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Abstract 

We study the moduli space of a super Chern-Simons theory on a 
manifold with the topology R x S, where E is a compact surface. The 
moduli space is that of flat super connections modulo gauge transfor- 
mations on E, and we study in detail the case when E is a torus and the 
supergroup is OSp(m\2n). The bosonic moduli space is determined by 
the flat connections for the maximal bosonic subgroup 0(m) x Sp(2n), 
while the fermionic moduli appear only for special parts of the bosonic 
moduli space, which are determined by a vanishing determinant of a 
matrix associated to the bosonic part of the holonomy. If the CS super- 
group is the exponential of a super Lie algebra, the fermionic moduli 
appear only for the bosonic holonomies whose generators have zero 
determinant in the fermion-fermion block of the super-adjoint repre- 
sentation. A natural symplectic structure on the moduli space is in- 
duced by the super Chern-Simons theory and it is determined by the 
Poisson bracket algebra of the holonomies. We show that the symplec- 
tic structure of homogeneous connections is useful for understanding 
the properties of the moduli space and the holonomy algebra, and we 
illustrate this for the example of the OSp(l\2) supergroup. 
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1    Introduction 

The study of Chern-Simons (CS) theories based on non-compact groups 
is important for understanding classical and quantum properties of three- 
dimensional (3d) gravity theories [1]. One can show that pure 3d general rela- 
tivity is ISO(l, 2) (3d Poincare group) CS theory, while 3d general relativity 
with a cosmological constant A is a CS theory based on the group SO(2,2) 
for A < 0 (Anti-de-Sitter gravity), while for A > 0 it is the £0(1,3) CS 
theory (de-Sitter gravity) [2, 3]. Furthermore, 3d supergravity is a super CS 
theory for the 3d super-Poincare group [2], AdS supergravity is a super CS 
for a certain class of supergroups [4, 6], one of which is 0Sp(m\2) x 0Sp(n\2) 
[3], while for de-Sitter supergravity the relevant group is 05^(112; C) [5]. 

The moduli space of a CS theory represents the physical degrees of free- 
dom (dof) and it is important for understanding the classical solutions and 
for the quantization. When the three-manifold has topology R x S, where 
S is compact, then the moduli space for compact groups is well understood 
[7]. However, when the CS group is non-compact, there are few results. The 
3d Poincare group case has been studied in [8] when S is a torus T2, and 
the moduli space is finite dimensional with a non-Hausdorf topology. The 
super-Poincare case for a torus has been studied in [9], and the novelty is 
that the fermionic moduli only appear for special parts of the bosonic moduli 
space. Also the structure of the 3d super-Poincare algebra is such that there 
are no quadratic fermion contributions to the bosonic curvature two-form, 
so that the problem of constructing the moduli space is simpler than in the 
case of other relevant super groups. 

Introducing a symplectic structure on the moduli space is important for 
understanding solutions and quantization. In the case of groups relevant 
for 3d gravity, one can use the approach of [10], where traces of holonomies 
are used as basic variables. This was extended to the super de-Sitter case 
in [11]. However, the problem with using traces of holonomies is that it 
is difficult to understand the fermionic moduli space, basically because the 
trace is an even element of the Grassman algebra while fermionic moduli 
belong to the odd part. Hence it is better to consider the holonomy matrix 
elements, and their algebra in order to find fermionic observables. Even in 
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the purely bosonic case there are advantages in working with the holonomy 
matrix elements [12]. 

In order to explore theses issues we consider a super CS theory for the 
OSp(m\2n) group on R x T2. In section 2 we give a definition of a super 
CS theory for an arbitrary super Lie group and a three manifold M. In 
section 3 we specialize to the case M = R x S and describe the canonical 
formalism. In section 4 we introduce the holonomies for a super Lie group 
and describe how to determine the moduli space for S = T2. In section 5 we 
study the moduli space for the OSp(ra|2n) supergroup and we determine the 
condition for the existence of the fermionic moduli. In section 6 we discuss 
the basic features of the symplectic structure on the moduli space, and show 
how the homogeneous connections can be used to extract information about 
the moduli space in the exponential sector of the moduli space. We extend 
these results to the case when the CS supergroup is the exponential of an 
arbitrary super Lie algebra. In section 7 we work out the 05p(l|2) case in 
detail and we present our conclusions in section 8. 

