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Introduction 

It has been known for over twenty years that the Coulomb solution 
in Maxwellian electro/magneto-statics for a point charge at the origin 
in 3-space is unstable when embedded in a non-abelian gauge theory 
with large coupling constant. A version of this phenomenon was first 
seen by Mandula [Ma] and other manifestations of it were described 
in some detail by Sikivie and Weiss [SW1]-[SW3], Jackiw, Jacobs and 
Rebbi [JKR], Jackiw and Rossi [JR] and in Jackiw's lecture notes, [J]. 
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The instability arises more or less for the following reason: The Maxwell- 
ian Coulomb solution has no magnetic field. However, in a non-abelian 
gauge theory, static electric and magnetic fields interact; and so it is 
energetically favorable at large coupling to have a magnetic field that 
suppresses the coulomb like behavior of the electric field. This insta- 
bility has nothing to do with the singular nature of a point charge 
distribution; it occurs, for example, when the charge is uniformly dis- 
tributed over a ball. This said, the Quixotic purpose of this article is 
to shed light on the dependence of the minimal energy on the coupling 
constant for the afore mentioned uniform charge distribution. Of par- 
ticular interest are the relative contributions to this minimal energy 
from the electric and magnetic fields. Theorem 1, below, reports the 
results on these questions. 

Of further interest are the functional forms of the electric and mag- 
netic fields for an energy minimizer. However, as their detailed behavior 
resists analysis, the study here concentrates instead on the behavior of 
these fields for an energy critical point that minimizes energy under a 
restrictive hypothesis. Even so, the energy of this critical point is very 
close to the minimum energy and may well equal the minimum energy. 
In any event, the long range behavior of the electric and magnetic po- 
tentials for this other critical point are described below in some detail 
with Theorem 2 summarizing most of the salient features. 

Here is the background for the story: Let su(2) denote the Lie 
algebra of S,C/(2), thus, the vector space of 2 x 2 complex valued, anti- 
hermitian and traceless matrices. Now, let A denote an su(2) valued 
1-form, and let BA = *(dA + A A A) denote its 'magnetic field'. Here, 
* is the Hodge star isomorphism from 2-forms to 1-forms; for example 
*(dx1 Adx2) = dx3. Introduce a norm on su(2) by the requirement that 
its square to send r G su(2) to |r|2 = — 2 trace (r2); then use the latter 
with the Euclidean norm on T*R3 to defined the norms of su(2) valued 
1-forms. 

This done, the interest here is with the vector space, A, of su(2) 
valued 1-forms A which vanish where r < 1, are smooth where r > 1, 
have locally square integrable first derivatives and are such that \BA\

2 

is integrable over R3. Of special interest are the 5^(2)-valued 1-forms 
that minimize the energy functional, £ : A -> (0,oo), whose definition 
follows. 
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To define £, it is necessary to first digress with an introduction to 
the covariant derivative, VA, defined by A G A. This derivative sends 
an su(2) valued function \I/ to the su(2) valued 1-form V^^ = d® + 
A^ — ^A. The covariant derivative of \I/ in the direction of a vector v is 
obtained by contracting v with V^ • The covariant derivative defines 
the covariant Laplacian, VA? which is the sum of the second powers of 
the covariant derivatives in each of the 3 coordinate directions. 

Now, let r1 G su(2) denote a fixed element with norm 1 and let p 
denote the su(2) valued function that equals 3(47r)~1r1 on the unit ball 
in E3 and vanishes on the complement of this ball. Then each A £ A 
a determines a unique su(2) valued function, ^A, that obeys 

-VA*A-P (1) 

and is such that both |VA*A| and |\I/A|
3
 square integrable over R3. 

Standard calculus of variation techniques can be used to argue both for 
the existence and uniqueness of ^ and to study its dependence on A. 

Given the preceding, specify a positive number 5, the coupling con- 
stant; and then define £ by the rule 

£(A) = 2-1g-21 \BA\2 + 2-y J |VA|2. (2) 

Here, and below the notation is such that the integral sign with no 
indication of domain or measure denotes integration over R3 with the 
Euclidean volume element. 

A critical point of £ is, by definition, an 5^(2) valued 1-form A with 
the property that 

±S(A + ta)\t=0 = 0 (3) 

for all a G A. A critical point A is called a local minimizer of £ if 

£(A + ta)>£(A) (4) 

for every a and, given a, for all t in some neighborhood of 0 G M. A 
global minimizer of £ obeys (4) for all a G A and t G M. 

With regards to the choice of ball radius 1 and charge normaliza- 
tion J \p\ = 1 in the definitions of A and £, note that changes of either 
can be absorbed by a combination of rescaling £ and g. Indeed, if the 
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corresponding variational problem is posed in the ball of radius i?, with 
charge density p such that J \p\ = g, and with coupling constant g, then 
the corresponding energy infimum is equal to the product of ql/2R~l 

times the energy infimum for the R = 1, q — 1 and coupling constant 
gqlt2 version of the functional in (2). In any event, this rescaling prop- 
erty justifies the focus here on the use of the unit ball and / \p\ = 1 
charge in the definitions of A and S. 

By the way, the 1-forms in A are required to vanish inside the unit 
ball for three reasons of which pay small homage to the underlying 
physics. First, high energy particle physics experiments observe that 
the non-abelian magnetic fields associated to the subnuclear forces are 
small at short distances. Second, physics would, in any event, give 
the charge density p as a functional of some other field (say a spinor 
with values in C2), and the latter would, perforce, obey an equation 
that also involved the 1-form A. Because such an auxiliary equation 
is not considered here, a formulation that allows A to vary in the ball 
lacks a certain logical consistency. Finally, allow A to vary where p ^ 
0 and there is no invariant notion of charge density to allow energy 
comparisons. The latter point underlies statements in some of the 
afore-mentioned references to the effect that the Coulomb solution is 
unstable for all values of the coupling constant. 

Note that this variational setting enjoys a restrictive sort of gauge 
invariance. Indeed, if A is in A and h : M3 —>> SU{2) is the identity 
matrix on the unit ball, then the 'gauge equivalent' 1-form h~lAh + 
h-ldh is also in A and £{A) = e{h~lAh + h~ldh). 

As a parenthetical remark, note that the variational setting here 
can be formulated in a completely gauge invariant manner. To do 
so, first change the definition of A so that the requirement that A 
vanish in the ball is replaced by the requirement that B^ vanish in 
the ball. This done, make the following requirements on p\ First, it 
should vanish outside the ball and its norm should equal 3/(47r) inside. 
Second, require that V'AP = 0 where p ^ 0. This done, then the 
energy £ can be considered to be a function of pairs (A, p), subject to 
the preceding constraints. As such, this energy is gauge invariant since 
(h^Ah + h^dh, h~lph) and (A, p) have the same energy for all smooth 
/i:M3 -> 517(2). 

The author knows the explicit form of only one critical point of 
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E (up to gauge equivalence), this being the gauge transforms of the 
'coulomb' solution which has ^4 = 0 with the corresponding ^A given 
in terms of the radial coordinate r on E3 as 

• $A=0 = (STT)"
1
^ - r2)r1 where r < 1. (5) 

• *A=0 = (47r)~1r"1r1 where r > 1. 

The energy, £(0), of the Coulomb solution is equal to 352(407r)~1. 

With the preceding understood, consider: 

Theorem 1. For each g > 0 the corresponding version of the func- 
tional £ achieves its global minimum on A. When g < (A/^TT)

1
/
2
 this 

minimum is attained only on the Coulomb solution and its gauge trans- 
forms. However, when g > (GTT)

1
/
2
 then the Coulomb solution is no 

longer the minimizer of £. Moreover, there exists a g-independent con- 
stant c such that when g > (67r)1//2

; then 

P^OTT)-
1
 + c^g < inf £ < ^OTT)"

1
 + eg. (6) 

A 

In addition, if, for such g, the corresponding version of £ achieves its 
infimum at A G A, then 

• /(207r)-1</^1|VA^|2. (7) 

• c'1g<g2fr^1\VA^A\2<cg. 

• c^g < g-2 ^r^+clg \BA\2 and g'2 f^ \BA\2 < eg. 

• j^l < |\I/A=O| everywhere, and \^A\ < cg~l/2r~l where r > 2. 

Remark that the factor #2(407r)-1 appears in (6) and in the first 
point of (7) because A = 0 in the unit ball and (407r)~1 is the minimum 
over the set of solutions in the unit ball to the equation - A^^o^ = p of 
the functional that sends ^ to Jr<1 iV^o^l2- By the way, note in the 
second point of (7) that a substantial fraction of the magnetic energy 
is contributed from the shell of thickness 0(g~1) that surrounds the 
unit ball. Note also that the results in Theorem 1 do not change in any 
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substantial way if the charge distribution p in (1) is allowed to vary 
the ball as p^r1 with po positive with integral 1. 

As remarked above, the author has little to say about the detailed 
point to point behavior of the fields {A, ^A) when A is an absolute 
minimizer of a large g version of £. On the otherhand, quite a bit can 
be said about these fields for the absolute minimizer of £'s restriction to 
a certain subset, AQ C A. Here, A € AQ when A is gauge equivalent to 
A^ — a sin Odcpr2 where a is a function on M3, 9 and cp are the standard 
spherical coordinates and r2 6 su(2) has unit length and is orthogonal 
to r1. In this regard, the critical points of £'s restriction to AQ are also 
unrestricted critical points of S. This understood, the next theorem 
describes the minimizers of £'s restriction to AQ. 

