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Abstract 

We present a class of N = 1 supersymmetric models of particle 
physics, derived directly from heterotic M-theory, that contain three 
families of chiral quarks and leptons coupled to the gauge group 
S'[/(3)CXS'^(2)LX^(1)Y- These models are a fundamental form of 
"brane-world" theories, with an observable and hidden sector each con- 
fined, after compactification on a Calabi-Yau threefold, to a BPS three- 
brane separated by a five-dimensional bulk space with size of the order 
of the intermediate scale. The requirement of three families, coupled 
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to the fundamental conditions of anomaly freedom and supersymme- 
try, constrains these models to contain additional fivebranes wrapped 
around holomorphic curves in the Calabi-Yau threefold. These five- 
branes "live" in the bulk space and represent new, non-perturbative as- 
pects of these particle physics vacua. We discuss, in detail, the relevant 
mathematical structure of a class of torus-fibered Calabi-Yau three- 
folds with non-trivial first homotopy groups and construct holomor- 
phic vector bundles over such threefolds, which, by including Wilson 
lines, break the gauge symmetry to the standard model gauge group. 
Rules for constructing phenomenological particle physics models in this 
context are presented and we give a number of explicit examples. 

1    Introduction 

In fundamental work, it was shown by Hofava and Witten [1, 2] that if 
eleven-dimensional M-theory is compactified on the orbifold Si/Z2, a chiral 
Af = 1, £^8 gauge supermultiplet must exist in the twisted sector of each 
of the two ten-dimensional orbifold fixed planes. They argued that this 
gave the low-energy description of the strongly coupled Eg x Eg heterotic 
string. This is relevant for phenomenological particle physics since, when 
compactified to four dimensions [3], such theories will exhibit the left-right 
asymmetry of quark and lepton electroweak couplings required to describe 

the weak interactions. It is important to note that, in this theory, the chiral 
gauge matter is confined solely to the orbifold planes, while pure supergravity 
inhabits the bulk space between these planes. Thus, Hofava-Witten theory 
is a concrete and fundamental representation of the idea of a "brane-world". 

Witten then showed [3] that, if further compactified to four dimensions 
on a Calabi-Yau threefold, the J\f = 1 supersymmetric low energy theory 
exhibits realistic gauge unification and gravitational coupling strength pro- 
vided the Calabi-Yau radius, i?, is of the order of inverse 1016GeV and that 
the orbifold radius, /?, is larger than R. Estimates of p/R vary from 4-5 to 

several orders of magnitude [3, 4]. Thus, Hofava-Witten theory has a "large" 
internal bulk dimension, although it is of order the intermediate scale and 
not the inverse TeV-size, or larger, bulk dimensions, discussed recently [5, 6]. 

As in the case of the weakly coupled heterotic string, when compacti- 
fying the Hofava-Witten theory to lower dimensions, it is possible that all 
or, more typically, a subset of the Eg gauge fields do not vanish classically 
in the internal Calabi-Yau threefold directions. Since these gauge fields 
"live" on the Calabi-Yau manifold, 3 + 1-dimensional Lorentz invariance is 
left unbroken. Furthermore, demanding that the associated field strengths 
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satisfy the "Hermitian Yang-Mills" constraints Fab = F^i = gabFai =-0, 
ensures that J\f = 1 supersymmetry is preserved. These gauge field vacua 
have two important effects. First, they spontaneously break the Eg gauge 
group. Suppose that the non-vanishing gauge fields are associated with the 
generators of a subgroup G C Eg. Then, at low energies, the Eg gauge group 
is spontaneously broken to the commutant subgroup iJ, formed from those 
generators of Eg which commute with G. This allows one, in principle, to 
reduce the Eg gauge group to smaller and phenomenologically more inter- 
esting gauge groups such as unification groups JBg, 50(10) and SU(5) as 
well as the standard model gauge group S'f7(3)cxS'C/(2)LxC/(l)Y. The sec- 
ond effect is on the spectrum of massless charged particles in the low-energy 
theory which arise from the dimensional reduction of fields associated with 
the broken generators. By choosing the gauge vacuum, one can control the 
number of families of chiral quarks and leptons on the orbifold fixed plane. 

A new ingredient in compactifications of Hofava-Witten theory is that 
there may also be M-theory fivebranes in the vacuum [3, 7]. Requiring that 
supersymmetry and the 3 + 1-dimensional Lorentz invariance is unbroken 
restricts the form of the fivebranes. Their six-dimensional worldvolumes 
are required to span the external 3 + 1-dimensional space while wrapping 
around a real two-dimensional surface W within the Calabi-Yau manifold. 
Thus each fivebrane is at a definite point in the 51/^2 orbifold. Further- 
more, in order to preserve Af = 1 supersymmetry, the real surface W in the 
Calabi-Yau threefold must be holomorphic [3], meaning it is defined by the 
vanishing of functions which depend only on the holomorphic and not the 
anti-holomorphic coordinates of the Calabi-Yau space. Since the surface has 
one complex dimension, we will often refer to it as a (complex) curve. 

There is an important cohomological constraint which relates the number 
of fivebranes and the curves on which they are wrapped to properties of the 
gauge vacuum and the Calabi-Yau manifold [3]. Without fivebranes, this 
becomes a constraint directly relating the gauge vacuum to the Calabi- 
Yau space. One of the important properties of including fivebranes in the 
background is that it relaxes this condition, making it much easier to find 
gauge vacua with suitable unbroken gauge groups and low-energy particle 
content. As we will see, all the examples of realistic compactifications we 
will give necessarily include fivebranes. 

We refer to the general compactification of Hofava-Witten theory on 
backgrounds with arbitrary supersymmetric gauge fields and M fivebranes 
as "heterotic M-theory". The simplest heterotic M-theory vacuum, with the 
spontaneous breaking of Eg to EQ by taking G = SU(3) and identifying it 
with the spin connection of the Calabi-Yau threefold, the "standard embed- 
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ding", was discussed in the original paper of Witten [3]. Such vacua do not 
contain fivebranes. A discussion of general gauge vacua in this context and 
their low-energy implications was presented in [7, 8], with some explicit orb- 
ifold examples given in [9]. Fivebranes were first introduced into heterotic 
M-theory vacua, and their properties discussed, in [7]. 

An important result of this analysis is that there is an effective five- 
dimensional theory [10, 11] which realizes the heterotic M-theory vacua as 
BPS "brane-worlds". The bulk theory is gauged supergravity with a neg- 
ative cosmological constant, and the orbifold planes and fivebranes appear 
as an array of BPS three-branes domain walls. The branes coming from the 
orbifold planes can have negative tension and the full spacetime solution is 
very similar to the anti-de Sitter space solution of Randall and Sundrum [6]. 
In fact, if one chooses to fix the Calabi-Yau moduli, it precisely realizes the 
solution of [6]. 

Having defined heterotic M-theory, the real question is whether explicit 
heterotic M-theory vacua exist with the required low-energy properties. As 
for weakly coupled heterotic string compactifications, the difficult part in 
finding such models is in constructing the gauge vacuum. Given a Calabi- 
Yau threefold Z, what supersymmetric non-Abelian gauge field vacuum con- 
figurations associated with a subgroup G C Es can be defined on it? Un- 
fortunately, solving the six-dimensional Hermitian Yang-Mills constraints 
explicitly is rarely possible, even in flat space. One, therefore, must look 
for an alternative construction of these Yang-Mills connections. Such an 
alternative is to be found in the work of Donaldson [12] and Uhlenbeck and 
Yau [13], which recasts the problem in terms of holomorphic vector bun- 
dles. These authors proved that for each holomorphic vector bundle, with 
structure group G over Z, satisfying the condition of being "semi-stable", 
there exists a solution to the six-dimensional Hermitian Yang-Mills equa- 
tions, and conversely. Thus, the analytic problem of finding gauge vacua by 
solving the Hermitian Yang-Mills constraint equations over Z is reduced to 
an essentially topological problem of constructing semi-stable holomorphic 
vector bundles over the same manifold. 

It is not immediately clear that any simplification has been achieved, 
but indeed it has, since some methods for constructing semi-stable holomor- 
phic vector bundles are known. In particular, bundles were constructed for 
Calabi-Yau manifolds which appear as complete intersections in weighted 
projective spaces [14, 15]. Recently, however, there were important new re- 
sults by several authors [16, 17, 18] on the construction of semi-stable holo- 
morphic vector bundles over elliptically fibered Calabi-Yau manifolds. These 
are manifolds with a fibered structure, where the fiber is a two-dimensional 



DONAGI, OVRUT, PANTEV, and WALDRAM 97 

torus, and which admit a global section. They are of particular interest be- 
cause the heterotic string compactified on such spaces has a dual F-theory 
description. One method, the spectral-cover construction, essentially uses 
T-duality on the elliptic fiber to form the bundle from a simpler T-dual con- 
figuration. The simplest examples are for structure groups SU(n) C Es, but 
other structure subgroups are possible as well. Thus, using holomorphic vec- 
tor bundles and the Donaldson-Uhlenbeck-Yau theorem, it has been possible 
to classify and give the properties of a large class of SU(n) gauge vacua even 
though the associated solutions of the Yang-Mills equations are unknown. 
This one might call the "mathematicians" approach, but, at present, it seems 
to be by far the simplest solution to an important physical problem. 

The new results on bundles on elliptically fibered Calabi-Yau three- 
folds allows one to construct a number of phenomenologically interesting 
gauge vacua. In [19, 20], using the construction of [16, 17, 18] and results 
of [21, 22], three-family vacua with unification groups such as EQ, 50(10) 
and SU(b) were obtained, corresponding to vector bundle structure groups 
5/7(3), SU(A) and SU(5) respectively. The classical moduli space of the five- 
branes in such vacua was then discussed in [23]. However, it was not possible 
to break Eg directly to the standard gauge group SU(3)CXSU(2)IJXU(1)Y 

in this manner. 

