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Abstract 

A theory of topological gravity is a homotopy-theoretic represen- 
tation of the Segal-Tillmann topologification of a two-category with 
cobordisms as morphisms. This note describes some relatively accessi- 
ble examples of such a thing, suggested by the wall-crossing formulas 
of Donaldson theory. 
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1    Gravity categories 

A cobordism category has manifolds as objects, and cobordisms as mor- 
phisms. Such categories were introduced by Milnor [22], but following Se- 
gal's definition of conformal field theory [29] and Atiyah's subsequent ab- 
straction of the notion of topological quantum field theory [1] they have been 
studied very widely. Recently, Tillmann [31] has shown the utility in this 
context of certain closely related two-categories (which generalize the classi- 
cal notion of category, by admitting morphism-objects which are themselves 
categories). The following definition is based on her ideas. 

Definition A gravity two-category has 

• (closed) manifolds as objects, 

• cobordisms as morphisms, and 

• isomorphisms of these cobordisms, equal to the identity on the boundary, 
as two-morphisms. 

There are many possible variations on this theme, and I will not try for 
maximal generality. If the objects of the category have dimension d (so the 
cobordisms are (d+ l)-dimensional) then I will say that the gravity category 
is (d+1)-dimensional. I will assume that manifolds are smooth, compact and 
oriented, but not necessarily connected, and (following Segal) I understand 
the empty set to be a manifold of any dimension. 

1.1 If V and Vf are //-manifolds, a morphism 

W : V -> V 

is (the germ of) an orientation-preserving diffeomorphism 

(Vop U V') x [0,1) ^ u(dW) 

of the manifold on the left with a collar neighborhood of the boundary 
of the (d + l)-manifold W; the subscript op signifies reversed orientation. 
The morphism category Mor(V, V') has such cobordisms as its objects; it 
is a topological category, in which the space of morphisms between two 
cobordisms W and W consists of orientation- and boundary-identification- 
preserving diffeomorphisms W = W. Gluing along the boundary defines a 
continuous composition functor 

W.W'^WoW': Mor(V, V) x Mor(y/, V") -+ Mor(V, V") , 
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while disjoint union of objects gives this two-category a monoidal structure, 
with the empty set as identity object. 

By replacing Mor(V, V) with its set 7roMor(y, V') of equivalence classes 
of objects, we obtain the category employed by Atiyah to define a topo- 
logical quantum field theory; in other words, we can pass from a gravity 
two-category, in which the morphism objects are enriched by a categorical 
structure, to a classical category, in which the morphism objects are simply 
sets. Tillmann's more perspicacious alternative is to interpret the topological 
category Mor(V, V) as a simplicial topological space and to replace it with 
its geometric realization Mor(V, V7). This construction preserves Cartesian 
products (as does TTQ: indeed the set of equivalence classes of objects in Mor 
is the set of components of the space Mor), defining a topological grav- 
ity category (i.e., a category in which the morphism objects are topological 
spaces, and the composition maps are continuous). A topological quantum 
field theory in the sense of Atiyah [12 §1.7] is thus a (continous) monoidal 
functor from a topological gravity category to the (topological) category of 
modules over a discrete topological ring. 

However, we can consider monoidal functors to more general categories: for 
example, the singular chains on the morphism spaces of a gravity category 
define a monoidal category enriched over chain complexes, whose represen- 
tations are the (co)homological field theories of physics. In the language of 
homotopy theory, these are representations in a category of modules over 
some Eilenberg-MacLane ring-spectrum. In general, I will call any monoidal 
functor from a topological gravity category to the category of dualizeable 
objects over a ring-spectrum, a theory of topological gravity. One of 
the points of this paper is that there is a rich supply of such things. 