Theorem 2. For each g > 0; there is a function a on R3
; unique 

up to multiplication by ±1; and charcterized by the fact that the global 
minimizers of £ 's restriction to AQ are all gauge equivalent to A = 
asinOdipr2. In this regard, a = 0 when g < (Our)1/2, but not so when 
g > (STT)

1
/
2
. In addition, there is a constant, c > 1, with the following 

significance: For g > (67r)1//2
; the energy £ (A) obeys (6) and A with its 

corresponding ^A obeys (7). Moreover, 

• \ffA = XJ/T
1
 with ^ a positive function on E3. 

• a — f s'mO with \f\ > 0 where r > 1. 

• At points where r > c, 

a) ^ < V2g-2e-91/4/cr-1. 

b) a = fr'1 sin 9 with \f\ > gW/c. 

• At points where r 3> c, 

a) \I/ = ^/2g~2(eQ + m^)r~l where eo is a positive constant less 
than e~pl 4//c and \m^\ < cr~l. 

b) a = (CQ + ma)r~^9~86^1 2'"1' sin0 w/iere Co is a positive con- 
stant and \ma\ < cr_1. 

Of particular interest to the author with regards to Theorem 2 is the 
fact that the electric potential, *, although Coulomb like at large dis- 
tance, has an effective charge \/—2fl,~2^o that is absolutely microscopic 
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at large g.  Meanwhile, the magnetic potential, a, falls to zero rather 
like the field of a dipole charge with dipole moment of size 0(g1^2). 

As with the statement of Theorem 1, the conclusions of Theorem 
2 are not changed substantially if the charge distribution p in (1) is 
allowed to vary in the ball as por1 with po positive with integral 1. 
This said, only the po = 3(47r)_1 case is discussed below. 

The remainder of this article is occupied with the proofs of Theo- 
rems 1 and 2. In this regard, the assertions of Theorem 2 are proved 
first as they are used in part to prove Theorem 1. In particular, the 
assertions of Theorem 2 are proved as various propositions and lemmas 
in Sections a-j below. These are all summarized in Section k to tie up 
the argument for Theorem 2. Section k then ends with the proof of 
Theorem 1. 

Before starting, note that the author benefitted at an early stage of 
this project from conversations with R. Scott. 

a) A reformulation of the variational prob- 
lem on Ao 

The variational problem given by £5s restriction to the set Ao of su(2)- 
valued 1-forms gauge equivalent to a sin Odcpr2 with a a function on R3 

can be reformulated as follows: 

Let g > 0 be a constant, and, for now, let p be a function with 
compact support where the distance, r, to the origin is less than 1 and 
with integral equal to 1. Now consider an equation for a C0 function a 
of the first two of the spherical coordinates (r, 9) on R3 which is given 
as follows: First, introduce the unique, C1 solution ip = ^[a] on R3 to 
the equations 

• —A^ + r 2a2/0 = p where r > 1. (8) 

• limr ^oo = 0. 
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Here, ^ is a function of (r, 9) too, and 

A = r-2(r2(-)r)r + (sme)-1(Sind(-)g)g 

is the standard Laplacian. Then, with ip understood, require that 

• a = 0 where r < 1. (9) 

• -arr - r~2((sin^)~1 (sin 9a)e)e - g^^a = 0 where r > 1. 

• r~2a is square integrable on M3. 

Here, and also below when ambiguities are unlikely, the partial deriva- 
tive of a function, /, with respect to r is written as fr and with respect 
to 9 as fg. When ambiguity can arise, these derivatives are written 
below as drf and 9^/, respectively. 

Of special interest are those functions a for that are absolute mini- 
mizers of the functional 

£o{a) = 2-^-* [r-2{a2
r+r-2(sm9)-2(sm9a)2e) 

+ 2-V A|V^|2 + r-2aV2).    (10) 

Note that £o(a) = £(asm9d(pT2) with £ as in (2), so £Q is the restric- 
tion of £ to those A G A of the form a sin 9d(pT2. 

Note that the introduction of the 1-form a = a sin 9d(p allows the 
r > 1 parts of (8) and (9) to be rewritten as 

• -A^ + |a|2^ = 0, (11) 

• -Aa-p4|^|2a = 0 

In terms of the 1-form a, the energy £o becomes 

So = 2-1g-211Va|2 + 2"V J(\V^\2 + |a|2|^|2). (12) 
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Note that £Q in (10) defines a bonafide functional on the space, Co, 
of continuous functions on M3 that vanish on the unit ball, are invariant 
under rotations about the axis defined by the spherical angle cp and are 
such that r~2(a^ + r~2(sin#)~2(sin0a);?) has finite integral. Moreover, 
techniques from the calculus of variations establish that £Q achieves its 
infimimum on CQ. In addition, standard elliptic regularity techniques 
(as found, for example, in Chapter 6 of [Mo]) justify the assertion that 
any critical point of SQ on CCQ is smooth where r > 1. 

b) Some simple inequalities 

The subsequent analysis exploits some basic observations that concern 
£Q and the solutions to (8) and (9). In this regard, the first observation 
is obtained by multiplying both sides of the top equation in (11) by ip 
and then integrating the result over E3. A subsequent integration by 
parts then finds that 

|(|W|2 + |a|2|Vf) = |v>p. (13) 

The second observation follows by contracting both sides of the bottom 
equation in (11) with the 1-form a and then integrating the result over 
R3. This done, an integration by parts finds 

g'2 J \Va\2 = g2 J lafm. (14) 

The third observation concerns a pair ip and ip' where these functions 
solve the versions of the second that are defined by a corresponding 
pair, a and a'. This understood, note the following: 

If H ^ Kl everywhere with the inequality strict somewhere, 

then ip < ipf everywhere.    (15) 

Indeed, this follows from the maximum principle because the top equa- 
tion in (8) implies that 

-A(^ - tf) + (|a2| - |a'|2)^ + laf^ - rp') = 0. (16) 

In particular, this equation precludes a non-negative maximum for ip — 
ipf. 
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The observation in (15) implies that for any a, the corresponding tp 
is sandwiched as 

^D<^< IpCouh (17) 

where ^coui is the solution to —ACT = p on R3 which decays to zero as 
r -> oo, while ^ is the solution to —ACT = p in the ball where r < 1 
which vanishes at r = 1. For example, in the case where p = po — 
3(47r)~1 where r < 1, 

• (STT)"^! - r2) < if) < (STT)"
1
^ - r2)     where r < 1. (18) 

• 0 < ip < (47r)~1r"1 where r > 1. 

By the way, note that (13) and (18) imply that 

(407r)-1 < 2-1 AlWf + l^|2|^|2) < 3(207r)-1 (19) 

in the case where p is the constant 3(47r)~1. 

c) The coulomb solution 

The Coulomb solution to (8) and (9) has a = 0 and I/J = tpo given by 

^coui(^) = (47r)-1 J \x - (Or1/)- (20) 

For example, when p has the constant value 3(47r)~1 in the unit ball 
and is zero outside, then I/JQ is equal to (87r)~1(3 — r2) in the ball and 
(47r)"1r"1 outside. As the following lemma attests, the Coulomb so- 
lution, a = 0, is the minimizer of £Q when g is small and not the 
minimizer when g is large. 

Lemma 3. When g < go, then a = 0 is the absolute minimizer of £Q 

on Co, and when g > go, it is not. In the case where p — 3(47r)_1 inside 
the ball and zero outside, go = (67r)1//2. 

The proof of this lemma exploits two fundamental inequalities that 
are also used elsewhere in the paper: 

(21) 
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• Suppose that f is a function of r that vanishes where r < 1 and 
is such that fr is square integrable on [l,oo) with respect to dr. 
Thenfr^r-"fdr<Afr^^dr. 

• Suppose that f is a function of r that vanishes in the limit as 
r -> oo and is such that rfr is square integrable with respect to 
dr. Then, f^fdr < 4/r>1/r

2r2dr. 

• Suppose that f is a function of the spherical angle 9 and is such 
that {^md)~1{midf)2

9 is integrable on [057r]. Then fQ<Q<7rsmdf2dd 
<2-1f0^7r(sm9)-\sm9f)jde. 

To argue for the first inequality, write r~~2dr as —^(r"1) on the left 
hand side of the integral, integrate by parts and then use the triangle 
inequality. The second inequality follows by directly integrating by 
parts on the left hand side of the integral and then employing the 
triangle inequality. The third inequality follows from the fact that the 
corresponding Sturm-Liouville operator has smallest eigenvalue 2. Note 
for future reference that / = sin# is the corresponding eigenfunction. 

Proof of Lemma 3. Consider first the argument that a = 0 is the 
minimizer of SQ when g is small. For this purpose, appeal to the first 
point in (21) and also (13) to derive the inequality 

£o(a)>(9/%-2 /Vv + 2-y f    pip. (22) 
J Jr<l 

Now, multiply the top line of (8) by the Coulomb solution ^Coui and 
integrate the result over R3 to find that 

/     pip+     r~2a2^coM\ = /     W'coui- (23) 
Jr<l J Jr<l 

Then, since 8(0) = 2~1 fr<1 pipcoui, this last equality, (17) and (22) 
imply that 

£0(a) - £0(0) > (9/%-2 J r-V - 2-y J r" V^oul.        (23) 

Finally, p > 0, so the maximum principle finds ^coui > 0 everywhere 
and ^coui > mr_1 where r > 1; here m — minr=1 ^coui- This under- 
stood, then (23) asserts that the Coulomb solution is the minimizer 
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when g < 3ly/2(2m)~ly/2. For example, when p = 3(47r)~1, the Coulomb 
solution is the minimizer when g < (GTT)

1
/
2
. 

