   0\ 
110   0   0   0 0   10   0   0   0 
0   0   10   0   0 
0   0   110   0 

Mr2 = 
10   10   0   0 
0   13   10   0 

0   13   0   10 0   3   9   0   10 
\0   0   1   1   0   1/ \0   1   6   0   1   1/ 

(5.7) 

(5.8) 
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In specifying the monodromies about more "distant" divisors in the mod- 
uli space, we need to specify what path we take in circling them. It will be 
useful to choose a (real) 2-surface homotopic to one of our coordinate di- 
visors, passing through our chosen basepoint near large radius, and specify 
that the path is constrained to lie on that 2-surface. 

To this end, we 
can choose 

Ci = {s1 - exsl = 0} 

C2 = {S2-C3S453 = 0} 

C3 = {5254 - 6253 = 0} 

(5.9) 

The d are cho- 
sen to meet at our 
basepoint near the large 
radius limit, located 
at  (91,92) = (Cl,€2), 
where 

C/24     N 

51 
91 = 73 3' q2 = 

52£4 

■§3 

are the good local co- 
ordinates in the patch 
C/34. Note that C2 is 
homotopic to, but is 
not itself a holomor- 
phic curve in .M. In 
the local coordinates 
in C/34, it is given by 

Figure 1: Schematic depiction of the moduli space of 
the 2-parameter model. Shown are the divisors [s;] 
and Ao5i, and their mutual intersections, the coordi- 
nate patches Uij and the 2-surfaces d along which 
our monodromy calculations are done. 

C2 = {92 = €3154(91,92)|2} 

where 154(91,92)|2 is a complicated function of 91,92, given by solving the 
D-flatness condition (5.6) and 

^3 = 
^2 

|54(ei,€2)|2 

First consider the 2-surface Ci.   It is easy to see that it intersects AQ 

three times, [52] and [53] once each, and does not intersect [51], [54] or Ai. 
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The monodromy around the conifold locus is 

Mc:v^v-3(v,0)0 (5.10) 

As usual, the "3" is because there are three flat line bundles (6-branes) which 
become massless at the conifold locus. The monodromies about the other 
two points of intersection with AQ are related to this by conjugation with 
Mri, 

Mcf : v i-» v — 3(tJ, Li)Li 

= Mr.McM-1 

Mcfi : v i-> v-3(v,Ll)Ll 

= Mr
2
1McM-2 

(5.11) 

The monodromy about [53], therefore is 

M^j = Mr2McMc'Mcll (5.12) 

and satisfies 
Mj3] = 1 (5.13) 

Similarly, consider €2- This intersects [51], Ai and [54]. The monodromy 
about Ai is 

MAX '.V\-^V — (V, X)X (5.14) 

where x — OD2 — SO£)1 — SOE- SO the monodromy about [54] is 

M[s4 = MriMA, (5.15) 

and satisfies 
Mf^ = Mr2 (5.16) 

Finally, we turn to C3. Unlike the previous cases, C3, or any 2-surface 
homotopic to it, necessarily crosses [53] at the LG point (the intersection of 
[53] and [54]). Thus it makes sense to talk about the monodromy "about 
the LG point". C3 also intersects [si], AQ and Ai each once. So we find the 
monodromy about the LG point is 

MLG = MriMcMAl (5.17) 

which satisfies 
M9

LG = 1 (5.18) 

The quantum symmetry at the LG point is enhanced from Z3 to Z3 x Z9. 
The Z3 generator is, of course, tensoring with the flat line bundle £.  The 
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Zg generator is MLG- The (L = 0) B-type fractional branes at the LG point 
are the orbit under Z3 x Z9 of the D6-brane, O. They fall into the K-theory 
classes, 

Vk'. Vfc.m 

Vfc,3 

^9,3 = O 

ma 

MEG V9,Z (5.19) 

or, explicitly, 

Fl,3 = -20 - 0Dl + OE 

V2,z^O + 0Dl=L1 

^3,3 = O + WDl - 0D2 + SOE 

VAt3 = -20 - 70Dl + 20D2 + Oc- 50E 

^5,3 = 0 + 40Dl - 0D2 -Oc + WE - Ov 

F6)3 = -20 - 30Dl + 0D2 - WE 

F7,3 = 40 + WDl - 20D2 -Oc + 40£ 

^,3 = -20 - 50^ + C?^ + Oc - WE + Op 

^9,3 = C? 

