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Gopakumar and Vafa [GV] have have conjectured the existence of a fun- 
damental relationship between Gromov-Witten type invariants of holomor- 
phic curves in the vector bundle 0(—1) © 0(—1) over P1 and certain knot 
invariants, for example the Jones polynomial. They came to their conjecture 
by applying a fundamental observation of ct Hooft [H] in a string theoretic 
context on T*^3 described by Witten [W]. Subsequently, the scope of the 
conjecture was expanded by Ooguri and Vafa [OV]. Successful tests of the 
have been made, for example, by Labastida and Marino [LM], Ramadevi and 
Sarkar [RS], Labastida, Marino and Vafa [LMV] and Aganagic, Klemm and 
Vafa [AKV]. In the mean time, Faber and Pandarhapande [FP], Katz and 
Liu [KL] and Li and Song [LS] have considered the mathematical foundations 
for the conjecture and verified certain parts of it. 

1 Supported in part by the National Science Foundation 
e-print archive:   http://xxx.lanl.gov/math-ph/0201219 
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The verification of Gopakumar and Vafa's proposal has been slow, in 
part because the string theoretic arguments have not provided a geometric 
correspondence between a particular knot and a particular set of holomorphic 
curves in 0(—1}©0(—1). Even so, it is a good bet, verified in part by Katz 
and Liu [KL], Labastida, Marino and Vafa [LMV] and Aganagic, Klemm and 
Vafa [AKV], that such a correspondence exists and that it is mediated by 
a suitable Lagrangian 3-manifold sitting in 0(—1) © 0(—1). To be specific, 
the knot should determine the Lagrangian, and then a knot invariant should 
come as a suitable count of compact, holomorphic curves with boundary on 
the Lagrangian. 

This said, the mathematics of counting holomorphic curves with bound- 
ary on a Lagrangian submanifold dates back to Floer's original work on the 
Arnold conjecture [F]. Moreover, since Floer's work, such counts have been 
considered by mathematicians in myriad circumstances. Yet, each new cir- 
cumstance typically has new technical problems to surmount; and in this 
regard, Katz and Liu [KL] found the story here to be typical. 

Curve counting theory aside, the proposed mechanism via Lagrangians 
for Gopakumar and Vafa's conjecture requires knots to provide Lagrangians 
in 0(—1.) ffi 0(—1). This article addresses the latter concern. By way of 
preliminary remarks, note that the construction described below produces a 
2-dimensional Lagrangian surface in C2 from a knot in 53, designed so that 
the Lagrangian surface intersects all large radius 3-spheres as an isotopy of 
the knot. Moreover, if the starting knot is isotopic to one that is mapped 
to itself via S^'s antipodal map, then the resulting Lagrangian is used to 
construct a 3-dimensional Lagrangian in 0{—1) © 0(—1) that fibers over 
the equator in P1 with the 2-dimensional Lagrangian as fiber. Thus, the 
construction below can be viewed as one that constructs a Lagrangian in 
O(-l) © O(-l) from a knot in IP3. 

By the way, start with a knot in the unit radius sphere in S'3 and Gro- 
mov's /i-prinicple [G] more or less asserts that there is a Lagrangian surface 
in the unit ball of C2 that intersects the boundary 3-sphere as the given 
knot. This said, the construction below provides explicit Lagrangians. In 
particular, a realization of the knot as a braid provides a Lagrangian whose 
topology can be read off directly from the properties of the braid. 

Here is how the remainder of this article is organized: The first section de- 
scribes the construction of Lagrangians in C2 from braids in S3 that intersect 
all large radius 3-spheres as a braid that is braid isotopic to the original. The 
initial steps construct immersed disks, and it is then explained how the im- 
mersion points can be smoothed to produce embedded, although not always 
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orientable, Lagrangian surfaces. Section 2 explains how the double points 
of the immersed disks relate to the crossings of a certain projection of the 
original braid. The third section relates the topology of three Lagrangians 
coming from a triad of braids that arise in standard discussions of skein 
relations. Section 4 constructs Lagrangian 3-manifolds in 0(—1) ffi 0(—1) 
from certain Lagrangian surfaces in C2, and the final section views these 
0(—1) © 0(—1) Lagrangians from a dual perspective on T*^3. Note that 
the discussion that follows owes much to conversations between the author 
and Professor Cumrun Vafa to whom thanks is offered. 

1    The construction of Lagrangians 

My purpose here This section is to ddescribes a construction that starts 
with a connected, iV-stranded braid in S3 and constructs of an a properly 
immersed, Lagrangian disk in C2 that intersects large radiiall sufficiently 
large radius 3-spheres in C2 as an iV-stranded braid that is braid isotopic 
to the original. The construction is then generalized to obtain immersed 
Lagrangians for braids with more than one component, and then generalized 
again to provide embedded (but possibly non-orient able) Lagrangians. The 
construction is divided into ten steps. 3-spheres as a given AT-stranded braid. 
The construction is generalized at the end to the case of links. 

Step 1: To start the construction, introduce (zi, Z2) to denote the standard, 
complex coordinates on C2, defined so that the symplectic form is given as 

(1) OJ = i2~1(dzl A dzi + dz2 A c^). 

Next, introduce the 'hyperkahler' rotated complex coordinates 

(2) al = 2-1/2{z1 - 22)  and 0,2 = 2"1/2(z2 + zi) 

with respect to which 

(3) UJ = i2~1(dai A da2 — ddi A ^2). 

Since this rotation is orthogonal, the metric in the (ai,*^) coordinates is 
the standard one. Note that the ai-plane is a Lagrangian plane in C2 with 
respect to u. Of course, so is any surface given as the zeros of a function of 
(&I7&2) that is holomorphic. 

In the subsequent steps, the complex coordinate ai is written in terms 
of its real and imaginary parts as ai = x1 + ix2.   At the same time the 
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coordinate a2 is written somewhat perversely as 0,2 = P2 + ipi- In terms of 
these real coordinates, 

(4) CJ = dpi A dxi + dp2 A dx . 

The choice of coordinates here is meant to stress an implicit identification 
below between the a2-direction in C2 and the fiber of the cotangent bundle 
of the ai-plane. More to the point, this gives a symplectic identification 
between C2 and the cotangent bundle, T*C, of the ai-plane. 

The reason for making such an identification is as follows: If / is any 
smooth, locally defined function of the coordinates (^i,^), then the graph 
of df defines a Lagrangian surface in T*C and hence in C2. To be explicit, 
the locus of points in T*C where (x1,x2,pi = di/,P2 = (hf) ls a Lagrangian 
surface. 