To see that a = 0 is not the minimizer of £o when g is large, it is 
necessary only to prove that the Hessian of the large g versions of SQ 

at a = 0 is not a positive semi-definite quadratic form on Co- In this 
regard, note that this Hessian assigns to each /3 G Co the number 

W) = <r2/    r-2(P? + r-\smdr2(sm9f3)2e)-g2 [    r"2/?2^. 
Jr>l Jr>l 

(24) 
Now, according to the maximum principle, ^oui < Mr 1 where M 
denotes the maximum value of ^coui on the r = 1 sphere. This under- 
stood, then 

KoiP) < g'2 f   r'2 (ft + r-2(smer2(Sinef3)29) - g2M2 f   r'^2. 
Jr>l Jr>l 

(25) 

With (25) understood, fix some small e > 0 and take /? to be zero 
where r < 1 and to equal the function (r^1-^/2 — 1) sin0 where r < 1. 
This done, a calculation finds that 

nom < (STT/SKV'Q/S - g2M2 + 0(e)), (26) 

which is negative for small e provided that g > 31/2(2M)~1/'2. 

d) Some energy inequalities 

The next proposition gives a first indication of the large g behavior of 
various parts of the infimum of £Q. In the statement of this proposition 
and in the discussions of the subsequent sections of this paper, the 
function p in (8) is implicitly that which vanishes outside the unit ball 
and equals the constant 3(47r)~1 inside. 

Proposition 4. There is a constant Ci with the following significance: 
Given g > (67r)1/2, suppose that a is a minimizer of So- Then a and 
its corresponding ip obey 

• (207r)-1 < fr<1 |Wf < (207r)-1 + c^"1. 
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• J\a\2ip2 Kdg-1. 

• ijj < cig-1/2^1 where r > 2. 

The remainder of this section is occupied with the 

Proof of Proposition 4. The proof starts with the following observa- 
tion: Let a- be a function on the unit ball that obeys —ACT = 3(47r)-1. 
Then, 

/    |Va|2 > (207r)-\ (27) 
Jr<l 

and is an equality if and only if a = (87r)~1(m — r2) with m € M. 
Indeed, this follows by writing a as a sum of products of functions of 
r times spherical harmonics. The preceding inequality implies the left 
hand inequality in the first point of the proposition. 

There are two parts to the proofs of the remaining assertions. The 
first part below proves the right hand inequality in the first point, and 
both the second and third points of Proposition 4. The second part 
proves the final point. 

Part 1. Let E(g) denote the infimum of the #-version of SQ. What 
with (14), a bound by g2(407r)_1 + Cig on E(g) gives the right hand 
inequality in the first point of Proposition 4 plus the next two points 
in the proposition. This step establish such an upper bound for E(g). 

For this purpose, fix, e > 0 and a non-decreasing function (3 on 
[0, oo) that has value 0 on [0,1], equals 1 on [1 + £, oo) and obeys 
/?' < 2/6. This done, fix A > 1 and fix a smooth function x : [0,7r] —>► 
[0,1] that obeys x(0) = xC71" — #)> equals 1 on [A"1,7r/2], equals A# for 
0 < (2A)-1, and obeys Ix'l < 4A. 

Now set a — A/?(r)x(0):sin0<iy?. Let ij) = iplX^s] denote the corre- 
sponding solution to the a-version of the first equation in (8). Then, a 
straight forward calculation finds that 

E(g) < c<r2AV1 + ln(A)) + 3/(Sir)g2 f    fo (28) 
Jr<l 

here c is a constant which is independent of g, s and A. 
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Hold onto (28) for the moment, and introduce the piece-wise con- 
tinuous 1-form a! that is equal Ax sin Odip where r > 1 + e and equal to 
0 where r < 1 + e. Let ^ = ^'[A,^ denote the corresponding solution 
to the a' version of (8). By virtue of (15), ij) < ip' since |a| > la7). Thus, 
(28) implies that 

E(g) < c<r2AV1 + ln(A)) + 3/(87r)g2 f    ^. (29) 
Jr<l 

To make further progress, introduce the function p which is defined 
to equal 3/(47r) where r < 1 + e and to equal 0 where r > 1 + e. Let if; 
denote the corresponding solution to the equation 

-A^+|a/|V = p. (30) 

on R3 which decays to zero as r —> oo. As ip' solves the analogous 
equation with p' replacing p and since p> p', one has 

-A^'-^ + laf^-^^O (31) 

on the whole of M3. In particular, (31) with the maximum principle 
implies that -0' < ip. Thus, 

E{g) < cg-2\2{e-1 + ln(A)) + 3/(87r)5
2 /    ±. (32) 

Jr<l 

Moreover, since the integral of ip over the radius 1 ball is less than its in- 
tegral over the ball of radius l+£, the preceding inequality immediately 
give 

E{g) < c<r2AV1 + ln(A)) + 3/{8ir)g2 f       ±. (33) 
Jr<l+e 

Now, the next step is to rescale the expression on the far right in 
(33) so that the integral is over the radius 1 ball again. For this purpose, 
introduce the function 77 which assigns to the point x G M3 the value 
r]{x) = (1 + £)~2^((1 + e)x). In terms of 77, the inequality in (33) reads 

E{g) < cg-2\2{e-1 + ln(A)) + 3/(87r)(l + efg2 [    r,.       (34) 
Jr<l 

Moreover, the function r] obeys the equation 

-A77+|&|277 = p, (35) 
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for the case with b given by Ax sin Odtp where r > 1 and b — 0 where 
r < 1. 

To complete the proof of the second point of Proposition 4, it is 
necessary to bound the size of 3/(87r) /r<177. For this purpose, note 
that this integral is equal to the supremum over all C1 functions u 
which decay to zero as r —>• 00 of the functional 

e{u) = 3/(47r) /    u - 2-1 f {\Vu\2 + |6| V). (36) 
Jr<l J 

In this regard, there is a constant CQ > 0 which is independent of A and 
is such that when A > 1/100, the following is true: Let u be any C1 

function of 9 G [0, TT]. Then 

/     (ul + A2xV) sin OdO > c0X
2 f    u2 sin 6d6. (37) 

^[0,7r] y[0,7r] 

Thus, for any Cl function u as in (36), one has 

e(u) < 3/(47r) f    u-2-1 f \dru\2 - 2-1CoA2 f    r"2^.        (38) 
Jr<l J Jr>l 

And, (38) implies that 

3/(87r) /   r, (39) 
Jr<l 

< sup {3/(47r) f    u-2-1 [ \dru\2 - 2"^ A2 f    r-2u2\ . 
u     I Jr<l J Jr>l J 

The point now is that the supremum on the right hand side of (39) 
can be calculated explicitly because a maximizing function, UQ, can be 
exhibited: For this purpose, introduce the number p = 2~1(1 + (1 + 
4C0A2)1/2), and then 

• UQ = (87r)-1(2/p + 1 - r2) where r < 1. (40) 

• UQ = (47r)~1p~lr~p where r > 1. 

Given uO, the value of the supremum on the right hand side of (40) can 
be readily computed to be (407r)~1(l + 5/p). Since 1/p < CQ A"1, this 
means that 

3/(87r) f    V^i^r^l + bc-^X-1), (41) 
Jr<l 
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and 

E{g) < c<r2AV1 + ln(A)) + (407r)-V(l + ef{l + Sc^X-1). (42) 

This last inequality holds for any choice of e > 0 and A > 1, and so 
their values will be chosen to make the left hand side of (42) small. For 
this purpose, the first observation is that when e < 1/2 and A > S/CQ , 
then the expression on the right hand side of (42) is no smaller than 

E{g) < c<r2A V1 + MA)) + (407r)-y (1 + Scf ^A"1) + gh.   (43) 

Moreover, the left hand side of (43) is no greater than its value at 
e = v/c^-2A; thus 

E{g) < 2^2cX + cg-2\2 ln(A) + (87r)-yc^V1 + (407r)-y.    (44) 

Finally, E(g) is no greater than the value of the left hand side of 
(44) in the case A = g which gives the bound 

£(</)< (407r)-y + cV (45) 

Here, d is a constant which is independent of g. 

Part 2. The assertion in the fourth point of Proposition 4 follows 
using the maximum principle with the equation in the second point of 
(8) given that there is a ^-independent constant dl such that 

Mfc) <ci#~1/2        where r> 2, (46) 

To prove this last inequality, consider that (46) implies the equality 

^{xf = (27r)-1 J\x- Ol"1^ - |VVf - |o|V)- (47) 

Store this last equation momentarily to fix a smooth function (3 : 
[0, oo) —> [0,1] which equals 1 on [0,1] and vanishes on [3/2, oo). Pro- 
mote (3 to a function, /?, on R3 by setting /?(y) = /3(\y\). 

With p understood, remark that (47) implies that 

tl>(x)2 < (27r)-1 J\x- (-T'PifnP - |VV|2 - |a| V) (48) 
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since p = 0 where ft ^ 1. Then, an integration by parts finds 

^(^(^yWk-or1)!^2- (49) 
Now, if |x| > 2, then the right hand side of (49) is no greater than 

c' [       V2, (50) 
Jl<r<2 

where cr is a constant which depends only on the particular choice for /3. 
Meanwhile, the integral in (50) is bounded by 16/r>1 IV^I2 by virtue 
of the second point in (21). Thus, (49) and (50) imply that 

^(x)2 < c" /    \ViP\2 (51) 
Jr>l 

at all points x with \x\ > 2. This last inequality and the inequality 
in the second point to Proposition 4 completes the argument for the 
fourth point of Proposition 4. 

e) Some preliminary conclusions about a at 
large r 

The purpose of this subsection is to begin the study the pointwise 
behavior of a minimizer, a, of SQ. The particular observation in this 
section is summarized by 

Proposition 5. If a is a solution to a g > 0 version of (9), then \a\ is 
uniformly bounded on M3. Moreover, given e > 0, there exists r£ such 
that a < e when r > r£. Said differently, a — asmOdtp obeys \a\ < sr"1 

when r > r£. 