The intersection form 

where fn takes values 

(^mj^fe'.m') = //c- (5.20) 

n 1 2 3 4 5 6 7 8 9 

/n -1 1 -1 2 -2 1 -1 1 0 

The other limit points of the model are as follows. There is the afore- 
mentioned large radius point (at the intersection of [51] and [52]). There's a 
hybrid point, consisting of a LG model (with a cubic superpotential) fibered 
over a P2, at the intersection of [51] and [53]. Circling this point about the 
[53], we detected in (5.13) the enhanced Z3 quantum symmetry of the LG 
fiber; circling this point about [si], we detect the monodromy, Mri, associ- 
ated to shifting the B-field on the P2 base. Finally, at the intersection of [52] 
and [54], the Calabi-Yau develops a Z3 orbifold singularity. The Calabi-Yau 
isn't globally a quotient by this Z3, so we don't really have an enhanced Z3 
quantum symmetry. Rather, circling [54] three times is equivalent to shifting 
the B-field (5.16). 
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5.4    Branes in the small volume phase 

According to the above discussion, D-branes in the small volume phase can 
be investigated by studying D-branes on the orbifold C5/Zg x Z3. Those 
can be studied in terms of quiver gauge theory. A basic set of D-branes 
(with Dirichlet conditions in all directions of the orbifold) is given by the 
fractional branes, which are labeled by irreducible representations of the 
orbifold theory. Those form the nodes of the quiver. The chiral matter 
multiplets, which can be determined in the usual way by projection, give rise 
to the links of the quiver. Their number can be computed from the index 
theorem and is equal to the intersection number. This should therefore be 
compared to the result of a geometric index computation. The continuation 
of the fractional brane basis to large volume sheaves has been discussed in 
the literature [23, 28, 29, 30]. In this paper, our focus is on the K theory 
classes and we'd like to compare the fractional branes to large volume branes 
whose K-theory classes are.T4jm. 

Let us make this more concrete for the model at hand. Since the Z9 x Z3 
orbifold group is abelian, all irreducible representations are one-dimensional 
and can be labeled by two phases: p = (exp 27rik/9, exp 27rra/3). Working 
out the representation theory yields the following result: The number of 
chiral multiplets between a brane (fc, ra) and a brane (k',mf) depends only 
on the difference Afc = k — k'. In particular, it is independent of the m label. 
The dependence on Afc is summarized in the following table: 

AA; 1     2 3     4 5     6 7    8    9 
-1    1 -1    2 -2    1 -1    1    0 

Comparison with the table in the previous section shows that this ex- 
actly reproduces the geometrical intersection numbers of the K-theory classes 

The index computations performed above can be taken to the IR fixed 
point of the model, which is described by the Gepner model. Let us make 
the connection to boundary CFT results more explicit. 

According to [23], the fractional branes of the quiver discussion should 
be directly compared to the set of L — 0 rational Gepner boundary states. 
For the covering theory, the Gepner model {k — 7)3(k — I)2, these B- 
type boundary states have been computed in [17, 31, 32, 33]. The Gepner 
model itself is a Zg orbifold of a tensor product of minimal models (+ other 
projections, which are currently not of importance to us), the Zg being 
the GSO projection. Accordingly, there is a Zg quantum symmetry, which 
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we denote g. The boundary states are labeled by a single label M, M = 
0,2,4, ...18, which can be interpreted as discrete Zg Wilson lines. This 
label should be directly compared to the representation label k in the quiver 
discussion, M = 2k. The quantum symmetry acts on the boundary states 
by g : M \—> M + 2. In geometrical terms this action maps to the action of 
the Gepner monodromy on six-branes O. 

To determine the intersection matrix, the Witten index tr^(—1)^ has to 
be evaluated in the open string Ramond sector. This is related by a mod- 
ular transformation to the closed string amplitude < Mi|(—1)

FL
\M2 >RR 

between boundary states. To compute the intersection matrix on the cover- 
ing theory, the formulas given in [16] can be used. Due to the symmetry of 
the model, it can be written in terms of the shift matrix g: 

I = -Sg-1 + 3g-2 - 3<r3 + 6<r4 - Sg'5 + Sg'6 - Sg'7 + 3g-8      (5.21) 

From this, the intersection matrix of the orbifold model can be obtained 
directly. The boundary states of the covering theory are invariant under 
the Z3 orbifold action. To obtain consistent boundary states of the orbifold 
theory, one adds a twisted sector contribution to the boundary states. This 
part of the boundary state contains only Ishibashi states built on fields in the 
twisted sector. In the open string sector they lead to projection operators, 
since the modular transformation of a twisted sector character leads to an 
insertion of a group element. The boundary states are distinguished by Z3 
representations, which determine how the projections act in the open string 
sector. 