1.2 This terminology needs some explanation. If W is a manifold with 
boundary, let Diff+(W) be the topological group of orientation-preserving 
diffeomorphisms of W which restrict to the identity in some neighborhood 
of dW. The components of Mor(V, V') are indexed by equivalence classes of 
cobordisms W : V -> V, and the components themselves are the classifying 
spaces JBDiff+(t^). Gluing [20] defines a continuous homomorphism 

Diff+(W) x Diff+(W/) -> Diff+(Wr o W') ; 

thus the (components of the) composition map in the topological gravity 
category are the maps these compositions induce on classifying spaces. 
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On the other hand, a fundamental tautology of Riemannian geometry asserts 
that an isometry of a complete connected Riemannian manifold which fixes 
a frame at some point is the identity: such a map preserves the geodesies 
out of the framed point, and any other point in the manifold can be reached 
by such a geodesic. It follows that group of diffeomorphisms framing some 
basepoint will act freely on the (contractible) space of Riemannian metrics 
on a compact connected manifold. The space BDiS+(W) is the homotopy 
quotient of the space of metrics [10, 11] on W by the diffeomorphism group 
and we can think of morphisms in the (d + l)-dimensional gravity category 
as cobordisms between d-manifolds, together with a choice of equivalence 
class of Riemannian metric on the cobordism. Riemannian geometry thus 
provides the gravity category with a smooth structure. 

A (projective) Hilbert-space representation of a topological gravity category, 
along the lines considered by Segal in his definition of a conformal field 
theory, is thus very close to a quantum theory of gravity. When d = 1 
we can see this more explicitly: the Riemann moduli space is the quotient 
of the space of conformal structures on a closed connected surface by the 
group of its orientation-preserving diffeomorphisms, which acts with finite 
isotropy when the genus exceeds one. This defines a monoidal functor from 
the two-dimensional gravity category to Segal's, which (away from closed 
surfaces of low genus) is a rational homology isomorphism on morphism 
spaces. Consequently, any conformal field theory in Segal's sense defines a 
quantum theory of two-dimensional gravity. 

1.3 Examples: 

i) Prom this point of view, there is no a priori reason to limit ourselves 
to smooth manifolds. We could begin with a two-category of topological 
manifolds, and replace its morphism categories by their classifying spaces, 
as before: there are plenty of non-smoothable four-manifolds! 

ii) In higher dimensions, the category of manifolds and equivalence classes 
of /i-cobordisms is a groupoid, with the Whitehead group of an object as its 
automorphisms. In low dimensions these categories are still quite mysteri- 
ous. 

iii) We can consider classes of manifolds with extra structure: for example, 
by requiring that the Stiefel-Whitney class W2 vanish, we can define a gravity 
category of four-dimensional Spin-manifolds. [The set of Spin-structures on 
such a manifold is a principal homogeneous space over its first mod two 
cohomology group, but is not naturally isomorphic to that group.] 
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iv) Similarly, the four-dimensional gravity category of Spin<c-manifolds is 
defined by cobordisms endowed with a complex line bundle with Chern 
class lifting W2. 

Ex. iii) can be regarded as the subcategory of Ex. iv) defined by objects 
with trivial Chern class. It is natural to think of the morphism categories in 
Ex. iii) as graded by elements of the middle homology lattice; for example, 
algebraic surfaces lie on the quadric cf = 2% 4- 3cr. [Note that reversing 
orientation changes the signature, but not the Euler characteristic] 

When d is odd, the morphisms of a d + 1-dimensional gravity category are 
naturally graded by Euler characteristic: the correction term in the formula 

x(Wow') = x(w) + x{w,)-x(wnw') 

is zero. When d is one, the Euler characteristic counts the number of handles 
or loops in the usual quantum or genus expansion; it defines a zeroth Mum- 
ford class KQ. If we exclude closed manifolds from our morphism spaces, 
and thus do not admit the empty set as a plausible object, this grading is 
bounded below. The signature defines a similar grading, when d = 3. 

Many interesting decorations of gravity categories are possible: Lorentz 
cobordism [28, 33], defined by a nowhere-vanishing vector field oriented 
suitably at the boundary, is one example. Restricting the objects (e.g. to 
be unions of (standard, or homology) spheres, or contact manifolds [19]) is 
another alternative. Witten's original two-dimensional theory [34] admits 
singular (stable) algebraic curves as morphisms; this compactifies its mor- 
phism spaces, and Kontsevich has shown (as Witten conjectured) that the 
resulting theory has a well-behaved vacuum state. 

