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Abstract 

In a geometrical background, D-brane charge is classified by topo- 
logical K-theory. The corresponding classification of D-brane charge in 
an arbitrary, nongeometrical, compactification is still a mystery. We 
study D-branes on non-simply-connected Calabi-Yau 3-folds, with par- 
ticular interest in the D-branes whose charges are torsion elements of 
the K-theory. We argue that we can follow the D-brane charge through 
the nongeometrical regions of the Kahler moduli space and, as evidence, 
explicitly construct torsion D-branes at the Gepner point in some ex- 
amples. In one of our examples, the Gepner theory is a nonabelian 
orbifold of a tensor product of minimal models, and this somewhat 
exotic situation seems to be essential to the physics. 
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1    Introduction 

The D-branes that were analyzed thus far are mainly BPS branes preserving 
a fraction of the space-time supersymmetry. Starting with the work of Sen, 
it has been realized that there are also stable but non-BPS D-branes. The 
existence of (some of) these states has then been interpreted by Witten: D- 
brane charges are classified by K-theory [1, 2] rather than cohomology. In 
this context, Sen's non-BPS states are stable because they carry a conserved 
discrete charge - a torsion element of the K-theory1. There are two possible 
approaches to understand the physics of these stable non-BPS states: First, 
one can use a microscopic formulation, where D-branes are described as 
boundary conditions in a conformal field theory. Alternatively, one can use 
the language of K-theory and vector bundles. Both of these approaches 
have been used to study toroidal orbifolds in the literature. In this paper, 
we study non-BPS D-branes in a geometrically more interesting background 
- Calabi-Yau compactifications whose K-theory has a torsion part. We are 
particularly interested in the dependence of the physics of torsion D-branes 
on the moduli of the closed string background. 

In the large-radius limit, where geometrical reasoning applies, we know 
that D-brane charge is classified by topological K-theory. These geometrical 
concepts are no longer available in the stringy regime. Here, boundary con- 
formal field theory provides a powerful tool for the investigation of stringy 
D-brane physics. While these methods are in principle applicable at generic 
points in moduli space, they are most useful at rational or "Gepner" points, 
where the theory is exactly solvable. 

Still, while a detailed description of the D-branes may not be possible 
at a generic point in the moduli space, one might hope to achieve a cruder 
goal, namely the classification of the allowed D-brane charges. That is, we 
would like to define a "quantum K-theory" (the phrase appeared in [5], in 
analogy with quantum cohomology) which would classify the allowed D- 
brane charges everywhere in the moduli space, and which would reduce to 
topological K-theory in the geometrical limit. And, wherever possible, we 
would like to make contact between it and the results of boundary conformal 
field theory. 

Turning on a (flat) B-field leads rather naturally to a twisted version 
of the differential K-theory of [6, 7] (see also [8, 9] for earlier work). But 
to define our quantum K-theory, we would also need to understand how it 

1Not all stable, non-BPS D-branes are explained this way. For instance, among the D- 
branes of [3, 4] are ones which are stable in some region of the moduli space, for energetic 
reason, not because they carry a conserved charge. 
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deforms when one turns on a finite value for the Kahler modulus. 

While we won't be able to provide a definition of quantum K-theory, we 
will, at least, be able to describe how the quantum K-groups vary as we vary 
the moduli. More precisely, we will be able to determine the automorphism 
of the quantum K-theory that results from traversing an incontractible cycle 
in the moduli space. 

For the free part of the K-theory, these automorphisms are calculable 
using Mirror Symmetry The comparison of BPS D-brane charges at different 
points in moduli spaces was studied in [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. 
Our challenge is to extend these results to include the torsion in the K-theory. 
In the simplest class of examples (a more precise criterion will be discussed 
in §2.4), the automorphisms all act trivially on the torsion subgroup. So the 
torsion subgroup of the quantum K-theory is, in some sense, "constant" and 
independent of the moduli. 

We won't address the following much harder question. Given a (torsion) 
class in the quantum K-theory at a point in the moduli space: is there a 
stable D-brane in the conformal field theory at that point representing the 
given quantum K-theory class? The analogous question for BPS branes is 
hard enough [20, 21, 22]. 

We will see that, in some examples, it is possible to construct a stable 
brane in terms of boundary conformal field theory at the Gepner point, 
corresponding to a torsion class in the K-theory. This provides some evidence 
that there is, at least, a path between large-radius and the Gepner point 
along which the torsion branes are stable. It is not so clear that the torsion 
branes are stable near the conifold point (see §7.2). 

We will present two examples: Both of them are quotients of the quintic 
by a freely-acting discrete group. The first is a quotient by a freely-acting Z5 
scaling symmetry. The Kahler moduli space has three distinguished points: 
a "large-radius" point, a Gepner point, and a (mirror of a) conifold point. We 
construct torsion branes at large-radius and as bound states of BPS branes 
at the Gepner point. We find explicitly that the monodromies about these 
two points act trivially on the torsion subgroup of the quantum K-theory. 
Since there are only three boundary points of the Kahler moduli space, the 
monodromy about the conifold point must also act trivially on the torsion 
subgroup. 

In the second example, we mod out by an additional orbifold action, 
which is a cyclic permutation of the five coordinates. This example was in- 
vestigated by Aspinwall and Morrison [23]. They found that the tree-level 
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topological string amplitudes (the chiral ring) have a Z5 symmetry, relating 
different points in the moduli space, which is not a symmetry of the full 
theory. In particular, the 1-loop topological string amplitudes distinguish 
these points. We find that the D-brane spectrum is also not invariant un- 
der this would-be Z5 symmetry. Rather, the CFTs at points in the moduli 
space related by this Z5 differ by turning on (topologically trivial) discrete 
torsion. This, of course, alters the spectrum of D-branes. We determine the 
monodromies (up to a certain ambiguity, involving the torsion) in the Kahler 
moduli space and, in particular, we determine which D-branes become mass- 
less at each of the five points corresponding to (mirrors of a) "conifold"-type 
singularity. 

Section §2 is devoted to laying out our guiding assumptions in determin- 
ing the monodromies in the quantum K-theory as one moves about in the 
moduli space; subsections §2.1,§2.2 and §2.5 contain essential mathematical 
background to our computations. Sections §3,§4 review the essential confor- 
mal field theoretic background. In §5, we construct the BPS boundary states 
on the Gepner orbifolds we are interested in and in §6, we superpose them 
to form the desired torsion branes. §7 and §8 are devoted to our examples, 
and a detailed comparison of the conformal field theoretic and geometrical 
results. 

2    K-theory and D-branes 

We begin with a short review of some relevant facts about K-theory. Much 
of this material will be familiar to many readers; we include it here for 
completeness. 

2.1     D-brane charge 

In this paper we will be considering Type II string theory on spacetimes of 
the form M4 x X, where X is a compact Calabi-Yau manifold. We will be 
interested in wrapped D-branes which correspond to particles in the noncom- 
pact M4. As has become familiar, D-brane charge takes values in K-theory, 
but precisely which K-theory is relevant here? For D-branes which corre- 
spond to particles in M4, this is K^.(R4 x X), where by K^v we mean 
compactly-supported in space, but not in time. Since the time-direction is 
contractible, this is 

i^(R4 x X) = K-^R3 x X) 
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We can identify K'pt(M) = K*(M,dM), the relative K-theory of M with 
respect to its boundary. In our case, d(M3 x X) = S2 x X. The relative 
K-theory fits into a 6-terni exact sequence 

^(M)       > K0(dM)  -♦ K^M^M) 

(2.1) 

K0(M,dM) ■<  K^dM) <       K^M) 

To evaluate the various terms in this sequence, we use the fact that if K'(X) 
or K*(Y) is freely-generated, there is a Kiinneth formula for K'(X x Y), 

K0{XxY) = K0(X)®K0(Y)®K1(X)®Kl(Y) 

K1{Xx.Y)±K0(X)®K1(Y)®K1(X)®K0(y) ( ' 

In our case, K0(R3) = Z, K0{S2) - Z + Z and K^R3) = K^S2) = 0. 
Plugging this information into (2.1), we have 

K0(X) —^-» K0(S2) ® K0(X)  > K^R3 xX,S2x X) 

K0(R3 xX,S2x X) <  K0(S2) ® K^X) ^— Kl(X) 
(2.3) 

The maps i* are injective; they involve taking a class on M3 and restrict- 
ing it to the 2-sphere at infinity. So K^R3 x X,S2 x X) = K0(S2) ® 
K0(X)/i*(K0(X)) = K0(X) and similarly for K0. So, for Type IIB, our 
D-brane charge takes values in 

K'Lt(R^xX)cK1(X) (2.4) 

and for Type IIA, it takes values in 

i^(R4 x X) ~ K0(X) (2.5) 

This shift in degree should be familiar from ordinary E&M. There, the 
charge density, j G H?- (M3 x R) = H^^Ms) and by a similar exact sequence 

for relative cohomology, we find H^Ms) ~ }i2(dM3)/e(E2{M3)). This 
isomorphism is known as Gauss's Law] we compute the charge by integrating 
a 2-form, *i7,, over the boundary of a region of space. So we should regard 
(2.4),(2.5) as the K-theoretic analogues of Gauss's Law. 
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2.2     The push-forward 

We will be particularly interested in the K-theory classes corresponding to D- 
branes wrapped around submanifolds of X. Indeed, these will form a basis 
for the K-theory. The basic construction we will need is the K-theoretic 
push-forward. Given a submanifold i : S ^ X, and a K-theory class v on 5, 
we can use the Thorn homomorphism in K-theory to obtain a K-theory class, 
iw, on X. This class is characterized by the Atiyah-Hirzebruch Theorem. 

Let / : Y —-» X be a continuous map between smooth, compact, con- 
nected manifolds. lfdim(Y)—dim(X) = 0 mod 2, then for each a € .K0(Y), 
there is a class f\a G K0(X) such that 

ch(fia)A(X) = /* (ch(a)e2dA(YJ) (2.6) 

where d G H2(y) is a class whose mod-2 reduction is W2(Y) — f*W2(X) and 
/* is the push-forward in cohomology. The definition of the push-forward, 
/i, depends on a choice2 of the class d. If Y, X are almost complex manifolds, 
there is a canonical choice for d: set3 d = ci(Y) — f*ci(X) and (2.6) simplifies 
to 

ch(fia)Td(X) = f*(ch(a)Td(Y)) (2.7) 

If dim(Y) - dim(X) = 1 mod 2, then /.a G K1^). Viewing K1^) as a 
subgroup of K0(X x S'1), we have the same formula (2.6), with X replaced 
by X x Sl (so the difference in dimensions is again even). 