The index in the orbifold model can be determined without explicit 
knowledge of that boundary state. It is sufficient to know that the orb- 
ifold acts freely, which means that there are no RR ground states in the 
twisted sector. Therefore, the twisted part of the boundary state cannot 
give rise to new contributions to the index. All that happens is that there 
is a projection in the open string sector, picking out an invariant combina- 
tion of the R-ground states counted in (5.21). To write the new intersection 
matrix, we introduce the operation h, which is the quantum symmetry cor- 
responding to the Z3. In terms of the two quantum symmetry operators the 
intersection matrix reads: 

/ = (p-i + 3-2 - 0-3 + 2g-* - 2g-S + g'*- + g^ + g'*) (1 + h + A2). 
(5.22) 

This matrix is just a different form of presenting the contents of the table in 
the quiver-based discussion. 

The form of the intersection matrix shows that transforming a fractional 
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brane by h cannot change the Z-valued RR charge, but only the torsion 
charge. 

We are now ready to apply our general considerations of section 3 to 
construct a torsion brane as a bound state of BPS states. 

There are two ways to do so: One way is to take a fractional brane and its 
/^-transformed anti-brane. The general discussion of section 3 applies to this 
example, and this system is tachyon-free. It therefore presents a classically 
stable state carrying only torsion charge. 

Another way is to take a superposition of fractional branes in the follow- 
ing way: 

8 

\T>=h\B>+^2gn\B>i (5.23) 
n=l 

where \B > is any of the fractional branes. There are tachyons propagating 
between the individual branes, making this configuration unstable. Mapping 
the brane charges to large volume shows explicitly that there is a net torsion 
charge and the decay product is therefore non-trivial. 

6    The Self-Mirror Example 

So far, all of our examples have had HA(X)tor = 0. This had several sim- 
plifying consequences. First, we had that the torsion subgroup K0(X)tor — 
H2(X)tor- That is, torsion elements of the K-theory were just labeled by 
their (torsion) first Chern classes. Second, the quantum symmetry group 
acted trivially on K0(X)tori because tensoring with a (flat) line bundle does 
not change the first Chern class of an object of rank zero. 

Further, because H3(X)tor also vanished (by Poincare duality), there was 
no possibility for adding topologically nontrivial discrete torsion. Even in 
cases (such as the second example of [2]) where the orbifold conformal field 
theory admitted discrete torsion, the resulting CFT was continuously con- 
nected to the CFT without discrete torsion. They lay in the same connected 
component of the moduli space. 

Finally, we had the property that the monodromies in the Kahler moduli 
space acted trivially on K1^) (which is why, heretofore, we have mostly 
talked about K0(X))^ while the monodromies in the complex structure mod- 
uli space acted trivially on K0(X). 
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To see some of the possibilities when HA(X)tor ¥" 0? we turn to the 
Calabi-Yau example of [1]. Here X — (K?> x T2)/Z2 where the Z2 acts 
as (—1) on the T2 and as a freely-acting holomorphic involution of the K?> 
(under which the holomorphic 2-form is necessarily odd). 

Without the T2, the quotient K3/Z2 would 
be an Enriques surface; with the T2, we obtain a 
Calabi-Yau which has the structure of a T2 bundle 
over the Enriques surface. The holonomy group 
is SU{2) x Z2 which, being smaller than 5?7(3), 
means that the fundamental group is not finite. 
Rather, TT^JT) = Z2 x(ZxZ), where Z2 : (n,m) 6 
Z x Z —► (—n, —m). 

The commutator subgroup [ix^X)^^)] = Table 3. Action of Z2 on 

Z2 of elements of the form (0, (2m, 2n)). The quo- the homology of KZ x 
tient rp2 

Hi(X) = ^(XVfTQPO^iPQ] = zi (6-1) 

He 1 
H5 a®2 

H4 1 e a®2 e i?®10 

H3 1e4ejRe2o 

H2 lea®2©^®10 

Hi a®2 

Ho 1 

The involution acts on the homology of ICS x T2 as in Table 3, where 1 
is the trivial representation, a is the sign representation and R is the regular 
representation (which, over the integers, is irreducible). 