2    Super Chern-Simons Theory 

Let gs be a super Lie algebra, with a basis T/ = {Ja, Qa}, where Ja are even 
elements and Qa are odd elements. gs has a super Lie bracket [,}, which 
satisfies 

[X,Y} = (-l)\x\\Y\+l[Y,X}    , (1) 

as well as the super Jacobi identity 

[X,[Y,Z}} = [[X,Y},Z} + (-l)\x\\Y\[Y,[X,Z}}    , (2) 

where X, Y and Z are elements of definite parity (\X\ = 0,1 for an even, 
odd element respectively). The super Lie algebra gs is determined by the 
super Lie brackets of the basis elements 

[Ti,Tj} = fIj
KTK, (3) 

where fijK are the structure constants, belonging to R or C. 
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The algebra gs can be represented by matrices so that the relations (3) 
take the following form 

[Ja,Jb]     =     fabCJc     , (4) 

[JaiQa]     =     fajQ?     , (5) 

{Qa,Q/3}     =     fafJa     , . (6) 

where [X, Y) = XY- YX and {X, Y} = XY + YX. 

Let BN be a Grassmann algebra generated by {0i, ...,$^}, which satisfy 

{0i,0;} = O    l<i,j<N   . (7) 

The natural basis of BN can be split into an even and odd part 

EN   =   {l,Oi9j,0i6jOk9i,...} (8) 

ON   =   {OuOiOjQk,—}   i (9) 

so that BN = L{EN)®L(ON) = B^QB^. We can now define a Grassmann 
enveloping algebra of gs, B(gs), as 

B(gs) = {X = XaJa + xaQa I Xa e B+ , xa G B^ }    . (10) 

Consider now a one-form A on a three-manifold M, taking values in 
B(gs). If {x11} are coordinates on M, then 

A = A^dx^Ja + ^(x)dx^Qa = A^dx^Tj    . (11) 

Note that in physics there is a restriction A^ E BQ = R or C while ^ G 
Si = L(0i). The super Chern-Simons theory associated to a super Lie group 
G5, whose Lie algebra is B(gs), is defined by the action functional 

S[A] = I str (AdA + | A A A A A J     , (12) 

where d is the exterior derivative, and str is the super trace (invariant bilin- 
ear form on gs), given by 

str(JaJb) = r)ab = r)ba    ,    str(QaQp) = Cap = -Cpa    str(JaQa) = 0    . 
(13) 
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This is denoted as 

str{TITj)=r]Ij    . (14) 

The equations of motion are the extremal points of S[A] 

^=dA + AAA = F = 0    , (15) 
SA 

which are satisfied by the flat Gs connections on M. This can be written in 
a more explicit form 

Fa   =   dAa + fbc
aAb AAc + fa(}aipa AIJJP = 0    , 

Fa   =   d^a + fapaAa A / = 0    . (16) 

The super CS theory is invariant under the gauge transformations g : 
M —> (?<?, so that the connection A and the connection 

■■A = gAg-1+gdg-1 (17) 

are equivalent.    Hence the moduli space is the space of flat connections 
modulo gauge transformations. 

3    M = R x E case 

We study now the case when M = R x E. In this case there is a natural 
split of the coordinates x^ = {t^x1} where t E R and xl are coordinates on 
E. This induces the split for the one forms A^ = {AQ, Ai}, so that the action 
can be written in the Hamiltonian form 

(18) S - f 2 dt f d2x \EJAl - AlGj - xje} 
Jtl       Jz        '- ft! 

where Gj are the first-class Gauss constraints 

GI = diE
i

I + fiK
JA?Eij = 0   , (19) 
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while 0} are the second-clsss constraints 

9\ = Ei
I-riIj^AJ

j=0    . (20) 

Here Ej is the canonically conjugate momentum to Aj and e^ is the antisym- 
metric tensor density on E. One can introduce the super Poisson brackets 
(PB) for the functions on the phase space (E, A) [16] 

mx) G(y)}PB = f Sz (^n.MM. _ (-plAfHSfl 8F(*)  SG(y) \ 
VWMVHPB     J/Z

 {5Ei{z) 5AI{Z)     I   V SA((z)SE}(z))     ' 
(21) 

so that 

{Ei
I(x),A](v)}pB = 6i

j6J6(x-y)    . (22) 