2    Pretty good theories of topological gravity 

A Riemannian metric g on an oriented closed connected two-manifold S 
defines a Hodge operator *^ on its harmonic forms. This operator squares 
to —1 on one-forms, and so defines a complex structure on the de Rham co- 
homology iJj^E). The space of isomorphism classes of complex structures 
on a real Euclidean space of dimension 2g is the quotient SO(2^)/U(^), so 
we get a map 

r : j5Diff+(E) -> (Metrics)/(Diff+(E)) -> SO/U 
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in the large genus limit. This can be constructed more generally by working 
with differential forms which vanish on the boundary. Orthogonal sum of 
vector spaces makes an iif-space of the target of r, and it is not hard to 
see that if S and £' are surfaces with geodesic boundaries, then gluing 
them c times along some sets of compatible boundary components defines a 
homotopy-commutative diagram 

J3Diff+ (S) x BDiS+ (S7) ^ BTHB+ (E o E') 

SO/U x so/u —  so/u. 

[The intersection form on the middle homology of E o £' is the direct sum 
of the intersection forms of E and E7, together with a split hyperbolic 
intersection form of rank c— 1, which has a canonical complex structure [32 
IV §4].] 

This is perhaps the simplest example of a theory of two-dimensional topo- 
logical gravity: it is a monoidal homotopy-functor to a topological category 
with one object and the if-space SO/U of morphisms [25]. The functor 
is a version of the Jacobian, which refines the infinite symmetric product 
construction (which takes disjoint union to Cartesian product). The Siegel 
moduli space for abelian varieties has the rational cohomology of an integral 
symplectic group, and a version of Hirzebruch's proportionality principle im- 
plies that the stable rational cohomology of this moduli space agrees with 
the cohomology of SO/U. 

2.1.1 In general, a topological quantum field theory HF (with values in some 
category of modules over a ringspectrum k) assigns to a suitable d-manifold 
F, a module-spectrum HP(V), such that 

i) the construction is exponential, in the sense that 

HF(F U V') ^ HF(F) A HF(F/) ; 

ii) there is a pairing 

lYace : HF(^) A HF(F) -► k 

which is nondegenerate, in the sense that the induced map from HF(F0p) 
to the functional k-dual of HF.(V) is an isomorphism; 

iii) there is a natural transformation 

rw : BDiK+(W) -+'IXF(dW) 
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subject to a monoidal axiom: if dW = Vop U V', etc., then the diagram 

BBiS+iW) x BDiff+(W') ^ »- BDiff+(W o W) 

HF{Vop) A (HF(F') A HF(V^)) A HF(7") *■ UF{Vop) A UF(V") . 

commutes up to homotopy. 

The smash product of two such functors yields another. 

2.1.2 Objects in the two-dimensional gravity category are just collections of 
circles, which can be indexed by nonnegative integers. In this case, a theory 
is defined by a dualizable k-module spectrum M, together with a system 

TP G (MA(p+^)*(5Diff+(S)) - [5Diff+(£),M Ak ... Ak M]* 

of characteristic classes for bundles of connected surfaces S with p incom- 
ing and q outgoing boundary components, which behave compatibly under 
gluing. The example above is deceptive, for in that case M agrees with the 
group ring k = S[SO/U], so the multiple smash product simplifies. The 
topological category with one object, and Tillmann's group-completion 

Jj5Diff+(E,)^ZxJBr+ 
g>Q 

as its space of morphisms, defines the universal example of a theory of this 
type; the cohomology homomorphism defined by the induced map 

Z x BT+c -» SO/U 

factors through the classical map which kills the Mumford classes in degree 
divisible by four. In more general cases related to quantum cohomology [20, 
24], M will be a Frobenius object in the category of spectra, and the theory 
can be reformulated in terms of a family of natural transformations 

(g)p+(?i?*(M) -> ir(£Diff+(£)) . 