Step 2: Fix attention on some given connected, TV-stranded braid K. To 
be more precise about what this means here, identify S1 with the unit circle 
in C with coordinate £ such that \(\ — 1. This done, then K can be viewed 
as an embedded circle in S'1 x C C C2 obtained as the image of a map from 
S1. In particular, such a map should send rj e S1 to (C = r)N,z = 7(77)) 
with 7 a map to C that separates pairs of points in S'1 whose ratio is a 
non-trivial, APth root of unity. In this regard, it proves convenient below 
to write 77 = ei9/N with 9 e [0,27riV]. Thus, 7 is a function of 6 that is 
periodic with period 27TN and £ — e1,6 is a function of 6 with period 27r. 
This notation identifies the unit circle in the ai-plane to the interval [0,27r] 
with its endpoints identified. 

Note that the graph of any 27rN periodic complex function, 7, of 9 defines 
a braid as long as the iV values {y(0 + 2Tr-k)}o<k<N are distinct at each point 
9 G [0,27r]. In particular, this last point of view will be taken here. 

For example, a trivial TV-stranded braid sits in S'1 x.C as the graph of 
27rTV periodic map 7 : S1 ->> C given by 

(5) 7(0) = R-lei6lN, 

where R > 0 is any constant. 

Reference has been made at the outset to braids in S3. Take this to 
mean the following: View 53 as the unit radius sphere about the origin in 
C2 and identify S'1 x C with its image in S'3 via the embedding that sends 
a pair ((,z) to {t,z)/(l + |^|2)1/2 C C2. This done, an TV-stranded braid in 
S3 signifies the image of S'3 of such a braid in S1 x C. 



CLIFFORD HENRY TAUBES 143 

Two braids in S'3 are said below to be 'braid isotopic' if they are isotopic 
through a 1-parameter family of braids. 

Step 3: This step constructs an embedded, Lagrangian cylinder in a neigh- 
borhood of S1 x C in C x C that intersects S1 x C as the given braid K. 
For this purpose, introduce the complex function 7 on S'1 that defines K 
and write 0-2. = 71 + 272- With the comments at the end of the preceding 
step in mind, K can be written as the intersection of 51 x C C C2 with 
a Lagrangian cylinder defined in a neighborhood in C2 of S1 x C provided 
that the following is true: The section 72^1 + jidx2 of T*C|5i = S1 x C 
extends to a section of T*C over a cylindrical neighborhood of the unit cir- 
cle in the ai-plane as the differential of a function that is 27riV periodic on 
the constant radius circles. Thus, the goal is to find a function on the ai- 
plane, 2'KN periodic on constant r circles, whose partial derivative in the 
rz;1-direction restricts to the unit circle as 72 and whose partial derivative in 
the x2 directibn restricts to the unit circle as 71. 

To find such a function, it proves useful to introduce the radial coordi- 
nates r > 0 and 6 for the ai-plane and write x1 — rcosO and x2 = r sin0. 
This done, then 

(6)      72^1 + jidx2 = (72 cos 0 + 71 sin6)dr + (71 cos 0 — 72 sin 0)d0, 

and the task at hand is to find a function, /, of r and 0 such that 

• /(r,0 + 27r7V) = /(r,0). (7) 

• 9r/|r=i = 72 cos 0 + 71 sin0. 

• 0ef\r=1 = 7! cps0 — 72 sin0. 

There is one immediate requirement for /'s existence, which is that 

(8) /        (71(0) cos0 - 72 sin0)d0 = 0 
Jo to 

since this integral is meant to be /(1,0) — /(l,27riV). In this regard, notice 
that any given 27riV periodic map 7 to C. with {7(0 + 27rA;)}o</c<Ar distinct 
at all values of 0 can be homotoped through such maps to one that obeys 
(8). In particular, such a homotopy does not change the braid isotopy class 
of the corresponding braid. Indeed, if 7 : S1 -> C represents an JV stranded 
braid and if c G M, then 7' = 7 + ce-2^ also has N distinct values at each 
point for {7/(0 +-27rfc)}o<fc<jv- Meanwhile, the value of the 7' version of (8) 
differs from the value of the 7 version by 2'KNC SO there is a unique such c 
for which the 7' version of (8) is zero. This understood, agree henceforth to 
restrict attention to those maps 7 where (8) holds. 
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Given that (8) holdSj then there exists a bonafide, 27rN periodic function 
cr, of 0 whose partial with respect to 9 is equal to 71 cos0 — ^sinO. This 
understood, then 

(9) h = (r- 1)(72 cos 9 + 71 sin 9) + G{9). 

satisfies the conditions in (7) and so the graph of dh in T*C = C2 provides 
an example of the required Lagrangian, at least near the unit circle in the 
ai-plane. As demonstrated in the next step, the Lagrangian defined by (9) 
is per force embedded near this circle, but perhaps not everywhere. 

Step 4: As remarked at the end of the previous step, the Lagrangian cylinder 
defined by the graph of the differential of the function in (9) may have 
immersion points where |ai| differs substantially from 1. This step and 
the next describe how to define a properly embedded, Lagrangian cylinder, 
defined near the |ai| = 1 circle and where |ai| > 1 that intersects every 
constant |ai| slice as a braid that is isotopic to the original. 

To start this construction, represent the given braid using, as described, 
a 2^^ periodic map 7 = 71 + ^72 : Sl —> C with distinct values for {7(0 + 
27rA;)}o<A;<jv at all points. By way of shorthand, introduce a = 72 cos 9 + 
71 sin 9 and /? = 1 cos 9 — 72 sin0. Note that the pair (a, /3) are 27rN periodic, 
and the iV pairs {(a(9 + 2nk),/3(9 + 27rk))}o^k<N are distinct at each 9 if 
and only if such is the case for {7(0 + 27rA;)}o<A;<iv- 

Reintroduce the function, /i, in (9); its partial derivatives determine the 
Lagrangian cylinder from the preceding step. In particular, these derivatives 
are 

• drh = a. (10) 

• d0h=(r-i)do+p. 

By virtue of continuity and the fact that {(a(9+27rk), /?(#+27rfc))}o<A;<Ar has 
N distinct pairs at each 0, the differential dh — drhdr + dehd9 is such that 
{dh\Q+27rk}o<k<B also has N distinct values at each point of the constant r 
circle if \r — 1| is not too big. In particular, there exists some <5 > 0 for which 
such is the case when |r — 1| < 26] and this implies that the graph of dh 
defines an embedded Lagrangian cylinder where \r — 1| < 25. Of course an 
upper bound for 6 is determined by the braid map 7, but there is no positive 
lower bound to the choice of 5 to use here and in the subsequent discussions. 
In particular, the condition 5 < 10~3 is implicitly enforced. 

Here is a reformulation of this last point for use below: As long as |s| < 
25, then the graph over 5'1 in T*C of the 1-form adr + (s^a + /3)d9 is such 
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that its values at the points {0 + 27r&}o<A;<jv are distinct at each 9 and so 
defines a braid that is braid isotopic to the original (that with 5 = 0). More 
generally, as long as e is not zero and |s| < 25 then the 1-form 

(11) eadr + (sdoa + I3)de 

also has this same property. Thus, the graph over the circle of the 1-form in 
(11) defines a braid that is braid isotopic to the original braid defined by 7. 