Proof of Proposition 5. The derivation of the asserted bound requires 
a four step argument. 

Step 1. Fix r > 1 and integrate both sides of the equation in the 
first point of either (8) or (11) with respect to the standard spherical 
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measure dCl = sinOdOdcp on the unit sphere.   After an integration by 
parts and multiplication by r2, the resulting equation reads: 

-drr
2dr [ fi>(rr)dn+ [ r2(|a|2^)(r, ^)dn = 0. (52) 

Js2 Js2 

Apply the maximum principle to this last equation to conclude that 

dr / ^(r, ')dn < 0 (53) 

where r > 1. 

Step 2.   Now, integrate both sides of (52) with respect to the measure 
dr over the interval [1, R] for any chosen R > 1. The result is 

- (r2dr [rl)(rr)dto)       +[        \a\2ip = - /V(l, ')dn = 1.   (54) 
\ J / r=R       Jl<r<R J 

Here, the right hand equality follows by integrating both sides of the 
equation in the first point of (8) over the radius 1 ball. 

This last equation implies that 

\a\2xp < 1. (55) 
/> 

Step 3. Equation (55) implies that \x — (•)|~1|a|/02 is integrable for any 
choice of x G E3 with |x| > 1. Indeed, as tp < (47r)~1r~1 where r > 1 
by virtue of (18), a version of Holder's inequality gives the bound 

/ 
Jr>l 

V2 /  r \ 1/2 

|x - (TW < (yf^ |a|V)      [[^ k - Ol-V)        (56) 
<(47r)-3/2|x|-1(ln|a;|)r/2. 

In particular, as \x — (•)! 1|a|'02 is integrable for any x G M3, and \a\/r 
is square integrable, the solution a to the second equation in (9) is given 
by 

a|x = (47r)-y /    \x-{-)\-latf. (57) 
Jr>l 

Note that, (56) and (57) imply that |a| = r|a| < C#4(lnr)1/2 with C a 
constant that is independent of a. 
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Step 4. To remove the factor of (Inr)1/2 from this estimate, first fix 
5 G (0,1/4); its value is determined by the chosen e. Next, write 
the integral in (57) as a sum of two parts, s+ + s_ where s+ is given 
by (57) with the integration domain now the region where r > 5\x\\ 
correspondingly, s_ is given by (57) with the integration domain the 
ball of radius 5\x\ centered at the origin. Note that |5+| is bounded by 

9Ad(       MVY/2(y       |s-(-)|-V3Y/2 (58) 
\Jr>5\x\ J \Jr>5\x\ J 

<C,+o{\x\)\x\-\\n$?l\ 

where £+ is independent of r, 5, a and #, while <7(s)2 = /r>^5 M
2/0- In 

particular, note that 
lim o[s) = 0. (59) 

s—>-oo 

Meanwhile, the necessary bound for 5_ requires two preliminary 
observations. The first is that 

Jr< 
a^f = 0 (60) 

for any R > 1. Indeed, this follows from symmetry considerations af- 
ter writing a = asinOdip with respect to the Cartesian differentials 
{dx, dy, dz} as a = a(r, ^)(cos cpdy — sin ipdx). The second key observa- 
tion is that when \y\ < 2""1|a;|, then 

\x - y\-1 = Ix]-1 + |a;r2pi(a;,y), (61) 

where \p(x,y)\ < (\y\. 

Together, (60) and (61) imply that 

a_ - (47r)-y |£|-2 /        pxa^2. (62) 
Jr<5\x\ 

In particular, (62) implies that 

|a-l<Ckr2(/H2^) (jT r"1^) ^C-^l^l-1, (63) 

where C- is independent of both |a;| and 5. 

The assertion of Proposition 5 follows directly from (58), (59) and 
(63) by first choosing S = 2~1(1 + C-)-1^ to make \a—\ < 2~1e\x\~1] 
and then choose \x\ large so that cr(\x\) in (59) is smaller than 2~1(1 + 
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f) Some refined conclusions about ^ 
at large r 

The purpose of this step is to refine the large r bound of ip from Propo- 
sition 4. Indeed, consider: 

Proposition 6. Suppose that a is a minimizeFof~a g > (GTT)
1
/
2
 version 

of So- Then the corresponding I/J obeys ip = ^o^-1 + ^(r-1) at large r 
where ipo is a constant that is no larger than ^2g~2. 

The remainder of this section is occupied with the 

Proof of Proposition 6.   The proof is divided into 3 steps. 

Step 1. This step establishes that if) = ^o^-1 + o(r~1) with ipo a 
constant. For this purpose, note that it is an immediate consequence 
of (8) that such will be the case provided that 

/ 
x - y|~V|2/0d32/ = raor 1 + o(r ^ (64) 

for r large, where mo is a constant. And, this last conclusion, follows 
directly from (18) and Proposition 5. 

Step 2.   This step constitutes a digression to establish 

Lemma 7. Suppose that a minimizes a g > 0 version of £$. Then 
either a is non-negative or non-positive. 

Proof of Lemma 7. Since the a and \a\ versions of (8) are identical, 
the corresponding solutions agree, and £o(M) = £o(a). Thus, |a| min- 
imizes £o if &■ does. As |a| = a where a > 0, it follows from the unique 
continuation theorem of Aronszajn [A] that a = \a\ everywhere if a is 
anywhere larger than zero. 

With this lemma understood, the on going (and usually implicit) 
assumption in the remainder of this article is that a > 0. 

Step 3.   Now, introduce 

f{r)= [       a(r,e)sm29d6. (65) 
Jo<d<7r 



PARTITIONING OF ELECTRIC AND MAGNETIC ENERGY    185 

As a. > 0, so / > 0. This function / obeys the following differential 
equation: 

-frr + 2r-2f = g4 f        <il;2a sin2 0d0, (66) 
Jo<e<7r 

as can be seen by integrating both sides of the equation in the second 
point of (9) using the measure sin2 9d9 on [0,7r]. 

Using the fact that r^ has limit IJJQ as r —>> oo, this last equation 
implies that 

-frr + 2r>f>2r-2f (67) 

at large r if ^o > surd2g~2. This last equation implies that frr < 0 
for large r. Now, were fr ever negative, then fr would become more 
negative as r increased and thus the condition / > 0 would be violated. 
Hence, fr > 0 for all sufficiently large r. Of course, this implies that 
/ is increasing as r tends to oo, a conclusion which is forbidden by 
Proposition 5. Thus, ^o < V^9~2 as claimed. 

g) The behavior of a at large r. 

Take g > (67r)1//2 in this section. This done, reintroduce the constant 
ipo from Proposition 6 and agree to write the latter as ^2g~2e§ where 
eo € [0,1]. It then follows from (66) using the maximum principle that 
the function / in (65) obeys 

/>r-p (68) 

for any p > po = 2~1[(1 + 8(1 - eo))1/2 - 1]. In fact, one can show 
without much difficulty that there is a constant Co > 0 such that 

a = cosin0r-po + o(r-po) (69) 

as r gets large. With regard to (68) and (69), note that when eo > 0, 
these equations imply that the magnetic field, B — *da, falls off at an 
anomolously slow rate; as the classical dipole field requires a = (9(r_1) 
at large r. In any event, as is argued momentarily eo > 0 as asserted 
in the third point of Theorem 2. 

The claim that eo > 0 follows from the existence of a bounded 
function a = cr(r, 9) that obeys the four conditions 
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• -Aa + r-2a2a = 0 (70) 

• linv^oocr exists and equals 1. 

• a > 0 everywhere. 

• o-(O) - v/2<r2e0. 

To belabor the obvious, the last two lines of (70) are compatible 
only if eo > 0. 

To consider the existence issue for a, fix a smooth function /3 : 
[0,oo) —>- [0,1] which vanishes on [2, oo), equals one on [0,1] and is 
non-increasing. Given R > 1, promote f3 to a smooth function, /?#, 
on M3 by setting PR(X) = P(\x\/R). This done, consider solving for a 
function CTR that obeys 

• -AaR + pRr-2a2aR = 0. (71) 

• linv^ooOR exists and equals 1. 

The existence of a unique such function is not hard to establish and 
the latter task is left to the reader. Here are some of the properties of 
CTR: First, the maximum principle guarantees that CTR > 0 and, as a is 
not zero identically, that CJR < 1. Second, CTR < 1 — (^(r-1). Third, 
|V<T#| = 0(r~2). Indeed, these last two properties are consequence of 
the integral equation equivalent of (71): 

aR(x) = 1 - (47r)-1 J\x- (Or1/^"2^. (72) 

The maximum principle also guarantees that CFR < GR> when R > R'. 
This understood, it follows that the sequence {cr^}^->oo is decreasing 
pointwise and so there is a unique limit, a. Moreover, by virtue of the 
first line in (71) and the bound CFR < 1 the functions in the set {<7#} 
are uniformly continous with bounded first derivatives on any given 
compact set. Moreover, they have uniformly continuous derivatives to 
any order on any compact set that avoids the unit sphere. Thus, the 
limit function a is smooth where r > 1 and obeys the equation in the 
first line of (70). Also, a < 1 everywhere and a > 0 everywhere with 
equality only if a = 0. 
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Can a vanish identically? To prove that a > 0 in the case eo < 1, 
note first that under this assumption, r~2a2 < c(3ir~2~2po with po > 0 
as in (69) and with c > 0 a constant. This understood, then (72) 
implies the existence of some constant c', independent of i?, and such 
that CTR > Id. As GR converges pointwise to a, this last equation implies 
that a > 0 somewhere and hence everywhere on E3 when eo < 1. 

