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Abstract 

We show how topological open string theory amplitudes can be com- 
puted by using relative stable morphisms in the algebraic category. We 
achieve our goal by explicitly working through an example which has 
been previously considered by Ooguri and Vafa from the point of view 
of physics. By using the method of virtual localization, we successfully 
reproduce their results for multiple covers of a holomorphic disc, whose 
boundary lies in a Lagrangian submanifold of a Calabi-Yau 3-fold, by 
Riemann surfaces with arbitrary genera and number of boundary com- 
ponents. In particular we show that, in the case we consider, there are 
no open string instantons with more than one boundary component 
ending on the Lagrangian submanifold. 
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0    Introduction 

The astonishing link between intersection theories on moduli spaces and 
topological closed string theories has by now taken a well-established form, 
a progress for which E.Witten first plowed the ground in his seminal papers 
[Wl]. As a consequence, there now exist rigorous mathematical theories of 
Gromov-Witten invariants, which naturally arise in the aforementioned link. 
In the symplectic category, Gromov-Witten invariants were first constructed 
for semi-positive symplectic manifolds by Y.Ruan and G.Tian [RT]. To de- 
fine the invariants in the algebraic category, J.Li and G.Tian constructed 
the virtual fundamental class of the moduli space of stable maps by en- 
dowing the moduli space with an extra structure called a perfect tangent- 
obstruction complex [LT2].1 Furthermore, Gromov-Witten theory was later 
extended to general symplectic manifolds by Fukaya and Ono[FO], and by 
J.Li and G.TianfLTl]. In contrast to such an impressive list of advances just 
described, no clear link currently exists between topological open string the- 
ories and intersection theories on moduli spaces. One of the most formidable 
obstacles that stand in the way to progress is that it is not yet known how to 
construct well-defined moduli spaces of maps between manifolds with bound- 
aries. The main goal of this paper is to contribute to narrowing the existing 
gap between topological open string theory and Gromov-Witten theory. In 
so doing we hope that our work will serve as a stepping-stone that will take 
us a bit closer to answering how relative stable morphisms can be used to 
study topological open string theory. 

In order to demonstrate the proposed link between topological open 
string theory and Gromov-Witten theory, we will focus on an explicit ex- 
ample throughout the paper. The same example was also considered by 
string theorists H.Ooguri and C.Vafa in [OV], where they used results from 
Chern-Simons theory and M-theory to give two independent derivations of 
open string instanton amplitudes. A more detailed description of the prob- 
lem will be presented later in the paper. We just mention here that, by using 
our mathematical approach, we have successfully reproduced their answers 
for multiple covers of a holomorphic disc by Riemann surfaces of arbitrary 
genera and number of holes. In fact we show that there are no open string 
instantons with more than one hole, a result which was anticipated in [OV] 
from their physical arguments. 

The invariants we compute are a generalization of absolute Gromov- 
Witten invariants that should be more familiar to string theorists. Our case 
involves relative stable maps which intersect a specified complex-codimension- 

1Alternative constructions were also made by Y.Ruan[Ru] and by B.Siebert[Si]. 
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two submanifold of the target space in a finite set of points with multiplicity. 
It will become clear later in the paper that the theory of relative stable maps 
is tailor-made for studying topological open string theory. The construc- 
tion of relative stable maps was first developed in the symplectic category 
[LR, IP1, IP2]. Recently in [Lil, Li2] the first author of the present pa- 
per has given an algebro-geometric definition of the moduli space of relative 
stable morphisms and has constructed relative Gromov-Witten invariants in 
the algebraic category. The foundation of our work will be based on those 
papers. 

The organization of this paper is as follows: In §1 we give a brief de- 
scription of the multiple cover problem that arose in [OV] and state what 
we wish to reproduce using relative stable morphisms. In §2 we define the 
moduli space of relative stable morphisms and describe how multiple covers 
of a holomorphic disc can be viewed as a problem regarding relative stable 
morphisms. We investigate the obstruction theory of the moduli space in §3. 
In §4 we study the localization of the virtual fundamental class and compute 
the equivariant Euler class of the virtual normal bundle to the fixed locus. In 
§5 we evaluate the relevant invariants for the case where the source Riemann 
surface has only one boundary component. The cases with more than one 
boundary component are subsequently discussed in §6. We conclude in §7 
with some comments. 

(Note: While this manuscript was in its final stage of preparation, Katz 
and Liu announced their results [KL] which deal with the same subject 
matter as our paper.) 

1    A brief description of the problem 

The notion of duality has been one of the most important common threads 
that run through modern physics. A duality draws intricate connections be- 
tween two seemingly unrelated theories and often allows one to learn about 
one theory from studying the other. A very intriguing duality correspon- 
dence has been proposed in [GV], where the authors provide several sup- 
porting arguments for a duality between the large-N expansion of SU(N) 
Chern-Simons theory on S3 and a topological closed string theory on the 
total space of the vector bundle Opi(—1) © Opi(—1) over P1.2 The equiv- 
alence was established in [GV] at the level of partition functions. We know 
from Witten's work in [W2], however, that there are Wilson loop observables 
in Chern-Simons theory which correspond to knot invariants. The question 

2See [GV] and references therein for a more precise account of the proposal. 
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then is, "What do those invariants that arise in Chern-Simons theory corre- 
spond to on the topological string theory side?" 