Step 5: This step uses the observation in (11) to obtain the promised cylinder 
from Step 4. For this purpose, replace the function in (9) and (10) by 

(12) f = 5{r-l)(r + 8)-la + a. 

where a is as before, deer = /?. This choice gives 

• drf = 8{l + 8)(r + 6)-2a. (13) 

• dof = 8(r-l)(r + 6)-ldoa + p. 

As before, the graph of df defines a Lagrangian. In particular, with (11) 
in mind, it follows that df on any r > 1 — 26 circle has distinct values at 
{9 + 27rfc}o<A;<jv for each 9 and so the graph of df is a properly embedded, 
Lagrangian cylinder in the |ai| > 1 — 2$ portion of C2 whose intersection 
with any constant |ai| slice is a braid that is braid isotopic to the original. 

Step 6: This step explains how to extend the cylinder defined in the previous 
step to the |ai| < 1 — 2£ portion of C2 capping the r = 1 — 5 slice of this 
cylinder with a closed, immersed, Lagrangian disk in the r < 1 — 5 of C2. 
The self intersection points of this added disk are described in a subsequent 
step. 

The construction of this extension starts by returning to the example 
of the trivial iV stranded braid where j(9) = eielN. This braid has 71 = 
cos(9/N) and 72 = sm(9/N) and so (8) is satisfied. Of course, there is a 
Lagrangian that extends this particular braid, it given by the locus of points 
(ai, a1

/ ) in C2 with ai = reld. This extension is given as the graph of dfw, 
where 

(14) fN = (1 + l/iV)-1r1+1/iVsin((l + l/iV)0). 

With /JV understood, the differential of any function that interpolates be- 
tween / in (12) where r > 1 — 5 and /# in (14) where r is near zero defines 
an immersed Lagrangian disk with the requisite properties. For example, 

(15) {l-x)f + xfN 
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is such an interpolating function with x any function of r that equals 1 near 
r = 0 and 1 where r > 3/4. 

Step 7: The double points of the Lagrangian defined by (15) can be related 
directly to properties of the original braid 7. These relations are described 
below in Section 2 for a more sophisticated version of the function / that 
appears in (15). The description of this new / requires the specification of 
a small and positive constant 5. Given 5, fix a smooth function, Xdi of the 
coordinate r that has the following properties: 

(16) 

• xs — 1 where r < 1 — 26. 

• Xd — 0 where r > 1 — 5. 

. Xs = 5-1(1-5- r) where 1 - 26 + 62 < r < 1 - 6 - 62. 

• drXs < 0. 

• Set r* = 1 —25 + 2J4 and require that r* be the unique value of r where 
X^r1"*"1/^ achieves its maximum, and require that this maximum be 
non-degenerate in the sense that 

a) dr{X5rl+1/N) > 0 where r < r*. 

b) dr(xsr1+1/N) < 0 where r > r*. 
c) dr(x5r1+1/N) = r* — r where r* - 54 < r < r* + 6A. 

• Where I - 6 + 62 <r <l - 6, 

a) X5\drX5rl < 1052. 

b) \dr(Xdrl+1^N)\ is decreasing. 

• d2xs > 0 and \drX6\ < 100^1^x^1 where 1 - 6 + 62/2 < r < 1 - 6. 

Note that the third to last point above asks only that xs^1+1^N behave in 
a uniformly quadratic fashion near its maximizer, r*. Meanwhile, the final 
point two points can be achieved by requiring xs to vanish as r —> 1 — 6 as 
a multiple of the exponential of the function —(1 — 6 — r)~2. 

Fix a second smooth function, x? of r that has value 1 where r < 1/2, 
value 0 where r > 3/4 and whose derivative is nowhere greater than 8. 
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With the preceding understood, replace the function / in (15), by 

(17) f = (l-x)f + XsfN. 

By construction, the graph of df then defines a smooth, properly immersed 
Lagrangian disk, L, in C2 whose |ai| > 1 — S portion is embedded and 
intersects every |ai| > 1 — S slice of C2 transversely as a braid that is braid 
isotopic to the original one. 

In addition, if 7 is replaced by £7 with e > 0 and very small, (so repre- 
senting an isotopy of the original braid to one with distance O(e) from the 
ai-plane), then the graph of the differential of the £7 version of / in (17) 
produces a properly immersed, Lagrangian disk in C2 that is embedded near 
the |ai| = 1 slice, embedded where |ai| > 1, and intersects every radius 1 
or larger 3-sphere transversely and in a braid that is braid isotopic to the 
original. 

Step 8: Although the Lagrangian defined by the differential of the function 
in (17) has various virtues, it may not be the most useful for certain appli- 
cations. This step describes a second Lagrangian in C2 with a somewhat 
different suite of properties. In particular, the construction here facilitates 
comparisons when non-isotopic braids differ by a strand crossing. However, 
the down side here is that the Lagrangians from this step may only intersect 
all sufficiently large radius spheres as a braid isotopy of the original braid. 

To start the construction, choose, as before, a function x of the radial 
coordinate r, where now x can have value 1 near r = 0 and value 0 at large 
r. Let 7 be a given braid and again introduce a,/? and a. With fjy as in 
(14) fix some 6 > 0 to define 

(18) /.(l-xX-r-Way + x^/iV. 

Note that where r is large and so x — 0, the differential of /. is given by 

(19) df* = r-2adr + (-r"1^ + /3)d0. 

The advertised new Lagrangian is defined by the graph of df*. Note that 
the discussion in Step 4,s final paragraph justifies the claim that this new 
Lagrangian intersects all sufficiently large radius spheres transversely as a 
braid isotopy of the original braid. 

Step 9: This step constructs Lagrangians in C2 that intersect the large 
radius 3-spheres as a braid isotopy of a given N stranded, but multiple 
component braid. In particular, after suitably parametrizing the braid, the 
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construction is essentially identical to that described in the previous steps. 
To start, suppose that the braid has some n components, {71,72,... ,7n} 
where each jj is a function of 6 that is periodic with period 2nNj. Here, 
TijNj = N. Now, take the parameter 5 to be very small, and for each j, use 
the chosen S to construct that 7j version of the function in either (15), (17). 
Call it fj and let Lj C C2 denote the corresponding Lagrangian. Then, 
the claim is that L = ^jLj is an immersed Lagrangian with the desired 
properties. 