A natural solution to this problem, and that utilized in this paper, is 
to use non-trivial Wilson lines to break the GUT group down to the stan- 
dard gauge group [24, 25]. This requires that the fundamental group of 
the Calabi-Yau threefold be non-trivial. Unfortunately, one can show that 
all elliptically fibered Calabi-Yau threefolds are simply connected, with the 
exception of fibrations over an Enriques base. In this case, however, we 
demonstrated in [20] that the vacuum obtained via spectral covers is not 
consistent with the requirement of three families of quarks and leptons. Fur- 
ther progress clearly required resolution of this fundamental problem. 

With this in mind, recall that an elliptic fibration is simply a torus fi- 
bration that admits a zero section. As we noted above, the requirement of a 
zero section severely restricts the fundamental group of the threefold to be, 
modulo the Enriques exception, trivial. However, if one lifts the zero-section 
requirement, and considers holomorphic vector bundles over torus-fibered 
Calabi-Yau threefolds without section, then one expects to find non-trivial 
first homotopy groups and Wilson lines in vacua that are consistent with the 
three-family requirement. 

In this paper, we give the relevant mathematical properties of a specific 
class of torus-fibered Calabi-Yau threefolds without section and construct 
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holomorphic vector bundles over such threefolds. The technique is famil- 
iar from standard heterotic string constructions [25]. One starts with an 
elliptically fibered Calabi-Yau threefold X which has trivial fundamental 
group, but is chosen to have a discrete group of freely acting symmetries 
F. Modding out, by identifying points on X related by F, one forms a new, 
smooth threefold Z = X/T which has fundamental group 7ri(Z) — T. How- 
ever, in general, Z no longer admits a global section, and so is torus-fibered 
but not elliptically fibered. To construct holomorphic vector bundles on the 
torus-fibered Calabi-Yau threefold Z, one finds those bundles on X which 
are invariant under F. These then descend to bundles on Z. 

We next use these results to explicitly construct a number of three-family 
vacua with unification group SU(5) which is spontaneously broken to the 
standard gauge group 

SU(3)CXSU(2)LXU(1)Y 

by Wilson lines [24, 25]. This is done by taking F = Z2. The restriction to 
this specific class of torus-fibered threefolds and the GUT group SU(5) is 
for simplicity only. By the same techniques one can construct a much wider 
class of torus-fibrations with more general unification groups. This will be 
presented elsewhere. We also leave a detailed exploration of the phenomeno- 
logical and cosmological aspects of these models to later publications. 

In this paper, we explicitly do the following. Sections 2 and 3 give 
new mathematical results necessary for constructing semi-stable holomor- 
phic bundles on a torus-fibered three-fold Z which admits Wilson lines. We 
will not give all the derivations, but try and highlight the ideas and main 
results. More mathematical details will be given in [26]. In section 2, we 
discuss the general construction of Z, with ^(Z) = Z2, as the quotient of el- 
liptically fibered threefolds X by an involution TX> This leads one to consider 
threefolds X which admit two sections. We present the general conditions 
for a freely acting involution TX on such an X, and give the general homol- 
ogy classes, effective curves and second Chern class of X. In section 3, we 
construct semi-stable holomorphic vector bundles V over X from a spectral 
cover, describing how they arise essentially by the action of T-duality. This 
involves a number of new features, since the spectral cover in such manifolds 
has a subtle structure. We discuss the conditions for invariance of V under 
the involution. This gives us a description of bundles over Z. The second 
and third Chern classes of these bundles are presented. As we note, this 
construction is fairly general. The essential point is to have an elliptically 
fibered threefold X with an involution TB on the base B with finitely many 
fixed points and a number of such cases can be constructed. 
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Figure 1: Heterotic M-theory brane-world 

In the last sections we return to physics. In section 4, we give explicit 
rules for the construction of three-family particle physics vacua on Z with 
GUT group SU(5). Since 7ri(Z) = Z2, these vacua have Wilson lines that 
break SU(b) to the standard ST/(3)CXS77(2)LX[/(1)Y gauge group. In sec- 
tion 5 we present explicit examples of these "standard model" vacua for the 
base surfaces B = F2 and dPs of the torus fibration. Finally, we summarize 
the resulting brane-world picture that emerges from these examples. 

In conclusion, heterotic M-theory vacua give a concrete realization of the 
following "brane-world" (see Figure 1). Six of the eleven M-theory dimen- 
sions are compactified on a small Calabi-Yau manifold Z, typically on the 
scale of inverse 1016 GeV. The additional compact direction, the Sx JZ2 orb- 
ifold, is larger, perhaps of order the intermediate scale. Matter is localized 
on the fixed planes of the 51 jZ^ orbifold as well as on a number of five- 
branes. (The exact matter content on the fivebranes depends on how they 
wrap the internal Calabi-Yau space.) In the effective five-dimensional the- 
ory, where the spacetime is the external (3 + l)-dimensional space together 
with the Sl IZ2 orbifold, the orbifold fixed planes and the fivebranes appear 
as a series of domain walls or BPS threebranes [10, 11, 7]. The fixed planes 
act as the boundaries of the orbifold interval, while the wrapped fivebranes 
appear as a series of threebranes arrayed throughout S'1 /Z^. By choosing an 
appropriate gauge vacuum, one can break one of the E% gauge groups on the 
orbifold fixed planes to the standard model group S'?7(3)CXS'[/(2)LX?7(1)Y, 
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with three families of chiral matter. Thus the standard model is realized 
on one fixed plane, while the other fixed planes and the fivebranes represent 
hidden sectors which only couple gravitationally to the standard model. Fi- 
nally, we should note that related constructions, also using quotients of an 
elliptic Calabi-Yau threefold, were considered in [27]. However, we find that 
on a number of points our results are in disagreement with the calculations 
and conclusions of that paper. 

2    Fibered Calabi-Yau threefolds with non-trivial 
TTi 

In this section, we construct and describe the particular Calabi-Yau man- 
ifolds Z we will use to compactify Hofava-Witten theory. Two proper- 
ties are required. First, we must choose particular non-trivial gauge field 
configurations on the Calabi-Yau compactification to break the E% gauge 
group to a smaller GUT gauge group with three families. In this paper, we 
use the spectral-cover construction to describe these gauge field configura- 
tions. This construction requires the Calabi-Yau manifold to be elliptically 
fibered. The second condition comes from breaking the GUT group down 
to SrC/(3)c X5C/(2)L XC7(1)Y. This is most naturally accomplished by includ- 
ing non-trivial Wilson lines [24, 25] on the Calabi-Yau manifold Z. This 
requires that the threefold not be simply connected, that is, 7ri(Z) must be 
non-trivial. 

It turns out that these two conditions are incompatible, except possibly 
in one case which is discussed in [20] and also below. Thus we are required 
to weaken one of the conditions and allow Z to be fibered by tori which are 
not necessarily elliptic. We will review this distinction below. 

To be specific, we will consider the case where the grand unified group is 

H = SU(5). (1) 

It is well known [24, 25] that this can be broken to S!7(3)CXS77(2)LX[/(1)Y 

by a Z2 Wilson line. Similar constructions work for other GUT groups, such 
as S'O(IO) or EQ. Although our construction can be generalized to larger 
groups, in this paper we restrict our discussion to GUT group SU(5) and 
to the simplest case of finding a torus-fibered Calabi-Yau threefold Z with 
7ri(Z)=Z2. 
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2.1    Torus and elliptic fibrations 

By a torus-fibered threefold we mean a three-dimensional complex manifold 
X which is equipped with a holomorphic map 

7r:X-+B (2) 

to some complex surface B so that, for a general point b G JB, the fiber 7r-1(&) 
is a smooth complex curve of genus one. The surface B is called the base of 
X. If one further demands that the canonical bundle be trivial, then X is 
called a torus-fibered Calabi-Yau threefold. This condition is equivalent to 
assuming that 

ci(TJ0=0, (3) 

where ci(TX) is the first Chern class of the tangent bundle TX. In this 
paper, X will always be assumed to be a smooth manifold. Note, however, 
that the smoothness of X does not imply the smoothness of the base B. 
In fact, bases with isolated singularities do occur in most of the interesting 
examples below. 

Now consider a holomorphic map 

a.:B->X, (4) 

satisfying TT O a = idj^. Such a map is called a section of X. It is important 
to note that a mapping of this type need not exist. Thus, there can be 
torus-fibered threefolds, including torus-fibered Calabi-Yau threefolds, that 
have no section. In fact, it is precisely such Calabi-Yau threefolds that will 
be required to construct realistic particle physics vacua. 

Let us consider a torus-fibered threefold that does admit a section. Then 
the image, (T(B), of the base in X intersects each fiber 7r~1(&) at a unique 
point <j(b). This point plays the role of a natural "zero" for the addition law 
on each fiber, turning each torus into an elliptic curve. For this reason, a 
torus fibration that admits a section is called an elliptic fibration. An elliptic 
fibration naturally possesses a line bundle, £, on B whose fiber at any point 
b G B is the cotangent line Tp(7r~1(b)) to the elliptic curve at the zero point 
pi,. That is, C is the conormal bundle to the section (j(B) in X. In the 
case where the elliptically fibered manifold is a Calabi-Yau threefold, the 
requirement that ci (TX) = 0 restricts the conormal bundle £ to satisfy 

C = KB
1
, (5) 

where KB is the canonical bundle of the base B. This requirement re- 
stricts the possible bases B [28]. It turns out that, for smooth J5, the only 
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possible cases are (i) the del Pezzo surfaces dPi for i =. 1,...,9, (ii) the 
Hirzebruch surfaces Fr for any non-negative integer r, (iii) certain blow-ups 
of the Hirzebruch surfaces and (iv) the Enriques surface £. Thus, elliptically 
fibered Calabi-Yau threefolds allow only a fairly restricted set of smooth 
base surfaces B. The properties of these bases are well known and reviewed 
in the Appendix of [20]. 