The first explicit answer to the above question was given by Ooguri and 
Vafa in [OV]. In the case of a simple knot on S'3, by following through 
the proposed duality in close detail, they showed that the corresponding 
quantities on the topological string theory side are open string instanton 
amplitudes. More precisely, in the particular example they consider, the 
open string instantons map to either the upper or the lower hemisphere of 
the base P1.3 

According to [OV], the generating function for topological open string 
amplitudes is 

oo    oo        oo h 

*u^) = £E E ^"2ffc^Kii,..A(*)ntrrfc»     (L1) 
g=z0 h=0di,...jdh i=l 

where t is the Kahler modulus of P1; V is a path-ordered exponential of 
the gauge connection along the equator and trVd* arises from the ith bound- 
ary component which winds around the equator |<^|-times with orientation, 
which determines the sign of df, A is the string coupling constant; and 
Fg;di,...,dh is ^e topological open string amplitude on a genus-g Riemann 
surface with h boundary components. Furthermore, by utilizing the afore- 
mentioned duality with Chern-Simons theory, Ooguri and Vafa concluded 
that 

F(tV)=iY
tTVd + tvV~de-W (12) hi2d sinW2)      ' { ' 

which they confirmed by using an alternative approach in the M-theory limit 
of type IIA string theory.4 By comparing (1.1) and (1.2), one immediately 
sees that there are no open string instantons with more than one boundary 
component ending on the equator; that is, i^;dl3...3^ — 0 for h > 1. To 
extract the topological open string amplitude on a genus-g Riemann surface 

3We clarify that the geometric set up in the present case is no longer that described 
above. There is a unique Lagrangian 3-cycle CK in T*53 which intersects 53 along a given 
knot K in S3. Associated to such a 3-cycle CK in T*53 there is a Lagrangian 3-cycle CK in 
the local Calabi-Yau three-fold X of the topological string theory side. For the simple knot 
S considered by Ooguri and Vafa, the latter 3-cycle Cs intersects the base P1 of X along 
its equator. It is the presence of this 3-cycle that allows for the existence of holomorphic 
maps from Riemann surfaces with boundaries to either the upper or the lower hemisphere. 
See [OV] for a more detailed discussion. 

4We refer the reader to the original reference [OV] for further description of this ap- 
proach. 
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with one boundary component (h = 1), we need to expand (1.2) in powers 
of A. After some algebraic manipulation, we see that 

F(t,V) 
d=l 

x e-dt/2 (tiVd + tiV-d) 

where B2g are the Bernoulli numbers defined by 

oo 

71=0 
'nf 

Hence, topological open string amplitudes, which correspond to multiple 
covers of either the upper or the lower hemisphere inside the local Calabi- 
Yau three-fold described above, are 

r d-\ 
-iFg-dl,...4h(0) = < d29-2 f229-1 - 1 l*2gl 

I o, 
2*9-i    {2g)l 

g = 0,h = l,\di\ =d>0, 

, ■ g>0,h = l,\di\ =d>0, 

otherwise. 

(1.3) 

In the remainder of this paper, we will work towards reproducing these 
results using relative stable morphisms. 

Relative stable maps and Lagrangian submani- 
folds 

In this section, we will formulate the problem in terms of the moduli space 
of stable holomorphic maps. Throughout this paper, we fix two points qo 
and qoo E P1, and choose a homogeneous coordinate [WQ^WI] of P1 so that 
qo (resp. #00) is the point [0,1] (resp. [1,0]). We will use w to denote the 
standard coordinate of C = P1 — qoo SO that w is related to the homogeneous 
coordinate [wch^i] via w = WQ/WI. Hence go and Qoo become 0 and 00, 
respectively. We let W be the total space of the vector bundle 1c © lc over 
C = P1 — ^OQ. (In this paper, we will use lx to denote the trivial holomorphic 
line bundle over X.) For any r G M+ we denote by Dr C C the closed disk 
\w\ < rd and denote the boundary of Dr by dDr. Furthermore, we let 
Wr = n~1(Dr)^ where TT : W -> C is the projection. In the present section, 
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we will consider the space of holomorphic maps from Riemann surfaces to 
Wr whose boundary lies in a Lagrangian submanifold in dWr. 

We now describe this Lagrangian submanifold, following Ooguri and Vafa 
[OV]. We let ei and 62 be the constant 1 section of the first and the second 
factor of lc © 1c- Then any vector f G 1c © lc over 5 G C is expressed 
uniquely as £ = (5, uei + ^2). In case w is the coordinate of s G C, we say 
(u>, u, v) is the coordinate of £ G W. The Lagrangian submanifold introduced 
by Ooguri and Vafa in [OV] is5 

Br = {(WJUJV) I |iy| = rd, IA = iD'y}. (2.4) 

As a convention in this paper, we will use t = el9 to denote a general 
element in the group Sl. We fix an S^-action on C C P1 via 

[tMlMto,!]. (2-5) 

Then w1 = t~lw, where w1 is the push-forward of the function w under the 
group action, which is the pull-back of w under the inverse of (2.5). We next 
choose an 51-linearization of W ->■ C so that it leaves Br invariant. We 
choose 

etl = tei and 62 = 62. 

Then (s:uei + ve2)t = (5*,we* + vel), or equivalently 

(w^u^vY = (t~lw,tu,v). 

Hence (w — wv)1 — tu — twv and thus Br is S'1-invariant. 

We now define the moduli space M]^(Wr,.Br) of relative holomorphic 
maps from genus-g Riemann surfaces with boundaries to (Wr,jBr), with 
prescribed winding numbers along the boundaries of the domain Riemann 
surfaces. We let g > 0 be an integer, and /i' = (di, • • • , dn) an n-tuple of 
positive integers. In this paper, we will call connected, holomorphic nodal 
curves with ordered smooth boundaries prestable nodal holomorphic curves 
with ordered boundaries. When S is such a curve we will use S^S to denote 
the fc-th boundary component of S. Naturally, we give each boundary c^S its 
induced orientation. Now let S be a holomorphic nodal curve with n ordered 
boundary components and let /: (S, OH) -» (W, Br) be a holomorphic map. 