In the presence of torsion, (2.7) (and similar formulae that we use else- 
where) may not completely characterize the push-forward. In the dimension 
we are working, we can multiply by 6 to clear denominators. If (as will be 
true in our examples) there are no elements which are 2-torsion or 3-torsion, 
this operation has no kernel. The resulting equality would, in general, hold 
as an equality of integral Chern classes only modulo torsion. But, in our 
application, Y is a complex submanifold of a Calabi-Yau 3-fold, X. The 
push-forward in K-theory is supported in a tubular neighbourhood of Y For 
complex codimension 2 or 3, the compactly-supported K-theory of the tubu- 
lar neighbourhood (which is isomorphic to the K-theory of Y) is torsion-free, 
so the equality actually holds over the integers. In complex codimension 1 
(Y a divisor on X), we can use the simpler result that iiOy — L — O, where 
L is the line bundle whose divisor is Y. 

2There is an obstruction to defining the push-forward if no such class, d, exists.  The 
implications of this for D-branes was explored in [24]. 

3This choice of d implements the twisting of [25].' 
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2.3    Monodromies 

We are, of course, not just interested in eompactification on a particular 
Calabi-Yau manifold, X, but on a family of such manifolds, parametrized by 
some moduli space, Ai. Over each point in .M, the allowed D-brane charges 
form a discrete abelian group, I\ Locally, there is not much structure; since 
the charges are discrete, not much can happen to them. But if we circle 
a singular locus (the singular loci are complex-codimension one in M), the 
group F will come back to itself only up to an automorphism. So we have a 
F-bundle over the moduli space, and this bundle is characterized by a set of 
automorphisms G Aut(F), one for each of the for each of the homotopically- 
nontrivial paths in M. 

If we mod out by the torsion in the K-theory, the quotient K(X)/K(X)tor 

is a lattice and we have more structure. If we map K(X) —> K(X, C), then 
the latter forms a complex (in fact, holomorphic) vector bundle over My with 
a flat connection (whose flat sections may be taken to be K(X)/K(X)tor)' 
The automorphisms of the lattice are just given by the holonomies of this 
connection and can be written as monodromy matrices with respect to a 
basis of flat sections. These are essential ingredients in defining the Special 
Geometry of M. 

On the level of K(X)/K(X)tor^ the monodromies may be determined, 
rather explicitly, using Mirror Symmetry. Our task, however, will be to 
extend them to act on all of K(X), including the torsion. For this purpose, 
it will prove more insightful to write topological (K-theoretic) formulae. For 
this, we follow [26, 27]. 

We will mostly study the monodromies in the Kahler moduli space, and 
at that, we will mostly specialize to the case of one-dimensional Kahler mod- 
uli spaces. The monodromy around the large-radius limit is given shifting 
the B-field by the generator, £, of H2(X). Since the B-field enters into the 
Chern character by 

Ch(F) = Tr {eF+B) (2.8) 

we see that shifting B —> B + £ corresponds to tensoring with a line bundle, 
L such that ci(L) = £. 

Another singular locus of the moduli space is the (mirror of the) conifold, 
at which the volume of X shrinks to zero size (while the volumes of 2-cycles 
and 4-cycles stay finite) [28]. In this case, the monodromy is [26, 27] 

v h-> v - klnd(dv)0 (2.9) 

Here v is an element of K0(X), and O is the trivial line bundle. In the case 
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of hypersurfaces in toric varieties (as considered by [27]), the coefficient k is 
1. For the orbifolds we will consider later, we will find k > 1. 

2.4    Pairings 

If all we had was the structure of an abelian discrete group (modulo torsion, 
a lattice), then the automorphisms could be rather more general. However, 
there are bilinear pairings on the K-theory, and we must demand that the 
automorphisms be symmetries of these pairings. 

First, there is the usual intersection pairing, 

(.,.): K0(X)xK0(X)-*Z (2.10) 

This is a skew-symmetric bilinear pairing given by 

(v, w) = Ind(dvm) =  / ch(v <g> w)Td(X) (2.11) 

Normally, this is written in terms of the Dirac Index, rather than the Dol- 
beault Index. They agree on a Calabi-Yau manifold. It is skew-symmetric 
because Ind(dy) = —Ind(dv). It clearly annihilates K^or(X) and it is non- 
degenerate on K0(X)/K?or(X). 

There is a similar pairing on i;C1(X), given by the natural skew-symmetric 
map 

K1(X)xK1(X)-^K0(X) 

(where we have used Bott periodicity), followed by taking the index. Again, 
this is nondegenerate on K1(X)/Klor(X). 

These intersection pairings annihilate the torsion in K-theory. To capture 
information about the torsion, we can study the torsion-pairing [29, 30, 31]. 
This is a little more subtle to define, and we will review its definition and 
the relation to conformal field theory elsewhere [32]. For present purposes, 
it suffices that it is a nondegenerate pairing 

(.,.)-iK
0(X)torxK1(X)tor-+R/2- (2.12) 

In our examples (this is not the general situation!), K1(X)tor is generated by 
Dl-branes wrapped around torsion 1-cycles on X4, and K0(X)tor is gener- 
ated by elements of the form L—0, for L a flat line bundle on X. In this case, 

4In general, these generate only a subgroup of K1(X)tor, and similarly for K0(X)tor- 
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the torsion pairing is just the holonomy of the fiat line bundle (correspond- 
ing to an element of K0(X)tor) around the torsion 1-cycle (corresponding to 
an element of ^(X)^)- 

Now, it is a fundamental feature of special geometry that the mon- 
odromies on the Kahler moduli space leave K1(X)/K1(X)tor invariant, and 
similarly, the monodromies on the complex-structure moduli space leave 
K0(X)/K0(X)tor invariant. So, if we ignore the torsion, we need only check 
the invariance of one or the other of the intersection pairings. 

With the torsion, things are more subtle. If a monodromy on the Kahler 
moduli space acts as a nontrivial automorphism on K0(X)tori then, for the 
torsion pairing to be invariant, it must also act nontrivially on K1(X)tor 
while leaving K1(X)/K1(X)tor invariant. 

In our examples, we will, in fact, find that all of K1^), including the 
torsion, is actually invariant under the monodromies of the Kahler moduli 
space, or equivalently that K0(X)tor is invariant. At least for the example 
of §7, that will be justified a posteriori by our construction of the torsion D- 
branes at the Gepner point. For the example of §8, we were unable to prove 
that the action on the torsion subgroup was trivial, but we were unable to 
find a nontrivial action consistent with all of our other requirements. 

As we said, the monodromies must leave the intersection pairing invari- 
ant. That is, 

(Mv,Mw) = (v,w) (2.13) 

This is obviously true for the large radius monodromy, since 

(v®L,w®L) = (v,w) (2.14) 

for any line bundle L. 

We also need to consider the effect on the torsion pairing. In the examples 
we consider, the ring structure of the K-theory will be such that, if a E 
K0{X)tor^ then a®L = a for any line bundle L, so that the monodromy acts 
trivially on K0(X)tor- If we take the monodromy to act trivially on K1(X)1 

we then have that both torsion subgroups are fixed by the monodromy, and 
hence (trivially) so is the torsion pairing. More interesting is a case in which 
a (g) H = a' 7^ a. In that case, where the monodromy acts as a nontrivial 
automorphism of i;C0(X)tor. In order for the torsion pairing to be invariant, 
the monodromy would also have to act nontrivially on Kl(X)tor (while still 
acting trivially on K1^)/^^)^). 

Similarly the monodromy about the conifold (2.9) leaves the intersection 
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pairing invariant. One can see this by writing the monodromy as 

v^v-k(v,0)0 (2.15) 

and using the skew-symmetry of the pairing. 

This monodromy has a very simple interpretation. Let's say that at 
some singularity, a brane (a charged particle in the 4D effective theory) 
corresponding to K-theory class w becomes massless. Circling the singularity 
shifts the #-angle - of the U(l) for which this particle is electrically-charged 
- by 27v. By the Witten effect, the charge of a particle in K-theory class v 
gets shifted by5 

v H-> v — (v, w)w 

when you shift 9 —» 6 + 27r. If k such particles become massless, then the 
shift is (2.15). More generally, if several, mutually-local, particles become 
massless, the shift is 

v i—> v — 2^(v,Wi)wi (2.16) 
i 

where mutual locality means (wi,Wj) — 0. As we mentioned in §2.3, at the 
conifold, it is the D6-brane, corresponding to the K-theory class O which 
becomes massless. 

2.5    The Atiyah-Hirzebruch and  Cartan-Leray spectral se- 
quences 

In order to carry through our computations, we will need to be able to com- 
pute the cohomology of a Calabi-Yau manifold X = Y/G, given the knowl- 
edge of the cohomology of the covering space Y. And, given the cohomology 
of X, we will need to be able to compute its K-theory. 

Two spectral sequences come to our aid here. The Cartan-Leray spectral 
sequence allows one to compute the homology of X. The Atiyah-Hirzebruch 
spectral sequence allows one to compute its K-theory. Both of these are 
spectral sequences of a double-complex [33]. 

For a cohomology spectral sequence (like AHSS), the rth approximation 
to the cohomology we are after is a bigraded complex, Epq, together with a 

5Strictly speaking, this argument involving charges only fixes the action on 
K0(X)/K0(X)tor- However, the monodromy must also commute with the action of the 
quantum symmetry, to be discussed in §2.6. This, together with the action on the quo- 
tient, will frequently fix the actionon all of K0(X). Since this monodromy acts trivially 
on K0(X)tor, the torsion pairing is preserved if it also acts trivially on K (X). 
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differential 
dr : E™ -> EP+r'q-r+1 

which increases the total degree, n — p + g, by one. The (r + l)st ap- 
proximation, Er+i is the cohomology of dr on Br. Raoul Bott has likened 
spectral sequences to perturbation theory, each successive approximation 
getting closer and closer to the desired answer. In most applications, the 
E?'q vanish outside of some finite range in p (or outside of some finite range 
in q). Consequently, unlike perturbation theory, the spectral sequence is 
guaranteed to converge after a finite number of steps to something we can 
call E™. What the spectral sequence converges to, however, is not quite 
the cohomology we are interested in. Rather, it converges to the associated 
graded, Gr(H#). That is, the cohomology group Hn has a filtration (sequence 

of subgroups, i^    ) 

Hn = F(n) D F(n) ^ ^(n) D ^(n)  ^ ^^ 

such that Fp /Fp+i = E^l~p. So, in general, even after we have computed 
Eoo, we still have an extension problem to solve, in order to recover the 
cohomology groups Hn themselves. 