Elliptically fibered manifolds have a useful description in terms of a 
Weierstrass model. One recalls that a general elliptic curve can be embedded 
via a cubic equation into QP2. Without loss of generality, the equation can 
be put in the Weierstrass form 

zy2 = 4x3-g2xz2-g3z
s. (6) 

where #2 and gs are general coeflficients and (rr, y, z) are homogeneous coor- 
dinates on QP . To define an elliptic fibration over a base S, one needs to 
specify how the coefficients #2 and gs vary as one moves around the base. In 
general, the coefficients must be sections of the line bundles £4 = Kg4 and 
C6 — KgQ respectively. One notes that the torus fibers are actually ellip- 
tic curves, because there is always one solution to the Weierstrass equation, 
namely (x,y,z) — (0,1,0). This defines a global section a of the fibration, 
usually called the "zero section". 

The elliptic curve becomes singular when two roots of the Weierstrass 
equation (6) coincide. This occurs when the discriminant, defined by 

A = ff2
3-27532 (7) 

vanishes. In the fibration, the discriminant is a section of £12 = K^2. The 
set of points in the base over which the fibration becomes singular is given 
by the discriminant locus 

A = 0. (8) 

and defines a complex curve in the base. 

In some cases, although some of the elliptic fibers are singular, the full 
space described by the Weierstrass model is smooth. However, as we will 
see below, the Weierstrass model may also be singular. In this case, the 
smooth Calabi-Yau threefold X is a blow up of the corresponding singular 
Weierstrass model. 

2.2    Involutions and the construction of Z with 7ri(Z) = Z2 

Unfortunately, one can show that most elliptically fibered Calabi-Yau three- 
folds Z have trivial Tri(Z).   The one exception is when the base B is an 
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Enriques surface. It was shown in [20] that spectral cover constructions on 
such geometries cannot give models with three families of chiral matter. Dif- 
ferent constructions of bundles on such geometries do exist [29] but they do 
not seem to allow enough flexibility for satisfying the anomaly cancellation 
condition. Hence, we choose a different route; we keep the bases general but 
we relax the elliptic fibration condition. 

The easiest way to produce a fibered space Z with non-trivial TTI(Z) 

is by quotienting an elliptically fibered space X by a freely-acting discrete 
symmetry. Since here we consider only the simplest case of 7ri(Z) = Z2, 
we need only find an elliptically fibered manifold X with a freely-acting 
involution. Specifically, we would like to construct an involution 

rx ' X -+ X (9) 

that preserves the fibration TT, as well as the holomorphic volume form, and 
acts freely on X, that is, without fixed points. We can then construct the 
quotient space 

Z = X/TX. (10) 

Since rx acts freely and preserves the holomorphic volume form, Z is a 
smooth Calabi-Yau threefold. However, in general, the section a of X will 
not be invariant under rx, so it will not descend to a section of Z. It follows 
that there is no reason to expect Z to have a section and, hence, to be an 
elliptic fibration. It is, in general, only a torus-fibration. 

How does one construct such an involution and what constraints does its 
existence place on X? This is most easily analyzed by constructing rx as 
the combination of two involutions, one acting on the base and one acting 
on the fiber. Note, first, that if there is an involution rx on X that preserves 
the fibration, this must project to some involution 

TB:B-*B (11) 

on B. Since it is X/rx that must be smooth and not B/TB, we do not require 
that TB act freely on B. In fact, generally B will not admit a freely-acting 
TB> We denote by J:

TB the set of points in B that are fixed under TB- In 
general, J?vB can contain either a continuous or a finite set of elements. 

Fix one such involution TB- Among all Calabi-Yau manifolds X, fibered 
over £?, we want to show there are some for which the involution TB lifts 
to an involution a : X -t X which preserves the section a. We can then 
combine a with an involution t^ on the fibers, to give rx- The lifting is 
possible only if the fibration is invariant under TB-   This means that the 
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coefficients 52 and 93 in the Weierstrass equation must be invariant under 

TB{92)=92,        1-8(93)= 93, (12) 

If these conditions are satisfied, then TB can indeed be lifted to an involution 
a : X —t X, which is uniquely determined by the additional requirements 
that it fix the zero section a and that it preserve the holomorphic volume 
form on X. A local computation shows that this a leaves fixed the whole 
fiber above each fixed point in the base, that is all the points in J7^. Thus 
it is not by itself a suitable candidate for rx- 

To construct an involution without fixed points, we combine a with a 
translation of the fiber. The action of translation on a smooth torus acts 
without fixed points. One might then expect that a simple translation on 
all the elliptic fibers of X might by itself give an involution without fixed 
points. The problem is that the translation might not act freely on the 
singular fibers. Thus, in general, a translation alone is not a candidate 
for rx either. However, one recalls that a left invariant only those fibers 
above points in the base in ^vB. If we combine a with a translation in the 
fiber, then, provided none of the fibers above .Tv^ are singular, the resulting 
transformation should act without fixed points. 

Let us be more specific. The easiest (but not most general) way to con- 
struct an elliptically fibered Calabi-Yau threefold X with a fiber translation 
symmetry is to require that X has two sections. The zero section a marks 
the zero points p^ on the fibers 7r~1(6). Suppose there is a second section 
£. Consider any fiber 7r~1(6). Denote by £& the unique point of intersection 
of this fiber with the image ((B) of the base in X. Let us further assume 
that, for any point b G S, Cfc is a point of order two in the fiber, that is, 
£b + £6 = a(b). In terms of the sections themselves, this can be written as 

C + C = CT. (13) 

Using this property, one can define an involution t^ : X —t X as follows. Let 
x be any point in X. Then x lies in a fiber 7r_1(6) for some b G B. Define 

tc(x)=x + (b. (14) 

Clearly, t^ satisfies if o t^ = idx and, hence, is an involution. Furthermore, 
if has the property that 

*c(CT) = C,      *c(0 = ^ (is) 

exchanging the two sections. 
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We then construct the mapping 

TX:X^X, (16) 

defined by combining a with the fiber translation t^ as 

rx = aoi^. (17) 

Clearly TX is an involution on X. By construction, rx preserves the fibration 
TT and induces the involution TB on the base. Since a preserves the fiber, it 
leaves the two sections invariant 

a(a)=a,        a(C) = <■ (18) 

Combined with the action of t^ given in (15), this implies that rx inter- 
changes the two sections, so 

T*X(V) = C, TJKC) = <*■ (19) 

Thus neither section is preserved under rx and, consequently, the quotient 
space Z = X/rx generically has no sections and so is only torus-fibered. 
Furthermore, since one can show that t^ preserves the holomorphic volume 
form, we can conclude that rx also preserves the holomorphic volume form. 

Does rx have fixed points in X? In general, the answer is affirmative. 
However, as discussed above, if none of the fibers of the set of fixed points 
in the base T^ are singular then the action of rx is free. Thus rx will act 
freely on X if and only if 

FTB n {A = 0} = 0, (20) 

where {A = 0} is the discriminant locus in the base B. Except for the 
case of the Enriques base, this then implies that J7^ must consist of a finite 
number of fixed points. 

Furthermore, since rx preserves the fibration TT of X and induces the 
involution rs on B, it follows that Z is a torus-fibration over the base space 

S - B/TB. (21) 

Recall that, since involution rs generically has fixed points, S, unlike Z, is 
generically not a smooth manifold. 

In summary, we can construct a torus-fibered Calabi-Yau threefold with 
^(Z) = Z2 by the following quotient 

X —q-^ Z = X/rx 

(22) 

B  >  S = B/rB 

In order to construct such a manifold Z we require 
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• X has two sections a and ( such that a + a = £ under fiber-wise 
addition, 

• T^ acts on the base £? with a fixed point set JvB with the property 
that FTB fl {A = 0} = 0, 

• in the Weierstrass model for X we have rj^^) = 52 and rj^ga) = #3, 
ensuring that the involution preserves the fibration. 

It is worth noting that several explicit solutions to these conditions exist. 
In section 5 we give two examples based on B — F2 and B = dP^, but a 
number of other cases can also be found. In the next subsection, we will 
discuss what these conditions imply about the structure of X. 

Finally, we note that the Chern classes Ci G H*(Z, Q) of the tangent 
bundle TZ can be determined from the Chern classes of TX as follows. Let 

q.X^Z (23) 

be the quotient map. Since X is a double cover of Z, it follows that 

diTZ) =. lq*Ci(TX), (24) 

where q*Ci(TX) is the push-forward of Ci(TX). 

2.3    Structure of X 

The main requirement on X is that it is a smooth elliptically fibered Calabi- 
Yau threefold admitting two sections. Such manifolds can be constructed 
from the corresponding Weierstrass model as follows. First, in order to have 
a pair of sections a and £, the Weierstrass polynomial must factorize as 

zy2 = 4(2; - az){x2 + axz + bz2), (25) 

where, comparing to equation (6), we see that 

g2 = 4(a2-b),        gs=4ab. (26) 

Note that this implies that a and b are sections of Kg2 and K^4 respectively. 
The zero section a is given by (x,y,z) — (0,1,0) and the second section £ 
by (x,y,z) = (a, 0,1). The fibers are singular over the discriminant curve 
A = 0, where 

A = AiAJ (27) 
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and 

Ai = a2 - 4&,        A2 = 4(2a2 + b). (28) 

We see that the discriminant curve has two components. 

As constructed, the Weierstrass model is singular. It is easy to show 
that there is a curve of singularities over the A2 = 0 component of the 
discriminant curve. We note that the vanishing of A2 corresponds to one 
of the roots of the second factor of the Weierstrass polynomial (25) being 
coincident with the zero of the x — az factor. Consequently, the singular 
points over the part of the discriminant curve where A2 = 0 all live in the 
£ section. Specifically, the singular points form a curve L in section £ given 
by 

(^,y^)-(a,0,l),        2a2+ 6 = 0, (29) 

To construct the smooth Calabi-Yau threefold, it is necessary to blow up 
this entire curve. (It turns out that one blowup sufiices.) This is achieved as 
follows. The singular point of each individual fiber over A2 = 0 is replaced 
by a sphere QP1. This is a new curve in the Calabi-Yau threefold, which 
we denote by N. This reflects the fact that the general elliptic fiber F 
has split over A2 = 0 into two spheres: the new fiber N plus the proper 
transform of the singular fiber, which is in the class F — N. The union 
of these new fibers over the curve of singularities (29) forms a surface in 
the Calabi-Yau threefold, specifically, an exceptional divisor denoted by E. 
There is an analogous surface Ef formed by the union of the F — N fibers 
over A2 in the zero section. The blown-up Weierstrass model is the smooth 
elliptically fibered Calabi-Yau threefold X with two sections. The blown up 
space together with the inverse image L of the singular curve L is shown in 
Figure 2. 