The first-class constraints form a closed algebra under the Poisson brack- 
ets 

{GI(x),Gj(y)}pB = fijK6(x-y)GK(y)    , (23) 

and Q = Jj:d
2xeI(x)Gi(x) generate the infinitesimal (identity connected) 

gauge transformations 

6A(x) = {Q, A(X)}PB ,    5E(x) = {Q, E(X)}PB ,    SA^ = e1 + /JK'A^ . 
(24) 

Hence the moduli space is the constrained phase space modulo the gauge 
transformations. Because of the second class constraint, the Gauss constraint 
becomes 

J'fijj^O    , (25) 

where F = dA + A A A. Therefore the moduli space M is that of fiat Gs 
connections on E. 

The PB algebra of the second-class constraints does not close on the 
constrained phase space, and hence the PB (21) will not induce a good PB 
on M. This can be remedied by introducing a second PB, the Dirac bracket 

{F,GY = {F,G}pB-{F,ea}pBA^{ep,G}pB    , (26) 
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where 

A^{^,07}PB = ^    , (27) 

and a,/3,7 denote discrete and continuous indices. The DB is well defined 
on the constraint surface, since {^1,^2}* = 0. The basic Dirac brackets are 

{M(x),Al(y)}*=eijV
IJ8(x-y) (28) 

which will induce a symplectic structure on M. The DB (28) induces a 
symplectic 2-form 

fi=  f str{S1AAS2A) (29) 

which is the supergroup generalization of the Atiyah-Bott symplectic form 
[14]. 

4    Holonomies and the moduli space 

The standard approach for determining the moduli of flat connections is to 
use the holonomies. We will use the same approach for the case of super 
Lie groups, so let U be a homomorphism from the fundamental group of E, 
7ri(S), to Gs defined by 

17(7) = U(a = 27r)    ,     *M = Aptf^Uis)    , (30) 

where x^(s) : [0,27r] -> M parametrizes the loop 7, and 17(0) = Id. Since 
we use a matrix representation for g5, which are (m + ri) x (ra + n) matrices, 
the corresponding £?5 will be given by (m + n) x (m + n) super matrices 

'-(c D)   • <31» 
where A,D are m x m and n x n matrices respectively, with entries in B^f: 

while B and C are mxn and nxm matrices respectively, with entries in B^. 
Given a B(gs) one can always obtain a super Lie group by the exponential 
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map g = ex, but as in the case of ordinary Lie groups, one can have Gs with 
elements g ^ ex. 

The 7ri(S) for a Riemann surface S is generated by the canonical cycles 
of S, (a^, 6i), i = 1,..., g, where g is the genus of S. The generators satisfy a 
constraint 

JJar16r1ai6i = l    . (32) 

In the case of the torus the constraint becomes ai&i = 6iai, so that the 
corresponding holonomies satisfy 

U1U2 = U2U1    . (33) 

Since a holonomy transforms by conjugation under gauge transformations, 
the moduli space will be determined by commuting pairs (C/i, U2) from Gs 

modulo conjugation, i.e. 

(UUU2)^(SU1S-\SU2S-1)    ;    5GG5    . (34) 

5    OSp(m\2n) supergroup 

We now concentrate on the OSp(m\2n) Lie group case. It can be defined as 
a group of super matrices M 

MstHM = H = diag(Im, C2n) (35) 

where CT = — C and C2 — —hn- If we label M as 

M^^) (36, 

and use 

MSt = f ^T   fr   )     , (37) 
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then the relations (35) imply 

aTa + xTCx   -   Im (38) 
aTZ + xTCA   =   0 (39) 

-ZTZ + ATCA   =   C    . (40) 

These relations can be solved by expanding the matrices a^A^Xii in the 
Grassman algebra BN basis as 

x = Xv + xle
l + X2e2 + ... + xNeN  , (41) 

where 6k = 0^ • • • 6ik and we have suppressed the ii indices on X^. Note 
that for physics applications N > 2mn, otherwise N is an arbitrary natural 
number. 