A homology spectral sequence (like CLSS) is very similar. The rth ap- 
proximation is a bigraded complex, Epq, but this time the differential lowers 
the total degree by one 

j    .  rpr         rpr 
r '      PA -^p—r.q+r — l 

Again, the spectral sequence converges to the associated graded GV(H.), 
where the homology group Hn has a descending filtration 

Hn = F?n) D Ffa1 D Ftf D F^ D ... (2.18) 

It is conventional to denote the complexes Er (or Er) by rectangular 
arrays, with the index p running in the horizontal direction and the index 
q running in the vertical direction. So the differential acts down and to the 
right for a cohomology spectral sequence. It acts up and to the left for a 
homology spectral sequence. 

The Cartan-Leray spectral sequence: For a discrete group, G, the 
Eilenberg-MacLane space, K{G) n) has 

7rp(K(G,n)) = {G    p = n (2.19) 

otherwise 
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(For n > 1, G must be abelian.) The group homology of G may be defined 
as the ordinary homology of the corresponding Eilenberg-MacLane space 

En(G)=En(K(G,l)) 

So, we have, immediately that 

Ho(G) = Z,        E1(G) = G/[G,G} 

For any abelian discrete group, G, K(G, 1) can be determined from 

K(Z,l) = S1 

K(Zn) = L(oo,n) = 5°° /Zn 

K(G x G', 1) = K(G, 1) x K(G', 1) 

A relatively short computation (see, e.g. [34]) yields 

H2(Zm x Z„) = Z(min) (2.20) 

If G acts freely on Y, the Cartan-Leray spectral sequence allows one to 
compute the homology of X = Y/G. The .E2 term is 

Elq = Ep(G,nq(Y)) (2.21) 

the homology with twisted coefficients (see [34] for precise definitions). If G 
acts trivially on llq(Y), the coefficient group is constant: Hq{Y) = lIq(Y), 
and the homology groups lIp(G,JIq(Y)) are determined from H#(G) and the 
Universal Coefficients Theorem. If G does not act trivially on Hg(y), then 
these homology groups with twisted coefficients are a bit ugly to compute. 
The one easy case is E.o(G,7iq(Y)). Let ]Iq(Y)G be the coinvariant quo- 
tient, }iq(Y)G = H.q(Y)/A, where A is the subgroup of H^Y) generated by 
elements of the form x — g • x, for x E Hg(Y) and g 6 G. One finds 

E0(G,Hq(Y))=Eq(Y)G (2.22) 

If G acts trivially on the homology, then B.q(Y)G = Hg(Y). 

The Cartan-Leray spectral sequence converges to Gr(H.m(Y/G)).   Our 
basic application will be the following. Assume 

• Y is simply connected. 

• G acts freely on Y. 



2 
1 
0 

H2(Y)G 
0 
z 

0            0 
Hi(G)    H2(G)    H3(G)    ... 

0 1             2            3 
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• H2(Y)G is torsion-free. 

The E2 term of the CLSS looks like. 

E2
p,q   10 0 0 (2.23) 

At least for this portion of the diagram, .c^ vanishes identically, so J33 = E2. 
The differential d^ : H3(G) —> H2(y)G could, in principle, be nontrivial, but 
vanishes in this case because H2(T)G is torsion-free6. The spectral sequence 
converges (since the higher differentials would land outside of this rectangle). 
So 

Hi(X)=Hi(G) = G/[C?,C?] (2.24) 

and H2(X) has the filtration 

H2(X) = F2 D Fx D Fo 

where 
Fo = F1= H2(y)G,        F2/F1 = H2(G) (2.25) 

This can be rewritten more succinctly as the short exact sequence 

0 -> H2(y)G ^ H2(X) - H2(G) ^ 0 (2.26) 

where TT* is the push-forward by the projection TT : Y —> X and makes sense 
on the quotient, H2(Y)(3, because elements of A push-forward to zero. 

If H2(G) = 0, then we find that ^(X) is just H2(y)G and is torsion-free. 
Otherwise, we still have a nontrivial extension problem, (2.26), to solve and 
H2(X) may or may not have torsion. 

As a simple application, consider the Tian-Yau manifold, which was the 
second example in [35]. The K-theory of that manifold has a nontrivial tor- 
sion part, but the author of that paper did not compute it. The missing 
ingredient was a computation of the torsion in i72(X). With our methods, 
this proves to be straightforward. H2(y) is 14-dimensional. Under the action 
of G — Z3, it decomposes as 4 regular representations and two trivial repre- 
sentations [36]. For each of the regular representations (with basis xi, x2, £3, 

6If H2(T)G has torsion, then ds : HaCC?) -^H^QOG kills part of the torsion in H2QOG, 
and the spectral sequence converges at the E4 term. 
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which are cyclically-permuted by G), we mod out by the subspace spanned 
by {xi — X2)X2 — £3}.The quotient is torsion-free, and is generated by xi 
(modulo A). Since H^G) - 0, we conclude that H^X) - H2(F)G = Z6- 
The considerations below then yield K{){X)tor — Kl{X)tor — ^3- 

The Atiyah-Hirzebruch spectral sequence: The Atiyah-Hirzebruch 
spectral sequence allows one to compute the K-theory of X, given a knowl- 
edge of its cohomology.. The E2 term is 

E%q = W(X^q{BU)) (2.27) 

where 7r2n(BU) — Z, ^n+iiBU) — 0. The spectral sequence converges to 

E™ = Gr{KV+q(X)) (2.28) 

The key feature of the differentials dr in the AHSS is their images are always 
torsion. 

We will be interested in the K-theory of Calabi-Yau manifolds, but the 
computation of the AHSS works exactly the same for any compact, connected 
6-manifold, X, with finite fundamental group (so that H1(X) — 0). The E2 
term looks like 

E™ = E™ 

H0(X) 0 H2(X)  Ji^X) JHllX)    H5(X)    H6(X) 

H0(X) 0 H^xT^H^X) I?(xr^H5(X) ^H*(X) 
0 0        0 0 0 0 0 

H0(X) 0 H2(X)    H3(X) H4(X)    H5(X)    H6(X) 
0 0        0 0 0 0 0 

H0(X) 0 H2(X)    H3(X) H4(X)    H5(X)    H6 (X) 
0 

The first potentially nonvanishing differential is ofe, since all of the odd 
rows of the complex vanish, ds annihilates H0(X), since the "lift" of H0(X) 
to K-theory is just the rank, and there is always a trivial vector bundle of 
rank n, for any n. So the generator of H0(X) must survive in the cohomology 
of ds. Similarly, ds annihilates H2(X), since its "lift" to K-theory is the 
first Chern class, and for any £ G H2(X), we can always find a line bundle 
L with ci(L) = £, so that L — O is the lift to K-theory of £. Finally, 
^3 : H3(X) —> H6(X) also vanishes because H6(X) is torsion-free. 

The only possible higher differential, cfe : H0(X) —> H5(X) again van- 
ishes for the same reasons as in the previous paragraph, and so the spectral 
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sequence converges at the Ez term. K0(X) has a filtration by U.ev(X) and 
K^X) has a filtration by Eodd(X). 

The filtration on K1(X) leads to the short exact sequence 

0 -> H5(X) -» iif1^) -► H3(X) -^ 0 

Since H5(X) is torsion, this tells us that the torsion subgroup (which is what 
we are really interested in computing) is also given by 

0 - H5(X) -► ^(X)^ -> H3(X)tor -. 0 (2.29) 

The filtration on ^(X) is a little longer. Recasting it as a set of short exact 
sequences, we have 

0 -► K(X) -> K0(X) -> H0(X) -^ 0 (2.30a) 

0 -> K(2)(X) -» K(X) -> H2(X) -^ 0 (2.30b) 

0 -> H6(X) -> K(2)(X) -> H4(X) -> 0 (2.30c) 

The sequences (2.30a,b) are universal. They single out the reduced K-theory, 
K(X) as the subgroup of K0(X) with vanishing rank and K^)(X) as the 
subgroup of the reduced K-theory with vanishing first Chern class. The 
sequence (2.30c) is special to our low-dimensional situation where the AHSS 
converges at the E2 term. 

The image of H6(X) in K0(X) is iiOp, the push-forward of the trivial 
line bundle over a point in X. This cannot be written as a multiple of some 
other K-theory class, so K(2){X)tor — H4(X)tor. Putting that together with 
(2.30b), we find that the torsion subgroup is given by the extension 

0 - H4(XV - K\X)tOT - H2(XV - 0 (2.31) 

Now, Jet us put the output of these two spectral sequences together. Let 
Y be a Calabi-Yau hypersurface (or complete intersection) in a toric variety. 
By the Lefschetz theorem, Hi(Y)' — 0 and H2(Y) is torsion-free. By Poincare 
duality, this is enough to show that all of H#(Y) is torsion-free, and hence 
so is H#(Y). Therefore K%(y) is torsion-free. 

To obtain something interesting, we mod out by a freely acting finite 
group to form X — Y/G. For our applications, we will assume that G acts 
holomorphically, and preserves the holomorphic 3-form so that X is again 
Calabi-Yau, but for these topological considerations, that doesn't matter. 
From (2.24), we learn that H2(X)*or and H5(X) are G/[G,G\. H3(X)^ 
and H4(X)tor = H2(X)tor are determined once we've solved the extension 
problem (2.26) to find the torsion in EhCX). Finally, we use (2.31),(2.29) to 
compute the torsion in the K-theory. 
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2.6    The quantum symmetry and discrete torsion 

In the §2.5, we considered Calabi-Yau manifolds of the form X — Y/G. 
String theory propagating on Y/G is governed by an orbifold conformal field 
theory. Since G acts freely on Y, there are no massless states in the twisted 
sectors, just massive string states. Still, the full conformal field theory (like 
any orbifold theory) has a quantum symmetry group isomorphic to G/[G, G\. 
How this works in the closed string sector is familiar. A little less familiar 
is how the quantum symmetry group acts on the D-branes of the theory. 