We recall that to admit an involution we required in addition that #2 
and gs were invariant under TB- In terms of the parameters a and b this 
translates into 

T*B(a)=a,        T*B(b) = b. (30) 

The action of the involution rx can be seen in Figure 2. We recall that, 
under rx, the two sections are exchanged. Similarly, the two surfaces E and 
Ef are exchanged. A generic fiber F5 over a point b G B, will be exchanged 
with the fiber Fy over the image poifit bf = r^(6) under the involution on 
B. 
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Figure 2: Structure of X 

2.4    Classes, effective curves and the Chern class C2(TX) 

Let us consider the smooth elliptically fibered Calabi-Yau threefold X with 
two sections, constructed as in the previous section. We would like to identify 
the independent classes of both surfaces and curves on X. For the classes of 
surfaces, generically, we have the classes of the two sections a and £, of the 
new exceptional divisor E obtained from the blowing-up procedure and the 
pull-back to X of classes of curves a from the base 5, which we denote by 
7r*a. In fact, these divisor classes are not all independent. For the classes 
of curves, generically, we have the class of elliptic fiber F, of the new class 
iV obtained from the blowing-up procedure, the image L of the curve of 
singularities and the embeddings via the two sections of classes of curves a 
from the base S, which we write as <7*a and (*a respectively. Once again, 
these curve classes are not all independent. An independent set of divisors 
and curves, together with their intersections, is given by 

Tr*a o-     c 

F-N 
N 

a-/3 
0 
0 

-ci.-/3   0 
1        0 
0        1 

(31) 
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where a and (3 are classes of curves in B and ci denotes the first Chern class 
of the base, ci(B). 

The exceptional divisor from the blowing up procedure is given by 

£ = 2(<T-C + 7r*ci). (32) 

while it image E' under TX is 

Ef = 2(C-<T + ir*ci). (33) 

Meanwhile, the transform of the curve of singularities is 

.L = 8[a*ci+c?(F-J\0] (34) 

and we have the important relationship between classes of curves 

C • 7r*a = a • 7r*a + {a • ci)[(F - N) - N]. (35) 

Finally, to complete the description of the cohomology ring we have the 
following intersections between divisors 

a-a = -0-*ci, C-C = -C*
C

1J 

(T-C = 0, (36) 

a • 7r*a = (7*a,        ( • 7r*a = ^*a 

The action of the involution rx on each class is easy to identify. We have 
for the divisors 

T*X(°) = (,        r*x(C) = a, 
Txiir a) =7r.T£(a), 

while for the curves 

TZ(F-N) = N,        TZ(N)=F-N, 

TX°*OL = C*TB{a) = a*rB(a) + (a • ci)[(F - AT) - iV], (38) 
TxC*a = ^^(a) 

When describing the fivebranes in our model, it is important to iden- 
tify the effective classes of curves in X. As discussed in [19, 20, 23], these 
are the cohomology classes which can be realized by the sum curves in the 
Calabi-Yau corresponding to an actual collection of fivebranes (and no anti- 
fivebranes). Not all classes are of this form. Thus we would like to identify 
the conditions for a class [W] in X to be effective, that is, for [W] to lie in 
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the Mori cone of ^(X^Z). We recall that in blowing up the Weierstrass 
model, the singular point of a fiber over the A2 = 0 was replaced by a sphere 
QP1 represented by the new class N. This class is by definition effective. 
Recall further that the fiber over A2 = 0 in fact splits into a pair of spheres. 
The other sphere is the proper transform of the singular fiber and is in the 
class F — N. It is by definition effective. Furthermore, the lift a*a of any 
effective class a in the base into the zero section a is must also be effective 
in X. It follows from (31) that we can, in general, write the class of a curve 
W'mH2{X,Z) as 

[W] = o*u + c(F -N)+ dN, (39) 

where a; is a class in the base B and c and d are integers. It is easy to show 
that a sufficient condition for W to be an effective class is that 

UJ is effective in B,    c > 0,    d > 0.      =^      [W] is effective in X    (40) 

We will, in the following, often denote an expression such as "[W] is effective 
in X" simply by [W] > 0. 

It will be essential in this paper to know the second Chern class of the 
tangent bundle TX of the relevant Calabi-Yau threefolds. The second Chern 
class C2(TX) of an elliptically fibered Calabi-Yau threefold with two sections 
can be calculated by blowing up the associated Weierstrass model, as dis- 
cussed above. Here, we simply present the result. We find that 

C2(TX) = 12a • 7r*ci + (c2 + 11<Z)(F - N) + (02 - c?)iV, (41) 

where ci and C2 stand for the Chern classes ci(B) and C2(B) of the base 
B respectively. This formula was originally given, though in a different 
form, by Andreas, Curio and Klemm [27]. Note that setting N to zero 
reduces expression (41) to the original formula given by Friedman, Morgan 
and Witten [16] for the case of elliptically fibered Calabi-Yau threefolds with 
a single section a. 

3    Holomorphic vector bundles on fibered Calabi- 
Yau threefolds 

Having identified the structure of the torus-fibered Calabi-Yau manifold Z 
on which we will compactify, the next question is to construct general su- 
persymmetric gauge vacua on Z, in particular, vacua with structure group 
G = SU(5) C E$. As discussed in the introduction, constructing supersym- 
metric vacua corresponds to constructing general semi-stable holomorphic 
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vector bundles over Z. We recall that the work of [16, 17, 18] shows how 
to construct such bundles over elliptically fibered manifolds. Here Z is the 
quotient X/TX of an elliptically fibered threefold X by an involution TX- 

Thus the easiest way to construct bundles over Z is to construct suitable 
vector bundles V over X which descend to the quotient threefold Z. This 
restricts us to those bundles on X which are invariant under the involution. 
That is, we will need to find V such that T£(V) = V. 

In this section, we discuss the details of such a construction. We first 
review the spectral cover construction of semi-stable holomorphic bundles V 
over an elliptically fibered manifold X. We stress a physical picture, where 
the spectral data can be viewed as the T-dual of the gauge bundle V over 
X. We then discuss the structure of the spectral data, in the case of the 
particular class of Calabi-Yau manifolds with two sections discussed in the 
previous section. Finally, we turn to the question of identifying those V 
which are invariant under the involution. We also give explicit expressions 
for the Chern classes of V and for the corresponding bundles on Z. A 
number of important subtleties complicate this analysis as compared with 
the generic case where X has only one section. For simplicity, we will not 
give the derivations of all of our results in this paper. Also, we will often use 
the Chern classes to characterize a bundle rather than deal with the bundles 
themselves. The full mathematical details will be given elsewhere [26]. 

3.1    T-duality and the spectral construction 

We would like to characterize semi-stable holomorphic SU(n) vector bundles 
over an elliptically fibered Calabi-Yau threefold X. Let us generalize slightly 
and consider U(n) bundles of degree zero over the fibers. It was shown 
in [16, 17, 18] that, generically, a semi-stable rank n holomorphic vector 
bundle V on X can be constructed from two objects 

• a divisor C of X which is an n-fold cover of the base B, known as the 
spectral cover, 

• a line bundle J\f on C. 

The relationship between the spectral data (C, A/*) and the bundle V actually 
has a simple physical interpretation. The spectral data is the "T-dual" of 
the semi-stable holomorphic bundle V. 

To understand the what is meant by T-duality in this context, recall that 
the Calabi-Yau manifold X has an elliptically fibered structure. This means 
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that we can consider making a T-duality transformation on the fiber. Specif- 
ically, on each fiber we make a T-duality transformation along each cycle of 
the torus, preserving the complex structure on the torus, but inverting the 
volume. Of course, the transformation is more subtle at the points where 
the fibration is singular, but it can in general be defined. The resulting T- 
dual manifold X, is also elliptically fibered. In fact, with regard to complex 
structure, it is isomorphic to the original manifold X. Mathematically, it is 
the "associated Jacobian bundle" X = J(7r). Thus we have 

X ^^% X = J(n)^X (42) 

by the action of T-duality on each fiber. 

What happens to the vector bundle V under such a duality transforma- 
tion? Physically, we recall that vector bundles (or, more generally, sheaves) 
correspond to a collection of D-branes. The low-energy theory of n coinci- 
dent D-branes is a (Z}+l)-dimensional Yang-Mills theory with a gauge group 
U(n). From this point of view, we can view our rank n vector bundle on the 
threefold X as n D6-branes all wrapping the Calabi-Yau manifold. If V is 
non-trivial, the configuration is a source not only of D6-brane charge but also 
of D4-brane, D2-brane and DO-brane charge. The charges are given [30] in 
terms of the Chern character classes cho(F) = n, chi(V), ch2(V) and chs(V) 
for D6-, D4-, D2- and DO-brane charge respectively. Thus, in general, the 
bundle describes some collection D6-, D4-, D2- and DO-branes. 

This description can be extended to the case where we have, for instance, 
only D4-, D2- and DO-branes on X. This implies that the rank of the bundle 
is zero (no D6-brane charge) but the the higher Chern classes are non-zero. 
This is, of course, not possible to describe in terms of a vector bundle, 
but can be described as a "sheaf". A simple example is a single D4-brane 
wrapping a divisor C in X. There will be a line-bundle Af on C describing 
the U(l) gauge fields on X (and in general describing embedded D2- and 
DO-brane charge). There is an inclusion map ic : C -± X. We can try and 
use this map to push the bundle on C into an object on X. This will be a 
"bundle" ic*N which is simply Af when restricted to the D4-brane on C but 
everywhere else in X the fiber is dimensionless. Such an object is a sheaf. 
A general vector bundle can then be regarded as a special type of sheaf. 