5The authors of [OV] considered the Lagrangian submanifold u- = wv-y where u- and 
v- are given as sections of Opi(—1) using a frame over P1 — qo. The transition between 
u and u- is u- = wu. Under this condition, our equation is equivalent to that of Ooguri 
and Vafa. 
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We say / has winding number dk along the k-th boundary component if the 
degree of 

n o f\dk<z : dk?!-> dDr 

has degree dk- We say / is a relative holomorphic map (with /i = (di, • • • , dn) 
implicitly understood) if, for all fc, it has winding number dk along its A;-th 
boundary component. A relative holomorphic map is said to be stable if 
there is no irreducible component of S that is isomorphic to P1 that con- 
tains only one nodal point and that is mapped to a single point in Wr. As 
usual, two such relative stable maps (/i,Ei) and (/2,S2) are equivalent if 
there is an isomorphism p: Si -> X^ that preserves the order of the boundary 
components so that fi = po f2. We define M^VF, Br) to be the moduli 
space of all relative stable maps from genus-g curves to (Wr^ Br), modulo 
equivalence. Similarly, we define M^J^ZV) to be the moduli space of all rela- 
tive stable maps from genus-g curves with ordered boundaries to (Z)r, 9Dr), 
modulo equivalence relation. Since (Dr,dDr) C (Wr,Br), 'M^(£)r) is a 

subspace of M^(Wr, Br). 

We now introduce another moduli space, the moduli space of relative 
stable morphisms of genus-g to (P1, (foo), with prescribed ramification orders. 
Let g and p be as above. An ordinary relative stable morphism of genus-g 
and of ramification order p consists of a connected n-pointed nodal algebraic 
curve (C, #1, • • • , xn) and a morphism /: C —> P1, so that 

/"Htfoo) ■ = dixi + "• + dnxn 

as a divisor. We say (/, C) (with p understood implicitly) is a relative stable 
morphism if / is stable as a morphism from C to P1. We let M^(P1)o be 
the moduli space of ordinary relative stable morphisms, with ramification 
order p, from genus-g algebraic curves to P1. It is a Deligne-Mumford 
stack. In [Lil], the first author of the present paper has constructed the 
moduli space M^J^P1) of relative stable morphisms, with ramification order 
p, from genus-g algebraic curves to P1. The space M^J^P1) is a proper 
Deligne-Mumford stack. It admits a natural perfect obstruction theory and 
hence admits a virtual moduli cycle. The moduli stack M^J^P1) contains 
M^(P1)o as its open substack. The new ingredient of this moduli space 
is that a relative stable morphism / 6 M^P1) consists of an n-pointed 
genus-g algebraic curve (C, xi, • • • ,xn) and a morphism / : C -> P^ra], so 
that 

/"Htfoo) = dixi + • • • + dnxn. 

Here P^m] is the nodal curve that has m ordered irreducible components, 
each isomorphic to P1, so that the j-th component intersects with the (j + 1)- 
th component of P^ra] at exactly one point. P-^ra] also contains a distin- 
guished divisor cfoo in the first component of P^ra], and it comes with a 
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projection yKP^ra] -» P1 that maps q^ G P^m] to ^oo G P1. Moreover, 
the restriction of cp to the last component is an isomorphism to P1, and ip 
contracts all other components of P^ra]. For any morphism f:C -> P1^] 
we define Aut(/)rel to be the set of pairs (a, 6), where a: C -> C are automor- 
phisms of (C, xi, • • • , xn) and frrP^ra] -> P1^] are automorphisms6 so that 
f oa — bo f. We say / is stable if Aut(/)rel is finite. Prom this description, 
we see that M^}4(P

1)o C Mj^P1) is the open subset consisting of relative 
stable morphisms / whose codomain is P1[l] = P1. 

We now investigate the moduli space NLXg^(Wr,Br) of relative stable 
holomorphic maps. Let (/,S) G M^Wr,^) be any relative stable map. 
Composed with TT: Wr -* Dr, we obtain a new map 

/ = 7ro/:2]->A.. 

Since fibers of Wr -> Dr are vector spaces, (/, S) is also relative stable and 
hence is in M]^(2?r). This defines a map 

M^(Wr,5r)^M^(Dr). 

We now show that this is an isomorphism. Given / G M^(Wr,Br) and its 

induced / G MJ^^V), the original / is given by a holomorphic section 

serfE.fLiefLa). (2.6) 

We now show that s = 0. We let S2 be the nodal curve E with the conju- 
gate holomorphic structure. Namely, £2 is diffeomorphic to S, its conformal 
structure on each irreducible components is identical to that of E, and its 
orientation is the opposite of that of E. We let £1 be the identical copy of 
E. We then let E be the nodal holomorphic curve derived by identifying the 
boundary of £1 with the boundary of £2 using the identity map between 
their boundaries. By the reflection principle, the complex structures of £1 
and £2 C E extend to a holomorphic structure on E. The new curve £ is 
a nodal curve without boundary. We next introduce a line bundle L on E. 
We pick a sufficiently small open neighborhood Vi C £ of £$ C E. We let 
LWi — Ovi and let Cz be the section 1 in CV-. The identification of L|vi with 
L\y2 over Vi fl V2 is given by 

Now let s in (2.6) be given by s(z) = u(z)ei + v(z)e2. Then u(z)(i is 
naturally a holomorphic section of L]^ and v(z)(2 also is a holomorphic 

6 By this we mean that b is an isomorphism of P^m] that preserves goo G P^m] and 
the projection ^iP^ra] —> P1. 
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section of L|s2. The condition that f(z) G Br for z G 9S implies that 
14(2?) = /(^)v(^) ^ G 5S. Since |/(^)| = rd, we have 

ti(*Ki = 7(^)^)/(^)^"2dC2 - ^)C2. 

This implies that u Ci and v C2 patch together to form a continuous section 
of L. Since u(i and ^(2 are holomorphic over Si and £2, respectively, 5 is 
holomorphic. Finally, it is straightforward to check that deg L — — ^ dk < 
0. Hence 5 = 0, which shows that / = /. This proves that MT

g^(Wr,Br) = 
M^JDr) as sets. However, since the above construction works for analytic 
families of relative stable maps in M^(Wr,-Br), this argument also shows 
that the two moduli spaces M^Wr,^) and M^(I}r) are isomorphic as 
analytic schemes (stacks). 