6.1     Computation of the K-theory 

Since the cohomology of X was computed in [31], we will just hit the high 
points of the computation. The E2 term of the CLSS is 

where the trivial representation, 1, leads to the ordinary homology of RP00, 

Hn(RP0O
lZ)= I 

Z     n = 0 

Z2    n = 2fc+l,     /c>0 

0      otherwise 

The sign representation, cr, leads to the homology with twisted coefficients, 

'Z2    n = 2k 
Hn(RP00

JZ) = 

and the regular representation to 

Hn(RP00,7i) = 

0 otherwise 

|Z    n = 0 

1 0    otherwise 
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Putting these together with Table 3, yields the E2 term, 

6 z Za 0 z2 0 
5 zl 0 z| 0 z| 
4 z11 © zi Z2 zi Z2 zi 

,2  3 z24 z4 
0 ^2 0  ... 

'p,g   2 z11 © z§ z2 z| Z2 Z2 

1 z| 0 zi 0 z| 
0 z Z2 0 Z2 0 

0 1 2 3 4  ... 

(6.2) 

The differential ^2 vanishes, but cfo is nontrivial. The spectral sequence 
converges at the E4 term, which looks like, 

EP,q 

6 Z 0 0 0 0 
5 0 0 0 0 0 
4 Z11 © Z2 Z2 Z2 0 0 
3 z24 z2 

0 0 0 ... 
2 Z11 © Z2 Z2 Z2 0 0 
1 z2 

0 z2 
0 0 

0 z Z2 0 0 0 
0 1 2 3 4 ... 

(6.3) 

So we find a filtration of Hi(X) which gives 

0->Z!->-Hi(X) ^Z2->0 

We have already computed in (6.1) that the extension must be trivial. We 
also find directly that 

H2p0for = Z<2 

So we have 
H2(X) = z11ezi 
H4(X)=:Z11eZ2 

H3(X) =Z24©Z2 

H5(X) = Zl 

We can choose a basis for H2(X) as follows. Let the index / run over 
ten values, / = +, —, i = 1,..., 8. We have generators, £07 £/> as well as the 
torsion generators, XO,XA, for A = 1,2. For H4(X), we choose: r?0,??7 and 
the torsion generator </>. Finally, let p be the generator of H6(X). The ring 
structure on }lev(X) is 

fr U £, = -2C/J7?0 
£0 U xo = <£ 

Xl U X2 = <t> 

6 U 7?° = p 

& U T?"7 = £/p 
(6.4) 
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where CJJ is a symmetric matrix, whose nonzero entries are C^-, the Cartan 
matrix of E$, and C+_ = C_+ = -1. 

For H3(X), we can choose a basis:  CAI'ICACLI for a = 1,2, and torsion 
generator cr. H5(X) is pure torsion, with generators: KA^O- 

2 ;c The ring structure   is 

CAP U CBJ' = -^ABCFJ' p        Co u cr = «o 

CAa U CB6 = ^AB(^l)a6 /? XA U CT = ^ 
(6.5) 

where Cpji is the same 10 x 10 matrix as the one which appeared in (6.4) 
and (Ji is the Pauli matrix. 

Since H3(X)i0r = Z2, we have the possibility of turning on a topologically- 
nontrivial flat B field, with [H] G H3(X)tor = Z2. The moduli space has 
two disconnected components3, depending on whether we turn on a nontriv- 
ial [H). If we do so, D-brane charge takes values in the twisted K-theory, 
K?HAX). The E2 term of the AHSS is exactly the same as in the untwisted 
case; only the differentials are modified. For our purposes, it suffices to know 
that 

ds = Sq3 + [H] (6.6) 

In our previous paper, we showed rather generally that, for a 6-manifold X 
with H1(X) — 0, all of the higher differentials in the AHSS vanish. Since 
our argument did not invoke the specific form of ds (merely that its image 
is torsion), it works just as well when [H] is a nonzero torsion element as 
when it vanishes. 

2The ring structure is more easily understood from the Hochschild-Serre Spectral se- 
quence (for the cohomology of X), which preserves the multiplicative structure. The 
EA = Eoo term is 

■i-Joc 

6 P 0 0 
5 0 0 0 
4 17 W tfo 0 

q    
3 (,AI>, C4a 0 «A 

5     2 £I,6> (7 0 
1 0 XA 0 
0 z 0 Xo 

0 1 2 

where, in each E™, we have listed the corresponding generator of H,(X)  (all of the 
extensions in the filtration of the associated-graded being trivial). 