2.2 The Hodge-theoretic construction described above has a close analogue 
for four-manifolds, which is also classical in a way: the wall-crossing for- 
mulas [17] of Donaldson theory are its descendants.  As in dimension two, 



58 PRETTY GOOD GRAVITY 

its construction is based on properties of the intersection form on middle 
cohomology: 

If W is an compact connected oriented four-manifold with dW a union of 
homology spheres then the intersection form 

x,y^(x,y) = (xU.y)[W,dW] 

on the integral lattice B = i?2(VF, dW, Z) is unimodular. In dimension four, 
Wu's formula implies that 

q(x) = (x.x) = (x,W2) 

modulo two, so the form q is even if the manifold admits a Spin-structure [16 
§5.7.6]. On a Spin€-manifold the intersection form is even or odd depending 
on the parity of the Chern class of its associated complex line bundle. 

By a fundamental theorem of Preedman [13] any unimodular quadratic form 
can arise as the intersection form of a closed topological four-manifold; but 
by similarly fundamental results of Donaldson [6, 9] the intersection form of 
a closed smooth four-manifold is either indefinite, or diagonalizable over the 
integers. As in two dimensions, the action of a diffeomorphism on homology 
defines a monodromy representation 

Diff+(W0 -> Aut+(J3,g) = SO(B) 

which factors through 7ro(DiS+(W))] it is convenient to think of its kernel 
[18] as an analogue, for four-manifolds, of the Torelli group of surface theory. 

2.3 Let b = 6+ + 6_ be the rank, and a = 6+ — 6_ the signature, of the 
inner product space defined by q on B ® R For our purposes the indefinite 
lattices are the most interesting: these are classified by their rank, signature, 
and type (even if q(x) = 0 mod two, otherwise odd). In the indefinite case, 
the manifold Grass- (B) of maximal negative-definite subspaces of B <g> K is 
a noncompact (contractible) symmetric space defined by a cell of dimension 
b+b- in the usual Grassmannian of 6_-planes in 6-space. The orthogonal 
group of the lattice acts on this cell with finite isotropy, so the canonical 
homotopy-to-geometric quotient map 

BSO(B) -> Grass"(B)/SO(B) 

is a rational homology isomorphism. If B and Bf are indefinite lattices, 
then the construction which sends a pair of negative definite subspaces in 
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the real span of each, to their orthogonal sum in the real span of the direct 
sum lattice, defines a map 

Grass" (B) x Grass" (B') -» Grass" (B © B') 

which is equivariant with respect to the Whitney sum homomorphism 

SO(B) x SO{Bf) -► SO(B © B') 

The Grothendieck group of the category of even indefinite unimodular lat- 
tices is free abelian on two generators, corresponding to the hyperbolic plane 
and the Es lattice [30 V §2]. The 'Hasse-Minkowski' spectrum KEIU defined 
by the algebraic if-theory of the category of such lattices is the group com- 
pletion of the monoid constructed from the disjoint union of the classifying 
spaces of their orthogonal groups; the tensor product of two such lattices 
defines another, making this a commutative ring-spectrum. 

2.4 A Riemannian metric g on W defines a Hodge operator *^ on harmonic 
forms, but now this operator squares to +1 on the middle cohomology. The 
function which assigns to g, the *^ = — 1-eigenspace of harmonic two-forms 
vanishing on dW, maps the space of Riemannian metrics to the negative- 
definite Grassmannian Grass" (B) equivariantly with respect to the action 
of Diff+(W0. 

If W and W are four-manifolds bounded (as above) by homology spheres, 
and if W o Wf results from gluing these manifolds along a collection of 
compatible boundary components, then the quadratic module of W o W' is 
canonically isomorphic to B ®B'\ hence the cohomology representation of 
the diffeomorphism group defines a monoidal functor from the gravity cate- 
gory of Spin four-manifolds bounded by standard spheres, to the topological 
category with one object, and the Hasse-Minkowski spectrum as morphisms. 
There is a similar functor defined on the category with homology spheres as 
objects, but the resulting lattice is no longer necessarily indefinite [9 §1.2.3]. 