The proof of this claim requires only a verification that L's intersection 
with all large radius 3-spheres is braid isotopic to the original braid. For this 
purpose, note that no 0 € [0,27r] exist where a pair from any 7^ version of 
{a{0 + 27rk),/3(9 + 27rfc)}o<A;<Ar coincides with one from the jj version when 
i j£ j. This understood, it follows by continuity from (11) that choosing 
S > 0 and small guarantees that the corresponding dfi and dfj have disjoint 
graphs where r > 1 — 5. Thus, Li and Lj are disjoint where r > 1 and their 
intersection with any r > 1 — S slice of C2 is a braid that is braid isotopic to 
the original. 

An alternate construction takes each fj to be the 7^ version of the func- 
tion defined by (19), and then takes Lj to be the corresponding immersed, 
Lagrangian disk. This understood, set L = UjLj. The latter is immersed, 
and as follows from (19) using perturbation theory, it intersects all suffi- 
ciently large radius 3-spheres transversely in a braid that is braid isotopic 
to the original. 

Step 10: This step describes how to modify an immersed Lagrangian on 
some small neighborhood of its immersion points to obtain an embedded, but 
higher genus Lagrangian. In this regard, note that the resulting Lagrangian 
may not be orientable. In particular, this situation occurs when the initial 
Lagrangian has self-intersection points with positive local degree. By the 
way, the existence of such a modification has surely been known for years 
by experts, but as the construction is relatively straightforward, it is worth 
relating the details. 

The first point to make is that any immersed Lagrangian can be modi- 
fied on any given neighborhood of its singular points (with out changing the 
genus) so that the result has only transversal, double point self-intersections. 
Moreover, if the original singular set is compact, then this modification pro- 
duces only a finite set of such intersections. The definition of such a mod- 
ification exploits the 4-dimensional version of the following basic and well 
known lemma: 

Lemma: 1. jlj Let n > 1 be an integer, X be a 2n-dimensional mani- 
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fold with a symplectic form, and L C X be an n-dimensional Lagrangian 
submanifold. Then each point of L has a neighborhood with coordinates 
(x1,... 1x

n,pi,... ,pn) in which the {pj = ti}i<j<n slice is L and to which 
the symplectic form restricts as Hjdpjdx3. 

Given the lemma, a first perturbation of L puts a neighborhood of some 
given singular point in the appropriate form. For this purpose, select a 
singular point z £ L and take a coordinate system centered on this point 
as described by the lemma. A perturbation of L near z is defined by the 
locus where {pj = djh} where h is a function on L whose partial derivatives 
are small. In particular, as there are functions defined near the origin in W1 

with any given vector as differential at 0 and any given symmetric matrix 
as Hessian, Sard's theorem provides perturbations of L that stay arbitrarily 
close to L, contains z and result in a new Lagrangian, Z/, with a transversal 
and purely double point self-intersection at z. 

This local construction understood, a straightforward extension produces 
a Lagrangian with all singular points as desired. The details of the extensions 
are tedious and omitted. 

Given that a singular point in the Lagrangian L is isolated and a transver- 
sal double point, the modification to make a Lagrangian that is embed- 
ded with one less singular point precedes as follows: First, fix one of the 
sheets of the Lagrangian on a neighborhood of a singular point and intro- 
duce the Lemma's coordinates with center on the singular point. This done, 
the other sheet can be perturbed without introducing new singular points 
so that it intersects the original in the origin of these coordinates and so 
that a neighborhood of the origin in this sheet coincides with the locus 
where x1 = x2 = 0. This understood, introduce the complex coordinates 
ai = x1 + ix2 and a2 = P2 + ipi with respect to which the symplectic form 
is given by (3) and L's intersection with a neighborhood of the origin is the 
locus where aia2 = 0. 

Now, consider the perturbation of L in this neighborhood given by the 
locus where aia2 = is with e some non-zero, small positive constant. The 
latter locus is a smooth, Lagrangian submanifold. Moreover, if e is small, 
then its intersection with the complement of a small radius ball about the 
origin consists of two annuli, one very close to the ai-plane and the other 
close to the a2-plane. Here, the annulus that near the ai-plane is the locus of 
points where pi = edi ln(r) and p2 = £$2 ln(r) where r = (xl + x2)1'2. Mean- 
while, the annulus that is close to the a2-plane is defined by the analogous 
locus where the role of the pair (a;1, x2) is switched with that of (pi,P2)- 
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. These last points understood, fix a non-increasing function x on [0? oo) 
that equals 1 on [0,1], vanishes on [3, oo) and whose derivative is no larger in 
absolute value than 1. This done, replace the annulus close to the ai-plane 
by the locus of points where pi and p2 are the respective partial derivatives 
oi ex(r/e) ln(r). At the same time, replace the annulus close to the c^-plane 
in the analogous fashion. The result is, for small £, a Lagrangian that has 
one less self-intersection point than the original and agrees with the original 
in the complement of a small neighborhood of the chosen self-intersection 
point. 

By the way, this construction respects the given orientation on the two 
intersecting sheets of the original Lagrangian only when the local intersection 
number of the two sheets is +1. For topological reasons, it is impossible 
to remove a local intersection with intersection number —1 using a local 
modification that preserves the orientations on the intersecting sheets. 

2    Immersion double points and crossings 

The self intersection points of the Lagrangians defined from either (15), (17) 
or (19) can be directly related to properties of the original braid. This is 
done here for the small S versions of the Lagrangian given by (17). 

To start, suppose that the constant 6 that appears in (12) and (17) is 
taken very small (remember that the discussion in Section 1 is valid as long as 
5 is positive no matter how small). The fact is that the integer N determines 
an upper bound for the application that follows, but such an upper bound is 
not explicitly derived. With S small, replace the map 7 that defines a given 
braid by 67 with € > 0 and very small. This done, then the self-intersection 
points of the Lagrangian from the resulting / in (17) can be interpreted in 
terms of the crossings of the original braid. The purpose of this section is 
to explain how this comes about. The discussion that follows is divided into 
six parts. 

Part 1: To begin the story, remark that with 7 given and the function / 
defined from 7 as in (12) then 

(20) fe = (i-x)ef + X6fNm 

is the £7 version of (17). Now, note that fe = fw where r < 1/2 and so the 
Lagrangian that is defined by df£ intersects the |ai| < 1/2 portion of C2 as an 
embedded disk. When e is small, such is the case where |ai| < 1 — 25 for the 
following reason: Where r < (1 — 25), the differential of f£ differs from that 
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of £, fN by a term no larger than e\df |, and so for small the |ai| < (1 — 28) 
portion of the Lagrangian defined by df£ is a small perturbation of that 
defined by dfpf. In particular, as the latter is embedded, so the |ai| < 1 — 26 
portion of the former is also. 