In the case where eo = 1, a non-zero lower bound for a can still be 
deduced from (72), albeit with more effort. The start of this task uses 
the fact that CJR converges pointwise to a to deduce from (72) that 

(T(X) > 1 - (47r)-1 [\x- (OrV-V. (73) 

Now, to estimate the integral, consider breaking the integration domain 
into three regions: Region 1 has r > 2|x|, Region 2 has \x\/2 < r < 2\x\ 
and Region 3 has r <\x\/2. 

The contribution to the integral in (73) from Region 1 is no more 
than 

(47r)-1 /       r-3a2 < ( f       |a|2^ (74) 
Jr>2\x\ ^r>2|rr| 

where £ is an x-independent constant. As the integral of |a|2y0 is finite 
(as asserted by (55)), so the function of ja;| defined by the right hand 
integral in (74) tends uniformly to zero as \x\ tends to infinity. Mean- 
while, the contribution to the integral on the right hand side of (73) 
from Region 2 is no greater than 

(47r)-1        sup     a2(y)     / I*-(Ol"1^2 (75) 
\\x\/2<r<2\x\ )  «/N/2<r<2|:E| 

< C     sup      a2(y), 
|a;|/2<r<2jx| 

where £ is, again, and ^-independent constant. Note Proposition 5 
asserts that the right hand side of (75) tends uniformly to zero as \x\ 
tends to infinity. 

Finally, consider the contribution to the integral on the right hand 
side of (73) from Region 3. This contribution is no greater than 

clx]"1 \     r-2a2. (76) 
Jr<\x\ 
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To bound the latter expression, divide the region of integration into 
the domains {An : 1 < n < \x\} where the index n is an integer and 
An = {y : n < \y\ < n + 1}. Meanwhile, let sn denote the integral of 
r~3a2 over An. In this regard, note that r~3a2 is integrable over all of 
M3 by virtue of (55), and so Yli<n<oo sn < 00- -^et S denote the value 
of this infinite sum. It then follows that the expression in (76) is no 
greater than 

c'l^l-1   2Z   nSn' (77) 
l<n<|cc| 

Now, as the Yli<n<oo 5™ ^s finite, given s, there exists iV such that 
^2n>N sn < £- This understood, then (77) is no greater than 

q^Sn + iVM-1 X  sn) <C,'{e + N\x\-1). (78) 
\n>N l<n<N      ) 

Here, both £ and £' are x-independent constants. This last bound 
implies that Region 3's contribution to the integral on the right hand 
side of (73) tends uniformly to zero as \x\ tends to infinity. 

Thus, the analysis for the three regions has established the following: 
Give s > 0, there exists r£ > 1 such that 

cr(x)>l-e     when  \x\ > re. (79) 

This last inequality establishes that a > 0 even when eo = 1. By the 
way, this last inequality also establishes that a tends uniformly to 1 as 
r tends to infinity. 

Now turn to the final point in (70). To establish this point, multiply 
both sides of the equation —A^ + r~2a2i/j = p by CTR and integrate 
the resulting equation over M3. Integrate by parts twice to place the 
Laplacian on CTR. Then, invoke (71) to obtain the equality 

47iy2<r2eo + f{l - (3R)r-2a2iPaR = aR(0). (80) 

Here, the fact that aR is harmonic in the ball has been used to identify 
/ p<jR with (JR(0). In any event, this last equation asserts that (7R(0) > 
47rv</2g~2eo for all i?, and so a(0) > 0 for all R. This proves that a is 
not identically zero when eo > 0 and thus when, eo = 1. 

Equation (80) implies the final line of (70) by virtue of (55), for the 
latter implies that the integral term on the left side of (80) converges 
uniformly to zero as R —> oo. 
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h) A lower bound for themagnetic energy 

The purpose of this subsection is to derive a lower bound for J |Va|2. 
Here is the precise statement: 

Proposition 8. There exists a constant c > 1 with the following sig- 
nificance: Fix g > (QTT)

1
/
2
 and let a be a minimizer of the g version 

of £o in (10). Set a = asinOdip. Let U denote the annulus where 
1 <r < l + cg'1.  Then 

g-2 f |Va|2 > crV (81) 
Ju 

The remainder of this section is occupied with the 

Proof of Proposition 8.   The proof is divided into four steps. 

Step 1. First, let Ci denote the constant which appears in Proposition 
4, and introduce C to denote the set of Sobolev class Lf functions u 
on M3 which vanish where r > 1 + 647rcip~1. The claim here is that 
if g > 647rci, then there exists a unique K, = K,(a) G (0, oo) with the 
property that 

3(87r)-1 /    ^ (82) 
Jr<l 

= sup (S^TT)-1 /    u - 2-1 ( [ \Vu\2 + K2g2 [    r-2u2) ) . 
u£C   [ Jr<l \J Jr>l ) J 

To see that K exists, remark first that for any choice of ft, the supre- 
mum on the right hand side of (82) is achieved by a unique function, uK, 
which can be written down in closed form. To write uK, first introduce 

• (i = 647rc1p-1. (83) 

• p-2-1((l + 4ftV)1/2 + l). 

• p, = 2-1((l + 4ftV)1/2-l). 

With these definitions understood, here is uK\ 
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(84) 

• uK = (Sir)-1 (I -r2 + [(1 + dy+P' - l]/[p(l + dy+P' + p1]) where 
r < 1. 

• uK = (47r)-1[(l + dy+p,r-p - rp'}/[p(l + d)p+*/ +p'} where 1 < r < 
1 + d. 

Since the supremum on the right hand side of (82) is 3(87r)~1 Jr<1 uKj 
integration of the first line in (82) finds the supremum on the rightTiand 
side of (82) equal to 

/(«) = (407r)-1 + (167r)-1[(l + d)^' - l}[p(l + d)p+pl +p,]-1.    (85) 

Now, there are four key observations about /(•) in (85): First, / 
is a continuous function of K G [0, OO). Second, / is a monotonically 
decreasing function on [0, oo). Third, limK^00/(^) — (407r)~1. Finally, 

/(0) = (407r)-1 + (leTT)"1^ + (647rci)-15)-1. (86) 

If the right hand side of (86) is greater than 3(87r)~1 Jr<1 ij), then it 
follows from (13) and the first two points of Proposition 4 that 
3(87r)~1 Jri<1 if; lies in the range of / and so there exists some K G (0, oo) 
which makes (82) true. Moreover, there will be a unique such K, since 
/ is monotonically decreasing. 

Now, due to (13) and Proposition 4, the right hand side of (86) can 
be guaranteed greater than 3(87r)~1 Jr<1 ^ when 

(lerr)"^! + (647rc1)-
1
5)-1 > 2ci/^, (87) 

which occurs when g > 647rci. 

Step 2.   Here is the next point: 

There exists K >1 such that if g > 647rci, then «(a) > 1/K.    (88) 

Indeed, suppose that K = 10~5(647rci)~1. Also, assume that g > 
1010647rci. Thus Kg > 105. With this understood, p,p' = Kg + o(10-5) 
and (1 + d)^' = 1 + (1287rci)« + o(10-5). This implies that 

f(K) > (407r)-1 + (327r)-1(1287rci^)/(^ + Kg)'1 = (407r)-1 + 2c1g-1. 
(89) 
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Because of (13) and the assertions of Proposition 4, the right hand 
side of (89) can not be smaller than 3(87r)~1 /r<1

/0- Thus, since / is 
monotonically decreasing, it follows that /c(a) in (82) is larger than 
10~5(647rcl)~1 when g > 1010(647rci). This fact implies the existence 
of K which makes (88) hold for the larger range of g. 

Step 3: Now, remember that 

3(87r)-1 f    4 = supu (S^TT)-
1
 [    u - 2-1 /\\Vu\2 + \a\ V)} , 

Jr<l I Jr<l J ) 
(90) 

where the supremum on the right hand side is taken over the set of 
functions u on M3 with both V^ and r~lu square integrable. Note that 
UK is such a function for any K. In particular, take 

K = mm(l/K, 10-5(647rci)-1). 

In this case, the fact that /(/c) is decreasing, (82) and (90) imply that 

[\a\2
Ul>K2g2 f    r-2ul (91) 

J Jr>l 

This last inequality with the second point in (84) imply that there is a 
constant C > 1 such that when g > C, then 

/ M2 > C-2g. (93) 
Ju 

Since a\r=i = 0, this last inequality implies the existence of the 
constant c which makes (81) hold. 

i) The value of CQ and the form of ^ and a 
where r > 10 

The previous sections found a constant eo G (0,1] that controls the 
large r asymptotics of both ip and a in as much as ip ~ y/2^~2eor~1 and 
a ~ Co sin r-^9"8^)1 ~1]/2 as r -4 oo. In particular, these observations 
imply that ip < y/2g~2eir~l and a > cism6r~l at large r with ei and 
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ci positive constants. This understood, the purpose of this section is to 
bound el from above and Ci from below and to establish a lower bound 
for the radius r where this upper bound for tp and lower bound for a 
are reasonable. The fruits of this labor are summarized by 

Proposition 9. There exists 7 > 1 with the following significance: 
Suppose that g > (GTT)

1
/
2
 and that a minimizes the g-version of £Q. At 

points where r > y, this a and its associated tp obey 

• il> < v^-^e-*1'4/^-1. 

• ex > 7~1g1/2sin#r~1 . 

The remainder of this section is dedicated to the 

Proof of Proposition 9. As the proof is long, it is broken into twelve 
steps. Take g > (GTT)

1
/
2
 in all steps below. 