Viewing V as a set of D-branes, we know that D-branes are in general 
mapped under T-duality to new D-branes of different dimension. Roughly, 
D4-, D2- and DO-branes transverse to the fiber of X should become D6-, 
D4- and D2-branes wrapping the.fiber of X, while D6-, D4- and D2-branes 
wrapping the fiber of X become D4-, D2- and DO-branes transverse to the 
fiber of X.  (The actual transformation is more complicated because of the 
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curvature of X and the singular fibers, but this is the general picture.) Thus, 
in general, the bundle V should map to some new bundle (or more generally- 
new sheaf) V on X describing the T-dual configuration of D-branes. Since 
we can dualize back from X to X, the map is invertible. In what follows, it 
is more convenient to define the map in terms of the duality from the bundle 
V on X to V on X. Thus, T-duality induces an invertible map S between 
sheaves V on X and sheaves V on X so that 

V = S(V). (43) 

Mathematically, this map is known as the "Fourier-Mukai" transform. (To 
be more precise, this transform acts not on sheaves but on the derived cat- 
egory of sheaves on X as described, for instance, in [31].) We note that it 
induces a map s on cohomology exchanging the D-brane charges: 

chiiV) = s chiiV) (44) 

We would expect that the T-duality acts linearly on the D-brane charges. 
And indeed, one can show that s is linear on cohomology. 

So far, while interesting, the T-duality map has not helped us solve 
the problem of characterizing semi-stable bundles V on X. In general, the 
dual bundle V appears to be just as complicated as the original bundle V. 
However, we have not yet utilized the semi-stability condition. The spectral 
cover construction makes a specific semi-stability assumption, namely that 
the bundle is still semi-stable when restricted to a generic fiber 1. The 
consequence of this is that if V is semi-stable then its T-dual V = S'_1(F) 
describes only D4-branes and no D6-branes. In particular, this is precisely 
the information contained in the spectral data. Namely, the spectral cover 
C is the surface in X on which the D4-brane wraps and J\f describes the 
gauge field on the brane. Thus, formally, if 

ic:C^X (45) 

is the inclusion map of the spectral cover, the T-dual V of V is the sheaf 

V = icM- (46) 

This then is the spectral cover construction 

• the bundle V is the fiber-wise T-dual or aFourier-Mukai transform" 

V = S{ic*N) (47) 

of the sheaf V = ic*N as defined by the spectral data {C,N). 
1It is known [16] that for an appropriate choice of the Kahler form u on X, ostability 

indeed implies semi-stability on the generic fiber. 
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We note that the spectral data naturally lives in the isomorphic T-dual space 
X. The construction is shown diagrammatically in Figure 3. 

X X 

Figure 3: The Fourier-Mukai T-duality transform 

One can get an idea of why the semi-stability condition implies that 
V contains no D6-branes as follows. It is easy to show that requiring the 
restriction of V to a generic fiber to be semi-stable implies that first Chern 
class ci(V) restricted to a generic fiber is zero. This clearly restricts the 
form of the D4-brane charge. In particular, it means that there can be 
no D4-branes wrapping sections of X. However, it is precisely D4-branes 
wrapped on sections of X which become D6-branes under T-duality since 
they are transverse to the fiber direction. Thus V contains only D4-, D2- 
and DO-branes. Note that, in addition, the original n D6-branes will map 
into n D4-branes wrapping sections of the dual X. To be more precise, they 
in general map to a D4-brane which is an n-fold cover of the base B. This 
is indeed precisely the form of the spectral cover C. 

3.2    Bundles on X and the form of the spectral data 

Let us now return to the specific question of the description of semi-stable 
holomorphic SU(n) bundles on X. We will find that the specific form we 
chose for X gives additional degrees of freedom for the spectral data, which 
are not present in the generic case. In particular, as we discuss, the spectral 
cover is no longer everywhere a finite cover of the base B. In this paper, 
we will mention some of the complexities this introduces, but save the more 
mathematical analysis for a later publication [26]. 
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First, we need to impose the condition that we have an SU(n) bundle, 
so that 

ci(V)=0, (48) 

where ci(V) is the first Chern class of the bundle V. The map s in cohomol- 
ogy induced by the Fourier-Mukai transform (44) gives expressions for the 
Chern classes c^V) in terms of the Chern classes Q(V') of V = ic*N. The 
latter are easily expressed in terms of C and the first Chern class ci (A/-) of 
the line bundle M. We will not give the details here but simply present the 
results. Requiring that ciiV) vanishes on X, rather than just on the fibers, 
imposes restrictions on C and N. We find that the class of the spectral cover 
is constrained to be 

C = na + TT*??, (49) 

where 7r*ry is the pull-back into X of some divisor class 77 in the base B. 
Since C is an actual surface in X, we have the addition condition that 

77 must be an effective class on B (50) 

Note, in addition, that equation (49) involves only the zero section a and 
not the second section £. Furthermore, the vanishing of ci(V) also requires 
that 

ci(^) = ^(C + 7r*c1)|c + 7, (51) 

where the first term is the restriction to C of a divisor class in X, while 7 is 
a class on C with the property that, if p is the projection p : C -> JB, then 
the push-forward of 7 vanishes 

P*7 = 0 (52) 

as an element of H2(B, Z). 

We would like to have an explicit expression for the additional freedom 7 
in the line bundle J\f. To do this, we need to know the generic classes on the 
spectral cover C and then find which of these classes satisfy the projection 
condition p*7 = 0. 

If C were completely generic, we would expect that the only classes on 
C are those that come from the restriction of classes in X to C. That is, we 
expect classes of the form 7 = D\c where D E H±{X, Z) is a divisor class on 
X. From section 2.4, the divisors on X are of the form D = aa + b£ + 7r*a 
where a is a class in H2{B,Z).   However, we recall that the ci(V) = 0 
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condition meant that the spectral cover was not generic, but was restricted 
so that the class of C is of the form n<j+7r*r]. In this case, extra classes appear 
on the spectral cover. They can be seen by considering the intersection of C 
with the exceptional divisor E. We have from (31) and (32) that, as a class 
inX, 

E\c = E'C = 2(a-C + 7r*ci) • (na + n*r)) = 4(7/ • c^N (53) 

Since both C and E are actual surfaces in X, this implies that they intersect 
in a curve wrapping the new fiber 47/ • ci times. For generic C, if we project 
down to the base, the curve C • E projects to 47/ • ci distinct points. Thus we 
can argue that, generically, the curve C • E splits into 47/ • ci distinct curves 
each wrapping the new component of the fiber over a different point in the 
base. In X, all of these curves are in the same homology class. However, in 
C, since each curve can be separately blown down, they must be in distinct 
cohomology classes in JifeCC, Z). Let us denote these distinct classes as Ni 
for i = 1,..., 47/ • ci'. Thus, as a class in C, we have E\c = J2i Ni- 

The fact that C necessarily includes the exceptional curves Ni has im- 
portant consequences. In particular, it means that C is no longer everywhere 
a finite cover of B. Generically it is an n-fold cover, but there are 4// • ci 
special points in B where it spans the whole of a new fiber N above the 
base. This has important consequences for the spectral cover construction. 
In the previous section, we claimed that a smooth semi-stable holomorphic 
vector bundle V on X is the Fourier-Mukai transform of the sheaf icxN on 
X, where M is a line-bundle on C. However, this is only strictly true for 
generic C. If C is singular or is no longer a finite cover, more general sheaves 
on X can lead to a smooth semi-stable bundle V. In particular, one is led 
to consider sheaves supported on the new fibers Ni. We leave the discussion 
of these subtleties to a more mathematical paper [26]. In this paper, we will 
restrict ourselves to the simple case of line bundles over (7, and will mostly 
been concerned with the Chern classes rather than the specific realization of 
the bundles themselves. 

Returning to the classes on C, in summary, for a generic spectral cover 
C — na + 7r*7/ in X, the generic classes on C can be taken as 

restrictions from X: cr|c,    7r*a|c 

new fiber classes: Ni, 

where i = 1,..., 47/ • ci. Furthermore, from their intersections in X and the 
fact that each Ni can be separately blown down, one can show that 

Ni • Nj = -2(Sy (55) 
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as an intersection in C, while 

Ni • *\c = Ni - 7r*a|c - 0, (56) 

for all i. One might expect that there is also a class from £|c- However, we 
recall that E = 2(a — ( + 7r*ci), so this class is not independent. We note, 
however, that ^E is also an integral class on X. Thus, we do have the useful 
fact that 

^lc = 5X>i (57) 
i 

is actually an integral class on C, despite the rational coefficients in the sum. 

Having identified the classes on C, we can now find the generic form of 
7. A short calculation shows that 7 has the form 

7=:A(nc7-7r*r/ + n7r*ci)-C + ^^iVi. (58) 
i 

In order for ci(J\f) to be an integral homology class, the coefficients A and 
Ki are restricted, so that, in the case where n is odd, we have, recalling that 
k Si Ni is integral 

Ki — |m G £, 

where m is an integer. In this paper, we restrict our results to n odd since 
all of the examples we present below will involve the structure group SU(5). 

The other Chern classes of V, which by the Fourier-Mukai transform 
could be written in terms of C = na + ir^r] and A/", then reduce to expression 
in terms of 77, A and Ki. We find that 

(V^orV,,-j^ (n3 -n)c?-i (A2 - I^n^-nciJ-^/^W-^ C2 

f  1 
(' n

3 -n 

and 

24 v-      ■-) c2i-\ (A2
 - ^) ™?fa " nci) - E^ + E^} ^ 

(60) 

C3(n=2Ar;(j7-nci), (61) 

where ci and C2 stand for the Chern classes ci(B) and C2{B) of the base B 
respectively. It is important to note that the expression for C2 depends on 
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the Kj, but the one for C3 does not. Setting Ki to zero in (60) returns one 
to the formula for C2 given by Friedman, Morgan, Witten [16], as it must. 
The single section threefolds case of Expression (61) for c^(V) was derived 
in [21]. 