3In fact, there are further possibilities, involving turning on flat, but topologically- 
nontrivial RR gauge fields. The full story, including the dual heterotic description, would 
take us too far afield, and will be discussed elsewhere [32]. 
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So, in both the twisted and the untwisted cases, we have 

0 -> H5(X) -> K1^) -+ H3(X) ^ 0 (6.7) 

for K^X) and 

0 -> H4(X),or -> K0(X)tor -> H2(Z)tor -, 0 (6.8) 

for the torsion in K0(X). We need to decide whether the extension 

0 _> Z2 -> K0(X)tor -> Z3^ 0 

is trivial (K0(X)tor = Z|) or nontrivial (K0(X) = Z| 0 Z4). That is, we 
want to know if there is an element of order 4 in the torsion subgroup. 

In fact, it is easy to see that no elements of K0(X)tor are order 4.  We 
can explicitly construct the generators 

&A = £>A — O , 
(6.9) 

where LA and £0 are the flat line bundles with first Chern class XA and xch 
respectively. The remaining generator is 

a = £o®£ + C>-A)-£ = ao®ao (6.10) 

where L is the line bundle with c\(V) — ^0 and a^ — L — O. This generator 
has C\{OL) — 0, 02(0:) = 0. Since (/> is not the square of some class in H2(X)tor, 
a cannot be written as twice some linear combination of the other generators, 
which is what we would have if (6.8) were a nontrivial extension. 

6.2    The moduli space 

The vector multiplet and hypermultiplet moduli space is 

^ = rA^Q'2Lx^2) 

MH = TH 
N 

,0(10) x (2)       [/(I) 

0(12,4) 
,0(12) xO(4) 

The modular group IV x TH is roughly the subgroup of the modular group 
of K3 x T2 compactifications which survives the orbifold projection. We 
will discuss the more precise definition in the following; it will depend on 
whether certain RR fluxes are turned on. 
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The symplectic form on K1(X)/K1(X)tor coincides with the standard 
intersection form on H3(X)/torsion. That is, 

ft = (-2Ceai)®(i<T2) (6.11) 

where CJ/J/ is the matrix in(6.5) and the ai are the Pauli matrices. 

A similar result holds for the intersection form on K0(X), which can be 
best understood as follows. Let TT : X —> £ be the projection from X to the 
Enriques surface, £. Any element v G K0(X) can be uniquely decomposed 
as 

v = n-u + (L - O) <g> TT-U + cAaA (6.12) 

where, as above, L is the line bundle with ci{L) = £0, u:u £ K0(£) and the 
cA = 0 or 1. Representing i; by the quadruple (u, u, c1, c2) and w by the 
quadruple (x,^,^1, d2), a simple computation yields 

(t>? iy) = Q({i7 x) — Q(^, x) (6.13) 

where Q(x,y) is the symmetric quadratic form on K0(£) given by taking 
the Dolbeault index on £, 

Q(x, y) = Indsdx®y (6.14) 

For later use, it will be helpful to tabulate this quadratic form in some 

explicit basis for K®^) (modulo torsion). Choose 0,xi' = Lj — O and Op 

as a basis. Then 

G(O,0) = 1 Q(xI,xj) = 2CIj 

Q((9, xj) = -Cu Q{xh Op) = 0 (6.15) 

Q(0,Op) = l Q(OpiOp) = 0 

As we said, X is a T2-bundle over an Enriques surface, £. T2 has a T- 
duality group 51/(2, Z) x 5L(2, Z). Doing fiber-wise T-duality is a symmetry 
of the theory. One of these 5L(2, Z)'s becomes a subgroup of Fy; the other 
is a subgroup of r#. Which is which depends on whether we are studying 
Type IIA or Type IIB on X. 

The modular group Fy = O(10,2, Z) x 5L(2,Z). In the Type IIB de- 
scription, where the vector multiplet moduli space is the space of complex 
structures, the 5L(2, Z) C Fy is the "geometrical" one, acting on H^T2), 
i.e. the one which acts on the 'A: index. In the Type IIA description, the 
5L(2,Z) c Fy is the one which permutes H0(T2) and H2(T2). 
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Modulo the (torsion) subgroup of K0(X) generated by the a A (and the 
corresponding subgroup of Kl(X) generated by PA, the images of the KA in 
(6.7)), this 5L(2,Z) is generated by 

T : v i—>• v ® L 
(6.16) 

S : v *-> v <£) (L — O) — TI'TT\V 

The expression for S is not quite correct as an action on all of K%(X), since 
it annihilates the a A and the (3A- More correctly, S acts on K0{X) as 

5 : {u,u, c1,^) f-> (—tt, u, c1,^) (6.17a) 

and on Kl{X) as 
5 : /?o *-> ^ (6.17b) 

leaving the other generators fixed. Here /3o is the image of KQ in (6-7) and 
/? is the pullback of the torsion class in Kl{£). In the same notation, the 
action of T is 

T :   (u, u, c , c ) *—> (u, u + u, c , c ) 

)8 ■">£ + #) 

leaving the rest of i^T1^) fixed. 