We now show that M^(.Dr) is naturally an open subset of M^(P1)o. 
Let (/, E) be a relative holomorphic map in M^(Dr). We let D^ be {(r — 
e)d < \w\ < rd}, which is a neighborhood of dDr C Dr. Since /(S) C 
Dr, /(9S) C dDr and dk > 0, the derivative of / along <9E is nowhere 
vanishing. Note that / is analytic up to the boundary by the reflection 
principle. Hence there is a positive e > 0 so that f'~l{D^) —>> D^ is a 
covering space. Furthermore, if we let Uk be the connected component of 
f~l(De

r) containing c^E, then Uk -> De
r is a dfc-fold covering. Hence, there 

is a biholomorphic map 

Pk : {(r - e)"1 > \zk\ > r"1} —> Uk 

so that fopk is given by w = z^dk. We then attach the disk {j^l < (r — e)-1} 
to E using the isomorphism p^. We let C be the complete nodal curve 
resulting from attaching n disks to the n holes, following the procedure 
described. Then the map /: E —>► Dr extends to a holomorphic map C -> P1, 
which we denote by /, so that / restricting to the disk {\zk\ < (r — e)-1} is 
given by w — z^dk. Thus (/, C) is a relative stable morphism in Mj^P1). 
It is straightforward to check that any two such extensions (to (/, C)) are 
equivalent. This way we obtain a map 

M*(Dr) -> MJKP1). (2.7) 

This map is obviously injective and the image is an open subset in MJ^P1). 
On the other hand, this construction works for any analytic family of relative 
stable maps in M^(Dr). This shows that (2.7) is an open embedding. In 
the following, we will view M^(.Dr) as an open subset of M^(P1). It is 
straightforward to check that, for r > r', MT

g
e^(Dr) C MJJ^P1) is contained 

in MJg^Drt) C MJ^P1). When we take the union of all these open subsets, 
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we obtain 

r>0 

3    Obstruction theory of M^M^, Br) 

We now investigate the obstruction theory of M^(Wr). First, since 
M^(Wr) is identical to M^f^Dr) as analytic schemes (stacks), the space 
of the first order deformations of / E M^(Wr,5r) is naturally isomor- 
phic to the space of the first order deformations of / as an elements in 
M^(I)r). As to the obstruction, since there are no first order deformations 

of / E MT
g
e^(Wr) along the fiber direction of Wr -> Dr, the obstruction 

classes to extending families in Mgf^Wr) are exactly the obstruction classes 
to extending them as families in M^(Dr). Furthermore, the obstruction 
spaces (sheaves) to extending families in M^(Wr) will then be the direct 
sum of the obstruction spaces (sheaves) to extending them in M^(J5r) 
with the obstruction spaces (sheaves) to deforming them along the fiber di- 
rections of Wr. Let V be the obstruction bundle to extending families along 
the fiber directions of Wr. According to the theory of virtual moduli cycles 
[LT1, LT2], the virtual moduli cycle of M^Wr) is the top Chern class of 
the obstruction bundle V paired with the virtual moduli cycle of M^(Dr). 

We now derive this obstruction bundle V. Let (/r,Sr) £ M^(Wr) be 
any relative map. We let (/, C) be the canonical extension of (/r,Er) to 
C -> P1 constructed before. For any r' > r we let Sr/ = G fl f~l(Dri). 
Then /r/ - /|Er/ : Sr/ -> Drl is an element in M]^(I>r#) = M^(Wr/). 
In the following we will identify the obstruction space V(/r) to deforming 
fr along the fiber directions of Wr. As expected, the space V{fr) will be 
canonically isomorphic to V{fri). 

We now derive the space V(fr). We first consider the case where / = 1 
and C is smooth. We pick a sufficiently small e > 0 so that Ur^ = f~l(D^) C 
Sr is isomorphic to {r-1 < \z\ < r"1 + €} and that f\urA :Urii -> C is defined 
by w = z~d. Now we let Urfi = Sr — 9Er. Then 17r>o and Ur^ are an open 
covering of Sr with 

U^ H C/rjo = {r-1 < \z\ < r"1 + e}. 

Our first task is to describe the deformations of fr\ur.Q.and fr\urA along 
the fiber directions of Wr. Clearly, deformations of /r|^rfo are given by the 
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space of sections 

so e r([Wr*£i ©/;L2), 

whereas deformations of fr\ur i are given by the sections 

Sler(i7r,i,/;i;i©/r*L2) 

subject to the boundary condition (2.4). We now investigate the boundary 
condition in detail. Using the distinguished basis ei and 62, we can express 
si as 

si = ui(z)f*ei + U2{z)f*e2, 

where ui and U2 are continuous functions over Urii that are holomorphic in 
the interior of Urji. We let ui(z) = Y2kL-ooakzk and u2(z) = YjkL-oobkZk 

be the Laurent series expansions of ui and U2. Then the boundary condition 
(2.4) (after substituting z by r~1e10) is equivalent to 

00 00 

J2 akr~keike = {r-le-ie)-d  J] bkr-
ke-ik\ 9 £ R 

k~—oo A;=—oo 

This forces 

a*r-* - &d_fcr
fc (3.8) 

for all k G Z. When r -> oo, the above relations reduce to 

dk = 0 for A; < 0;     6^ = 0 for & < d    and    ao = bj. (3.9) 

We let 

rfl/r,!,/^! e /r*L2))r = {^ € TiUr^fiLx 0 /^J | 5 satisfies (3.8) }, 

and 

r^i, /;Li 0 /r*i2)oo = {^ € TiUr^fiL! © /^a) I * satisfies (3.9) } 

According to the receipt of the obstruction theory, the obstruction space 
to deforming 

/r:(Er,3Er)—>(Wr) 

along the fiber directions of Wr is the cokernel of 

T(Ur,u ftLxQftLdr © r(i7rio, /;L1©/;L2) -»■ r(i7rioncrril> ^LI©/;^). 
(3.10) 
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Using the relation (3.8) it is easy to see that the above cokernel is canonically 
isomorphic to the cokernel of 

TiUr.uftLifBfiirioo eT(urfi,/r*Lie/r*L2) -► T(urt0nUr,i,/;LI©/;L2). 

