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Abstract 

We exhibit a transformation taking special Lagrangian submani- 
folds of a Calabi-Yau together with local systems to vector bundles over 
the mirror manifold with connections obeying deformed Hermitian- 
Yang-Mills equations. That is, the transformation relates supersym- 
metric A- and B-cycles. In this paper, we assume that the mirror pair 
are dual torus fibrations with flat tori and that the A-cycle is a section. 

We also show that this transformation preserves the (holomorphic) 
Chern-Simons functional for all connections. Furthermore, on cor- 
responding moduli spaces of super symmetric cycles it identifies the 
graded tangent spaces and the holomorphic m-forms. In particular, we 
verify Vafa's mirror conjecture with bundles in this special case. 
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1    Introduction 

In this note we argue that a real version of the Fourier-Mukai transform 
would carry supersymmetric A-cycles to B-cycles. Roughly, special La- 
grangian submanifolds (plus local systems) will be mapped to holomorphic 
submanifolds (plus bundles over them). The approach is similar to the one 
in [1], though our emphasis is geometric, as we focus on the differential 
equations defining D-branes. 

Our goal is to provide the basis for a geometric functor relating the 
categories of D-branes on opposite mirror sides: the derived category of 
coherent sheaves on one hand, and Fukaya's category of Lagrangian sub- 
manifolds with local systems on the other.    (In fact, we consider special 

1320 
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Lagrangians as objects.1) At this point, providing a physical interpretation 
of the derived category is premature - even though recent discussions of the 
role of the brane-anti-brane tachyon offer glimpses - so we content ourselves 
with thinking of D-branes as vector bundles over holomorphic submanifolds, 
where "submanifold" may mean the entire space. 

We assume, following [14], that the mirror manifold has a description as a 
dual torus fibration, blithely ignoring singular fibers for now. The procedure 
is now quite simple [1][2][4]: a point on a torus determines a line bundle on 
a dual torus. A section of a torus fibration then determines a family of 
line bundles on the mirror side. These can fit together to define a bundle. 
We will show how, in this idealized situation, the differential equations on 
the two sides are related under this transformation. We also show that the 
Chern-Simons action of an A-cycle equals the holomorphic Chern-Simons 
action of its transform, even off-shell. Vafa's version of mirror symmetry 
with bundles is then verified in this setting. 

It will be interesting, though perhaps quite formidable, to generalize this 
procedure by relaxing some of our assumptions and extending the setting to 
include singular fibers and more general objects in the derived category. 

Acknowledgements: We gratefully acknowledge helpful conversations 
with Richard Thomas, who has also obtained similar structures for moduli 
spaces of supersymmetric cycles in his recent preprint (which he has kindly 
shared with us). N.C. Leung is supported by NSF grant DMS-9803616 and 
S.-T. Yau is supported by NSF grant DMS-9803347. 

2    Supersymmetric A- and B-cycles 

The authors of [11] consider the supersymmetric p-brane action and deter- 
mine the conditions for preserving supersymmetry (BPS).2 They show that 
there are two kinds of supersymmetric cycles (C, L) on a Calabi-Yau three- 

1One can't yet say which formulation of these categories will best fit the physics. The 
Donaldson-Uhlenbeck-Yau theorem relates stable bundles to solutions of the Hermitian- 
Yang-Mills equations. Analogously, one hopes that Lagrangians are equivalent to special 
Lagrangians up to Hamiltonian deformations. We are a long way away from proving such 
theorems, however. The recent preprint of R. Thomas investigates these two issues as 
moment map problems related by mirror symmetry. 

2In this section, we follow what has become standard notation. Let us remark, however, 
that the IIA string theory, on which one normally considers the A-model, naturally has 
even-dimensional (hence type-B) branes, so-named because their compositions depend on 
the complex structure. IIB string theory has odd-dimensional (type-A) branes, whose 
composition depends only on the symplectic structure. 