3.3    Vector Bundles on Z = X/TX 

We now want to construct semi-stable holomorphic vector bundles Vz on 
the torus-fibration Z = X/TX- Every such bundle can be pulled back to a 
bundle V over X that is invariant under the involution rx and conversely. 
That is, if 

T$(V) = V (62) 

then V is the pull-back of a bundle Vz on Z. We therefore must characterize 
the condition that V be invariant under rx- 

Recall that V is constructed as the Fourier-Mukai transform of the sheaf 
V = ic*N given the spectral cover C and the line bundle M on C. The 
generic forms of C and M are given in equations (49) and (58) respectively. 
What additional conditions on the spectral data does the requirement (62) 
that V is invariant under rx imply? 

This can be calculated directly by finding the induced action of rx on 
the spectral data. In particular, if S is the Fourier-Mukai transform from V 
to V, and S*-1 the inverse transform, we have that under rx 

V = ic*N -+ V' = S'1 o T£ O S(ic,Af) (63) 

Rather than considering this action in general, let us start by considering 
the condition invariance will place on the spectral cover, and then on the 
Chern classes of V. 

We recall that the spectral data live naturally in the T-dual space X. 
Furthermore, the involution rx is the combination of two involutions, rx = 
a o t^ where a is the lift of the involution rs and t^ is a translation in the 
fiber of X. Under T-duality, a translation on the fiber of X has nojealization 
as an action on the dual space X so the induced action of t( on X is trivial. 
The involution on the base r^, however, carries over into the corresponding 
involution in the base of X = /(TT). Thus, recalling that X and X are 
isomorphic, we expect that one of the requirements of the invariance of V 
under rx is that the T-dual D4-brane described by the spectral cover C is 
invariant under a. That is, we require that 

a(C)=C (64) 
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Recall from (18) that cr is invariant under a. We find then, using the form 
of C given in equations (49), that the condition (64) is satisfied provided 

TB('n)=V- (65) 

It is more subtle, however, to calculate the induced transformation of 
Af under the action of rx on V. Here, rather than calculate the action of 
S~1or^:oS directly, we will consider the transformation of the Chern classes 
of V to get information about how Af transforms. Let us write V = T^(V) 

for the pullback of the bundle V under the involution and r/', A' and «J for 
the corresponding spectral data. Given the transformation of the classes on 
X under rx given in (37) and (38), we find that, assuming the spectral cover 
condition (65) that rf = r^rf) = r?, 

C2(V) = T*X(C2(V)) = c2(V) + £(1 - m) [N-(F- N)} 
i (66) 

C3(V') = r*x(c3(V)) = cs(V) 

Comparing this to the general expressions (60) and (61) for C2(V) and C3(V), 
we can conclude that under rx we must have that A remains unchanged. 

while for «i, we have 

such that 

A -> V = A, (67) 

Ki->Ki, (68) 

E^ = E(3-^)- (69) 

It might appear that there is also a condition on ]r\ «?. However, the addi- 
tional fact that S~1 o rx 0 S is an involution, reduces this condition to that 
above. 

In summary, necessary conditions for V to be invariant are the relations 

TB(rj)=r), 

E^^EH7? •ci. (70) 

Note that, given the existence of a suitable three-fold X with involution 
rx, these conditions are completely general. Since the Chern classes do 
not completely determine the bundle, there may be non-invariant bundles 
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with invariant Chern classes satisfying these conditions. To find the exactly 
invariant bundles requires the details of how the Ki transform individually. 

Since physically we are interested mostly in the Chern classes, in this 
paper, for simplicity, we will restrict ourselves to the necessary conditions 
given above, without considering the details of identifying within this class of 
bundles the specific ones which are exactly invariant under rx- Therefore, we 
take the condition that finding holomorphic vector bundles Vz over the torus- 
fibered threefold Z = X/rx reduces to constructing holomorphic vector 
bundles V over the elliptically fibered threefold X that satisfy condition 
(70). 

The Chern classes of a vector bundle Vz can be determined from the 
Chern classes of the rx invariant vector bundle V from which it descends as 
follows. Let q : X -> Z be the quotient map. Since X is a double cover of 
Z, it follows that 

Ci(Vz) = IqtCiiV), (71) 

where q*Ci(V) is the push-forward of any Chern class Ci(V) of V. 

4    Rules for Realistic Particle Physics Vacua 

In this section, we give the rules required to construct realistic particle 
physics vacua with Af = 1 supersymmetry, three families of quarks and 
leptons with the standard model gauge group SU(3)CXSU(2)IJXU(1)Y- For 
simplicity, we will restrict ourselves in this paper to considering vector bun- 
dles with the structure group 577(n) for n odd. In the observable sector 
we will choose the structure group G = 577(5). The generalization to other 
structure groups is relatively straightforward. 

The first set of rules deals with the selection of the elliptically fibered 
Calabi-Yau threefold X which admits a freely-acting involution rx, and the 
construction of bundles on X invariant under rx- As we have discussed, this 
allows us to construct a torus-fibered Calabi-Yau threefold Z = X/rx, with 
non-trivial fundamental group 7ri(Z) — Z2, and also to describe the bundles 
Vz on Z. These rules are summaries of the conditions we have already 
derived in the last two sections. If one was using this construction to build 
vector bundles for each of the two E% groups in Hof ava-Witten theory, then 
this first set of constraints is applicable to each bundle individually. The 
rules are 
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• Involution conditions: Start with an elliptically fibered Calabi-Yau 
threefold X. If the base B is smooth it must be either (i) a del Pezzo, 
(ii) a Hirzebruch, (iii) a blown-up Hirzebruch or (iv) an Enriques sur- 
face. To admit a freely-acting involution rx, we required X to have 
two sections a and (. In the Weierstrass model, this corresponds to an 
explicit choice of 

92 = 4(a2 - 6),        gs = 4a&, (72) 

with a discriminant curve 

A = 4(2a2 + 6) (a2 - 46) = 0, (73) 

The existence of TX further required that 

TB(a)=a, TB{b)=b (74) 

where TB is the projection of TX onto the base, and in addition 

FrB n {A = 0} - 0, (75) 

where JFTB is the set of fixed points of TB- It is helpful to note that this 
last condition implies that !FTB must be finite, except when the base 
B is a dPg or a K3 surface. 

• Bundle condition: semi-stable holomorphic vector bundles over X are 
given in terms of spectral data (C,J\[). The condition that ci(V) = 0 
implies that the spectral data can be written, via (49),(51),(58), in 
terms of a class ry in B and coefficients A and /^, which satisfy 

A - i G Z,        Ki - \m E Z, (76) 

with m integer. Furthermore, since C is an actual surface in the 
Calabi-Yau manifold, we must also have 

rj is effective (77) 

as a class on B. 

• Bundle involution conditions: in order for V to descend to a vector 
bundle Vz over Z, the class rj in B and the coefficients /^ must satisfy 
the constraints 

£* = »■*!■ (78) 
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The second set of rules is directly particle physics related. In general, in 
Hofava-Witten theory, we are free to choose two vector bundles, Vzi and 
Vz2>) located on the "observable" and "hidden" orbifold planes respectively. 
In this paper, for simplicity, we will always take Vz2 to be the trivial bundle. 
Hence, the gauge group E% remains unbroken on the hidden orbifold plane. 

On the observable orbifold plane, the structure group of the bundle is G C 
E%. The commutant subgroup H in E% is then the group preserved by the 
bundle. In this paper, we will spontaneously break H to the standard model 
group S'[/(3)cxS'/7(2)Lxi7(l)Y by means of a Z2 Wilson line on Z [24, 25]. 
This is possible since, by construction, we have 7ri(Z) = Z2. To achieve such 
a breaking requires us to take 

G = SU(6). (79) 

so that the unification group will be 

H = SU{5). (80) 

Thus, we will assume that bundle on the observable plane Vzi has structure 
group G = SU(5). 

The first of the particle physics conditions is the requirement that the 
theory have three families of quarks and leptons in the visible sector. The 
number of generations associated with the vector bundle Vzi over Z is given 
by [21] 

Ngen = ^c3(Vzi). (81) 

Requiring Ngen = 3 then, using (61) and (71), leads to the following rule for 
the associated vector bundle V over X. 

• Three-family condition: To have three families we must require 

Ary^-nci) =6. (82) 

The second physical rule is associated with the anomaly cancellation 
requirement [3] that 

[Wz] = c2(TZ) - c2{Vzi) - c2(Vz2), (83) 

where [Wz] is the class associated with non-perturbative five-branes in the 
bulk space of the theory. Since Vz2 1S trivial by assumption, 02(^2) vanishes 
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and condition (83) simplifies accordingly. Using equations (24), (71) and the 
fact that, by definition, 

[Wz] = \q.[W]t (84) 

condition (83) can be pulled-back onto X to give 

[W]=C2(TX)-c2(V). (85) 

Inserting expressions (41) and (60) gives 

[W] = (J*UJ + c(F -N) + dN (86) 

where 

and 

c 

d = C2 + 

u = 120! - ?? (87) 

C2 + (^(n3 - n) + ll) cl - i (A
2
 - i) nr, fo - nci) - E ^,   (88) 

^(n3 - n) - l) cj - \ (A
2
 - i) nr? (r? - nd) - X)"i + S^ 

24 

(89) 

The class [Wz] must represent an actual physical holomorphic curve in 
the Calabi-Yau threefold Z since physical five-branes are required to wrap 
around it. Hence, [Wz] must be an effective class, that is, [Wz] must be in 
the Mori cone of H2{Z,Z). It can be shown that [Wz] is effective in Z if 
and only if its pull-back [W] is an effective class in the covering threefold X. 
Therefore, we must require that [W] be in the Mori cone of H2(X, Z). Using 
equation (40), this leads to the following rule. 