The relations (38) and (40) imply 

a^a0 = Im    ,    A^CAo^C    , (42) 

so that ao G O(m), while AQ G S']9(2n). This implies that a and A are always 
invertible, so that the relation (39) gives 

£ = -(aT)-1xTCA    , ! (43) 

which means that there is only one independent fermionic matrix. Hence if 
X = 0, then £ = 0 and therefore a G O(m) while A G Sp(2n), so that one 
obtains the maximal bosonic subgroup O(m) x Sp(2n). 

If M is a holonomy matrix [/, we would like to know how the fermion x 
transforms under the gauge transformation 

U = SUS-1=^   I)     , (44) 

where <S e OSp{m\2n). If 

5=1   :   si (45) 
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then 

S     =i-S-W-i 5-i       )     ' (46) 

where s = s — 6S~1a and S = 5 - or^-1^. By using (46), the relation (44) 
gives 

£ - (aa + Sx - (j£S-la - SAS^a) s'1    . (47) 

Therefore if we want x = 0, then (47) implies 

aa + Sx- (J^S-la - SAS-la = 0    . (48) 

This can be considered as an equation for <J, which can be written in com- 
ponents of a i?jv basis as 

^2^+1^0 - Sb-^oScT vik+i = -SoX2k+i + (2^+1(^1, —i^k-i)    ?        (49) 

where (1 = 0. Therefore (49) can be solved iteratively for a as a function of 
a, A, x and 5, S provided that the linear operator A determined by 

Aa = aao — SOAOSQ
1

(J (50) 

is invertible. It can be written as a 2mn x 2mn matrix 

AQ = CIQ  ® /2n - ^m ® S'o^O^o"1      , (51) 

so that invertability is equivalent to det AQ / 0. Note that 

S-lAoS = c$®l2n-Im®Ao' (52) 

where S = /m ® So, so that 

det(a^ ® hn -Im® So^oS'o"1) = det(a^ ® /2n - /m ® AQ)    . (53) 

In the case when det JLQ T^ 0 one can determine all the components of a 
and hence set all of the components of x to zero. This then means that the 
holonomy matrix U is equivalent to a holonomy matrix of the O(m) x Sp(2n) 
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subgroup. If Ui is such a matrix, i.e. Ui = diag{a1A) then U2 must be also, 
since the commutativity implies 

ab = ba    ,    AB = BA    ,    /m = A/x    ,    az/ = i/A    , (54) 

where 

M**) ■ (56) 

Since det(aT ® /2n — /m (8) A) ^ 0 then //a — A/i — 0 implies /i = 0, and hence 
U2 = diag(b,B). Hence the moduli space is that of the 0(m) x Sp(2n) Lie 
group, and there are no fermionic moduli. 

Note that this bosonic moduli space will be larger then the moduli space 
of non-super CS based on the'O(m) xSp(2n) Lie group because the holonomy 
matrices in the former case belong to the B^ Grassman algebra while in the 
latter case the holonmy matrices are real numbers. We can avoid these extra 
bosonic degrees of freedom by restricting the even part of the CS connection 
A from B^- to real numbers. 

The fermionic moduli will arise in the case when det AQ = 0 and det BQ = 
0 where 

"-us) ■ *=(;*) •     <«> 
The zero commutator implies 

ab + Z/jL = ba + vx (57) 

AB + X^=BA + /JL^ (58) 

Xb + Afi = fia + Bx (59) 

av + £B = B£ + isA    . (60) 

Let rank(Ao) = r < 2mn, so that r components of x can be set to zero. 
Although the non-zero components are not gauge invariant, they cannot 
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be set to zero by a gauge transformation. We will show in the following 
sections how to define the gauge invariant fermion components, but for our 
present purposes it sufficient to know that the number of non-zero fermion 
components is gauge invariant. If rank(Bo) = r', then one can prove that 
r = r7. From (57) and (58) it follows 

[ao,60] = 0    ,     [AQ,Bo] = 0    , (61) 

while from (59) it follows 

Aom - fiiao = BQXI - Xibo    ■ (62) 

The relation (62) can be rewritten as 

Aofri = BQXI (63) 

From (61) it follows that [Ao,Bo] = 0 and hence these matrices can be si- 
mult aneosly diagonalised (or put in the block-diagonal form). If r' > r, then 
from 63 it follows that rf components of x vanish, which is in contradiction 
with the assumption that only r components of x vanish. Hence r' < r. If 
r' < r then by reversing /J, and x and by the same argument it follows r < r' 
so that r = r'. Hence the number of the independent fermionic (odd) moduli 
is equal to 2(2nra — r). 