Under tensor products, the flat line bundles on X form an abelian group 
which is isomorphic to H2(X)ior = G/[G, G}. Identifying this with the quan- 
tum symmetry group, it acts on K9(X) by 

v>->v®L (2.32) 

for L a flat line bundle. Since the quantum symmetry is a symmetry of this 
whole family of conformal field theories, we obtain a further constraint on 
the monodromies discussed in §2.3: they must commute with the action of 
(2.32). 

We saw that H2(X)ior ^ 0, was the condition for having a potentially 
nontrivial extension problem (2.31),(2.29) relating the K-theory to the coho- 
mology. It is also the condition under which one can turn on a topologically- 
nontrivial flat B-field, i.e. one with H G H3(X)tor. Turning on this discrete 
torsion modifies the spectrum of the closed string theory and the D-brane 
charges take values in twisted K-theory, KjI(X)^ where H is the class in 
H3(X)tor [8, 9]. The moduli space of the compactification, in this case, 
consists of disconnected components, labeled by the discrete torsion. 

Viewed as an orbifold of the conformal field theory on Y, however, the 
theory on X = Y/G admits discrete torsion whenever.H^G) is nonzero, even 
if H.2(X)tor (and hence H3(X)tor) vanishes (see (2.26)). In that situation, 
we have a flat B-field, but there is no topological obstruction to continu- 
ously turning it off. Hence the theory "with discrete torsion" is continuously 
connected to the theory "without" discrete torsion - they lie in the same 
connected component of the moduli space. We will encounter an example of 
this in 88. 
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2.7    Our examples 

Perhaps the best-known Calabi-Yau Manifold is the quintic hypersurface, Y, 
in CP4. The Fermat quintic, 

zl + z% + z% + zl + zl = 0 

where the Zi are the homogeneous coordinates on IP4, is invariant under a 
freely-acting Z5 x Z5 symmetry generated by 

(21,22,23,24,25)'-► (z1,cjZ21uj2zs,uj3z^uj4iz5) (2.33) 

where CJ
5
 = 1 and 

(21,22,^3,24,25) —t'faj 23,24, ^5,2?i) (2.34) 

The quintic, of course, is simply connected and its K-theory is torsion-free. 
To form a non-simply connected Calabi-Yau, we mod out by (2.33) to form 
the manifold X = Y/Z5. X will be our first example. It is nice, in that we 
can construct the corresponding orbifolded Gepner model quite explicitly, 
and study the boundary states there. 

We can go further and mod out by (2.34) to form W — X/Z5. This will 
be our second example. Several new features will arise. 

3    BCFT Generalities 

Once we move away from the large-radius limit, we have to use the language 
of confermal field theory to describe the compactification. A framework 
for studying D-branes in such compactifications is provided by boundary 
conformal field theory. A conformal field theory on a Riemann surface with 
a boundary requires specifying boundary conditions. For cr-models these 
conditions are given by Dirichlet or Neumann boundary conditions on the 
<j-model fields. Consider now a general conformal field theory with a chiral 
symmetry algebra A. In this case a class of boundary conditions is provided 
by the automorphisms Q of the chiral algebra. These can be used as gluing 
conditions for the symmetry generators W along the boundary taken to be 
the real line: W(z) = (QW)(z), for z = z. A generalization of Cardy's 
formalism provides, in this case, a set of boundary states, see [37, 38] for 
more details. 

In the context of Calabi-Yau compactification, the chiral algebra which 
has to be preserved along the boundary, is the J\f — 2 world-sheet supersym- 
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metry algebra. This algebra has a well-known automorphism, the mirror- 
automorphism. Accordingly, there are two types of boundary conditions 
[39]: 

T = T,    J = - J,    G* = G*    "A-type" 

T = T,    J=J,    G± = G±    "B-type" + -4- C3-1) 

These boundary conditions guarantee that the boundary theory preserves 
one copy of an Af = 2 algebra. For the construction of BPS branes in CFT 
it is required also that J\f = 1 spacetime supersymmetry is preserved. The 
spacetime supersymmetry generator is obtained from the spectral flow oper- 
ator of the worldsheet theory. Bosonizing the U(l) current J = i-s/c/S dXy 

the spectral flow operator is given by exp (i^/3/cr)X)y where 77 specifies the 
number of units of spectral flow. To construct a space-time SUSY generator, 
one half unit of spectral flow is needed. The obvious boundary conditions 
on the spectral flow operator compatible with A-type or B-type boundary 
conditions are: 

eiy/3/cr]XL _ e27ri(p e-i^fzfcr)XR      "A.-fcype" 

n- f- (3-2) 
ei^/Z/criXL _ e27m9 eiy/3/cr)XR      "g.-fcype" 

We see that the A-type or B-type conditions are Dirichlet or Neumann 
boundary condition on the boson X, describing the bosonized t/(l). Ac- 
cordingly, a "position" can be associated with A-type states and a "Wilson 
line" with B-type states. The phase appearing in the boundary conditions 
determines which space-time N = 1 algebra is preserved. For two or more 
D-branes, the difference in the phase determines if there is a common pre- 
served supersymmetry [40, 41]. 7? can be interpreted as a "Wilson line" along 
the bosonized U(l) for the B-type branes. We will see these Wilson lines 
explicitly in the case of the Gepner model BPS branes. Similarly, the A-type 
states have positions along the spectral flow direction. 

Far out at large volume, A-type BPS boundary states correspond to 
branes wrapping special Lagrangian submanifolds of the Calabi-Yau, and 
B-type BPS branes correspond to vector bundles on holomorphic cycles [39]. 
In K-theory language, A-type branes are classified by if1, whereas B-type 
branes are classified by K0. 

For non-BPS states, the spectral flow symmetry can be broken by the 
boundary, since the brane breaks spacetime supersymmetry. Consistency 
does however require that the worldsheet supersymmetry is preserved, in 
other words, there will be A-type and B-type non-BPS states. In the ex- 
amples introduced in the previous section, we expect to find two types of 
stable but non-BPS branes, one in K0

y and one in K1. In this paper, we will 
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give a physical description of these branes as bound states of BPS D-branes, 
similar to the approach taken in [3, 42, 4, 43] for orbifolds of tori and flat 
space. 

The aim in the following sections is to identify a stack of BPS D-branes, 
described as boundary states in Gepner models, whose stable ground state 
is the torsion brane. 

4    Gepner Models and Orbifolds Thereof 

The stringy regime of Calabi-Yau orbifolds is described by orbifolds of Gep- 
ner models, whose closed string sector is reviewed in this section. For this, 
we first recall the Gepner model and its symmetries and then construct the 
closed string partition function of the orbifold model. 

4.1    Building blocks of Gepner models 

The basic building blocks of the Gepner model are J\f = 2 minimal models. 
The minimal model MMk has the following coset representation: 

MMk = y±- ^ (4.1) 

Accordingly, the central charge is c^ = 3fc/(fc + 2). The irreducible repre- 
sentations of the theory are labeled by (7, m, 5), where I refers to the 317(2), 
m to the C/(l)2/c+4 in the numerator and s to the f/(l)4 in the nominator. 
These three integers are subject to an additional constraint: 

I + m + s    even. 

The symmetry group of a minimal model is Z2/C+4 x Z2 for k even and Z^+g 
for k odd. It is generated by operators with the following action on primary 
fields: 

9 ^l,m,s) = e2"^   *(Z,m,a) ,       . 

h $(l,m,a) = e       2   $(/,m,5) 

Here, q is the U(l) charge of the primary field <fr(jjm55), 

m        s , A ^ 
"=^-2 <4-3) 
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The corresponding action on the representation labels is generated by the 
current (0,1,1), which is interpreted as the spectral flow operator (by 1/2 
units), and by (0,0,2), which are the representation labels of a worldsheet 
supersymmetry generator. The action of these currents on a representation 
is inherited by the fusion rules. Accordingly, they map (/,m, s) to (Z,ra + 
1,5 + 1), and (/, m, s) to (/, m, s + 2). Using these currents, the fields of the 
minimal model can be organized into orbits. The orbits of the spectral flow 
operator plays a major role in the discussion of the boundary states. 

4.2    Bulk theory 

To use minimal models for string compactification, we first have to form 
tensor products of r minimal models in such a way that the central charge 
is equal to 9. This is the right central charge for a CFT description of 
a Calabi-Yau compactification. In addition, we need to tensor this with 
an SO(2) i current algebra, describing the uncompactified directions in the 
light cone gauge. These products do not give consistent string vacua with 
four dimensional J\f = 1 space time SUSY. But there exists an orbifold of 
the tensor product which satisfies all requirements of a consistent string 
background. 

At this point, let us introduce some notation. First, we organize the / 
quantum numbers in a vector 

A =-(Zi,... ,/r), 

where r is the number of minimal models. The quantum numbers s and m 
are written in an 2r + 1 dimensional vector: 

JJ, = (so; mi,..., mr] si,..., sr) 

One can also define an inner product between these vectors: 

»■» = -—+ y\2(MT?)--^~) .(4-4) 

Next, we introduce the special (2r + l)-dimensional vectors ^o with all 
entries equal to 1, and Z^, j = 1,..., r, having zeroes everywhere except for 
the 1st and the (r + 1 + j)th entry which are equal to 2. These vectors stand 
for particular elements in the symmetry group of the tensor product of the 
minimal model. 

To implement worldsheet supersymmetry, one has to project on represen- 
tations (A, ii) which satisfy (3^ -ji G Z. To ensure spacetime supersymmetry, 
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one projects on odd integer U(l) charge, i.e. on representations (A,/i) with 
2/V/xe2Z+l. 

The Gepner model partition function is the partition function of the 
tensor product of minimal models, orbifolded by these symmetries: 

^ff    E    i-irxxAtixxrM- (4-5) 

The symbol Yl denotes a /3 constrained sum: The sum is taken over those 
(A, fj) which fulfill the charge quantization conditions /x • (3Q G 2Z + 1 and 
pti) • fj, e Z. A denotes the lattice spanned by /?o and jS^. In the twisted 
sectors, the right movers are shifted with respect to the left movers by lin- 
ear combinations of the lattice vectors in A. They are therefore describing 
winding modes along /3o and /^. 