It is easy to see that S, T satisfy the desired relations 

S2 = -l 

(ST)3 = 1 

and preserve both the intersection pairing and the torsion pairing. 

(6.17c) 

(6.18) 

More subtly, they also commute with the Z2 quantum symmetry (when 
one views the theory on X as a Z2 orbifold of the theory on K3 x T2). The 
action of the quantum symmetry is generated by 

v\-+v®Co (6.19) 

Clearly, this commutes with the action of T. In the above decomposition, it 
acts as 

(Z2)Q : K u, c1, c2) H-> (u ® £, {2 ® £, c1, c2) (6.20) 

where £ is the flat nontrivial line bundle on the Enriques surface, and it acts 
trivially on K1^). Thus it also commutes with the action of S. 

Note that the first SL(2,Z) acts trivially on K0(X)/K0(X)tor and the 
second acts trivially on K1(X)/K1(X)tor But both act nontrivially on the 
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torsion subgroups.   The torsion elements, a^ = CA — O e K0(X)tor and 
/3A € K1(X)tor, transform as doublets under the first S'L(2,Z). 

Under the second SL(2,Z), the torsion classes ao and a transform as a 
doublet as do torsion branes, /3o,/3 ^ K1(X)tor- 

Note that this is exactly the situation anticipated in [2]. It is simply not 
true that K0 is held fixed when we move about in the complex structure 
moduli space, and Kl is held fixed as we move about in the Kahler moduli 
space. Rather, both undergo monodromies. Only after modding out by the 
torsion do we find that K0/K^or is held fixed when we move about in the 
complex structure moduli space, and K1 /Klor is held fixed as we move about 
in the Kahler moduli space. 

6.3    Fluxes 

In [1], the authors argue that, to obtain a simple heterotic dual, one needs 
to turn on certain RR fluxes. In the Type IIA description (so that the fluxes 
are elements of K0{X)), we can turn on a flux in class ag. That is, we 
consider turning on a Z2 Wilson line for the RR gauge field. 

Under the action of the modular group, ao is not invariant. Its orbit un- 
der the 5L(2, Z) C Yy consists of three elements, ao, a and ao + a. Before 
modding out by IV, the moduli space consists of four disconnected compo- 
nents, one with no RR flux turned on, and three more with the above RR 
fluxes turned on. The subgroup r(2) C 5L(2, Z) preserves these RR fluxes 
and the quotient group 51/(2, Z)/r(2) identifies the different components. 
The upshot is that the moduli space with RR flux turned on, rather than 
having three disconnected components, has a single connected component 

MRR     f \ _O(10i2)_     5L(2) 
Mv   =rVWo)xO(2) ><W (6-21) 

where 
fy = O(10,2,Z) xr(2) (6.22) 

In particular, MyR is a finite cover of the previously-discussed vector mul- 
tiplet moduli space with no RR flux turned on. 

In [3], it was argued that turning on a discrete RR flux / E Km{X)tor 
restricts the allowed D-brane charges in the theory. It is a little hard to di- 
rectly compare their results to ours, as they are interested in the equivariant 
K-theory of orbifolds which cannot be resolved to smooth manifolds.  The 
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condition they proposed was that only those charges, v, which satisfy 

f®v = 0 (6.23) 

are allowed. The set of such u's forms a subgroup of K*(X). As we will see 
in the next section, this proposal does not seem to give the right answer in 
the case we are interested in. Instead, we propose that the correct group of 
D-brane charges is 

Km{X):/Tf (6.24a) 

where F/ is the (torsion) subgroup of K%(X) given by 

Yf = {v e K*(X) such that v = / ® w for some w} (6.24b) 

In the present instance, / — ao, and the restriction (6.23) is that the 
coefficient of ao = L — O in the charge must be even. There is no restriction 
on the charges in Kl(X). In terms of the decomposition v = {u,u, c1, c2) of 
(6.12), it means that the element u G ^(8) has even rank. And, indeed, 
the r(2) subgroup of £1/(2, Z) preserves4 this condition on u. 

The restriction (6.24) in our case is less drastic. The image of f® is 

IV = {0,5} (6.25) 

and our proposal for the group of D-brane charges is the quotient of the 
K-theory by this Z2 subgroup. 