The total number of real (complex) parameters for the fermionic phase- 
space is (2nm — r)e2nm. Physics expectation is (2nm — r)4nm, i.e. only xi 
and /ii. This happens when ip G Bi. 

6    Symplectic structure of the moduli space 

We now discuss some aspects of the symplectic structure on the moduli space 
which will be useful for an understanding of the results we have derived so 
far. A natural symplectic structure on A4 can be induced by the symplectic 
structure (29) on the space of connections. By using the definition of Ufr) 
and (28) one obtains 

M(7),u8(o)y    =   2s(7,a)    J^   (-IJ^H^^H^WH^M-™ 
E,F,G,H 

U$(ri(TI)%U§(V)Ug(*i)(TI)%U§(<Tf)    ,        (64) 
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for loops with at most one intersection, where 3(7,(7) is the intersection 
number [11]. From this algebra one can find in principle the PB algebra of the 
coordinates on the moduli space and hence the symplectic form. However, 
this is beyond the scope of this paper, and instead we will analyse a simpler 
algebra, induced by the homogeneous connections, since it will give a very 
good idea of the moduli space, especially of the fermionic moduli. 

Consider the holonomies which are the exponentials of the Lie super 
algebra, i.e. the subgroup gs = expX. Then Uk are given by 

l7fc = exp(27rA2Jfl + 27r^QQ)    , (65) 

where Ak and ^ are constants on S. These correspond to the homogenous 
sector of the moduli space, for which the corresponding connections can be 
written as 

A = A1d6 + A2d(j) = (AtJa + ^Qa)d6 + {A%Ja + ^Qa)d(j)    ,        (66) 

where 9, <f) £ [0,27r] parametrize the a, b cycles of the torus. Hence [C7l5 U2] = 
0 is equivalent to [Ai, A2] = 0 which gives the constraints 

Ga = /6caA6
1^ + /a/jVf^ = 0    , (67) 

Ga = faP
a(Aa

lfl4-A^) = 0   . (68) 

These are first-class constraints and form an 05p(m|2n) algebra under the 
Poisson brackets (28), which for the homogeneous sector become 

{Ai,Aty = ekjrf
b    ,   «,<}*= ^^    . (69) 

The relations (69) imply that the space A, ip is the usual phase space, i.e. 
half of the parameters are coordinates and the other half are the momenta. 

According to the theory of solving the constraints in phase space [15, 
16, 17], the constraints (67) and (68) can be solved in the following manner. 
In the bosonic sector, if we require that Aj^ are ordinary numbers, then the 
bosonic constraint implies that A% Ja belong to the same abelian subgroup, 
and hence A% — AkCa. In the fermionic sector, let r be the number of 
independent fermionic constraints Ga.   r will be given by the rank of the 
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matrix ca/aa > and hence one can impose r fermionic gauge-fixing conditions 
Xa = 0 such that 

det||{Ga,x^ril^O    . (70) 

This gives 4nm — r — r = 2(2nm — r) independent fermionic phase-space 
coordinates, while in the bosonic sector there at most two * independent 
phase space coordinates Ai and A2- 

Therefore the condition for the existence of the fermionic moduli for the 
exponential sector becomes 

det||C
a/a/||=0    . (71) 

Note that our analysis for the exponential sector is general, and applies to 
any super Lie group. Hence one finds all inequivalent (with respect to con- 
jugation) Abelian subgroups of the maximal bosonic subgroup, and checks 
the condition (71). There is also an additional constraint 

W?V>? = 0 (72) 

coming from the bosonic constraint (67). The constraint (72) will serve to 
determine the gauge-fixing functions xa — 0, i.e. xa will be linear in ^ such 
that (72) is satisfied as well as the condition (70) (see section 7). 

Also note that the matrix Ja = cafaa^ is the representation of the gener- 
ator of the Abelian subgroup to which the bosonic holonomy belongs, and it 
is the fermion-fermion block in the super-adjoint representation of the super 
Lie algebra (Ti)f = fijK- In the osp(m\2ri) case the condition det^o = 0 
applies to any holonomy, and in the exponential sector it is equivalent to 
(71). 