The symmetries of the Gepner model are given by the subgroup of sym- 
metries of the tensor product theory which preserve worldsheet and space 
time supersymmetry [44]. These symmetries act as: 

P(7)*V;^ = expz. (± ^±M) ^ = e^^)*^,    (4.6) 

where the 7^ in 7 = (71,... ,7r) specify the orbifold action in the individual 
minimal models as in (4.2). /?7 is the vector (0;27;0). For consistency with 
the projections, we require /37 • ■ /?o G Z. 

The new partition function is easy to write down [44]: One just has to 
include a further vector into the lattice A and to project on elements fi with 
/?7 • (/i + /Z) G Z. In lattice language, there are new winding modes with 
IJL — JI = n/?7 coming from twisted sectors. 

It is a well-known result by Greene and Plesser that if we orbifold by all 
generators which are compatible with the charge quantization conditions, we 
get the mirror theory. In the case of the quintic, the Greene-Plesser group 
is Zl 

In this paper, we are interested in free orbifolds of a given Gepner model. 
Geometrically, we consider free orbifolds of hypersurfaces in weighted pro- 
jected space. 

Our main example is a free orbifold of the quintic. The Gepner model 
for the quintic is given by a tensor product of five copies of the k ~ 3 
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minimal model with the appropriate projections. The orbifold action under 
consideration is given by 

7= (0,1,2,3,4)    and   ft =/37 = (0;0,2,4,6,8;0,... ,0) (4.7) 

To obtain the mirror of the orbifold applying the Greene-Plesser construc- 
tion, we have to orbifold by one further Z5 action. This Z5 action has to 
be compatible with both the GSO projection and the orbifold projection 
given by (4.7). This generator can be chosen as 72 = (0,1,3,1,0). Taking 
an orbifold by both 71 and 72 leads to the mirror of the orbifold [23]. This 
can also be understood in the following way: We first orbifold the quintic 
by Z5, the full Greene-Plesser group of the quintic, to obtain the mirror of 
the quintic. Then, we mod out by a freely-acting Z5, which is the quantum 
symmetry associated to orbifolding by 71. In this way the original orbifold is 
undone. Starting with the mirror of the quintic and undoing the orbifold by 
71 is the same as starting with the quintic and orbifolding by 71 and 72. The 
full quantum symmetry of the orbifold is given by Z5 x Z5, whose generators 
are denoted g and h. The action of these symmetries on the D-branes will 
be discussed in detail in later sections. 

5    BPS Boundary States for Orbifolds of Gepner 
Models 

The A-type and B-type boundary states for a single minimal model are 
determined using Cardy's formalism in rational conformal field theory. In 
particular, in this framework the boundary states are labeled by the same 
labels as the primary fields, we denote boundary states using capital letters 
(L, M, 5). In the tensor product, the labels L are summarized in a vector 
A which specifies the boundary conditions in the WZW part of the minimal 
models: 

A- (Li,...,Lr) 

The U(l) labels are contained in a lattice vector H: 

~ = (S0;M1,...,Mr;S1,...,Sr). 

In this way (A, S) specifies a consistent boundary state in the tensor product 
theory. 

However, as explained for the closed string situation in the previous 
section, we have to take an orbifold of the tensor product theory, to ensure 
space-time and world-sheet super symmetry. The GSO projection consists of 
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a projection on integer charges. In geometrical language, one would say that 
the bosonized U(l) in eq. (3.2) is compactified on a circle. 

A-type boundary states have Dirichlet boundary conditions along the 
circle. It is well-known from the geometrical context how to construct A- 
type branes on a circle by summing over images of the translation operator 
[45]. In our context, the translation operator is given by the spectral flow 
operator by one half unit. More explicitly, the projected A-type boundary 
state can be written as [37, 46, 47] 

|A,S)pro, = con5t^(-ir(-l)l|A,S + z//3o-f^i/3(1) + --- + ^(r)). (5.1) 

Inequivalent A-type boundary states are given by orbits of the spectral flow 
operator and the operators (3^. As a consequence, the physically inequiva- 
lent choices for Si are encoded in the sum S = X^Si, which is defined mod 
4. The Z2 operation S •-> 5 + 2 maps branes to anti-branes. The A-type 
states transform non-trivially under the symmetry operations (4.6). 

2(7)l(A,S))proj - |(A,S + /37))proj (5.2) 

Note, however, that because we took an orbit under the spectral flow the 
vector 70 = (1,1,1,1,1) acts trivially, and consequently the vectors 7 and 
7 + 70 act in the same way on the boundary state. 

B-type boundary states have Neumann boundary conditions on X. They 
are therefore wrapping the circle given by the bosonized U(l). In this case, 
they should be specified by a discrete Wilson line. In analogy with the 
situation where D-branes are wrapped on a geometric circle (or rather a 
lattice vector) this Wilson line is given by 2/3o • S. Similar to the A-type 
branes, the label S = Yl^i distinguishes between branes and anti-branes. 
The physically inequivalent choices for the Mi can then be encoded in the 
quantity M = Yl wiMi, where Wi are the weights of the embedding weighted 
projected space, Wi =■ d/(ki + 2), where d = lcm{ki + 2}. Note that this 
quantity just extracts the M dependent part of the Wilson line 2/3o • 2. The 
B-type boundary states are invariant under application of elements flop of 
the Greene-Plesser group since per definition 

g(lGp) |(A,2/3o • H)) = |(A,2/?o • (S + POP))} = |(A, 2/3o • S)>. 

This means that of all the generators in (5.2) there remains only one non- 
trivially acting symmetry operation on the B-type states, 

g:M H-> M + 2. (5.3) 
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Let us now describe boundary states on the orbifold. A set of A-type 
boundary states can be obtained by simply projecting the boundary states 
in (5.1) by the additional orbifold operation. In formulas: 

2 

|A,S)or6 = const J2 (-l)i/(-l)^|A,H + i//5o + ^/?7 + ^(1) + --- + ^(r)). 

(5.4) 
This set of A-type states is given by orbits of the spectral flow operator and 
the additional orbifold operator. To obtain the A-type states for the orbifold 
of the quintic, plug in the explicit generator 71 in (4.7). 

Let us turn to the B-type states. There are more B-type states on the 
orbifold than on the original model. The D-branes of the original model split 
up into several fractional branes. The reason for this is that the closed string 
orbifold partition function has additional twisted sector states, the lattice 
A in (4.5) is enhanced by an additional vector /?7, which can be wrapped. 
There are two labels needed to distinguish between different B-type branes, 
the label M and M1 = dJ2 p^f. Explicit formulas for the B-type states are 
provided in the appendix. 

It is instructive to look at the situation in the language of [16]. They 
argue that B-type boundary states (with A = (0,..., 0)) can be thought of 
as the restriction of the fractional brane states of a Cr/ZK orbifold describ- 
ing the Landau Ginzburg phase of the linear cr-model to the Calabi-Yau 
hypersurface. In this picture, the B-type states on a ZAT orbifold corre- 
spond to fractional branes on Cr/Zj^ x Z^r, which are characterized by the 
irreducible representations of the orbifold group. For Z^v groups, these rep- 
resentation labels are just given by a phase, and this phase can be mapped 
to the Wilson-line label introduced before. 

The states on the orbifold are only invariant under the Greene-Plesser 
group of the orbifold, which is a subgroup of the Greene-Plesser group of 
the original model. The quantum symmetry of the orbifold model is bigger 
than that of the covering space, and the different fractional branes can be 
related by applying the symmetry generators. For the quintic orbifold, the 
B-type states are labeled by M = ^ Mi and M1 = M2 -f 2M3 + 3M4 + AM5. 
They transform non-trivially under the Z5 x Z5 quantum symmetry: 

g : M -> M + 2,     M1 -> M1 

(5 5) 
h:M^M,    M1 -► M1 + 2 

g and h can be written in matrix form if we arrange the BPS boundary 
states in a 25-dimensional vector with entries (M, M1). 

((0,0), (2,0), (4,0), (6,0), (8,0), (2,0), (2,2),... (8,8))* 
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On these vectors, g acts as a 25 x 25 matrix, consisting of 5 dimensional 
shift matrices on the diagonal. On the other hand, h acts as a shift matrix 
on those 5x5 blocks. 

These symmetry operations specify the transformation properties of the 
BPS branes (periods about the Gepner point) under the quantum symmetry, 
and can be compared with the results obtained from K-theory considerations. 
The generator g corresponds to the additional Z5 symmetry at the Gepner 
point. Geometrically, its action on branes is given by the monodromy matrix 
around the Gepner point. The group generated by h is a universal symmetry 
group and should be compared to the quantum symmetry discussed in §2.6. 
In §7.2 these symmetry operations are worked out for the example at hand. 

So far, we only considered orbifold groups generated by a single group 
element. Of course, it is possible to repeat the same procedure for an addi- 
tional generator. In particular, the full Greene-Plesser group can be divided 
out. In the bulk, this yields the theory on the mirror and the procedure 
outlined above provides us with a method to confirm that mirror symmetry 
extends to the open string sector [48, 26, 49]. A-type boundary states on 
the mirror obtained through an orbifold by the Greene-Plesser group are 
organized in terms of orbits of this group. The resulting open string sector 
inherits that structure. Therefore, the projected (A-type) partition function 
coincides with that found in [37] for B-type states on the original manifold 
[46]. The Wilson line M on the B-type side becomes an orbit label on the 
A-type side. Conversely, we can also understand A-type states as B-types 
on the mirror: Taking successive orbifolds, the B-type states split up further 
into fractional branes and a new label dJ2/yiMi/(ki + 2) has to be intro- 
duced after each step. After all Greene-Plesser generators are modded out, 
the states will be orbits of only the spectral flow operator. In this way, 
A-type boundary states can be obtained as B-type states on the mirror. 

This interpretation provides a convenient way to specify the A-type 
branes in terms of dY^liMi/(ki + 2) for all Greene-Plesser operators. For 
the quintic we will use the following labels for A-type branes: M = J^Mi, 
M1 = M2 + 2M3 + 3M4 +.4M5 and M2 = M2 + 3M3 + M4. These states 
transform non-trivially under Z5 x Z5 x Z5, which is the quantum symmetry 
of the mirror of the orbifold. 