With the preceding understood, it follows that the immersion points of 
the Lagrangian in question all lie where 1 — 26 < \ai\ < 1. To study these 
points, note first that the function f£ where 1 — 26 < r < 1 is given by 
fe = ef + XSIN, and so self-intersection points in the graph of df£ are at 
(r, 6) where the values at {(r, 9 + 27rfc)}o</c<Ar of the 27rN periodic 1-form 

(21) [edrf + ?-%far") sin(ji0)]dr + [edof + xsr" cos(^e)]dB 

are not pairwise distinct. To investigate where these (r, 9) occur, it proves 
useful to separate the search into three regimes. The first occurs where 
1 - 25 + 62 < r < 1 - 6 - 52, the second where 1 - 28 < r < 1 - 26 + 62 and 
the third where 1 — 8 — 82 <r < 1 — 8. 

Part 2:   In the first regime, (16) implies that the 1-form in (21) looks like 

(22) r1^"1 sin(/i0) + 0{e + 8)}dr + [S'1^ -28 + r) cos(/i0) + O(e)]d0. 

In particular, as the values at {9 + 27r£;}o</c<Ar of the pair (cos(/i#),sin(jU#)) 
define a set of N distinct elements for each 0, so do the values of the form 
in (19) at {(r, 9 + 27rfc)}o<A;<N' when both 8 and e are small. 

Part 3: Consider next the second regime, that where 1 — 28 < r < 1 — 28+82. 
Here, X5 is close to 1 but the deriviative of x^r" has a zero so the 1-form in 
(21) appears schematically as 

(23) [e8rf + /i-1ar(xjr/isin(/i0)]cir + [coa(/i0) + 0(e)}d9. 

Now, given (23) and small £, perturbation theory precludes less than N 
distinct elements in the set of values of (23) at a given {(r, 9 + 27r£;)}o<fc<jv 
unless 9 is close to a point where {cos(/i# + 27rk/N)}o^k<N has less than N 
distinct elements. In this regard, a glance at the graph of the cosine function 
indicates that there are 2(iV—1) points in [0,27r] where {cos(/i0+27rA;)}o<A;7VAr 
has less than TV distinct elements and at such points, this set has precisely 
N — 1 distinct elements. Moreover, the coincidence of a pair of elements 
of this set at these special 9 points is achieved in a manner that is non- 
degenerate in the following sense: If 0* E [0,27r] is one of these special 
points, and if k* G {1,... , 27riV} is such that cos(/i0* + 2'7rk*/N) = cos(/i0*), 
then the derivative of cos(//0 + 27rk*/N) — cos(/i0) at 0* is non-zero. 
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By the way, this count of points in [0,27r] where {cos(/i0+27r£;/iV)}o<A;<J/v 
has less than TV distinct elements arises from the fact that each k G {1,... , N— 
1} determines precisely two values for 0 G [0,27r] where cos(/i0) and cos(/i# + 
27rk/N) are equal. 

These last remarks understood, an application of perturbation theory 
finds, for small £, precisely 2(A^ — 1) points 6 G [0, 27r] for which the set 
of values of the d9 component in (20) at {(9 + 2iTk)}o<k<N has less than 
iV distinct elements, and at such a point, this set then has precisely iV - 1 
elements. Moreover, each such point in [0,27r] will be very close (for small 
e) to a point where there are fewer than iV distinct elements in the set of 
values of cos(//0) at {0 + 27rft}o<A;<jv- Use A C [0,27r] denote the set of those 
6 where the d9 component of (20) at {6 + 27rA;}o<A;<jv has fewer than N 
elements. 

As demonstrated by a second application of perturbation theory, the fifth 
point of (16) has the following implication: Given that S is small and then e 
is very small, each 0* G A is the ^-component of a unique point (r*, 9*) with 
r* G [r* — £4,r* + £4] where the set of values of the whole 1-form in (23) at 
{(r*,^* + 27r£;)}o<fc<J/v has less than N (and thus iV — 1) elements. 

Given all of the above, then it follows that the Lagragian in C2 defined 
by the differential of the small S and very small e version of f£ in (20) has 
precisely 2(N — 1) double points where |ai| lies between 1 — S + S2 and 
1 — 25. Moreover, the arguments ust given establish that each of these 
self intersection points of the Lagrangian is transversal. Meanwhile, the 
discussion below in Part 6 explains why these self intersection points all 
contribute the same local sign to any count of a self intersection number of 
L. 

Part 4: Consider now the third regime, that where 1 — 8 — S2 < r < 1 — S. 
Here, it proves useful to break this regime into two parts, the first where 
Xs > 6e and the second where this last condition does not hold. In this 
first regime, drxs = —I0~15~1ew where the function w is greater than 1 by 
virtue of the second to last point in (16). Thus, (21) has the schematic form 

(24)        lO-1^-1^-^-1 sin(^) + G(5)]dr + [edof + X5^ cos{^9)}d9. 

In particular, when 5 is small, then the values of the dr component of 
(24) at the points in {(r,0 + 27r£;) }()<&<JV is a set of fewer than N dis- 
tinct elements provided that 9 is near one of the 2(TV - 1) points where 
{(sin(/i0 + 27rk)}Q<kNN has fewer than N distinct elements. 

Now, not all of these 2(N — 1) points in [0,27r] correspond to self- 
intersection points of the Lagrangian with r in the prescribed range. Indeed, 
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when e and S are very small, then the form of the d9 component of (24) forces 
a self-intersection point at (r, 6) with 6 very close to such a 0* and with r 
in the prescribed range provided that the following requirment is met: The 
expressions 

(25) /3((9*+27rA;)-/3((9*+27rA;/)    and    cos(/i0*+27rfc/N)-cos(/i0*+27r&//N) 

have opposite sign when k ^ &'{(),... , N — 1} are chosen to make sin(/i0* + 
27Tk) = sin(^0* +27Tkf). Moreover, if the left most difference in (25) is non- 
zero for all of the 2(N — 1) possibilities for 0*, then perturbation theory 
guarantees a 1 — 1 correspondence between the self intersection points in the 
third regime and those #* where the just stated requirement is met. This 
guarantee also comes with a rider to insure that these self intersection points 
are all transverse double points. 

Part 5: Consider the final part of the third regime where xs < Se. Here, 
(21) has the schematic form 

(26) [**(! + <5)(r + 5)-2a + p'1 drixsr" 8m(n0)]dr + e[f3 + 0{8)]de. 

In this regard, note that when 8 is small, then the d8 component of (26) has 
iV distinct values except possibly near points in [0, 27r] where the function (3 
has fewer than N distinct values. 

Introduce the term 'twisted crossing point' to denote a point 0* 6 [0,27r] 
where the set {/?(#* + 27rA;)}o</c<Ar has less than iV distinct values. A twisted 
crossing point 9* is transverse when two requirments are met. The first is met 
when {/?(#* + 27rA;)}o<fc<Ar has precisely N — 1 distinct elements. Assuming 
now that the first requirement is met, let k ^ k' denote the two integers in 
{0,... , N — 1} for which the value of (3 at 9* + 27rA; is the same as that at 
9* + 27rA;/ agree. The second requirement is then met when the difference the 
locally defined function (3(9 + 27rA;) — (3(9 + 27r£;/) has non-zero derivative at 
9 = 9,. 