• Effectiveness condition: For [W] to be an effective class, we require 

u is effective in S,     c > 0,     d > 0. (90) 

Next, it is possible that our bundle with structure group G may actu- 
ally have a smaller structure group. If this is the case, then the preserved 
subgroup of Eg will be larger than the commutant H of G. Berglund and 
Mayer [32] have shown that, in the context of toric X, this will not be 
the case if the vector bundle satisfies a further constraint. (This was also 
discussed by Rajesh [33].) In the case of SU(5) one requires 
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• Stability condition: Let G = 517(5) C Es and G be the structure 
group of the vector bundle. Then the commutant H = SU(5) in E$ 
will be the largest subgroup preserved by the bundle if 

77>5ci (91) 

Geometrically, this corresponds to requiring that the spectral cover does not 
split over the base B. 

Finally, we recall that the point of constructing Z with 7ri(Z) = Z2 was 
that we can then include a Z2 Wilson line on Z to break spontaneously the 
H = SU(5) GUT group. We break 

5/7(5) -► 5[/(3)CXS[/(2)LX[/(1)Y, (92) 

by assuming that the bundle contains a non-vanishing Wilson line with gen- 
erator 

mH = 5/7(5) 

G=(   - ). (93) 

If one follows the above rules, the vacuum will correspond to an Af = 1 
supersymmetric brane-world theory with, in the observable sector, three 
families of quarks and leptons and the standard model gauge group 
S'[/(3)CXS

,
Z7(2)LX[/(1)Y- Armed with these rules, we now turn to the ex- 

plicit construction of phenomenologically relevant non-perturbative vacua. 

5    Three Family Models 

5.1    Example 1: B = F2 

In our first example, we take the base of the Calabi-Yau threefold to be the 
Hirzebruch surface 

B = F2. (94) 

As discussed in the Appendix of [20], the Hirzebruch surfaces are QP1 fibra- 
tions over QP1. There are two independent classes on i7^, the class of the 
base S and of the fiber £. Their intersection numbers are 

S'S = -2,        S-£ = l,        £-£ = & (95) 
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The first and second Chern classes of F2 are given by 

ci(F2) = 2<S + 4£, (96) 

and 

c2(F2)=4. (97) 

We now must show that there is an elliptically fibered Calabi-Yau three- 
fold X with F2 base that admits a freely-acting involution rx satisfying the 
condition given in the previous section. The condition (75) implies that the 
projection TB of rx to the base has only a finite number of fixed points. To 
define TB, we recall that there is a single type of involution on QP1. If (u, v) 
are homogeneous coordinates on QP1, it can be written as (u,v) —> (—u^v). 
This clearly has two fixed points, namely the origin (0,1) and the point at 
infinity (1,0) in the iz-plane. To construct the involution r^, we combine an 
involution on the base S = QP1 with one on the fiber £ = QP1. We will not 
give details here, except to note that one finds that J7^ contains four fixed 
points, coming from the fixed points of the QP1 fibers above the fixed points 
of the involution on the base. We should also point out that, in general, it 
is not possible to find involutions with a finite number of fixed points for all 
Fr. 

To ensure that we can construct a freely-acting involution rx from T^, 

we further need to show (75) that the discriminant curve can be chosen so 
as not to pass through these fixed points. We recall that the discriminant 
curve is given by 

4(2a2 + 6)2(a2-46) = 0, (98) 

and that the parameters a and b are sections of Kg2 and K^ respectively, 
where KB is the canonical bundle of the base. In order to lift TB to an 
involution of X, we also require (74) that 

TB{a) =a, TB{b) = b. (99) 

This restricts the allowed sections a and b and, consequently, the form of Ai 
and A2. The question is then whether, within the class of allowed sections 
a and 6, there are examples where the corresponding discriminant curves 
avoid the fixed points. One can easily show that such sections a and b do 
exist. 

To satisfy the conditions (78) on the invariance of V under the involution, 
we need to find the classes 77 in F2 that are invariant under TB. We find that 
the involution preserves both <S and £ separately, so that 

TB(S)=S,        TB{£)=£. (100) 
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Since any class rj is a linear combination of S and £, we see that, in fact, an 
arbitrary 77 satisfies T^T?) = 77. 

We can now search for 7?, A and K; satisfying the three family (82), 
effectiveness (90) and stability (91) conditions given above. We find that 
there are two classes of solutions 

solution 1:    r] = US + 22£,     A = §, 

■     Y^Ki=7l'Ci= 44,     Y^ Ki ^ 60> 

solution 2:    7] = 245 + 305,     A = -|, 

^ Kf = 77. ci = 60,    ^ «? < 76. 

(101) 

First note that the coefficients A satisfy the bundle constraint (76). Fur- 
thermore, one can find many examples of Ki with i = 1,..., 477 • ci, satisfying 
the bundle constraint (76), the given conditions on J2i ftf and the invariance 
condition ^ Ki = 77 • ci. 

Using n = 5, (96), (101) and the intersection relations (95), one can 
easily verify that both solutions satisfy the three-family condition (82). 

Next, from (86), (87), (88) and (89), as well as n = 5, (96), (97), (101) 
and the intersection relations (95), we can calculate the five-brane curves W 
associated with each of the solutions. We find that 

solution 1:    [W] = a* (105 + 265) + (112 - k) (F - N) + (60 - k) N, 

solution 2:    [W] = a* (185) + (132 - k) (F - N) + (76 - k) N, 
(102) 

where 

k = Y,Ki (103) 
i 

It follows that the base components for [W] are given by 

solution 1:    u = 105 + 265, 

solution 2:    cu = 185, 
(104) 

which are both effective. Furthermore, we note that for each five-brane curve 
the c and d coefficients of classes F — N and N respectively are non-negative 
integers (given the constraints (101) on k). Hence, effectiveness condition 
(90) is satisfied. 
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Finally, note that the stability condition requires 77 > 5ci. In both of the 
above solutions 

77>10S + 20£ = 5ci, (105) 

so that the condition is satisfied. 

We conclude that, over a Hirzebruch base B = F2, one can construct 
torus-fibered Calabi-Yau threefolds, Z, without section and with non-trivial 
first homotopy group TT^Z) = Z2. Assuming a trivial gauge vacuum on 
the hidden brane, we have shown that we expect these threefolds to admit 
two classes of semi-stable holomorphic vector bundles Vz, (101), associated 
with an A/* = 1 supersymmetric theory. These vacua have three families of 
chiral quarks and leptons and GUT group H = SU(S) on the observable 
brane-world. Since 7ri(Z) = Z2, Wilson lines break this GUT group 

SU(5) -+ SU{3)c x SU(2)L x [/(l)y, (106) 

to the standard model gauge group. Anomaly cancellation and supersym- 
metry require the existence of non-perturbative five-branes in the extra di- 
mension of the bulk space. These five-branes are wrapped on holomorphic 
curves in Z whose homology classes (102) are exactly calculable. 

5.2    Example 2: B = dPs 

Let us now choose the base of the Calabi-Yau threefold X to be 

B = dPs. (107) 

Recall that dP^ can be thought of as the projective plane QP2 blown-up at 
three points. In terms of the homogeneous coordinates (u,v,w) on QP2, the 
points we blow up may be taken to be 

(1,0,0),    (0,1,0),    (0,0,1). (108) 

The blownup surface B can be embedded in QP6 with homogeneous coordi- 
nates (20, • • •, ZQ) given by 

(zo,...,^) = (uvw,u2v,w2v,v2w,u2w,w2u,v2u). (109) 

The blown-up points (108) then correspond to projective lines in QP6. For 
instance, considering the limit as v and w go to zero, we see that the 
point (u,v,w) — (1,0,0) maps to the whole QP1 given by (ZO,...,ZG) = 
(0,^,0,0,^,0,0) inQP6. 
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The properties of del Pezzo surfaces were reviewed in the Appendix 
of [20]. For (iPs, one finds a basis for H2(dPs^Z) composed entirely of effec- 
tive classes given by / (the pullback of the hyperplane class of QP2) and three 
exceptional divisors Ei for i — 1,2,3 corresponding to the three blown-up 
points. Their intersection numbers are 

1-1 = 1,    l-Ei = 0,    Ei'Ej = -8ij. (HO) 

In addition, there are three other dependent exceptional classes 

I—E2 — E3,    I — E3—E1,    I — Ei — E2, (HI) 

corresponding to the lines in QP2 passing through pairs of the blown-up 
points. These lines are given by 

u = 0,    v = 0,    w = 0 (112) 

respectively. The first and second Chern classes for dPs are 

ci(dP3) = 3l-El-E2- £3, (113) 

and 

c2(dPs) = 6. (114) 

First, we must again show that the Calabi-Yau threefold X based on 
B = dPs admits a freely-acting involution. The requirement (75) implies 
that the projection TB of rx to the base must have a finite number of fixed 
points. We start, therefore, by showing that such a TB exists. In terms of 
the QP2 coordinates (u,v,w) define TB by 

TB : (u,v,w) —>» (u~1,v~1,w~1). (115) 

In the ambiant space QP6 space this is simply the map exchanging zi and 
Z2, Z3 and £4, and Z5 and ZQ. Thus it is clearly an involution of the dPs. 
Furthermore, it follows from (115) that TB has four isolated fixed points 

^TS = {(1,±1,±1)}. (116) 

To ensure that we can construct a freely-acting involution rx from TB, we 
need to show that the discriminant curve can be chosen so as not to intersect 
these fixed points. We recall that the two components of the discriminant 
curve are given by 

Ai = a2 - 46 = 0,        A2 = 4 (2a2 +■&) = 0, (117) 
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and that the parameters a and b are sections of Kg2 and Kg4 respectively, 
where Kg is the canonical bundle of the base. The first Chern class of the 
anti-canonical bundle Kg1 is ci(B). Thus from (113), we see that as classes 

[a] - 2 (3/ - El - E2 - E3),        [6] = 4 (3/ - E1 - E2 - E3).        (118) 

In terms of the blown-up QP2, a and b each correspond to curves. The 
function a is a degree six homogeneous polynomial in (u,v,w), describing a 
curve which passes twice through each of the blown-up points. The function 
b is a degree twelve polynomial and describes a curve passing four times 
through each blow-up. These conditions restrict the form of the polynomials. 
For instance, all the terms involving fifth- or sixth-order powers of w, v or 
w are excluded in a. In addition, in order to lift TB to an involution of X, 
recall that we required 

TB(a)=a,        rB(b) = b. (119) 

This means that the polynomials are further restricted to be homogeneous 
functions of (u,v,w) which are invariant under the involution (115). It is a 
simple process to identify all such polynomials. The discriminant curves are 
then given by the vanishing of the twelfth-order polynomials Ai and A2. The 
question is then whether, within the class of allowed a and b polynomials, 
there are examples where the corresponding discriminant curves avoid the 
fixed points. In fact, from the form of a and 6, one can show that there 
is enough freedom in choosing the polynomials, so that any generic choice 
leads to discriminant curves which do not intersect any of the fixed points. 