G : M -> M + 2,    M1 -> M1    M2 -> M2 

H : M -> M,    M1 -> M1 + 2    M2-> M2 (5.6) 

H'\M^M,    Ml-*Ml    M2-+M2 + 2 

In §7.2, this symmetry action will be compared with the results obtained 
from K-theory. 
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5.1     The intersection form for the orbifold models 

In this section, we will compute the intersection numbers for the BPS states 
on the orbifold. Since the torsion state we are looking for is supposed to 
have zero intersection with all branes, this computation gives a first hint on 
the symmetry properties of the torsion brane. 

In boundary conformal field theory, the intersection form of two branes 
can be computed as the Witten index in the open string sector, tr^(—1)F. 
To compute the intersection numbers on the orbifold of the quintic (k = 3)5, 
we use the formulas and notation of [10], where the expression for the A-type 
boundary states with A = (0,0,0,0,0) was given as 

IA = ll(l-9-1). (5.7) 
1=1 

Here, the gi are the symmetry operations in (5.2), with gi = <?((!, 0,0,0,0)),... , gr 

((0,0,0,0,1)). Because of the GSO projection the generators gi are not in- 
dependent and we can express one of them, e.g.   #5, in terms of the other 
generators, (ps)^1 = 51525354• This leads to the following expression for the 
intersection form [10] : 

IA = (1 - gi)(l - gDil - gl)(l - 4)(1 - 9x92939,). 

For the B-type states on the quintic, all the 5^ get identified, leaving only 
the non-trivial generator 5 of (5.3). The result for the intersection matrix is 
therefore: 

/B = (l-5-1)5, (5.8) 

where 5 is the generator mapping M —> M + 2, where M = ^ M^. 

On the orbifold we are in an intermediate situation, where some of the gi 
get identified. The intersection forms can be written in terms of the quantum 
symmetry generators 5, h for the B-type states and in terms of G, iJ, H' for 
the A-type states. Their action on the boundary states is given in (5.5) and 
(5.6). 

Using 5 and h, the intersection form for B-type states on the orbifold is 
given by 

j£6 = g\-h4 -h3-h2-h-l) + 53(2/i4 + 2h3 + 2h2 + 2/i + 2) 

+ 52(-2/i4 - 2h3 - 2/i2 - 2/i - 2) + 5(/i4 + h3 + h2 + h + 1)    (5.9) 

This means that the intersection matrix depends only on 5, not on h. The 
intersection matrix between two states which differ only in M1, not in M is 
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zero, and that of two states which differ only in M equals the intersection 
number on the quintic. For two states differing by a general application of 
gnhrn^ the intersection number is independent of m. 

Using the generators in (5.6), the intersection form for the A-type states 
can be written as 

j£6 = G4(-l - ff4^4 - H3H'* -H2- HH'2) 

+G\H4H,*+H3H/4+H2H'3+H2+HH'4+Hf4+H 

+G2(-H2H,s-HH,4-H,A-HAH,3-H,-HAHf-H^-H3H,2-H2Hf-HH,) 

+ G(HAH'3 + H3 + H2H' + HH' + 1)    (5.10) 

States, which only differ by an application of i?, have zero intersection num- 
ber. The intersection number is determined by the group actions G and 
Hf. 

6    Non-BPS States on the Gepner Orbifold 

The D-branes we are interested in are non-BPS but stable. Their stability 
is guaranteed because, though they are not charged under any RR field, they 
carry a discrete torsion charge. We are going to construct the torsion brane 
as a bound state of the BPS branes, whose boundary state description has 
been given in the previous section. The idea is to form a bound state such 
that all the BPS charges cancel, leaving only a net torsion charge. 

Let us first consider the B-type states. Since the intersection form does 
not depend on /i, we conclude that the application of h can only shift the 
torsion charge. Starting from a given brane |(A, 5)), the RR charge can be 
canceled by adding a full orbit of g-images to that brane. However, for these 
branes there is no obstruction to decay to the vacuum. To be left with a non- 
trivial torsion charge, we modify the ^-action on the orbit by suitable powers 
of h. This is possible, since the state hm g|(A, H)) has the same intersections 
as 5)(A, H)), but differs from it by an action on M1. Summarizing, we add up 
the following five branes (taking into account the appropriate Chan-Paton 
indices): 

|(M, M1)) + hnig\{M, M1)) + hn2g2\(M, M1)) 

+ /in353|(M,M1)) + /in454|(M,M1)) 

= YJh
n™g™\{M,M1)),    (6.1) 
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where 

yyj nm ^ 0    mod 5. 

Note, that there are tachyons propagating between the individual branes 
of this stack of branes. Therefore, this unstable stack of branes can decay 
into a stable single particle state. We argued that this state is the torsion 
brane we are looking for. This claim will get further support from the K- 
theory analysis in the following section, where the K-theory classes of all BPS 
boundary states and their symmetry properties will be identified. Taking a 
sum of K-theory classes as in (6.1) will result in a torsion class. 

The A-type states can be dis- 
cussed similarly. From their in- 
tersection form it can be con- 
cluded that to cancel the RR 
charge a sum over all powers of 
G and H' has to be taken. To 
have a remaining torsion charge, 
M1 should not cancel out. This 
means that we consider the fol- 
lowing stack of branes: 

J2 Fn(-'-,)Gm(/z/)m/|(M, M\ M2)), ^ 
(4,0) 

(0,.6)   •(0,4) 

(0,8).     Jh^ 

> 

® 
(8,0) 

(6.2) ® (6,2) 

where 

XX™,™')^0    mod5r 

Also for the A-type branes this 
picture can be verified using It- 
theory arguments. 

Figure 1: Graphical depiction of a torsion 
state: Each dot represents an L — 0 BPS 
brane. The symmetry generator h acts 
within each small pentagon; g maps the 
branes of one pentagon onto the next. The 
5 branes marked by circles can decay to a 
stable torsion brane. 

To summarize, we have shown 
that for the free orbifold of the 
quintic generated by 71 there are torsion B-type and A-type states. The 
A-type states can be reinterpreted as B-type states on the orbifold by 71 
and 72. One might ask what happens if we take an orbifold by the third 
Greene-Plesser generator. Since this generator does not preserve the projec- 
tion by 71, the torsion states get projected out. This is what is expected 
from geometry, since the mirror of the quintic has no torsion in K-theory. 
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7    The K-theory of X 

7.1    The K-theory of the Quintic 

First let us review the K-theory of the quintic, Y. 

The even dimensional cohomology of Y has generators 1,^2)^4 an(l ^6? 
with relations ^ = 5^4, £2 U £4 = ^6 and ^2 = 0. The total Chern class of Y 
is 

c(y) = 1 + 50^ - 200^6 

H3(y) has 204 generators ^, and we have d U ^ = u>ij€e for some constant 
antisymmetric matrix Uij. Also ^2 U Ci = ^4 u Ci — 0. 

Let J? be the hyperplane line bundle on Y", and D be the corresponding 
hyperplane divisor. Let C be a degree-one rational curve (a P1) in Y and p 
a point in Y. K0(Y) has the following generators: 

r Cl C2 C3 

0 1 0 0 0 
a - i,pD = H-0 0 6 0 0 

b = vOc 0 0 -u 2^6 
c — i\Op 0 0 0 26 

These correspond simply to a 6-brane wrapped on Y, a 4-brane wrapped on 
D, a 2-brane wrapped on C and a 0-brane sitting at the point p. 

The relations in the K-theory ring are similar to what we had in coho- 
mology: a2 = 56, ab — c and b2 = 0. For later use, it is also worthwhile 
knowing that complex conjugation acts by: a = —a + 56 — 5c, b = b — 2c and 
c — —c. 

Kl(Y) has generators m € K0(Y x 5'1) whose only nonvanishing chern 
class is 02(111) — —Ci U (j), where cj) is the fundamental class of Sl. 

The intersection form on K0(Y) is 

{v, w) = Ind(dv®w) = / ch(v ® w)Td(Y) 
JY 

(7.1) 

In the above basis, this is the matrix 

/0    -5 -1 -1\ 

n = 5     0 
1    -1 

1 
0 

0 
0 

\i   0 0 0/ 

(7.2) 
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The monodromies are generated by the following operations: Mr=00 : v i—► 
v ® H at large radius, Me : v \-> v — lnd(dv)0 at the conifold and Mg — 
McMr=00 at the Gepner point. With respect to the above basis, these are 
represented by the matrices 

(7.3) 

/l   0 0 0\ a -5 -1 —: 

Mr=<x = 
1    1   0 
0   5    1 

0 
0 7 Mc = 

0 
0 

1 
0 

0 
1 

0 
0 

\0   0   1 1/ Vo 0 0 i 

/-4 -10 -2   -1\ 

Mg = 
1 
0 

1 
5 

0 0 
1 0 

Vo 0 1 lj- 

Note that M^ = 1. 

To make the connection to CFT at the Gepner point, we need to find 
a set of five K-theory elements which are cyclically permuted under the Z5 
action of Mg. Set 

or, explicitly, 

Vn = M-nO 

V1 = 0-a + 5b-5c 

V2 = -W + 3a - 106 + 5c 

Vz = 60 - 3a + 5b 

V4 = -40 + a 

y5 = c 

(7.4) 

(7.5) 

Together, these span an index-25 sublattice of K0(Y) - only 2-brane and 0- 
brane charges which are multiples of 5 are realizable as linear combinations 
of the Vn. The intersection pairing between these generators is given by the 
5x5 matrix 

-10 
5 
0 

-5 
10 

/ o 
-5 
10 
-10 
5 

5 
0 

-5 
10 

-10 

10 -5\ 
-10 10 
5 -10 
0 5 
-5 0  ) 

which agrees with the intersection form (5.8) for the B-type boundary states 
at the Gepner point. We therefore identify the B-type boundary states 
constructed in the CFT as BPS representatives of the above K-theory classes. 

In fact, as noted by Diaconescu and Douglas [16], the sublattice of K0(Y) 
which arises in this way is precisely the pullback of the K-theory of CP4 
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under the embedding Y <-+ CP4. Their rationale for this was that, for the 
purpose of studying the B-type states, one can ignore the superpotential in 
the N=2 gauged linear a-model. 

If one ignores the superpotential, then in the large-radius phase of the 
GLaM, one has a sigma model with target space Y = Op4(—5), the to- 
tal space of the canonical bundle of IP4. This is a noncompact Calabi-Yau 
manifold, and its K-theory, K(OF4-5)) = i^(P4). 