Step 1. According to (93), there is a positive, ^-independent constant 
c such that \a\2 has integral greater than c_1g over the region where 
r < 1 + c/g. This step provides a refinement with a proof that the 
mass of this integral can not concentrate where sin 9 is zero. Here is 
the precise statement: 

Lemma 10.  There exists c > 1 such that when g > c, then 

\a\2 > c-lg. (94) 
J r* r<l+c/£,sin0>l/c 

Proof of Lemma 10. Suppose that the lemma were false. Then, given 
R > 1 and e > 0, there would exist arbitrarily large values for g for 
which 

f \a\2<eg/R. (95) 
JrKl+R/g.sineyl/R2 

Given that such is the case, fix 5 G (0,1/1000) and let us denote the 
following function: 

us = max(0,3(87r)-1[(l - r2) +6(2+ (1-3cos2 0)r2))]. (96) 
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Note that us < 5 where r > 1 and ug — 0 where r > 1 + 25. Moreover, 

us<9(8Tr)-l5sin2d (97) 

where r > 1 and sin2 6 < 2/3. 

The preceding properties of us imply that 

f pus-2-1 f(\Vu5\2 + \a\2u2
5) (98) 

> ^OTT)-
1
 + 25- dS' 2 

(7 \a\2 + R-& [ \a\2) 
\Jr<l+R/g,smO>l/R2 Jr<l+R/g ) 

With (98) understood, take b = R/(2g). This done, the right hand side 
of (98) is no smaller than 

(40n)-l + R/g{l-C(e + Rr* + R/g)), (99) 

where £ is a ^-independent constant. Indeed, (99) follows immediately 
from (98) and (95) given that fr<1+R/ M2 is bounded by a 
^-independent multiple of R2g. In this regard, the latter bound 
is obtained as follows: Note first that Jr<r+R/ M2 is bounded by 
(i?/g)2/r<1+R/ |Va|2 since a = 0 where r = 1. Meanwhile, accord- 
ing to (14), the integral of |Va|2 over the whole of R3 is equal to g4 

times that of |a|2|^|2, and the latter, by virtue of Proposition 4, is no 
greater than Cig~l. 

Now, the point is that when R is large, the lower bound in (99) is not 
compatible with Proposition 4 because ip and not u^^g) maximizes the 
expression J pud3x — 2~1 /(|Vu|2 + |a|2/u2) as u ranges over the smooth 
functions on E3 for which \u\/r is square integrable. 

Step 2. This step proves that there is a ^-independent constant c > 1 
and, for each g > c, there is a number 7*0 G (1,1 + c/g) such that the 
function / in (65) obeys 

/(ro)>c-y/2. (100) 

In this regard, note that (100) and (66) imply that 

f(r) > c-y/V-1 (101) 
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for all r > TQ. 

The proof for existence of such constant c and 7*0 uses three previ- 
ously established facts: The first fact is the assertion in Lemma 10. The 
second, a converse of sorts, was derived to end the proof of Lemma 10: 
The constant c in Lemma 10 can be chosen so that /1<r<1+c/ M2 < eg. 
The third, a consequence of (9) and Proposition 4, is that c can be 
chosen so that f1<r<l+c/ \^a\2 < ^^ By virtue of these three facts, 
there exists a ^-independent constant c7 > 1 and a possibly ^-dependent 
number VQ e (1,1 + cf/g) such that m = \a\ |        obeys 

•^^/sin^l/c'^^^2- (102) 

As argued momentarilly, these inequalities imply that 

mdO > 2-3/4c'-3/^1/2. (103) 
/ 

C>-1^-1„2 

The desired inequality in (100) follows from (103) with c = 2-3/4c'-7/2. 

To establish (103), note first that /sin^>1/c/ m2d6 < m fsin9>1/cf mdd 
where m denotes the maximum value of m where sinO > l/d'. Thus, 
the left most inequality in the first point of (102) requires 

l7?ry < / mdO. (104) 
Jsme>l/c' 

To obtain the requisite upper bound on m, first note that when m(9) = 
m, then m(8f) > 2~1 provided that 

|^-^|<4-1c,-1p-4m2. (105) 

Indeed, this follows from the bottom point in (102). Second, observe 
that (105) is consistent with the right hand inequality in the top point 
of (102) only if 

2-1m2(4-1c,-1<r4)m2 < c'g2. (106) 

Thus, 7h < (8c,2)l/Ag3/2. Insert this last bound into (104) to obtain 
(103). 

Step 3. The step constitutes a digression of sorts to state and then 
prove 
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Lemma 11. Let P be a function of the spherical coordinates (r, 0) 
that vanishes where r < 1, has limit zero as r —> oo and such that 
r~2fi,r~lj3r and r~2(sm6)~1(sm8P)o are all square integrable. Then 

[r-2(fi + r-2(sm0)-2{sm9(3)2
e) > g* /r"2/?2^2 (107) 

with equality if and only if (5 is a multiple of a. 

Proof of Lemma 11. Suppose that (107) is violated by some non- 
trivial /?. Then, as is explained momentarily, there exists a non-negative 
violator, /?, with 

-prT - r-2({sme)-l(smep)e)e - g4ip2P < 0 (108) 

where r > 1 and with a strict inequality on some open set. Take this 
last equation and multiply by a, then integrate the resulting inequality 
over the r > 1 portion of R3. As a > 0, the result is a negative number. 
However, as a also obeys (9), two applications of integration by parts 
contradict this last assertion. 

To prove (108), note first that if there exists ^ that violates (107), 
there exists such a function ft which is positive and has compact support 
in some very large radius ball. This said, fix R > 1 and let BR C M3 

denote the ball of radius R. When R is large, standard potential theory 
finds a unique function pR on BR — Bi, vanishing on the boundary of 
this domain, positive on its interior with maximum 1 and satisfying 

-(pR)rr - r-2((sme)-1(smepR)0)0 - g^2pR = -XRpR    where r > 1 
(109) 

with Aft > 0. Potential theory can also be used to prove that Aj? 
increases with R. Meanwhile, view (109) at a local maximum of pR to 
see that A^ < g4 max^! ip2. 

Now, consider that ip = v
/25~2eor~1 + o^-1). This understood, 

it follows from (109) that there exists r0 > 1 such that when R is 
large, then pR has no local maxima where r > ro- In fact, this last 
equation implies that pR < e~XRr/2 where r > TQ. In any event, as 
pR = 1 at some r < ro for all large R, and as A^ is increasing and 
bounded, (109) coupled with standard elliptic regularity theory finds 
that limi? —> ooPR = P exists and has the following properties: First, 
P is a smooth function where r > 1 and vanishes at r = 1.   Second, 
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(5 has maximum 1. Third, all of the following are square integrable: 
r-^r-^sinfl)-1 (sin 0/3)0 and r"2/?. Finally, /? is a violator of (107) 
and obeys (108) with the inequality holding on a non-empty set. (In 
fact, /? obeys (109) with A# replaced by A = lim^^oo \R.) 

Step 4. This step uses (107) to obtain an upper bound on the size of 
^ where r > 4. The precise statement is 

Lemma 12. There exists a g-independent constant £ with the following 
significance: At points where r > 4, the function ijj obeys ip < ^~2r~1. 

Proof of Lemma 12.   To begin, take (5 in (107) as follows: 

. /5(r, Q) = (r - i) sin1/4 9 where r < 2. (110) 

• /3(r, 6) = 4r-2 sin1/4 9 where r > 2. 

The left hand side of (107) for this choice of /? is finite, some constant. 
This understood, then (107) implies the existence of a ^-independent 
constant £i such that 

/       tf sin1'2 0 < g-%. (Ill) 
J2<r<8 

Next, use the fact that — A^ < 0 where r > 1 and standard Green's 
function techniques to find a ^-independent constant such that 

l/j < Kf -1 t       i>. (112) 
J2<r<3 

at points where r > 4. (Remember when deriving (112) that ^ = |^>|.) 
With (111) and (112), the lemma follows using Holder's inequality and 
the fact that sin"1/2 9 is locally integrable on R3. 

Step 5. This step uses the bound in Lemma 12 to obtain an upper 
bound on the integral over the region where r > 8 of r~2a2ip2. To 
obtain this bound, fix a function, x> of r that equals 1 where r > 8 and 
zero where r < 4. This done, multiply both sides of the equation in 
the first point of (8) by x^ and then integrate the result of R3. Two 
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applications of integration by parts and an appeal to Lemma 12 yields 
an inequality of the form 

/   (|W|2 + r-W)<6/       ^<^9-\ (113) 

where £i and £2 are ^-independent constants. 

Step 6. To start this step, decompose a as a — a + /?, where a = a at 
r = 8 but otherwise solves the equation 

-(drr + r-2((siii^)""1(sin^)^) = 0, (114) 

while fl — 0 at r = 8 and obeys 

-(^r + r-2((sin^)-1(sin^),),)-^V^ (115) 

Both a and /? are solutions to their respective equations on R3 that 
limit to zero as r —> 00. In this regard, note that such a decomposition 
can be found using standard properties of the Laplacian on R3 as a 
and /3 are obtained by first solving the equations 

• 

• 

-Aa = 0 where r > 8 with a|r=i6 = tt|r=i65 (116) 

-A6 = g^a where r > 8 with 6|r=i6 = 0, 

and then writing a = a sin 9dip and b = /3 sin 6dtp. 

In any event, the purpose of this step is to obtain a pointwise bound 
on /?. In particular, as |6| = r-1)/?), such a bound can be obtained using 
the Dirichelet Green's function for A in conjunction with (116). Indeed, 
this strategy finds 

IsMflaOl < (47r)-y f    \x - (-^r-'fa. (117) 

This last inequality understood, use Lemma 12 to eliminate one power 
of ip and so bound the right side of (117) 

94 [    \x - (')\'1r'1^2a (118) 
</8<r 

<£S2 f    \x - (-yi-'r-^a 
J8<r 

- ^ {Lr ^ " (,)rV2)l/2 (L/"^^2)172 ' 
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Here, the left most inequality results from an application of Holder's 
inequality. Next, plug (113) into this last inequality to discover a g- 
independent constant f such that 

m < £r1/2 (119) 

at points x with \x\ = r. 