If the braid is such that its twisted crossing points are all transverse, then 
those points where the d9 component of (26) has less than N distinct values 
are in 1 — 1 correspondence with the set of twisted crossing points. Indeed, 
with this transversality assumption, the final point in (16) guarantees that 
each point of the one set is very close to precisely one point in the other. 

Now, given the preceding comments, the final point in (16) has the fol- 
lowing implication: Let 9* be a twisted crossing point and let k ^ kf G 
{0,... , N — 1} denote the unique pair for which (3(9* + 27rk) — (3(9* + 2^'). 
If 

(27) a(9*+2Txk)-a(9*+2'Kkl)   and    sin(/i0*+27rfc/JV)-sm(/ie*+27rA;7JV) 
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have the same sign, then such a 6* corresponds to a unique 9 E [0,27r] near 9* 
and a unique r G [1 — S—62

:1—6] where (27) has less than N distinct points at 
(r, 9). Furthermore, this then defines a 1 — 1 correspondence between twisted 
crossing points that obey (27) and points (r, 0) with 1 — 6 — <52<r<l — 5 
where (27) has less than N distinct values. 

Part 6: This final part of the story explains how to use information from 
the braid to compute the local sign of at the various self intersection points 
of the Lagrangian. For this purpose, agree to orient the Lagrangian as a 
(multi-valued) graph over the ai-plane, where the latter is oriented by the 
form rdrd0. This is to say that the Lagrangian is to be viewed as the graph 
of the differential of f£ in (20). 

Now, suppose a transverse double point occurs in L over a point in the 
ai-plane with coordinates (r*,#*). Thus, two sheets of L intersect at this 
point and so there exists a distinct pair &, k' E {0,... , N — 1} such that df£ 

has the same value at (r*, 0* + 2TTk) and at (r*, 0* + 27rkf). This understood, 
it then follows that the sign (±1) of this self intersection is equal to minus 
the sign of the determinant of the hessian at (r*, 0*) of the function 

(28) H = fe(r, 0 + 27rk)f£(r, 0 + 27rkf). 

Apply this prescription to the 2(N — 1) self intersection points described 
above in Part 3 to find that each has local intersection number —1. Indeed, 
to order 0(e), the function H is the same as HQ = X(^M(sin(//#* + 27rk) — 
sin(//0* + 27r&')), and so small e makes both the differential and hessian 
of H very close to those of HQ. Thus, small e makes each of the relevant 
critical points of H very close to one of HQ and it makes the signs of the 
corresponding determinants agree if HQ'S determinant is not zero. In this 
regard, note that HO has positive determinant at each relevant critical point 
because each occurs where Xdrl1 ls maximized. 

Consider next the signs of the self intersection points that are described 
above in Part 4. In this regard, it follows from (24) that when e and 8 are 
very small, then the sign of the relevant determinant is negative. Indeed, 
this follows because the hessian in question differs by 0(e5) from a matrix 
having the form eH, where T-i is the symmetric matrix with zeros on the 
diagonal and, in the notation from Part 4, with off diagonal entries equal to 
—u>(cos(/i#* + 27rA:) — cos(^0* + 2^')). Thus, all of Part 4's self- intersection 
points have local intersection sign equal to +1. 

Turn at last to the self-intersection points that are described above in 
Part 5. Under the assumptions that all of the twisted crossing points {#*} are 
non-degenerate and that e and 5 are both small, then the local intersection 



CLIFFORD HENRY TAUBES 155 

signs are determined as follows: Suppose that a twisted crossing point 6* 
determines a self intersection point as described in Part 5. Then, the local 
intersection number for this intersection point is minus the product of the 
sign of a(6* + 27Yk) — a(6* + 27r&/) with the sign of the derivative at the point 
9 = 9* of /3(9 + 27Tk) - (3(9 + 2^'). Here, k and k' are as given in (27). (The 
latter all follows with the help of the final point in (16).) 

By the way, this sign can be interpreted as follows: View the triple 
(a, /3,9) as the coordinates of a portion of the braid in E3, and then view 
(/3,9) as the coordinates of the braid's projection into E2 C C. This done, 
then a twisted crossing point corresponds to a crossing of strands as viewed 
via the direction defined by this projection. Now, orient the the strand using 
the 1-form d9. This understood, the strand that corresponds near 9 = 9* to 
the parameterization by 9 -> (a(9 + 2'Kk),(3(9 + 2'Kk)) passes on top of the 
other strand with respect to this projection when a(0*+27r£)— a(0*+27rfc/) > 
0 and passes under the other strand when a(0*+27rA;) -a(0*+27rA;/) < 0. This 
understood, the sign of the corresponding self intersection point is positive 
when the crossing as seen by this projection appears as in the following 
diagram: 

(29) 

3    Lagrangians and crossing changes 

Suppose that two braids differ by a single strand crossing. As certain knot 
invariants can be characterized in terms of skein relations, one might ask 
how the corresponding Lagrangians compare with each other, and with that 
for the third braid in the skein diagram. To be more precise, suppose that 
the three braids are identical except for their intersection with a fixed small 
ball in Sl x C, and in this ball, the three braids correspond to the following 



156     LAGRANGIANS FOR THE GOPAKUMAR-VAFA CONJECTURE 

three pictures: 

(30) 

7+ 7- 7o 

This question is considered below when the Lagrangians for the braids 
7± are such that they are given at large values of r = |ai| as the graph of the 
differential of the appropriate version of the function /* depicted in (19). 

Some conventions need setting to connect the pictures in (30) with /*. 
For this purpose, suppose that when 7 is one the braid in one of the pictures 
in (30), then the pair (a, 9) give the x and y coordinates of the strands in 
(30). In this regard, the convention is standard: The variable x increases 
with horizontal motion to the right in (30) and y increases with vertical 
motion to the top of the drawing in (30). This understood, then /? should 
be assumed to increase in the direction out of the paper but away from the 
reader. (Note that the drawing in (29) uses the different convention where 
{(3,0) are the coordinates of the projection.) 

Now, to simplify notation, suppose that 0* = 0 is the value of the 0 
coordinate where the projection in the 7+ diagram in (30) has one strand 
pass over the other. In this regard, note that 7+ can be isotoped as a braid 
so that its parametrization at values of 0 near 0 is such that the under 
passing strand in the 7+ diagram is described by (a+(0) = O,(3+{0)T{O)) 

where r is a smooth, non-negative function of 0 that is positive at 0 = 0 and 
vanishes where 0 is near the top and bottom of its implicit range in (30). 
To be precise, suppose that this range for 0 is (--£,£) and that T{0) = 0 for 
|0| > e/2. Meanwhile, the over passing strand in the 7+ picture is described 
by {a+{0 + 27rk) = -0,(3+{O + 27rk) = 0) where k <E {1,... ,^-1}. 