7.2    The K-theory of X 

Now we turn to the same computation on X — Y/Zs, where we mod out 
by (2.33). The cohomology ring of X is a little simpler than for the quintic. 
llev(X) is generated by 1,.^2)XJ^2

2
5 

an(^ ^23' with relations 

The total Chern class of X is 

c(X) = 1 + 10£,2 - 40^3 

Under the projection TTI : Y —»• X, we have TTJ^) = ^2, and, consequently, 
«t(c(X)) = c(Y). 

H3(X) has generators Cij i = 1,... 44, and H5(X) has a single generator 
X U C (the cup product being independent of i). 

Now we turn to the K-theory.  As before let H be the hyperplane line 
bundle and let L be the flat line bundle 

L = (Y x C)/Z5 

where Z5 act by multiplication by a fifth root of unity on C. A basis for 
K0(X) is 

r ci C2 C3 

0 1 0 0 0 
a = H-0 0 6 0 0 
a = L-0 

a2 

a3 

0 
0 
0 

X 
0 
0 

0 

0 

0 

^2 

where a® a = 0. Complex conjugation acts by a = — a+a2 —a3 and a = — a. 
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Note that there is no preferred choice for a. Shifting a —> a! = a+a yields 
exactly the same ring. For flat line bundles, there is a preferred one which is 
actually trivial. There is no similar preferred choice if the line bundle isn't 
flat. 

Kl{X) C K0(X x S1) is given by generators Ui whose nonvanishing 
Ghern classes are C2{ui) = —(i U (f> and /?, whose only nonvanishing Chern 
class is cs(f3) = 2% U ( U (f). 

The intersection form on K0(X) is given with respect to the above basis 
(omitting a, which has zero intersection with everything) by 

fi = 

/0   -1 -1    -1\ 
10 10 
1-1 0      0 

\1     0 0      0 / 

(7.6) 

and the monodromies are generated by the following operations: Mr=00 : 
v >-> v ® H at large radius, Mc : v *-> v — 5Ind(dv)0 at the conifold and 
Mg = McMr=00 at the Gepner point. 

The conifold monodromy is easy to understand by the considerations 
of §2.4. At the conifold point, 5 mutually local particles become massless. 
They are the wrapped D6-brane and the D6-brane with p torsion D4-branes 
on it, for p = 1,2,3,4. These lie in the K-theory classes 0, L, L2, L3, L4. By 
(2.16), the monodromy is 

v^v- (^ 0)0 - (v, L)L - (v, L2)L2 - (v,L3)L3 - (v, L4)L4 

- i; - (v, 0)(0 + L + L2 + L3 + L3 + LA) (7.7) 

= I;-5(I;,0)(9 

where we used the fact that the intersection pairing with Lp is independent 
of p and (!?+L+L2+L3+L4 = 50. So, for the purposes of the considerations 
of §2.4, we just have five particles carrying 6-brane charge becoming massless 
at the conifold (instead of one such particle for the quintic). 

With respect to the above basis, the above monodromies are represented 
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by the matrices 

Mr=na = 

/I   0   0   0\ 
110   0 
0   110 

Vo o  i  i/ 

Mr. 

Mg = 

/I -5 -5 -s\ 
0 1 0 0 
0 0 1 0 

\o 0 0 1/ 
/-4   -10   -10 -5\ 
110 0 
0       11 0 

V 0      0        1 1 J 

(7.8) 

Another way to think about (3 is as the push-forward iiOt of the trivial 
line bundle oil the torsion 1-cycle, £. In that case, the torsion pairing between 
a and /3 consists of computing the holonomy of L = O + a restricted to £. 

At a generic point in the moduli space, the quantum symmetry is Z5, 
generated by v t-> t;®L, i.e. O —» O + a and ui \-> Ui + f3, with all other basis 
vectors held fixed. Note that the monodromies (in particular, the conifold 
monodromy) commute with this action. At the Gepner point, the quantum 
symmetry is enhanced to Z5 x Z5, where the second Z5 is represented by 
Mg above acting on K0(X), and acts trivially on Kl(X). These symmetries 
preserve both the intersection pairings on K0(X) and K1(X) and the torsion 
pairing: K0(X)tor xK^X)^ ->Z/5Z. 

To make contact with the B-type states in the conformal field theory, we 
follow the procedure above. We write down the orbit of O under the Z5 x Z5 
quantum symmetry. The orbit generated by Mg is 

Vifi = O - a + a2 - a3. 

^25 = -40 + 3a - 2a2 + a3 

V^g = 60 - 3a■■+ a2 

^5 =-40 +a 

Vs,5 = 0 

(7.9) 

The generator of the other Z5 shifts O —» O + a. Noting that 60: = —4a = a, 
this means that it shifts Vn^ —» T4,5 + ce. So full Z5 x Z5 orbit consists of 25 
K-theory classes 

y-n-.Tn  —   Vr. 71,5 772a (7.10) 

Their intersection form is clearly independent of 772, and the n-dependence 
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is given by the 5 x 5 matrix 

/O      1-2     2 -1\ 
-10      1-2 2 
2-10      1 -2 

-2     2-10      1 
V 1     -2     2     -1 0 J 

in agreement with the CFT result (5.9). So we identify the 25 B-type bound- 
ary states as BPS representatives of the 25 K-theory classes V^m. 

Having made this identification, we can give a further, a posteriori ar- 
gument for the correctness of (7.7), in particular, for our assertion that Mc 

acts trivially on the torsion subgroup. Using this identification, the results 
of §5 show that Mg acts trivially on the torsion subgroup. We already had 
that Mr=00 acts trivially on the torsion subgroup, so we conclude that Mc 

acts trivially on the torsion subgroup, as we determined above. 

To form a torsion brane representing the class a, we sum 

with J2ni = 1 mod 5. This cancels the BPS charges, leaving just the 
torsion charge. After tachyon condensation, what remains is a non-BPS 
brane carrying torsion charge a. 

We have constructed torsion D-branes at large radius and at the Gepner 
point. This likely means that there is a region of the moduli space, containing 
both large-radius and the Gepner point, in which the torsion branes are 
stable. It is not clear that they are stable everywhere. Indeed, in a related 
situation, Gopakumar and Vafa [50] have argued that the torsion branes 
might be unstable near the conifold point. 

The situation is this: at the conifold, the D6-brane (with or without 
torsion charge) is becoming massless. If the mass of the "pure" torsion brane 
stays finite at conifold point, then it clearly becomes unstable to decaying 
into a D6-brane,anti-D6-brane pair (carrying net torsion charge). If this is 
the case, then there is a curve of marginal stability surrounding the conifold 
point, across which the torsion 4-brane becomes unstable. 

Of course, the above scenario depends on the behaviour of the mass of 
the torsion brane as we approach the conifold. Since we don't really know 
how it behaves, we cannot make a definitive prediction. 
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8    The Permutation Orbifold 

Now we consider the Calabi Yau manifold W = X/Zs, where we mod out 
by the freely acting Z5, (2.34). 

8.1    Action of the permutation group 

In the Gepner model description of W there is an additional Z5 action, which 
has to be implemented on the boundary states. The action of that Z5 on 
the primary fields is given by: 

0" • (hihihih,h) ,-> (^5,^1^2^3^4)7 

cr : (so; mi, 7712,7713,7714, ms; 51,52, 53? 54,55) H-^ 

(505 7715,7711, 7712, 77^3, 777,4; 55, 5i, 52, 53, 54). 

(8.1) 

It is easy to see how this action translates into an action on boundary states 
in the tensor product theory: 

A = (Li, L2, L3, L4, L5) i->- (L5, Li, L2,1/3, L4), 

(So;Mi,M2,M3,M4,M5;5i,S2,S3,S4,S5) ^ 

(So; Ms.Mi, M2, M3, M4; 55,5i, S2, S3, SA) 

(8.2) 

In the following, it is assumed that the boundary states under consideration 
carry the same L labels in all minimal models A = (L, L, L, L, L). In partic- 
ular, we are interested in the B-type boundary states with A = (0,0,0,0,0). 
As a first step, let us consider an action of the permutation group in the un- 
orbifolded (k = 3)5 theory. The B-type branes, being labeled by M = J2 Mi, 
are invariant under the action of the permutation group. This is no longer 
the case on the orbifold X, since 7 acts differently on the individual minimal 
model factors. The permutation acts on the branes on the orbifold as: 

KO^O^O^M1)^ KO^O^O^^+M)) (8.3) 

As a consequence, the five states with M = 0 are invariant under the cyclic 
permutation. The other 20 states can be organized in four Z5 orbits of length 
five. Note that the action of the permutation symmetry is the same as that 
of an (M dependent) power of /i, meaning that the four orbits are formed in 
such a way that the resulting brane configuration can be lifted to the quintic. 
In particular, each orbit is labeled by M. 
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To study the branes on the orbifold W it is important to realize that the 
generator a of the cyclic permutation commutes with the generator #(71) 
only up to a generator of the GSO projection go. This reflects the fact that 
geometrically these two actions only commute up to projective equivalence 
of the embedding projective space. The full orbifold group is therefore a 
non-abelian group F with the relation: 

9(7i)o- = 9009(71) (8-4) 

The commutator subgroup is just the Z5 subgroup generated by go, and we 
have the exact sequence of groups 

O-^Zs^r^Zs xZ5->0 (8.5) 

The quantum symmetry group of the orbifold model is r/[r, F] = Z5 x Z5. 

To classify the branes, we have to find all irreducible representation of F. 
Each representation can be used as an action on the Chan-Paton factors and 
therefore specifies a brane. We immediately see that the orbits of four which 
we found above correspond to irreducible representations of the orbifold 
group, where go acts as a phase multiplication: 

g(7l)a = eTMagM       M = 0,2,4,6,8 (8.6) 

In addition to this we find 25 one dimensional representations, where go acts 
trivially. In that case, #(71) and a generate an abelian group. To check if 
this covers all irreducible inequivalent representations, we apply a lemma of 
Burnside, which states that the sum of the square of the dimensions of the 
irreducible representations equals the order of the group. Since the order of 
the group is 53, these 29 representations are indeed all irreducible inequiva- 
lent representations. The representations of the full non-abelian group can 
be reinterpreted in terms of representations of the group generated by g(ji) 
and a. This is the group which has a direct interpretation in geometry. We 
see that for M = 0 this group acts in one-dimensional representations, and 
we have the usual picture of fractional branes labeled by two phases. For 
M 7^ 0 this groups acts in a projective representation on the Chan-Paton 
factors. In other words, we have turned on discrete torsion. The two-cocycle 
in i?2(r, U(l)) is specified by the phase factor appearing in the projective 
representation: 

6teMm°n,9(7ir°q)) = e*Mimq-pn) (8.7) 

The quantum symmetry of the model, F/pT, F] = Z5 x Z5, is the same 
quantum symmetry group that we see at a generic point in the moduli space. 
In contrast to the previous cases, there is no enhanced symmetry at the 
Gepner point. 
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8.2    The K-theory of W 

Eev(W) is generated by l,£2>Xi>X2,£4 and (Q, with relations 

The total Chern class of W is 

c(W) = l + 10S!l-8SZ (8.8) 

Under the projection TT2 : X —> W, 

^(Ca) = 5^, TT^^) = ^2,        vr^xi) = X, ^(X2) = 0 

and consequently 7r2(c(W)) = c(X). 