Step 7. This step studies the behavior of d. For this purpose, it 
proves useful to reintroduce the function f(r) from (65) and (101). This 
done, the resulting analysis of a is then summarized by the following 
assertion: There exists a ^-independent constant £ such that 

\&\(r,o) ~ r-7|r=i6sin0| < £r-2/|r=i6sin0 (120) 

where r > 16. With regards to this last equation, note that the maxi- 
mum principle guarantees that is non-negative. 

To prove the assertion, and for use subsequently, it proves useful 
to introduce the functions u = (r2sin0)~1a and i> = (r2sin0)~1d. 
Next, interpret and v and z> as functions on R5 by writing r and 9 
in terms of standard Cartesian coordinates as r = (xf + - • • + xl)1/2 

and 9 = Avccos(x5/r). This done, then the second line in (9) reads 
—As^ — g4ip2i/ and (114) becomes 

• -Asi) = 0 where r > 8. (121) 

• i>\r=S = ^|r=8- 

• z> —> 0 as r —>• oo. 

Here, A5 denotes the standard Laplacian on R5. All this understood, 
it follows from (121) using standard Green's function techniques that 

f> < ^r~3 /   i/r=8 sin3 9d9 = 6^"3/r=8 (122) 
Jo 

where £^2 are ^-independent constants and where / is the function of 
r from (65). 

Put this last bound in the bank temporarily and consider the expan- 
sion of z> as a sum of spherical harmonics. That is, write 0 = ^A i>xK,x 

where K
A
 is a function only of 9 and solves the eigenvalue equation 

-(sin0)-3((sin0)3/4)0 - A/cA. (123) 
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In this regard, the lowest eigenvalue is A = 0 with the constants as 
eigenfunctions. The next lowest eigenvalue is A = 4 with cos 9 as the 
eigenvalue. Meanwhile, z>A is a constant multiple of r-(3+v/3+4A)/2> rp^-g 
last point understood, then (120) follows directly. 

Step 8. This step uses (119) and (120) to prove the first assertion 
of Proposition 9. For this purpose, note that these two inequalities 
directly imply the existence of ^-independent constants rh > 1 and 
r* > 16 such that 

a > ra-y/V1 sin 0 - rhr1'2. (124) 

where r > r*. This understood, return now to the equation in the first 
point of (8) for /0. Multiply both sides of this equation by V7 and then, 
at each fixed r > r*, integrate the result over the constant r sphere to 
obtain the following equation for the function q(r) = JQ ip2\r sm9d9: 

-r-2(r2qr)r + 2 f (^2 + r"2^2 + a2^2)) sm9d9 = 0. (125) 

This last equation implies the inequality 

-r-2(r2gr)r + r-2A(r)g<0, (126) 

where A(r) is the smallest eigenvalue for the operator 

In this regard, use (124) with standard eigenvalue estimation techniques 
to find a ^-independent constant £ > 1 such that 

A(r) > ry/2r-2 - £r. (127) 

Next, use (127) to find gi and a ^-independent constant m* > 1 such 
that A(r) > m~lgll2 when g > gi and m* < r < m* + 1. 

Given this lower bound on A where m* < r < m* + 1 and Lemma 
12's bound for q at r — ra*, the diflferential inequality in (126) implies 
the existence of a ^-independent constant fi > 1 such that when g > gi, 
then 

q{r) < ^-4e^1/4/M. (128) 
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where r = m* + 1. This last bound and the maximum principle then 
bound q(r) by /ig-4 at all r G [m* + 1, m* + 3]. Finally, with the latter 
bound in hand, the arguments from Step 4 provide a ^-independent 
constant // > 1 and the pointwise bound of ijj by g~~2e~9 ^'r where 
r > m* + 2. This pointwise bound directly gives the first assertion of 
Proposition 9. 

Step 9. This last step uses the first assertion in Proposition 9 to 
obtain the second. To begin, reintroduce a and (3 from Step 6. Then, 
the following assertion restates some facts from previous steps: There 
exists a ^-independent constants /i > 1 and // such that when g > /i, 
then 

• il) < /i£~2r-1e-21/4/M     at all points with r > /x. (129) 

• a > //_15'1//2r~1 sin#     at all points with r > fi. 

• \P\ < tf at all points with /i < r < fi + 1. 

This last point understood, introduce z/ = (r2sin^)~1a and decompose 
the latter where r > fi as the sum UQ + vi where these new functions 
obey 

• -A5Z/0 = 0 with z/o|r=/i = ^- (130) 

• —A^z^x = ^T/;
2
^ with i/i|r=/z = 0. 

To proceed, observe from (69) that rpa is bounded on R3 as long as 
p < Po with po as described just prior to (69). Thus, said, then it 
follows from (128) that with e > 0 specified, there exists g£ such that 
when g > g€, then r1_ea is bounded. This said, then r3~£v is bounded 
on R5. Let z(i/) = s\xpr>tJL(r

s~£u) and define z(i/i) analogously. Then, 
use the Green's function of — As to conclude from the second line of 
(130) and the top line in (129) 

H(z) < M-y f    \x- (^-^vdvok (131) 

< (27r2)-V2e-29l/4/^(^) f    \x- (.)|-3r-5+cd^5. 
J r>u 
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Here, dvols denotes the Euclidean volume element on E5. Now, the 
right most integral in (131) is no smaller than (27r2)£:-1|a;|_3+e, and so 

M3~£N(z) < e-VV2fll/4/M^). (132) 

Then, as z(u) < zfa) + zfa), this last inequality implies that 

supr3-6)^! = zfa) < 2s-1ix2e-29l/^(lz(uo) (133) 
r>/jL 

as long as ^ > 2/i2e-2^1/4^. 

This last point with (129) implies that there is a ^-independent 
constant c > 1 such that when g > c then 

'Q?|r=2/i>c"V/2sin9. (134) 

This understood, (9) plus the maximum principle implies that 

a> c-y/V^infl (135) 

at all r > 2/i. 

j) The uniqueness of solutions 

The purpose of this section is to consider the following question: Are 
there two distinct, non-negative functions which are both absolute min- 
ima of SQ in (10)? Here is the answer: 

Proposition 13. For any g > 0, the functional £Q has a unique, non- 
negative minimizer. 

The remainder of this section is occupied with the proof of this 
proposition. 

Proof of Proposition 13. The first step in the proof is to elaborate on 
the conclusions of Lemma 7. This is provided by 

Lemma 14. // an absolute minimizer, a, to So is somewhere positive, 
then a is bounded from below where r > 1 by a constant, non-zero 
multiple of r~2(r — l).sin0. 
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Proof of Lemma 14. First, let v = (r2 sin ^)~1a and consider u and ip as 
in Step 7 of the previous section to be functions on R5 via identifications 
r = (x2H h^)1/2 and # = Arccos {x^/r) on R5. As previously noted, 
the function v obeys 

• v = 0 where r < 1. (136) 

• A5Z/ — g^ij;2!; = 0 where r > 1. 

• z/ is square integrable over R5. 

As before A5 denotes the standard Laplacian on R5. Now, when y e R5 

has \y\ > 1, use G(-; y) denote the Green's function on the complement 
of the unit ball in R5 with Dirichelet boundary conditions on the surface 
of the ball and with pole at y. Thus, 

G(x-y) = (2-!r2)-l(\x - y\-s - \\y\x - y/|y|r3). (137) 

By inspection, G(x\y) > 0 where \x\ > 1, and drG('; y)\x > 0 where 
\x\ = 1. This said, then is in (136) can be written in terms of G as 

v(x)=g^ jG{x-y){^v)\ySy. (138) 

The claims in the lemma follows directly from this representation of v. 

With Lemma 14 in hand, suppose now that a is an absolute min- 
imizer of eO and is not identically zero. Let a' be any other function 
in the domain of EQ. By virtue of Lemma 14, the function a! can be 
written as a' = ha, where h is smooth where r > 1 and bounded on sets 
where r is bounded. As is demonstrated below, S^a') can be written 
in terms of h as 

£0(a/) = £,{a) + 2-lg-2 j\h2
r + r"2^)/-Vd3?/ (139) 

+ 2-y t{h2 - l)r-2a2^ - ^)dsy, 

where ip' is the solution to the af version of (8). To see the significance of 
(139), first note that the primed and unprimed versions of (8) together 
imply that 

-Aty - </>) + r-V2(^ - VO + r-2(l - h2)a2^ = 0. (140) 
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Now, multiply both sides of this last equation by (ip - t/)1) and then 
integrate over R3. An integration by parts results in the equality 

/ 
(|V(V> - ^)l  + r-2a2(i; - ^fcPy 

+ fr2(l-h2)a2i;(^-^)dsy = 0.   (141) 

This last equation precludes a negative value for the second term on 
the right hand side of (141); in fact, said term is positive unless ^ = ip' 
and thus h = l. Hence, £o(af) > £0(0) unless af = a. 