At the same time, 7_ can be isotoped as a braid so that for 0 near 0, the 
parametrizing data (a_,/3_) has (a_(0),/3_(0)) = (0, —r(0)) and (a_(0 + 
27rk),(3-(0 + 27rk)) equal to (—0,0). Thus, values of 0 near zero in both the 
7+ and 7_ diagram parametrize the strand that points up and to the right. 

Having digested this notation, define the family {75 : s € [—1,1]} of maps 
from S1 to C as follows: When 0 $ (-£,£), then 75(0) = 7+(0) = 7_(0). On 
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the other hand, when 8 € (—e,e), then 

(31) (a8(6) = et8T(0)).. 

This understood, then all positive s versions of 7S define a braid that is 
isotopic to 7+ while all negative s versions define one that is isotopic to 7_. 

Now consider the js version, LSl of the Lagrangian defined in Step 8 of 
Section 1 via the differential of (18) 's function /*. In particular, the small, 
but positive s versions have a transversal double point that is parametrized 
by 6 = 0 and r = 2r(0)/s and otherwise, no double points where r > RQ 

with RQ independent of s. Meanwhile, the s < 0 versions of Ls have no 
double points at all where r > RQ. 

Note next that even for 3 = 0, the definition given in Step 8 of Section 
1 for Ls makes perfectly good sense and describes a properly immersed, 
Lagrangian disk in C2. In particular, I/5-o can be assumed to have solely 
transversal and isolated double points if the braid 7+ is chosen in a suitably 
generic fashion in the complement of the ball pictured in (30). In any event, 
the non-zero versions of Ls can be assumed to converge in the C00 topology 
as s —» 0 to the 5 = 0 version. 

In fact, these last conclusions about Ls can be strengthened as follows: 
The Lagrangian LQ can be assumed to have the same double points as all 
small and negative 5 versions of JL_S and be isotopic by small Hamiltonian 
isotopies of C2 to such Ls. It can also be assumed to intersect all spheres 
with radius greater than RQ transversely in a braid that is braid isotopic to 
7_. Meanwhile, Ls for small and positive s can be assumed to intersect all 
spheres with radii between i?o and 2r(0)/s transversely, and in a braid that 
is also braid isotopic to 7_ even as it intersects all spheres of radius greater 
than 2r(0)/s in a braid that is isotopic to 7+. Moreover, the portion of such 
a small and positive s version of Ls where r is less than 2T(0)/S can be taken 
to be isotopic via proper, Hamiltonian isotopy of C2 to the same portions of 
the small, but negative s versions of Ls. 

This said about the 7-1- and 7_ Lagrangians, what follows is a description 
of a related Lagrangian, L, for the braid 70 in (30). For this purpose, fix 
some rQ^> RQ. Then L has the following properties: 

(32) 

• The portion of L where r < ro is isotopic via a Hamiltonian isotopy to 
LQ? while the portion where r > ro is likewise isotopic to the 70 version 
of the Lagrangian from /*. 
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• In fact, given some positive e > 0, the r < ro — e portion of L can be 
taken equal to LQ? while the r > TQ + e portion can be taken equal to 
the same portion of the 70 version of the Lagrangian from Step 8 in 
Section 1. 

L is embedded where r > RQ, but this portion of L is not a cylinder, 
and thus not a multi-valued graph over the ai-plane. Rather, the 
r ^ Ro portion of L projects to the ai plane with a single ramification 
point to account for the change in the topology of its constant r slices 
at r = ro- 

The story on L starts with a digression to provide a local model for this 
ramification business. For this purpose, consider the locus in C2 where 

(33) ai - ro = a!- 

Note that this locus defines a smooth, Lagrangian surface in C2 whose pro- 
jection to the ai-plane is 2 — 1 save for the single critical point that projects 
to (r = ro,0 = O). 

To see how (33) models the desired behavior 9 near zero, view the pair 
a and f3 with 6 as coordinates on S1 x C2. Then, where r is near ro and 6 
near 0, the equation in (33) has the schematic form 

(34) 

• r - ro = a2 - /?2 + • • • , 

• 0 = 2r;ria/3 + 

where the '• • •' signify terms that are O(a4 + /34). 

This last equation understood, first fix r at some value very near, but 
less than ro and then view the resulting locus as a curve in the (a,9,/3) 
version of M3. In particular, note that view from the same vantage as that 
in (30) looks like the 7_ picture in (30). Meanwhile, the analogous view for 
the locus defined by fixing r near, but greater than ro in (34) looks like the 
70 version of (30). 

Given the comments in the preceding paragraph, the task to construct 
L as described in (32) is straightforward and left to the reader with the 
hints to take a and (3 to be very small near 6 = 0 when comparing with the 
description of the Lagrangian LQ. 
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4    Lagrangians in O(--l) © O(-l) 

As in the introduction, let 0(—1) -> P1 denote the degree —1, holomorphic 
line bundle over the Riemann sphere. The purpose of this section is to 
describe how certain Lagrangians from the previous section can be used to 
construct a 3-dimensional Lagrangian in the Kahler manifold 0(—1)©0(—1). 
The construction starts with a 2-dimensional Lagrangian, L C C2, that 
is mapped to itself under multiplication by —1 on C2 and produces a 3- 
dimensional Lagrangian in 0(—1) © 0(—1) that projects to the equator in 
P1 with fiber L. 

The symplectic form for the space 0(-l)©0(-l)isa standard Kahler 
form. To view it, introduce the homogeneous complex coordinates (z,w) G 
C2 — {0} for P1. Thus, (z, w) gives the same point in P1 as (\z, Xw) when A G 
C is not zero. Now introduce the homogeneous coordinates ((^w),771,772) 
for O(-l) © 0(—1) where now the latter and ((Az, Xw), X~lr]i, A"1^) give 
the same point. This done, introduce the coordinates Q = (\z\2 + |H2) W 
the latter transform as Q -> \X\X~1^i when (z,w) -> (\z, Xw). In particular, 
the transformation for each Q is unitary, so the norm |^| gives a well defined 
function. 

Next, introduce 

(35) TTi^dQ + AQ 

where A is the connection 1-form 

(36) A = (\z\2 + l^l2)"1^ {zdz + wdw); 

thus TTi transforms as does Q when (z,w) -> (Xz.Xw) with A now any 
nowhere zero, complex valued function. Letting u -> (z = u,w = 1) 
denote the complex coordinate on the w ^ 0 portion of P1, then A = 
(\u\2 + l)-llm(udu) and dA = (\u\2 + l)-2lm(du A du). 