In terms of the decomposition v — (u^u,c^c2), this quotient is simply 
expressed by saying that u G K0(£)/K0(£)tor- The quantum symmetry 
(6.20) should, then, be thought of as acting by 

(ZQJQ : (u, u, c1, c2) h-> (u (8) £, u, c1, c2) (6.26) 

The quantum symmetry in this Type IIA description seems to be related 
in a simple, but nontrivial way to the quantum symmetry of the heterotic 
dual theory, 

(Z2)g
ET - (Z2)Q • (-l)rankW 

4Actually, (6.23) is preserved by the larger subgroup, ro(2) C SL(2,Z). If (6.23) is the 
right condition, it would be more natural for the modular group to be IV = O(10, 2, Z) x 
ro(2) rather than (6.22). It is only because we require that (6.24) to be preserved that we 
insisted on (6.22) above. 
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6.4    Singularities 

6.4.1    N" — 4 degenerations 

Recall that X is a T2 fiber bundle over the Enriques surface, £. Say, in 
Type IIA, we tune the Kahler moduli so that a genus-zero curve in the 
base, C C £, shrinks to zero size. The local geometry of X at such a 
singularity is just T2 x (C2/Z2). This local geometry preserves d — 4, N = 4 
supersymmetry. D2-branes wrapping the curve C become massless in this 
limit and give rise to an A/* ==:4 SU{2) gauge theory [1]. That is, quantizing 
these D2-branes yields (in J\f = 2 language) massless vector multiplets and 
a massless hypermultiplet in the adjoint. 

The monodromy about this locus is easy to compute. From (6.15), we 
have Q{Oc,Oc) = 4 and Q{u,Oc) G 2Z for any u e K0(£). The mon- 
odromy is 

Mc : (u, u, c1, c2) h-> (TX - iQ(u, Oc)0c, ^ - %Q(u, Oc)Oc, c1, c2)    (6.27) 

By the above remark, |Q(x, OC) is always an integer, so the above formula 
makes sense. As expected, since the singular locus in question is a Z2 orbifold 
locus in the moduli space, Mc satisfies 

M£ = 1 (6.28) 

If you wish, you can cast (6.27) in the form of (2.14), for n — 0, by taking 

y = (O,0C, 0,0) 

x «=» i(Oc, 0,0,0) 

If we were considering K3 x T2, instead of its quotient, X) we would have 
Q{OciOc) — 2 and we could write down an honest formula of the form 
(2.14), with no pesky factors of ^. 

The attentive reader will note that the monodromy (6.27) does not com- 
mute with the SL(2,Z) action (6.17) (or even with its r(2) subgroup). This 
should be obvious from the physical description that we have given of the 
singularity. The SX(2,Z) of (6.17) mixes D2-branes wrapped on C with D4- 
branes wrapped on T2 x C. (6.27) describes the monodromy along a path 
circling the complex codimension-one locus where the D2-brane wrapped 
on C becomes massless. Conjugating Mc with S in (6.27a), we obtain the 
monodromy along a different path through the moduli space: the one such 
that, at the singularity, D4-branes wrapped on T2 x C become massless. 

At higher codimension in the moduli space, we obtain J\f = 4 ADE 
singularities, of a form that should now be quite familiar. 
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6.4.2    J\f = 2 degenerations 

As studied in [1, 31, 33], there is another class of singularity in the moduli 
space, associated to the entire Enriques surface £ collapsing to zero size. 
Because the singularity is no longer localized on £, the physics of the singu- 
larity is sensitive to the fact that the T2 bundle over £ is twisted. So, instead 
of obtaining an Af = 4 super symmetric spectrum of massless states (a vec- 
tor multiplet and an adjoint hypermultiplet), the twisting breaks Af = 4 to 
Af = 2 and the massless states are an 517(2) vector multiplet with Nf = 4 
hypermultiplets in the fundamental representation [1]. 

How does this come about? To understand it, we need to make a little di- 
gression about divisors on X, in particular those which, under the projection 
TT : X —> £, cover the Enriques. 

A section of this fiber bundle would give an embedding of Enriques in 
X, whose image would be a divisor in X which projects down to a single 
copy of £. Since the fiber bundle is nontrivial, there "generically" won't be 
a section. However, the transition functions of the fiber bundle act as —1 
on the T2 fibers. This has 4 fixed points on T2 and, if we choose the local 
section to land at one of these fixed points, the result pieces together to a 
global section i : £ ^ X. This gives us four divisors, D^, i, j = 0,1, in X 
labeled by the fixed points of the Z2 action on T2. If we wrap a D4-brane 
on one of these divisors, we have a BPS brane with charge 

OD0t0=L-O 

OD, 0 = L - O + ai 
(6.29) 

0Dll =L-0 + ai + a2 

where the a A of (6.9) are the torsion elements of K0(X) which transform 
under the "geometrical" 5L(2, Z) action on the torus (the 5L(2, Z) which is 
part of TJJ). 