By way of tying loose ends, what follows next is the derivation of 
(139). To begin, multiply both sides of the equation in the middle 
point of (9) by h2a and then move one factor of h through the various 
derivatives on a to write the leading order derivatives in terms of a1 = 
ha. This done, integrate the result over R3 and then integrate once by 
parts to see that the difference between the a' and a versions of the 
first integral in (10) is equal to 

2-V2 f(h2
r + r-2h2

e)r-
2a2 + 2-lg2 I\h2 - l)r2aV- (142) 

Next, note that the difference between af and a versions of the second 
integral in (10) is equal to 

/< 
(^ - </>)/>• (143) 

The latter is equal to the integral that is obtained by multiplying both 
sides of the equation in the top point of (8) by (tp' - ip) and then 
integrating over R3. Two applications of integration by parts then 
equates (143) with 

fM-AW - iP) + r-2a2{ip - ip')))d*y. (144) 

To utilize this last identity, note that (140) can be rewritten as 

-A(^ - ij)') + r-2a2{<iP - iP') + r-2(l - h2)a2^ = 0. (145) 

This last equation implies that the integral in (143) is equal to 

/ 
r-2(l-h2)a2<iP^d*y. (146) 

Thus, the contribution to £Q(OL') - £$(0) from the second integral on 
the right side of (10) is equal to the expression in (146) times 2~1p2. 
Adding the latter to (142) produces the desired right hand side of (139). 
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k) The proofs of Theorems 1 and 2 

The purpose of this final section is to present the proofs of the the 
two theorems in the introduction. As the proof of Theorem 2 requires 
little more than the collation of results from the preceding sections, it 
is given first. 

Proof of Theorem 2. The fact that minimizer, a, of £o is unique up 
to multiplication by ±1 is proved as Proposition 13. Lemma 3 proves 
that the minimizer is a = 0 when g < (evr)1/2 and not so otherwise. 
The bounds in (6) for £o(a) follow from Propositions 4 and 8 using 
(14). The bounds in (7) also follow from these propositions with the 
help of (14) and (17). The positivity of ip asserted by the first point 
of Theorem 2 follows by applying the maximum principle to the first 
equation in (8). Lemma 14 asserts the conclusion of the second point 
of Theorem 2, and the third point of Theorem 2 is a restatement of the 
conclusions of Proposition 9. The fact that rip has a limit as r -> oo 
equal to ^clg~2e^ with eo < 1 is proved above as Proposition 6. The 
fact that eo > 0 is proved in Section g. The bound e§e~g /c follows 
from the assertion in Part a of the third point of Theorem 2 using (8) 
and the maximum principle. Meanwhile, the assertion from Part b that 
OL ~ cor~[(9~8e^1/2~1^2sin^ with CQ bounded is discussed in Section g. 

To complete the proof of the final point of Theorem 2, here is the 
argument for the assertion that r\m^\ is bounded: First, write ^ using 
(8) as 

rl,(x) = (47r)-1|x|-1 - (47r)-1 f \x - (^a2^2^. (147) 

As ip < r~l and \a\ < r~3/4 at large r, it follows that both a2r~2fil) and 
a2r~lfilj are integrable. This said, the bound on \m^\ follows from (147) 
since \x -yl'1 - \x\~l = 0(\y\/\x\2) when \y\ < \x\/8. 

Finally, here is the argument for the bounded behavior of r|ma|: 
Write a in terms of the function v that appears in (138). It follows 
from (138) and the bound just proved for m^ that the function mo, 
obeys a fixed point equation of the form m = T(m) with 

T(m) = e-21/4/c[x|2 / G(*,y)br4-[(9^ 
J\y\>\x\/A 

(148) 
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Here, h is a function that satisfies \h(x)\ < cirri-1. Now, T(m) is 
uniformly contracting on the Banach space of bounded functions which 
vanish where \x\ < 1, and so it has a unique fixed point on this space. 
This fixed point is ma. This said, introduce the Banach space b con- 
sisting of those functions m that vanish where \x\ < 1 and are such 
that \x\\m\ is bounded. Here, the norm of m G B is the supremum on 
R3 of |x||m|. As T also maps B to itself as a uniformly contracting 
operator, so it has a unique fixed point in B. Since the functions in B 
are bounded on R3, the latter fixed point is the same as the former; 
thus rria G B. 

Proof of Theorem 1. The assertion that the coulomb solution is the 
minimizer of the small ^versions of £ is proved last. The coulomb 
solution is not the absolute minimum of any g > (67r)1//2 version of £ 
since it is not the minimizer of the same g version of £o. As for the 
other assertions, the upper bound in (6) follows from the analogous, 
£o version. Meanwhile, the lower bound in (6) is a consequence of the 
first point and the lower bound in either the second or third points of 
(7). In this regard, the argument for the first point of (7) appears just 
after Theorem 2. Meanwhile, the upper bounds in the second and third 
points of (7) follow given the first point and the upper bound in (6). 
As the lower bounds in the second and third points of (7) are proved 
momentarily, consider in the mean time the arguments for the fourth 
point. In particular, the pointwise bound on \^A\ by |\I/A=O| follows 
via the maximum principle since u = \^A\ satisfies the differential 
inequality —Au < po where po is zero where r > 1 and equals 3/47r 
where r < 1. The bound on 1^1 by cg~l/2r~l where r > 2 is proved by 
essentially the same argument that proves the final point of Proposition 
4. 

Given the upper bounds in the second and third points of Theorem 
2, the corresponding lower bounds in these points follow as corollaries 
to 

Proposition 15. There is a constant c > 1 with the following signifi- 
cance: Suppose that A £ A, that 7 > 1 and that the corresponding ^ 
obeys ^ |VA|2 < 7"1- Then, f^^ \BA\2 > c'V .3 

Proof of Proposition 15.    Before starting, note that the argument is 
very much the same as the one above that proved Proposition 8.  In 
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any event, to start, let ^ now denote —2 trace (r1^). The argument 
given in Steps 1-2 of the proof of Proposition 8 find 7-independent 
constants ci, C2 and if, all greater than 1, and a unique K > 1/K such 
that the following is true: Let c denote the space of Sobolev class L21 
functions on M3 that vanish where r > 1 4- C27~1. Then, 

3(87r)-1 /    1> (149) 
Jr<l 

- sup (3(47r)-1 f    u - 2-1 ( [ \Vu\2 + K
2
J

2
 f    r-2u2) ) . 

u6C   I Jr<l \J Jr>l ) J 

holds when 7 > 647rci. Moreover, the supremum on the right hand side 
of (149) is achieved by the function uK from (84) where £>,£/ and d are 
by the formulas in (83) after replacing g with 7. This understood, note 
that 

3(87r)-1 \    ^ (150) 
Jr<\ 

= sup|3(47r)~1 /   (-2trace(^r-1))-2-1 /|VA^|2K 

where the supremum is taken over all su(2)-valued functions u with 
both VA^ and r"1^ square integrable. This understood, remark next 
that u = u^r1 is such a function and as 

VA^ = VUKT
1
 + [A, TX

\UK, (151) 

so (150) implies that 

fuytfulzWj    r-*ul. (152) 

As in the derivation of (93), this last inequality implies the existence 
of a 7-independent constant C > 1 such that 

L \A\2 > C-27, (153) 

where U is the portion of E3 where 1 < r < 1 + C27~1. Since A\r=i = 0, 
this last equation implies that /^ \drA\2 > Cj3 where C is a posi- 
tive, 7-independent constant. To finish the argument, note that every 
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element in A is gauge equivalent to some 1-form that annihilates the 
vector field 3r; and for such A, the inequality \BA\ > \drA\ holds. 

The proof of Theorem 1 now lacks only the justification of the as- 
sertion that the Coulomb solution is the minimizer when g is less than 
the given bound. To argue this point, agree, first of all, to consider 
only those su(2) valued 1-forms A G A that annihilate the vector field 
dr. As just noted at the end of the proof of the preceding proposition, 
every element in A is gauge equivalent to such a 1-form. (In fact, the 
gauge transformation is unique if required to be the identity on the 
radius 1 ball.) 

Now, to start the argument, use (1) to conclude that 

/|VA^|2 = 3(47r)-1 /    -2 trace (r1^). (154) 
J Jr<l 

Meanwhile, (1) also implies that 

[(VA*A=O,VA*A) = 3(47r)-1 f    -2 trace (r1*^) = 25(0). 
J Jr<l 

(155) 
Here, (,} is shorthand for the inner product on 5n(2)-valued 1-forms. 
Now, as A has no dr component and V^^^o has only a dr component, 
the left hand side of (155) is equal to 

J(-AA=O*A=O,*A) + J([A,*A=O],VA*A). (156) 

Furthermore, as — AA=ZO^A=Q — A this last equation and (154) imply 
that 

2-1 J \VAyA\2 - £(0) = -2-1 y ([A, ^=o], V^>. (157) 

To proceed, use the lack of dr component in A and the lack of other 
components in V^^o to equate the right hand side of (157) with 

-2-1 J ([A, *A=0], VA(*A - *A=o)> - 2-1 J \[A, *A=o]\2.      (158) 

This done, the triangle inequality finds 

2-1 J\VAmA\2-S{Q) (159) 

> -4-1 f |VA(*A - *A=o)|2 - (3/4) j \[A, ^=o]|2. 
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The first term on the right hand sider of (159) is awkward for the 
purposes at hand. To replace it, note that (1) and it's A — 0 version 
imply that 

-AA(yA - *A=o) = VA • [A, yA=0} (160) 

where • signifies the contraction of 1-form indices. Here again, use has 
been made of the lack of a dr component of A and the lack of the other 
components of V\I/A=O- Contract both sides of this last equation with 
^A — ^A=O, integrate the result over M3, integrate by parts and, finally, 
employ the triangle inequality to discover that 

J |VA(*A - ^=o)|2 < I P,^=o]|2. (161) 

Thus, (159) implies that 

2-1 J |V A|2 - £(0) > - J \[A, tto]|2 > -(47r)-2 Jr"2^2.   (162) 

Meanwhile, as the lack of dr component in A also implies that 
1^41 ^ \drA\, so it follows, after appeal to the first line in (21), that 

£(A)-£(0) > S-'g-'jr-'lAl2 - (^"V J' r-2\A\2.        (163) 

Thus, £(A) > £(0) when g2 < yjl-n. 
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