Our next step is to re-express this cokernel in terms of some cohomology 
groups of line bundles over C. For this we need to extend the line bundles 
/*Li and /*Z/2 to line bundles over C. We extend both line bundle to trivial 
line bundles over C so that the constant sections e^ of Li pull back to a 
constant section of Oc- With this choice of extensions, T(Ur^, f*Li®f*L2)oo 
then is canonically isomorphic to 

Here Ui is the disk {\z\ < e} C C, x G Urii is the point ramified over q^ e P1 

and UQ — C — x. Hence the cokernel of (3.10) becomes the cokernel of 

r(Wi, Oc(-x) e Oc(-dx)) e r(Wo, Oc(-x) © Oc(-dx))  —> 
r(WonWi5Oc(-x)ec?c7(-^)), 

which by the definition of Cech cohomology is 

Hl(Oc(-x)) © H^Oci-dx)). (3.11) 

This shows that the obstruction space V(fr) of fr G M^(Wr) is the coho- 
mology group (3.11). 

The vector spaces V(fr) over fr G M^(Wr) form a vector bundle over 
MTel (Wr). Since ^(/r) is independent of r, this vector bundle extends 
to M^Jz(P

1)o via the same formula. We denote this vector bundle over 

M-^P1^ by V. 

Proposition 3.1. Let fr G M^(P1)o be any relative stable morphism with 
C the domain of f and let D^ = dixi + • • • + dhXh be the distinguished 
divisor in C.  We let D = xi H + x^ and let V be the vector bundle over 
M^(P1)o whose fibers over f are 

V(f)=Hl(Oc(-D)®Oc(-Dd)). 

Then the obstruction bundle to deforming maps in MJ^W^) along the fiber 
directions ofWr is given by the vector bundle V\Mrei (wr)- 

Proof. The proof is exactly the same as the case h = 1 and Er is smooth, 
except that, in deriving this cohomology space, we need to cover Er by more 
than two open subsets. □ 
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According to the general principle of virtual moduli cycles, the expected 
(virtual) number of maps in M^(Wr) should be 

f ctop(V). (3.12) 
^[Mrel^y^vir 

Here [Mjf^Wr)]™ is the virtual moduli cycle of MT
g
e^{Wr) and ctop is the 

top Chern class of a vector bundle. Clearly, this integration is not well 
defined mathematically because M^(Wr) is not compact. To make sense 
of this integral we need to compactify Mj^Wr) and then extend V. Since 
Mj^Wr) is naturally an open subset of M^P1), we can use Mj^P1) 
to compactify M^(P1)o. It was proved by the first author of the present 
paper that Mj^P1) is a proper Deligne-Mumford stack, and that it admits 
a perfect obstruction theory and thus comes with a natural choice of virtual 
moduli cycles, denoted by [M^P1)]™. 

Extending V to Mj^P1) needs more work. There is an obvious exten- 
sion as follows: Let / 6 M^j^P1) be any relative stable morphism with do- 
main C and distinguished divisor Dd as before. The vector bundle V whose 
fiber over / is the vector space V(/), is a vector bundle over M^J^P1). How- 
ever, there probably are other extensions, and at the moment we have no 
reason as to which one is a natural choice of extension. Note that different 
extensions may give different numerical answers to the integral. The choice 
of the right extension requires a detailed analysis of the obstruction theory 
of / near the boundary of Mj^Wr), and we will address this issue in our 
future research. 

4    Relative stable morphisms and localization 

In this and the next sections, we will use localization to evaluate the integral 
(3.12). In section 2, we defined an S^-action on Wr via the rule 

(w, u, v)1 = (t^w, tu, v),    t = e27rie    where 9 e R 

This action extends to the total space 1c © 1c via the same rule. As we 
mentioned before, this action preserves the boundary condition Br C Wr, 
and thus it is reasonable to expect that localization using this S^-action will 
give us the correct answer. 

Let M^(P1)o be the moduli space of ordinary relative stable morphisms 
defined before. The given 51-action on Wr induces a natural Srl-action 
on M^(P1)o.  In this section, we will study the fixed loci of the induced 
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S'1-action on M^(P1)o and its related information required in the later 
computation. Let / G M^(P1)o be any relative stable map. As before, we 
denote by (C, Ai) the pair of the domain of / and the distinguished divisor 
of/. Since / G Mj^P1)^ the codomain of / is P1 and /"^oo) = Dd. We 
recall that if we denote by gt the 51-action then 

9t[w,l] = [to, 1]    and   gt*(w) = g^-iw = t 1 ty. 

If we use t to denote the weight of the S^-action, then the function w has 
weight —t. The two fixed points of the 51-action on P1 are go = [0,1] G P1 

and g^ = [1,0] GP1. 

In the above notation, considering source Riemann surfaces with one hole 
corresponds to setting h = 1, and in the remainder of this section that is 
what we will do. For genus g — 0, there is only one fixed point in M]^(P1)o1 

given by the map 

/rP^P1,     /(M]) = [*rf,l]. 

For g > 0, the fixed loci are the image of the embedding 

Mfl)1 -► MSJfP1)? 

that sends any (C2,p) G M^i to the relative stable morphism 

f:(C,x)^P1 

defined as follows: First, the curve C is the gluing of P1 with C2 along 
the points 0 G P1 and p G C2; the restriction of / to C2 is the constant 
map sending C2 to go and the restriction of / to Ci = P1 is define by 
[z, 1] »-> [zd, 1]. Since w = zd and the weight of w is — t, the weight of the 
function ^ is — t/d. For simplicity, in the following we will simply denote 
f\Ci by /i- We will use p to denote the node in C. 