7    05p(l|2) case 

We now present explicit constructions in the simplest non-trivial case of the 
05p(l|2) supergroup.   In this case we have m = n — 1, so that a is a 

* There may be a further constraint for some Abelian subgroups 
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Grassman number and A is an 5^(2) = SL(2) matrix, and we take a B2 
Grassman algebra. The osp(l|2) algebra can be represented by matrices 
satisfying 

[JaiJb]     —    eabCJc     , (73) 

[Ja,Qa]     =     (Va)aPQp      , (74) 

{Qa,Qp}    =    {<ra)apJi     , (75) 

where a = 0,1,2 and the matrices (<7a)a   a<re 

"^(-i o)   '   ai=(o -i)   '   ai={0i o)   •    (76) 

The indices a and a are raised and lowered by 7]^ = diag(—1,1,1) and 
Cap — eaP' The relevant matrix representation of the generators of the 
osp(l|2) algebra is given by 

where cf = (1,0) and qf = (0,1). The exponential map gives only a sub- 
group of the full group. 

For the group we have ao = ±1, and inequivalent bosonic Abelian sub- 
groups are given by 

0   e**0)     '     V0   evai)     '     V0   ec('Jo+o-2)J (78) 

where CTQ, <JI and a+ = (JQ + cr2 generate non-equvalent abelian subalgebras 
of 5/(2). 

Since any element of SL(2) can be written as ±ex, the bosonic conjugacy 
classes will be given by pairs 
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where €& = ±1 and X and Y belong to the same Abelian subalgebra of 5/(2) 
which is not the so(2) subalgebra. When X, Y G so(2), then 

Hence there will be 2 • 16 + 4 = 36 sectors of bosonic conjugacy classes. 

The fermionic moduli will exist for holonomies which satisfy the condition 
det AQ — 0, which becomes 

det(ao/2-i4o)=0    . (81) 

This is solved by 

ao = ±l    ,    ^o=(±0
1   ^     ■ (82) 

Note that AQ = ±eL, where L = c(j+, i.e. eL belongs to the GL(1) subgroup 
of SL(2). Hence rankAo = 1, and therefore there will be 4 — 1 — 1 = 2 
fermionic moduli. The corresponding holonomy matrices are given by 

±i    Cfc 
Xk 

Uk = (   r    ±\lk   ) (83) 

where Xk — (0, i^k)T and ^ = — ^oXk^Ao. Hence there are 2-2 = 4 different 
sectors of conjugacy classes (C/i, C/2) which contain fermions. One can have 
more general solutions by replacing AQ by AQ + A20102 where AQ'C^ + 
A^CAQ — 0, but as we discussed, we only consider physical connections. 
Since [/& belong to the parabolic conjugacy class of SL{2), we will have 
cf + c| = l[9]. 

For the sector where U — expX, we have 

J7ife=exp27r(Xibcr++^Qa) (84) 

where <T+ = CTQ + <72 and 

Mi,>l2r = l    ,    {WM}* = Cafi (85) 
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The fermionic constraint yields 

Aiip2-A2il>t=0   i (86) 

where tp® = (ip^ ip~). By inserting the fermionic constraint into the bosonic 
constraint, one obtains 

Aifa - A2^i = 0    . (87) 

This condition represents a consistent gauge-fixing choice, so that there exists 
a canonical transformation ^ —> ipk such that 

^(n.ft)2,   ,   ^2 = (^,-v)T   , (88) 

and the constraints (86) and (87) become equivalent to ft = 0 and ip = 0 
[17]. With such a choice of fermionic variables, and the fact that Ai = p 
and A2 = q where {p, g}* = 1, one can now express c/c and Xk in terms of 
basic canonical variables, and work out their PB. Constructing the canonical 
transformation ^ —> ^ may not be easy, but one can show that 

Ui = exp 27r lp<j+ + -ca(p, q)Qa^ )     ,     C/2 = exp 27r (qa+ + ca{p, q)Qa^) 

(89) 

where ca can be determined from the requirement that ^ — ca(p, q)il) H  
where • • • represent terms which vanish on the constraint surface. 