These branes had a trivial line bundle on their world-volume. But the 
Enriques surface also has a flat, but nontrivial, line bundle, £, and we would 
just as well have gotten a BPS brane by wrapping a D-brane with £ on its 
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world-volume5. These give four more BPS brane, with charges 

£DO,O — L - O + a 

Vlt0 (6.30) 
£DOA =L-0 + a2 + a 

JCD^ = L- O + ai + a2 + a 

The quantum symmetry (6.19) acts to exchange the branes (6.29) with the 
corresponding branes (6.30). 

Another possibility for finding a divisor in X which covers £ is to choose 
a pair of points (z, —z) in the fiber, which are exchanged by the Z2 transition 
functions. This pieces together to a divisor, Dw in X which double-covers £. 
The normal bundle to Dw in X is trivial (we can vary z), so Dw has trivial 
canonical bundle. Dw double-covers £', so it is a K3 surface. A D4-brane 
wrapped on Dw has charge 

0Dw = 2(L-0) .   (6.31) 

This is twice the charge of one of the branes in (6.29),(6.30).  (Multiplying 
by 2 wipes out the torsion charge.) 

This is almost the spectrum of wrapped D-branes that we want. The 
branes wrapped on Dw give rise to massive vector multiplets which, when 
the Enriques shrinks to zero size, produce an enhanced SU{2) gauge sym- 
metry. The branes wrapped on the Dij yield hypermultiplets in the funda- 
mental of SU{2). 

Unfortunately, between (6.29) and (6.30), we seem to have produced two 
times too many of them. But, of course, we have yet to implement the fact 
that we have turned on a discrete RR flux. 

Turning on the RR flux / = ao changes the spectrum of allowed D- 
branes. In §6.3, we discussed two proposals, (6.23),(6.24), for what this 
restriction might be. Let us see what each of them imply in the present 
context. 

5There,is a subtlety here. The normal bundle of one of these divisors in X is the flat, 
but nontrivial line bundle C. So, in order to wrap a D4-brane on Z}, we need to choose 
a Spinc structure on D. This was frequently the case when we wrapped 4-branes on 
divisors in our other examples. But there the Spinc structure was unique, and so we did 
not bother remarking on it. Here, however, because H2(.D)tor = Z2, we have a choice of 
two different Spinc structures. With one choice of Spinc structure, pushing-forward O 
gives (6.29) while pushing forward £ gives (6.30). With the other choice, pushing forward 
O gives(6.30) and £ gives (6.29). 
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Imposing the condition (6.23) has no effect on the branes wrapped on 
Dw- But it does project out all of the singly-wrapped branes on the Dij. 
If you took a trivial rank-2 bundle on one of the Dij, this could simply 
decay into a rank-1 trivial bundle on the double-cover and move off the fixed 
point to become a rank-1 trivial bundle on Dw- In other words, that does 
not correspond to a brane "stuck" to this divisor. Instead, we can take the 
flat, but nontrivial rank-2 bundle O © £ on Dij. This cannot decay to a 
rank-1 bundle on Dw] it is genuinely stuck on the Enriques. Unfortunately, 
it also has twice the charge of a field in the fundamental (i.e. it has the same 
charge as the W bosons which come from wrapping a 4-brane on Dw). That 
is clearly not what the physics requires. 

Instead, let us see what (6.24) implies. Here we find that we must mod 
out by Tf = {0, a}. That is, we should identify the branes (6.29) with the 
corresponding branes (6.30). This also gives us four distinct branes wrapping 
the different Dij, but this time these branes have the right charges to be in 
the fundamental representation of SU(2). Note also that the modular group 
(the subgroup of SX(2, Z) which commutes with the flavour symmetry) for 
Nf = 4 was found by Seiberg and Witten [34] to be r(2). This, too, is in 
accord with (6.24), rather than (6.23), which is invariant under the larger 
group, ro(2). 

While we don't have a rigorous proof, we believe that the monodromy 
about this locus takes the form 

M : (it, u, c\ c2) h-> (u - 2Q{u, 0)0, u - 2Q(u, 0)0, c1, c2) (6.32) 

This preserves the relevant pairings and gives the right monodromy in the 
field theory limit [34]. 
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