If we consider the full moduli space M^^P1), however, there are other 
fixed loci of the S^-action. As described in the previous section, a relative 
stable morphism / G Mj^P1) is a morphism / : C -» P^ra]. The S^-action 
extends to P^ra] an 51-action on M^^P1). We will denote the fixed loci 
of Mjg^P1) contained in M^^P^o by O/. The rest of the 51-fixed loci of 
M^JP

1
) will be denoted by '6//. 

Now let NQJ be the equivariant normal bundle to the fixed loci O/. In 
this part, we will compute the equivariant Euler class e(NQI) of 0j. Let 
(/, C, Da) G Oj be any point. The tangent space and the obstruction space 
to deforming / are given by the extension groups 

T* := Ext£([/*fipiaogcjoo) -»■ Slc(x)],Oc), 
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which fit into the long exact sequence 

0 —► Ext0
c(ttc(x),Oc) —»• Ext^rnpiilogq^Oc) —)• T1 —»■ 

—)■ Ext^ficCar),^) —> Ext^/^piOog^oo),^) —> T2 —»• 0. 

(4.13) 

Prom this information, we can obtain the equivariant Euler class e(NQI). 
Following the notation of Graber and PandharipandefGP], it is given by 

where Sf denotes the moving part of the ith term in the sequence (4.13). 

We now consider the case g > 0. In this case C = Ci U C2 with the node 
p. We let i\:C\ ->■ C and i2:C2 —^ C be inclusion maps. Then 

Then 

Ext^(fic(a;),Cc)    =   Homc(iufic1(a;),C,c)©Homc(i2*fic2(a;),C,c)© 

©Homc(Cp,e>c) 
=   HomCl (fiCl (x), Oc, (-p)) = H^ (TCl (-p - x)). 

It is easy to see that the second arrow in (4.13) is injective.  Thus we can 
take e(J5jl) = 1 while keeping track of the term in e(B1jlI) to be cancelled. 

As to the term e(J5^), we notice that 

Ext^rfipiaogt/oo), Oc) = H^TpiM . x)). 

Hex (/*^P1 (~~dx)) has dimension d + 1 and its basis is given by 

{— z— z2— zd-1— zd—\ 
\ dw'   5t(;'    dw'      '        9K; '    Siu J 

with weights 
f- d-1 ~ d-2~ 1 ~    ^ 
{*•—'■—'•••■•5i'0}' 

Thus, modulo the weight-zero piece which was cancelled by the second arrow 
in (4.13), we have 

ejB™) _t}d-jr_d\   d 

eW/i    d dd 
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We now look at the term e(B'jy). We have 

Ext^cO^Oc)   =   Ext0
c(Oc,nc(x)®ujc)v 

=   Ext^2(Oc2,a;®2(p))V 0 Ext^(C)c,Cp ® a;c)v 

=   Ext^(QG2(p),Oc2)eT^1)P®T(X2ir 

Since /(C2) = go, Ext^^CgCpXCV^) ^es m the fixed part of 

Exii^(Clc(x),Oc)sl. On the other hand, T%up has weight i/d while r^2)P 

has weight 0. Hence 

e{BTv) = -t-^ = —j-t, 

where ^ = ci(£J[?) and Cp —> M^^ is the cotangent line bundle whose fiber 
over (Ca.p) is T^. 

Finally, it is straightforward to compute that 

Ext^rfipiaoggoo),^) = Klc2{Oc2)®TqQP
l. 

Note that Hj72((9c2) gives the dual of the Hodge bundle E on M^i. Hence 
e(By) is the top Chern class of the bundle Ey ® TqQP

l . Since the repre- 
sentation of the 5'1-action induced on T^P1 has weight £, we obtain 

e(B?)    =   Ctop^^T^P1) 

=    (*» + ci(£v) t*-1 + c2(£;v) t3-2 + • • • + cg{Ey)) . 

Hence, we arrive at the following result: 

1 dd  (   i-dd 

eiNQ,) dd\ (r^;){i9+Cl{EV) ~t9~l+C2{EV) ~t9~2+■ ■ ■+C9{EV)) ■ 
(4.14) 

In the case g = 0, a similar computation yields 

1     V^*1-"- (4-15) eiNe,)     d   dl 

5    Localization of the integral 

We now evaluate the contribution of the integral 

ctop(^) (5-16) L [M"l(pl)0]vir 
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at the fixed loci 6/ using the 51-action given before. Here V is the obstruc- 
tion vector bundle defined in Proposition 3.1. Using the localization theorem 
[GP], we have 

/        -H  =fuS/%firl- ^[M^pi^vir J^      llAejUej    eUVeJ   J0 

where L is the inclusion 0/ -> MJ^P1) and Ae/ is a automorphism group 
defined as in [GP]. 

We notice that by Riemann-Roch theorem, 

dimcM^P1)    =   2rf+(l-^)(dimcP
1-3)-(deg(d)-£(d)) 

=    2g-2 + h + d 

In this section, we focus on source Riemann surfaces with one hole (h = 
1), in which case we need to find the equivariant Chern class ctop(V') where 
V is defined as follows. Let / G Oj be a point as before. Then the fiber of 
V over / is 

Hl(Oc(-x)) 0 H^Oci-dx)). 

For simplicity, we denote by Vi the subbundle of V whose fibers over / are 
the vector space ^(Oci—x)), and by V2 the subbundle of V whose fibers 
over / are iJ1(Oc(—dx)). The line bundle Oc in the first cohomology group 
has weight — i while the line bundle Oc in the second cohomology group has 
weight 0. We will work out the genus-zero and higher genus cases separately. 

We first look at the genus g = 0 case. In this case, H1(C, Oc(~x)) = 0 
and hence V = V2. To analyze the contribution from H1(C, Oc(—dx)), we 
use the exact sequence 

0 —> Oc{-dx) —> Oc —> Odx —► 0 

and the induced cohomology exact sequence 

0 -^ H0(Oc) —> R0(Odx) —> R'iOci-dx)) —> 0. 