With the {ni} in hand, the symplectic form on 0(—1) ffiO(—1) is written 
using the coordinate u as 

(37) i2-1(7ri A 7fi + 7r2 A 7f2 + (\u\2 + l)"2(a + |Ci|2 + |C2|2)*i A du)] 

here a > 0 and 27ra gives the symplectic area of P1. For reference in the 
subsequent discussion, note that this symplectic form restricts to the \u\ = 1 
equator in P1 as 

(38) i2-1Xid(ei^2(i) A d(e-^/2C0, 
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where <p G [0,27r] is the argument of u. 

Now let L C C2 denote an immersed, Lagrangian surface that is mapped 
to itself by the action of multiplication by —1 on C2. With (38) understood, 
it follows directly that 

(39) M = {(n = e*, Ci, C2) : (c^Ci, e^2^) £ L} 

is an immersed Lagrangian in 0(—1) © 0(—1). As an abstract manifold, 
M is diffeomorphic to the quotient of S4 x L by the action of Z/2 that 
sends (<p,21,22) to the point (cp + TT, —21,—22); a diffeomorphism here is 
provided by the map that sends the equivalence class of (</?, 21,22) to (</?, d = 
e-^^zub = e-^^zi). Note that if L is embedded in C2, then M is 
embedded inO(—1)©0(—1) and if L is immersed with transverse double 
points, then M is immersed too. However, the immersion of the latter is not 
transverse since it is a union of circles. 

By the way, this construction is identical to that given by Equation (5.3) 
of [LMV] when applied to the hyperkahler rotation of the zero locus of a 
holomorphic function in C2. 

Additonal examples come from the construction above in Section 1. In 
particular, suppose that the braid 7 has the following property: There exists 
k € {0,... , N - 1} such that 

(40) 7(0 + 27r(£; + l/2)) = -7(0) 

at each 9 G [0,27r]. This condition asserts that the braid is mapped to itself 
by the action of multiplication by -1 on C2. For example, (40) holds when 
N is odd and 7 = eielN. 

In any event, if AT is odd and if (40) holds, then the constructions in Sec- 
tion 1 produce Lagrangians from the braid 7 that are mapped to themselves 
by the —1 action on C2. For example, the connect sum of any knot with 
itself can be represented by a braid with this property. 

5    The view from T*53 

As remarked at the outset, Gopakumar and Vafa came to their conjecture 
by applying 't Hooft's ideas to certain string theories on T*SS. This appli- 
cation suggested a duality between these string theories on T*53 and others 
on 0(—1) © 0(—1). As this duality has an explicit geometric basis, the 
Lagrangians just constructed in 0(—1) © 0(—l) can be viewed from the 
perspective of T*53. Such is the purpose of this final section. 
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The geometric basis for afore-mentioned duality is simply that both 
0(—1) © 0(—l) and T*^3 can be viewed as resolutions of the singularity 
at the origin in C4 of the zero locus of a certain quadratic polynomial. To be 
more precise, introduce complex coordinates (ci,... ,04) for C4. This done, 
the polynomial in question is 

(41) P = CiC2-C3C4. 

The total space of 0(—1) ©0(—1) then maps onto p~1(0) via a holomorphic 
map that is one to one off of the zero section and collapses the latter to 
the origin in C4. The map in question sends the homogeneous coordinates 
(2,^,771,7/2) to 

(42) (ci = 2772, C2 = wr)i,cz = 2:771, C4 = ^772). 

Meanwhile, T*^3 maps to p~1(0) as follows: First, take two copies of R4 and 
use y = (yi,... , 1/4) to denote a point in the first and v = (^i,... , ^4) for a 
point in the second. This done, identify the complement of the zero section 
in T*53 with the subset of M4 x E4 where \y\ = \v\ ^ 0 and HkVkVk = 0. 
Here, the convention taken is that the assignment of lyl-1^ G Ss to (y,v) 
defines the projection to S'3. Now, identify R4 x M4 with C4 via 

(43) 

• ci = yi + ivi - i(y2 + ^2), 

• C2 = yi + ivi + i(j/2 + ^2), 

• C3 = -(ys + m) + i(yi + ^4), 

• C4 = y3 + iv3 + %4 + iv^. 

This map sends the complement of the zero section of T*53 diffeomor- 
phically onto the complement of the origin in p~1(0), and it extends in the 
obvious way as a smooth map from T*^3 onto the whole of p_1(0) that 
sends the zero section to the origin in C4. 

Now, the preceding describes the 'correspondence diagram' 

(44) O(-l) © O(-l)p-1(0) -» T*S3, 

where both arrows are diffeomorphisms from the complement of the corre- 
sponding zero sets to the complement of the origin. 

This correspondence gives the following convoluted map from (S1 x 
C2)/{±1} to C2:   First, embed this space in O(-l) © O(-l) by the map 
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that sends a point labeled by a unit length complex coordinate u for S'1 and 
pair (2:1, Z2) of complex coordinates for C2 to the point with the homogeneous 
coordinates 

(45) (* = ti,w = 1,771 = 2-1^u-1/2zur]2 - 2-1/2^-1/2Z2). 

Clearly, the image-of this map fibers over the equator in QP1 with fiber C2, 
and the intersection of the image with the zero section of 0(—1) x 0(—1) 
is the image of S1 x {0}. Next, use the left arrow in (44) (thus, (42)) to 
identify the complement of the S'1 x{0} in (S1 xC2)/{ibl} with a subset of the 
complement of the origin in p~1(0) C C4. This done, use the inverse of the 
right arrow in (44) (the inverse of (43)) to identify the complement of S'1 x {0} 
in (S4 x C2)/{±1} with a subset of the complement of the zero section in 
r*^3. Finally, project the latter to C2 using the projection from T*^3 to C2 

that sends (y,v) to the point with the coordinates (yi + iy2,y3 + ^4)- This 
map extends as a smooth map from (Sl x C2)/{±1} to M4 sending S'1 x {0} 
to the origin. Amusingly, the map just described is very simple when written 
with the hyperkahler rotated coordinates (ai,a2) in (2). Indeed, this map 
sends (^, (ai,a2)) to 

(46) 2-l(u-ll2al,u-ll2a2). 

The preceding has the following implications: Let L C C2 be a Lagrangian 
surface that is mapped to itself via multiplication on C2 by — 1. Construct 
from L the 3-dimensional Lagrangian M = (Sl x L)/{±1} in O(-l) eO(-l) 
as described in (39). This done, use the correspondences in (44) to identify 
the complement of M's intersection with the zero section with a subset, 
M*, in T*^3. Finally, map M* to C2 via the map from T*^3 that assigns 
(2/1 +m,y?> + m) to {y,v). 

The result is a smooth map from (51 x Z,)/{±1} to C2 that simply rotates 
L as in (46). In particular, if L intersects some 3-sphere about the origin as 
a knot, then for each fixed u € S1, the corresponding image of (u x L) in C2 

intersects the concentric half radius sphere as a rotated image of the same 
knot. 
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