The higher algebraic if-theory of such lattices has apparently not received 
much attention. It is remarkable that the relatively naive constructions 
sketched above already define pretty good theories of topological gravity. 
The ^-invariant of Atiyah-Patodi-Singer [3] is much more sophisticated; to 
find an interpretation in these terms for it, analogous to the way Floer 
homology globalizes the Casson invariant, would be extremely interesting. 
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3    Toward a parametrized Donaldson theory 

A good theory of gravity shouldn't exist in a vacuum: it deserves to be 
coupled to some nontrivial matter. Donaldson [8] and Moore and Witten [23] 
have suggested the study of equivariant supersymmetric Yang-Mills theory 
parameterized by classifying spaces of diffeomorphism groups. A fragment 
of such a theory is sketched below. 

3.1 Suppose for simplicity that W is closed. The graded space Bun*(W) 
of gauge equivalence classes of connections on SU(2)-bundles over W has 
components indexed by the second Chern class of the bundle. Let D* be 
the subspace of Metrics x Bun*^) consisting of pairs (g, A), where A is a 
connection on an SU(2)-bundle over W with curvature two-form 

*g(FA) = -FA 

antiselfdual with respect to the metric g. The standard transversality argu- 
ments of Donaldson theory [9 §4.3] imply that this space is a manifold, with 
fiber of dimension 8C2 — |(cr + x) above the metric g; at least, provided this 
metric admits no reducible antiselfdual connections. These reducible con- 
nections define an interesting kind of distinguished boundary for the space 
of antiselfdual connections. 

3.2 Reducible connections on W are parametrized by the wall arrangement 

Wall^) = {H e Grass" (B) \HnB^ {0} } 

of the lattice B: it is the set of maximal negative-definite subspaces of 
B (8) R containing a lattice point. This is a union of smooth submanifolds 
of codimension 6_, filtered by the increasing family Walld(i?) of subspaces 
consisting of maximal negative-definite H containing a lattice point x with 
0 > q(x) > —d (which is a locally finite union of manifolds [14]). The 
orthogonal group of B acts naturally on these arrangements, as well as on 
the quotient spaces 

Wallf (B) = Gmss-(B)/Walld(B) 

(which are roughly the S'-duals of the wall arrangements). If B and B' 
are two indefinite lattices, then the orthogonal direct sum map defines a 
commutative diagram 

Grass" (B) x Grass" (B') ^ Grass" (B © B') 

Wallf (B) A Wallf, (£') ^ Wallf+d, (B © B') 
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which is equivariant, with respect to the Whitney sum on orthogonal groups. 
The equi variant cohomology ^^(Wallf) defines yet another variant of a 
topological gravity theory, but there seems to be little known about such 
essentially arithmetic invariants. 

3.3 If g is in the complement of the preimage Metrics^ of Wall^ in the space 
Metrics of metrics on W, then no SU(2)-bundle with Chern class less than 
—d admits a connection with *p-antiselfdual curvature. Thus if D^ denotes 
the space of pairs (5, A) such that A is gauge equivalent to a connection 
induced from a line bundle with curvature antiselfdual with respect to p, 
then 

(Dd, DS) -> (Metrics, Metrics^) x Bund{W) 

is a kind of Diff+(W)-equivariant cycle, of relative finite dimension above 
the space of metrics. It cannot be expected to be proper, but Donaldson 
theory has developed sophisticated methods to deal with such issues [7]: let 
SP20(W+) be the space of finitely supported functions / from W to the 
integers, such that 

and let 
Dd=   I] BixSPf^(W+) 

0<i<d 

be the analogue of the Uhlenbeck-Donaldson compactification of D^ in the 
stratified space 

Metrics x ( JJ  Bun^W) x SP?_i(W+)) = Metrics x Bnnd(W) . 
0<i<d 

Completing the subspace D^ of reducible connections analogously defines a 
candidate 

(Dd,B0
d) -4 (Metrics,Metrics^) x Bmid{W) 

for a Diff+(H/r)-equivariant Donaldson cycle. 

To extract homological information from this construction, note that a class 
z of dimension * in the rational homology of BDiS+ (W) maps to a sum, 
with rational coefficients, of homology classes defined by maps 

Z —y Metrics XDiff+ pt 

of smooth manifolds Z. The fiber product of such a map with the projection 

T>d ->- Metrics XDiff. B\md(W) -> Metrics xDiff   pt 
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defines a class of dimension * + 8d — | (a + x) m the rational homology of 

(Metrics, Metrics^) xDiff+ Bund(W) ; 

note that this admits a canonical map to the space 

WallfAso(B)SPS0(^+), 

which depends only on the lattice B. 