A basis of H0(e>c) is just {1} and that of H0(Odx) is {l,^"1,^-2,... ,^-(d-1)}. 
Hence a basis of H1(Oc(—dx)) is 
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with weights 

(1-2- d-l-} 

Thus the top Chern class of the obstruction bundle V is 

ctop(F) = ct0p(F2) = H 5 * = ^r^ *d"1- (5-17) 

In the cases with g > 0, C is a union of the two irreducible compo- 
nents Ci = P1 and C2 = Sp intersecting at the node p. Then there is the 
normalization exact sequence 

0 —> 0cM:z) ~4 Oc^-dx) © Oc2 -4 Op —> 0, 

which gives the following exact sequence of cohomology: 

0 —► n0c2(Oc2) A H0
c(Op) —► H^Ocf-dr)) -> 

—>Hj?1(Oc1(-ifa))eHj72(Oca) ->o. 

So H^C, Oc(-^)) is given by 

H1(C,Oc(-^))-H1(C'1)(9c1Mx))eH1(C27Oc2). (5.18) 

We have already computed the contribution of ^(Ci^Odi—dx)) to the 
equivariant Chern class Ctop(^). Since OC2 in (5.18) has weight zero and 
there is no twisting, the contribution from H1(C2, C^)to ctop(^r) is Cg(Ev) = 
(—l)9Cg(E). Hence the contribution from H1(C, Oc(—dx)) to the equivari- 
ant top Chern class ctop^) is 

In a similar spirit, we can use the same line of reasoning to get 

HHC, OC(-X)) = HHCi, OC, (-X)) © H1^, Oc2). 

As discussed in the genus-zero case, H1(Cri, Odi—x)) has dimension zero 
and does not contribute. To compute the contribution from H^C^C^)? 
we recall that, as mentioned in the beginning of this section, (9c2 in the 
present case has weight —i. Hence 

Ctop(Vi)    =    (-!)«(?-ci(JE?v)**-1+c3(E
v)**'-2 + --- + (-l)%(^v)) 

=   (-l)s (i9 + ciCS)^"1 + C2{E)i9-2 + ■■■ + cg{E)). 
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In summary, we have 

ctop(n = ^rr^ cg(E) {? + diE) i*-1 + c2(E) P-2 + + c9(E))id-1. 

(5.19) 

We are now ready to evaluate the contribution from 0/ to the integral 
(5.16) in the case h = 1. We begin with the case g = 0. 

After taking into account the automorphism group AQJ , which has order d, 
the genus-zero answer is given by multiplying the expressions in (4.15) and 
(5.17). This gives the virtual number in the genus-zero case invariant 

i.!rf%-i-<t. (rf-l)!^_i       1 
d   ddl 

which agrees with (1.3) 

dd- 1 ~ cP' 

We now consider the ceises g > 0. We need to use the results in (4.14) 
and (5.19) to get the higher genus invariants. It follows from Mumford's 
formula 

(1 + ci(£v) + C2{EV) + ■ ■ ■ + cg{E
v)) ■ (1 + ci(E) +C2{E) + • • • + cg{E)) = 1 

that 

[(*» + ci(£;v) f*-1 + C2(E
V
) p-2 + ■■■ + cg(E

y)y 

■ (& + diE) i^1 + c2(E) i°-2 + ■■■ + cg(E))] = P9. 

Hence we have 

L [M-^P^o]^ 
Ctop(V) 

Jej 

1      f      d-t^-1    /riN 

lAej| JM^I t-d-ip 

d29-2   f        ^-2C. (s)j 

where in the last equality we have used the fact that the moduli space 
M^5i of Deligne-Mumford stable curves has dimension dimcM^i = 3g — 2. 
The Hodge integral above can be easily evaluated by using C.Faber and 
R.Pandharipande's generating function for Hodge integrals over the moduli 
space Mg^i [FP]. Taking the result from [FP], we conclude that 

/, [M^(Pl)o]vir 
Ctop(V) 

©j 

_,2q-2 22g-1-l|ff2g| 
22*-i     (2g)\- 

(5.20) 

As promised, (5.20) is precisely equal to the expected answer (1.3). 
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6    Invariants for h > 1 

As mentioned before, all invariants for h > 1 vanish. The main idea that 
underlies our argument is that at least one of the weights of the S^-action on 
the obstruction bundle is zero. We will present our argument for genus-zero 
and higher genus cases separately. 

We will first consider the genus-zero case. Assume that h = 2, in which 
case /j, = (di,^), where di + tfo — d. In genus-zero C — Ci Up C2, where 
Ci and C2 both are rational curves and p is a node that gets mapped to QQ. 

For i = 1 or 2, di > 0 is the degree of the map /* that maps Ci to P1. If 
we denote the pre-images oi q^ by xi E Ci and X2 G C2, then we have the 
normalization exact sequence 

0 —> Oc(-rfia?i - ^2^2) —> Oci(-dia;i) © ^(-rf?^) —^ 
—> Oc{-diXi - d2X2)\p —> 0, 

which gives the long exact sequence of cohomology 

0 —» H0(C? Oc(-dirci - d2X2)|p) —> H^C, Oc(-rfia;i - te)) -+ 

^E1(CuOcl(-dixi))®Kl(C2,Oc2(-d2X2))^0- 

From this we immediately see that one of the S,1-action weights on 
Rl(C,Oc(—dixi — ^2^2)) is zero, since the weight of the S^-action on 
H0(C, Oc(—dixi — d2X2)\p) is zero. This means that the contribution of 
H1(C, Oc{—diXi — d2X2)) to the equivariant top Chern class of the obstruc- 
tion bundle vanishes, thus rendering the invariant to vanish as well. 