Note that the generator of H2(W) pulls back to 5 times the generator 
of H2(X). Equivalently, the generator of ^(X) pushes forward to 5 times 
the generator of H2(W). Recall that the Cartan-Leray spectral sequence 
tells us that TTI* : B.2(Y) —> ^(X) is an isomorphism, since ^(Zs) — 0. 
On the other hand, applying the Cartan-Leray spectral sequence to W — 
y/(Z5 x Z5), one has an extension 

0-+H2(Y)^H2(X)-^Z5->0 (8.9) 

since B^Zs x Z5) = Z5. There are two possible extensions: either the 
sequence splits, or it does not. In fact, Aspinwall and Morrison [23] show 
that the generator of H2(W) is represented by an elliptic curve, £7, which is 
not the image of an element in H2'(Y). Hence the sequence does not split, 
TT* = 7r2* 0 TTI* is multiplication by 5 and therefore so is 7r2*. 

Note that we are in the situation discussed in §2.6, where H3(W) is 
torsion-free, whereas H^C?) ^ 0. Viewed as an orbifold CFT, the model on 
W admits discrete torsion, but this can be continuously turned off. As a 
consequence, the Kahler moduli space of W is a fivefold cover of the moduli 
space of X, branched at the Gepner point and the large-radius point. As 
we saw in §8.1, there is no enhancement of the quantum symmetry at the 
Gepner point and so the Gepner point is now a smooth point in the moduli 
space. Since we have a fivefold cover, the coordinate on the moduli space 
is now t/> rather than V;5- Points related by multiplying ij) by a fifth root of 
unity are related by adding one unit of discrete torsion (8.7). Hence they 
are physically inequivalent, as was already noted by [23]. 

A basis for K\W) is 
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r ci C2 C3 

o 1 0 0 0 
a = S-0 0 £>: 0 0 

al = Ll-0 0 XI 0 0 
a2 = L2-0 0 X2 0 0 

b = i,0E 0 0 -i'i 0 
c = hPp 0 0 0 2$ 

The line bundle S on W satisfies -K^S = iJ5.   the ring structure is a2 = 
25(6 + c), ab = c and aa; = bai = 0. 

The intersection form, in the above basis (omitting the ctj), is 

n.= 
/0   -5   0   -1\ 

5     0     10 
0-100 

\\     0     0     0 / 

The monodromy about the large radius is generated by MT 

or, in the above basis, 

Mr 

/I 0    0 0\ 
1 1    0 0 
0 25 " 1 0 

\0 25    1 1/ 

(8.10) 

(8.11) 

There are 5 conifold points, and the monodromies about them are gen- 
erated by 

where 

MCi w^v- (v,Wi)wi, 

MC5:v^v- 25(u,0)0 

i = l,...4 

wi =5C - 4a + 906 + 6c 

W2 =50 - 3a + 606 + 8c 

W3 =50 - 2a + 356 + 7c 

W4 =50 - a + 156 + 4c 

(8.12a) 

(8.12b) 

(8.13) 

These classes (including k = 5, if one formally writes ^5 = 5(9) can be 
written more succinctly as 

Wk = 50 + (k- 5)a + |(fc - 5)(fc - 10)6 + i/c(/c - 5)(fc - 10)c       (8.14) 
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On the mirror of W\ four of the five conifold points correspond to singu- 
larities at which an S3 shrinks to zero size. At the mirror of the fifth, there 
are five singularities, each of which locally looks like S3/Z^. D-branes in such 
backgrounds were studied in [50], with the result that five states should be- 
come massless when the S^/Z^ shrinks to zero. This result is consistent 
with the computation of the Fi-function in [23]. The number of massless 
hypermultiplets can be read off from the coefficient of the logarithm in an 
expansion of Fi about the singular point. At if; = 1, there are 25 massless 
states. At the other four conifold points, there is only one massless state. 

In our case, the multiplicity 25 in MC5 is easy to understand: as in (7.7), 
there are 25 6-branes (flat line bundles on W) which become massless at 
ip = 1. Near the other four points, the conformal field theory is the same 
as the theory near ip = 1, but with discrete torsion turned on. As we saw 
in §8.1, the remaining irreducible representations of the orbifold group on 
the Chan-Paton factors correspond to rank-5 projective bundles. But, since 
the discrete torsion is topologically trivial, we can choose an isomorphism 
between the twisted differential K-theory and the ordinary K-theory of W, 
and write these in terms of ordinary K-theory classes, Wi on W. The rank of 
the Wi are, of course, 5. The first Chern class (and hence the coefficient of a) 
can be understood as follows. The action of a 27r rotation in the ^-plane is to 
tensor with Sy which shifts the first Chern class (and hence the coefficient of 
a) by 5. A rotation by 27r/5 should therefore shift the first Chern class (and 
hence the coefficient of a) by 1. Having understood these two coefficients, 
the rest are determined by requiring 

Wk+5 = Wk®d 

and requiring that the coefficients of a, 6, and c vanish for k = 5. The unique 
solution to these constraints is (8.14). 

In the above basis, 

Mf Cl 

Mco = lC2 

( -69       -575      -20     -25 \ 
56 461 16        20 

-1260 -10350   -359   -450 
V -84       -690      -24     -29/ 

/-34 -425     -15     -25 \ 
21 256 9 15 

-420 -5100   -179   -300 
\-56 -680 -24     -39 / 
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Mc, = J-C3 

(-14 -300    -10 -25 \ / '-4 -200 -5 -25\ 
6 

-105 
121        4 

-2100   -69 
10 

-175 
,    MC4 = 

1 
-15 

41 
-600 

1 
-14 

5 
-75 

V-21 -420    -14 -34/ 

(1    -125   0 

V-4 
-25\ 

-160 -4 -19^ 

MC5 = 
0       1       0 
0       0       1 

0 
0 

Vo 0      0 1 / 

Multiplying these monodromies together, we find the monodromy at the 
Gepner point is 

Mg = MClMC2MC3MC4MC5Mr=0O = 1 (8.15) 

confirming that the Gepner point is a smooth point in the moduli space, as 
we argued in §8.1. 

In contrast to the previous example, (8.11) and (8.12) are not the unique 
set of monodromies compatible with all of our criteria. For instance, choose 
a particular torsion element, 7 G K0(W)tor, and modify (8.12a) to read 

MCi : v h-> v - (v, Wi)(wi + 7)7 i = l,...,4 (8.12a7) 

This still acts trivially on the torsion subgroup, it induces the same action on 
K0(W)/K0(W)tor as before and, moreover, it still satisfies (8.15) (because 

52t=iwi =: 0 mod 5)- 
Clearly more physical input is required to completely pin down these 

monodromies in the general case. That is an interesting subject for future 
work. 
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A    Explicit Formulas for B-Type States on Gepner 
Orbifolds. 

In this section, we provide explicit formulas for B-type boundary states on 
Gepner orbifolds. For concreteness, we include one orbifold generator 7, and 
a corresponding lattice vector /Si — (0; 27; 0,0,0,0,0). We assume that 7 
generates a free orbifold group of order d = lcm{ki + 2}. The closed string 
partition function is (4.5) where the lattice A is generated by PoiP^, fli. 

B-type boundary states are written as a linear combination of Ishibashi 
states built on bulk fields, which fulfill B-type boundary conditions. We 
impose B-type boundary conditions in each minimal model separately, and 
therefore have to take bulk fields where /x = —/J. In addition, we have to 
require that the bulk field is contained in the closed string partition function: 

jt = /i + n/3o + riip® + ra/?i = -//. 

In other words, all B-type Ishibashi states are built on winding modes of the 
lattice A. 

Following Recknagel and Schomerus, a consistent boundary state can 
then be obtained as 

\a)=Pj2(-l$B*\\ri). (A.l) 

Here, | A/x)) is the Ishibashi state built on the primary field of the representa- 
tion (A, /i), P is a projection operator which will be discussed in more detail 
below and B^ is given by Cardy: 

B^ = JJ 1 ^Lj)^ e2^.H_ (A 2) 

3=1 ^VZify + 2) ^/sin(^,0)fc. 

The projector P has to make sure that we sum over all winding modes, and 
that the integer charge and spin alignment conditions are fulfilled. 

'-E  E n^ E <*» 
27rz   (mi+n+m'yi) pi 

^K/2 
ki+2 
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The open string partition function computed from these boundary states is 
given by 

^(A,M,Mi)(A,M,Mi) - COnsZ  2^%.(E-E-t,<)   ^     K(Mi-Mi-v-m>i) 

i 

This is almost the same partition function as for B-type states on the quin- 
tic, but there is an additional ^-function insertion in the open string sector 
(the first 5-function in the above.equation). In words, this ^-function en- 
forces that all momenta fi propagating in the open string sector are correctly 
quantized along the direction fii. (At this point it is easy to also describe 
boundary states on orbifolds with more than one generator: The only differ- 
ence is that there are additional 5-functions imposing the correct momentum 
quantization in the open string partition function.) The other 5-functions 
make sure that the correct charge quantization is satisfied. We read off from 
the partition function, that the boundary conditions are completely deter- 
mined by A, dty- S and ^Mf, as noted in the text before. The quantities 
dj • S and X]Mf appear as Wilson lines in this formula: In the open string 
sector they determine a shift in the momentum quantization along a par- 
ticular direction. For the spectral flow operator /?o this shift determines if 
the two branes preserve the same super symmetry. In [41] this was related to 
a grading on the space of branes. Here we see that the additional orbifold 
induces a similar kind of grading. It would be interesting to interpret this 
further. 
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