In order to have invariant bundles on X, by the condition (78), we need 
to find classes rj in dPs that satisfy TJ^T?) = 77. Using (108), (112) and the 
definition of T^, we find that 

T
B{EI) = I — E2 — E3, 

TB(E2) = I - E3 - Eu (120) 

TB(E3) = I - Ei - E2. 

Since the involution must preserve the intersection numbers and map effec- 
tive curves to effective curves, this implies that 

TB(1) = 21-E1-E2-E3. (121) 

Prom these expressions, we see that there are three independent curves: 

ai = I + Ei — E2 — E3j 

a2 = l-E1+E2-E3, (122) 

a3 = I — Ei — E2 + E3l 
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satisfying 

TB{a>i) = a>i (123) 

for i = 1,2,3, and one perpendicular class 

p = l-El-E2-E3: (124) 

satisfying 

TB(P) = -P. (125) 

The three classes ai for i — 1,2,3 generate all other TB invariant curves. 
Note that each class ai can be written as a sum of effective classes with non- 
negative integer coeflficients. For example, ai = Ei + (I — E2 — E^). Hence, 
each ai is an effective class. It follows that the condition ^(77) = 77 can be 
solved simply by demanding that rj be written in terms of invariant classes 
only. That is 

77 = miai + m2a2 + m^a^, (126) 

where the mi are constant coefficients. In addition, note that the first Chern 
class of dPz given in (1.13) can be written as 

ci = ai + a2 + as (127) 

and, hence, is invariant under rg, as it must be. 

We can now search for 77, A and KI satisfying the three family (82), 
effectiveness (90) and stability (91) conditions given above. We find that 
there are three classes of solutions 

solution 3:    77 = 17/ - 3J5i - 7^2 - 7#3,     A = ±, 

^jT Ki = r) - ci = 34,     53 «? < 64, 
i i 

solution 4:    77 = 18/ - 2Ei - 8E2 - 8E3,     A = i, 

Y,Ki =VCi = 36,'   J]^2-66' 

solution 5:    77 = 21/ + Ei - IIE2 - H^rs,    A = -i, 

2''«i = »7-ci=42)    ^K?<72, 

First note that the coefficients A satisfy the bundle constraint (76). Fur- 
thermore, one can find many examples of Kj with i = 1,..., At] ■ ci, satisfying 

(128) 
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the bundle constraint (76), the given conditions on ^ nf and the invariance 
condition ^ fy = rj • ci 

Second, we see that each curve rj can be expressed as 

solution 3:    77 = 7a 1 + 5a2 +-5a3, 

solution 4:    77 = 8ai + 5a2 + 5a3, (129) 

solution 5:    rj = llai + 5a2 + 5a3, 

and, therefore, each rj is invariant under TB- Using n = 5, (113), (128) and 
the intersection relations (110), one can easily verify that all three solutions 
satisfy the three-family condition (82). Now, from (86), (87), (88) and (89), 
as well as n = 5, (113), (114), (128) and the intersection relations (110), 
we can calculate the five-brane curves W associated with each of the three 
solutions. We find that 

solution 3 

solution 4 

solution 5 

[W] = a* (5ai + 7a2 + 7a3) + (102 - k) (F - N) + (64 - k) TV, 

[W] - a* (4ai + 7a2 + 7a3) + (102 - k) (F - N) + (66 - k) N, 

[W] = a* (ai + 7a2 + 7a3) + (102 - k) {F - N) + (72 - k) N, 
(130) 

where, as before, 

i 

It follows that the base components for [W] are given by 

solution 3:    u = 5ai + 7a2 + 7a3, 

solution 4:    u = 4ai + 7a2 + 7a3, (132) 

solutionS:    u = ai + 7a2 + 7a3. 

Since the a* are effective, so is each of these u classes. Furthermore, we 
note, given the conditions on ft, that for each five-brane curve the c and 
d coefficients of the classes F — N and iV respectively are all non-negative 
integers. Hence, the effectiveness condition (90) is satisfied. 

Finally, note that the stability condition requires 77 > 5ci. In all of the 
above solutions 

77 > 5ai + 5a2 + 603 = C'I (133) 

so the condition is satisfied. 

We conclude that, over a del Pezzo base B = dP^, one can also construct 
torus-fibered Calabi-Yau threefolds, Z, without section and with non-trivial 
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first homotopy group 7ri(Z) = Z2. Assuming a trivial gauge vacuum on the 
hidden brane, we have shown that we expect these threefolds to admit three 
families (39) of semi-stable holomorphic vector bundles V^, associated with 
an J\f = 1 supersymmetric theory with three families of chiral quarks and 
leptons and GUT group H = 577(5) on the observable brane-world. Since 
7ri(Z) = Z2, Wilson lines break this GUT group 

5*7(5) -> SU(3)c x SU(2)L x U(1)Y, (134) 

to the standard model gauge group. Anomaly cancellation and supersym- 
metry require the existence of non-perturbative five-branes in the extra di- 
mension of the bulk space. These five-branes are wrapped on holomorphic 
curves in Z whose homology classes, (130), are exactly calculable. 

6     Conclusions 

In view of the technical nature of this paper, it is useful to conclude by 
focusing on the structure and physical properties of these "standard model" 
supersymmetric heterotic M-theory vacua. 

The heterotic M-theory vacua discussed in this paper are constructed by 
compactifying Hofava-Witten theory on a smooth Calabi-Yau threefold, Z, 
one of a specific class with the property that 

TTI (Z) = Z2. (135) 

The threefolds discussed here were constructed from elliptically fibered Calabi- 
Yau threefolds, X, with two sections, by modding out a free involution that 
exchanges the two sections. The resulting Calabi-Yau spaces, Z, are torus- 
fibered but not elliptically fibered since they admit no global sections. For 
instance in section 5, example 2 we constructed Z from an elliptically fibered 
threefold X with base B = dPz, by modding out the involution which, re- 
stricted to the base, acts as 

(u,v,w) —>> (IA
-1

,^
-1

,^"
1
), (136) 

where w, v and w are complex coordinates on the dP^. 

The vacua of the effective low-energy theory consist of a large five- 
dimensional bulk space bounded on each end of the fifth dimension by a 
BPS domain wall with Af = 1 supersymmetry on its world volume. A priori, 
these walls carry the E$ gauge supermultiplets of the heterotic M-theory. 
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We call one of the walls the "observable" sector and the other the "hidden" 
sector of the theory. 

First consider the observable wall. In this paper, we constructed a class 
of smooth semi-stable holomorphic vector bundles over X with the structure 
group 

G = SU{5). (137) 

whose Chern classes are invariant under the involution rx- The involution 
acts on this class of bundles; the invariant ones are precisely the bundles 
which come from Z. Their detailed construction is not required here since it 
is only the Chern classes that enter the physical discussion. The description 
of the invariant bundles will be given in a forthcoming paper [26]. 

Each such bundle corresponds to some SU(5) instanton configuration 
on Z, which preserves Af = 1 supersymmetry. However, it spontaneously 
breaks E$ to the unification group H = 5C/(5), which is the commutant of 
G — SU(b) in .Es. Thus the gauge group on the observable wall is only 
H = SU(5). 

These bundles were constructed by first forming semi-stable holomor- 
phic SU(5) bundles over X via the spectral cover construction, and then 
restricting to bundles that were invariant under the involution. Such bun- 
dles "descend" to Z. For instance, in example 3 in section 5, the spectral 
data, specifying the bundle over X, were the class of a curve 

r) = 17l- 3£i - 7E2 - 7E3 (138) 

in B = dPs, together with the coefficients 

X=l (139) 

and Ki satisfying 

^Ki-34,        £>f<64. (140) 
i i 

This data specifies a class of G = SU(5) semi-stable holomorphic bundle 
over X whose Chern classes are invariant under the involution rx- The 
involution rx therefore acts on the moduli space of these bundles. The fixed 
points of this action correspond to bundles which descend to a G — SU(5) 
semi-stable holomorphic bundle on Z. 

In addition, with the given choices of A and 77, the associated vector 
bundle Vz over Z has third Chern class cs{Vz) = 6. This implies that the 
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number of generations of quarks and leptons in the observable sector is 

7Vgen = 3. (141) 

Finally, since 7ri(Z) = Z2, the G = 5(7(5) gauge bundles can be "en- 
larged" by Z2 Wilson lines. These spontaneously break the unification group 
SU(5) as 

SU(5) -4 SU(3)c x SU(2)L x U{1)Y (142) 

on the observable domain wall. 

Now consider the hidden wall. In this paper, for simplicity, we assume 
that we take a trivial vector bundle in this sector. Hence, Es is the unbroken 
gauge group on the hidden sector domain wall. 

The vector bundles of the observable and hidden sectors are linked to the 
structure of Z by the requirement of anomaly cancellation. Specifically, this 
relates the second Chern classes of the vector bundles to the second Chern 
class of the tangent bundle of Z. We find that, for three families in the 
observable sector, anomaly cancellation implies the existence of five-branes 
in the bulk space wrapped around a holomorphic curve in Z. The homology 
class of this curve, ..W, can be explicitly computed given Z and the two vector 
bundles. For instance, for example 2 of section 5, we showed that 

[W] = a, (191 - 9E1 - 5E2 - 5E3) + (102 - k) (F - N) + (64 - k) N 
(143) 

where k = ^ K?. The generic structure of these "standard" model heterotic 
M-theory vacua is shown pictorially in Figure 1. 
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