For h = 3, C contains a contracted genus-zero component Co which is 
connected to 3 rational curves, say Ci, C2, C3, at 3 nodes, say PI,P2JP3- Note 
that since Co contains 3 special points, it is stable and can be contracted to 
go- Each Ci maps to P1 with degree di > 0 and contains a special point Xi 
that gets mapped to goo- As usual there is the exact normalization sequence 

33 33 

0 -> Oc(- J2 fad ->■ © 0Ci(-**) © oc0 "> © Oc(- Y, fadlpi -* 0' 
i 2=1 2=1 i 

and the associated cohomology long exact sequence 

3 3 

■0—►Ho-(Go,0eo) ^>0Ho(C,Oc(-E^)U) —^ 

3 3 

—> HH^OcC-E*^) —^ ©HHCi^ftC-*^)) ©HHCCO^) —> 0. 
2 2=1 
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Here, ip is not surjective and it follows that not all of the zero weights on 
S,3 H0(C, Oc (- £3 dix^p,) get cancelled in 

3 3 

i i=l 
3 3 

- ii0(Co,06o) + ©H0(C,CM-X>sOlw)- 
i i 

Therefore, the equivariant top Chern class of the obstruction bundle in the 
localization theorem vanishes. We can perform induction on h and conclude 
that genus-zero invariants vanish for all h > 1. We will now sketch how that 
works. For h < n, assume that the 51-action on H1(C, Oc{— Y^i ^ixi)) has 
at least one zero weight and that therefore the invariants vanish. At h = n + 
1, an 51-fixed stable map can be constructed from that at h = n by attaching 
a rational curve C^+i to the contracted component, such that deg(f\cn+1) = 
dn+i > 0. Cn+i contains the point xn+i that gets mapped to c/oo and is joined 
to the contracted component at a new node. Such an operation increases 
the number of nodes by 1, and analyzing the exact normalization sequence 
and its associated cohomology long exact sequence shows that the number 
of zero weights on H1(C, Oc(— YA ^ixi)) kas increased by one. Therefore, 
the total number of zero weights on H1(C, Oc{— Si dixi)) is again non-zero. 
This shows that the equivariant top Chern class of the obstruction bundle 
vanishes at h = n + 1. 

Now assume that g > 1 and h = 2. In addition to the two rational curves 
Ci and C2, we introduce a stable genus-g curve Cg, which gets contracted to 
go- There are two nodes pi and P2 where Ci and C2, respectively, intersect 
Cg. In our usual notation, the normalization exact sequence in the present 
case is 

2 

0   —>   Oci-hxi - d2X2)  —> ©Oc^-diXiJeO^ —> 

2 

—^    ©Oc(-dia:i - d2X2)\Pi —>  0. 
2=1 

This implies the following long exact sequence of cohomology: 

2 

0   ->   tf(Cg,Odg)  -^ Qii(i(C,Oc(-d1xl-d2x2)\Pi)  -+ 
i=l 

-+   R1(C,Oc(-d1x1-d2x2))  —> 
2 

*=1 
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Unlike in the h — 1 case, tp is not surjective and we need to compute 

2 

i=l 

2 

H0((7g, Oe ) + 0 H0(C, Oc(-dia;i - d2a;2)|Pj) 

The zero weight term from H0{Cg.O^ ) will cancel only one of the two 
zero weight terms from the second line, thus leaving a zero weight term 
in H1((7, Oc{—diXi — 6,2X2)). Hence the equivariant top Chern class of the 
obstruction bundle again vanishes, and so does the invariant. 

The vanishing of the invariants for g > 1 again follows from induction 
on h. As in the genus-zero case, a S^-fixed stable map at h = n + 1 can 
be constructed from that at h = n by attaching a non-contracted rational 
curve, say Cn+i, to the contracted component Cg at a new node. This 
addition of a node increases the number of zero weights of the ^-action on 
H1((7, Oc{— Yli diXi)), and therefore the equivariant top Chern class of the 
obstruction bundle vanishes at h = n + 1 as it does at h = n. Hence, all 
higher genus invariants vanish for h > 1. 

To recapitulate, we have just established that 

= 0 ,    \/g > 0, d > h > 1, / ctoAV) 

in perfect agreement with what was expected from §1. 

7    Conclusion 

In this paper we have made an explicit connection between topological open 
string theory and relative stable morphisms. In the particular example we 
consider, we have successfully reproduced open string instanton multiple 
cover answers as invariants of relative stable maps. So far several inter- 
esting proposals for studying open string instanton effects have been made 
[OV, KKLM, AV], but direct computational methods involving integrals over 
moduli spaces of stable morphisms have been hitherto lacking. This is in 
marked contrast to the closed string case, where there exist well-developed 
techniques in the context of Gromov-Witten theory [GP, FP]. 

Open string instantons play an important role in string theory.   For 
example, in the Strominger-Yau-Zaslow conjecture of mirror symmetry, open 
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string instanton effects are crucial for modifying the geometry of D-brane 
moduli space [SYZ]. Also, genus-zero topological open string amplitudes are 
important for computing superpotentials in J\f = 1 supersymmetric theories 
in 4-dimension—see [KKLM, OV] and references therein. It is clear that 
many illuminating implications can stem from understanding better how 
one can directly compute open string instanton amplitudes. We hope we 
have made it clear in this paper that relative stable morphisms could be 
the right framework for studying open string instantons in general, and that 
the proposed link between topological open string theory and relative stable 
maps well deserve further investigations. 

Applying the theory of relative stable morphisms to topological open 
string theory is in the incipient stage. In a sense we have studied in this 
paper what could be considered the simplest example. As mentioned in 
§1, the quantities we have reproduced correspond to the invariants of a 
simple knot in 53. The authors of [LMV] have extended the results in [OV] 
to more non-trivial knots and links, and have described how to construct 
Lagrangian submanifolds, for torus links at least, on the topological string 
theory side of the duality. It will be interesting to apply our method to 
those cases as well. Also, M.Aganagic and C.Vafa have recently announced 
some interesting results on counting holomorphic discs in Calabi-Yau 3-folds 
[AV], and we would like to understand their results by means of relative 
stable morphisms. 
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