For the non-exponential sector one can use the holonomy matrix algebra, 
but in some cases it is possible to obtain explicit expressions in terms of the 
basic canonical variables. For example, in the sector ao = 1, A® = — ex 

(which has no fermionic moduli) one can construct the matrices U{<j)) and 
U{9) as 

U{(j))^diag{l,R{(j)l2))^Y>{Aia(j) + ^Qa(j))    , (90) 

where R((f))2) is the rotation matrix for angle 0/2, and U{8) is given by 
replacing 0 with 6 in U(4>) and Ai with .4.2? so that C/(0) = Id and U(2

/
JT) = 

Uip- Hence the corresponding flat connections are given by 

At = U-^fidtUit)    ,    A2 = U-l{9)deU{0) (91) 
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and they are not constant on T2, but they are expressed in terms of constant 
moduli with simple PB. The moduli Ak satisfy the same constraints as in 
the homogeneous case, and the same results apply for them. However, this 
trick does not work for the holonomies with ao = — 1 and AQ = —ex. 

Since cf+cl = 1, the symplectic structure for the bosonic moduli becomes 
degenerate. In the exponential sector this is equivalent to p2 + q2 = 1 so that 
p = cost, q = smt which suggests a dynamical interpretation as a harmonic 
oscillator with energy E = 1/2. 

The degeneracy of the bosonic symplectic structure for holonomies with 
fermions appears because the group is small. For bigger groups, there is 
generically no such degeneracy. For example, for OSp{2\2) case we have ao is 
an 0(2) matrix while AQ is an SL(2) matrix. In the sector where ao G 50(2), 
so that ao = i?(0), the condition for the existence of the fermionic moduli is 

det AQ = de^aj ^h-h® AQ) = (2 cos 0 - tr AQ)
2
 = 0    , (92) 

Hence AQ belongs to the 50(2) subgroup of the SL(2), and therefore the 
bosonic conjugacy classes which have the fermionic moduli are 

U1=diag(R((fn),R(±(f>i)hU2 = diag(R((h)iR(±(h))    ■ (93) 

The corresponding symplectic form is dfa A d^, and it is nondegenerate. 
Since rankAQ = 2, there will be 4 fermionic moduli. Also in this sector one 
can use the exponential map to construct the moduli with canonical PB. 

8    Conclusions 

The structure of the total moduli space is essentially determined by the 
bosonic moduli associated with the maximal bosonic subgroup. This is rem- 
iniscent of the fact that the supergroups have no extra topology associated to 
the fermionic sector [18]. Note that the bosonic moduli space can have quite 
a complicated topology, (e.g. non-Hausdorff, see [8]). It would be interesting 
to see how the bosonic topology affects the fermionic moduli topology. 

The fermionic moduli appear only in special sectors of the bosonic mod- 
uli space. In the 0Sp(m|2n) case this condition is given by the vanishing of 
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a determinant coming from the c-number part of the holonomies associated 
to Abelian subgroups of the maximal bosonic subgroup. In the exponential 
sector this condition becomes a vanishing determinant of the Abelian subal- 
gebra generator in the fermion-fermion block of the super-adjoint represen- 
tations. This is true in the general case for the exponential sector. One can 
use the homogeneous connections to describe the exponential sector, and 
the example given in the section 7 for a non-exponential holonomy shows 
how the constant connections could be used to describe the non-exponential 
sector by the moduli which have canonical PB. 

The fermionic canonical moduli ij) are not gauge invariant, and one can 
obtain gauge invariant fermionic moduli ij) via canonical transformation. The 
non-exponential sector can be examined through the algebra of holonomies, 
and one can use the results for the OSj9 case to study the algebra. It is 
not clear how the supertraces in [11] capture the properties of the fermionic 
moduli, since the relevant holonomies have supertraces which are c-numbers, 
and not elements of J5^. To understand this point it would be helpful to 
study the algebra of the holonomy matrices (83). 

Another interesting question is how to represent U in terms of basic 
canonical variables. This can be worked out in the exponential sector, and 
in order to generalise these results to the non-exponential sector and higher 
genus surfaces one would need a procedure for reconstructing the connection 
from the holonomies in the case of non-compact groups and higher-genus 
surfaces. Note that such a construction exists for compact and semisimple 
groups and surfaces of arbitrary genus [19]. Also in principle the explicit 
correspondence between holonomies and general connections described in 
[20] could be adapted to the situation at hand. 
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