3.4 The homotopy-to-geometric quotient map for the space of connections is 
a rational homology equivalence of Bun* (W) with the space of based smooth 
maps from W+ to BSU(2) [9 §5.1.15], and the Pontrjagin class defines a 
rational homology isomorphism of the space of maps with the Eilenberg- 
MacLane space iy(Z,4). By the Dold-Thom theorem, 

7r;Maps(W+,#(Z,4)) ^H^iW.Z) 2* Hi(W9Z) = 7ri(SP00(W+)) 

so as far as rational (co) homology is concerned, we can replace the space 
Bun*(W) with the free topological abelian group on W. [This identification 
uses Poincare duality, and hence requires a choice of orientation: the space 
of bundles is a contravariant functor, but the infinite symmetric product is 
covariant.] Combined with the constructions outlined above, this defines a 
generalized Donaldson invariant as a homomorphism 

Vd : Jff,(SDiff+,Q)) -► ir,+8d_3(ff+x)(Wallf Ago SP^Q) 

with values in a group which depends only on the cohomology lattice B] 
indeed the rational homology of SP00(T;FH_) is the symmetric algebra on the 
homology of FT, and the automorphic cohomology 

H*so{B)(SP™(W+),Q) =H*(SO(B),Sm(H*(W))) 

contains the classical ring of automorphic forms for the orthogonal group [5] 
as the invariant elements of the symmetric algebra on B. 

This invariant generalizes the usual one, in the sense that D^ on a gener- 
ator of the zero-dimensional homology of BDiff+ is the classical invariant. 
[The usual convention is to interpret the antiselfdual cycle as a function on 
the cohomology of W, by taking its Kronecker product with exp(x),x E 
H*(W).] A four-manifold is said to be of simple type, if the behavior of 
its classical invariant as a function of charge is not too complicated: in the 
present formalism, the condition is that 

TWi (!)»-► WQwltDd(l) 
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under the homomorphism induced by the restriction map from WallJ^ to 
Wallf (where WQ and w^ generate the homology in degrees zero and four of 
W). This suggests 

Vd = (wowl)-d(Dd e Hom-i((T+x)(if*(BDiff+),if*(Wallf Aso SPg0)) 

as the natural normalization for the generalized invariant. 

4    On the inadequacy of the foregoing 

The preceding sketch defines at best a piece of a topological gravity functor. 
It is defined only for manifolds without boundary, but it behaves correctly 
under disjoint union: if WQ and Wi are two closed four-manifolds, then 

X)    Vdo(Wo)®Vdl(Wi)»'Dd(Wo\JWl) 
d=do-\-di 

under the maps of §3.2; this is nothing but a definition of the generalized 
invariant for non-connected manifolds. 

In fact there is reason to think that these constructions may have wider 
validity. Some years ago, Atiyah [2] proposed a unification of the invariants 
of Donaldson and Floer, based on a theory of semi-infinite cycles in the 
polarized manifold of connections on a three-manifold. A theory of such 
cycles which behaves naturally under variation of the metric on a bounding 
four-manifold would yield a topological gravity theory for four-manifolds, 
taking values in generalized automorphic forms with coefficients in Floer 
homology. 

Many results which follow from Atiyah's program are known now to be true; 
but (mostly because of difficulty with compactifications), work on these 
questions has advanced without using his cycle calculus. I am told, how- 
ever, that recently there has been progress along the lines he suggested [26], 
though in Seiberg-Witten rather than Floer-Donaldson theory. Meanwhile, 
Bauer [4] and Furuta [15] have studied generalized Seiberg-Witten invari- 
ants from a homotopy-theoretic point of view, and Bauer has shown that 
his invariant behaves nicely under connected sum. The hope that these new 
developments can be extended to the context proposed in this paper has 
encouraged me to write this incomplete and probably naive account. 
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