1322 FROM SPECIAL LAGRANGIAN TO ... 

fold M where C is a (possibly singular and with multiplicity) submanifold of 
M and L is a complex line bundle over C together with a U (1) connection 
DA- Let us denote the Kahler form (resp. holomorphic volume form) on the 
Calabi-Yau threefold by UJ (resp. Q). 

The type-A supersymmetric cycle is when C is a special Lagrangian 
submanifold of M and the curvature FA of DA vanishes, 

^ = 0, 

namely DA is a unitary flat connection. In the presence of a background B- 
field (an element of H2(M, R/Z)), FA should be replaced by FA — B, where 
B is understood to be pulled back to the submanifold. We take B = 0 in 
this paper. Recall that a Lagrangian submanifold C is called "special" if 
when restricting to C we have 

Im Q = tan 6 Re f2, 

for some constant 0. Or equivalently, Ime^fi = 0. 

The type-B cycle is when C is a complex submanifold of M of dimension 
n and the curvature two form FA of DA satisfies following conditions: 

F0/   =   0, 

Imeid(u + FA)n    =   0. 

The first equation says that the (0,1) component of the connection deter- 
mines a holomorphic structure on L. The second equation is called the de- 
formed Hermitian-Yang-Mills equation and it is equivalent to the following 
equation, 

Im(u; + FA)
71
 = tan0Re (u + FAT . 

For example when C is the whole Calabi-Yau manifold M of dimension three 
then the second equation says FAu2/2-Fs/6 = tan 6 [a;3/6 - (F2/2) A u]. 

3    Fourier-Mukai Transform of A- and B-cycles 

In this section we explain the Fourier-Mukai transform of supersymmetric 
cycles. The gist of the story is that, assuming mirror pairs are mirror torus 
fibrations, each point of a Lagrangian submanifold lies in some fiber - hence 
defines a bundle over the dual fiber. When done in families and with con- 
nections, we get a bundle with connection on the mirror, and the differential 



LEUNG, YAU and ZASLOW 1323 

equations defining A-cycles map to those which define B-cycles on the mir- 
ror. Recall that the base of the fibration itself - the zero graph - should 
be dual to the six-brane with zero connection. Multi-sections are dual to 
higher-rank bundles, and are discussed in section 3.2. Other cases appear in 
3.3. 

We assume that the m dimensional Calabi-Yau mirror pair M and W 
have dual torus fibrations. To avoid the difficulties of singular fibers and 
unknown Calabi-Yau metrics, we will only consider a neighborhood of a 
smooth special Lagrangian torus and also assume the Kahler potential (j) on 
M to be Tm-invariant (see for example p.20 of [7]). This is the semi-flat 
assumption of [14]. Notice that the Lagrangian fibrations on M and W are 
in fact special. 

Therefore, let (f) (rr-7, y-7) = <p (x-7). (y is the coordinate for the fiber and 
x for the base B of the fibration on M. The holomorphic coordinates on M 
are z^ = rr-7 + iy^s.) As studied by Calabi, the Ricci tensor vanishes and 
Q = dzl A .... A dz™ is covariant constant if and only if </> satisfies a real 
Monge-Ampere equation 

det .   .,   . = const. 
oxlox^ 

The Ricci-flat Kahler metric and form are 

= E 
*J 

^-(dxW+W), 

U) 
0 Z-> aviftrrJ ' 2 *r! dxidxi 

(henceforth we sum over repeated indices). Notice that O A Cl is a con- 
stant mulitple of ujm and it is direct consequence of the real Monge-Ampere 
equation. 

Also note from the form of the metric g that M is locally isometric to the 
tangent bundle of B with its metric induced from the metric ^ • dxiQxj dx'ldx^ 
on B. If we use the metric on B to identify its tangent bundle with its 
cotangent bundle, then the above symplectic form cu is just the canonical 
symplectic form dp A dq on the cotangent bundle. 

We can view the universal cover of M either as TB with the standard 
complex structure, or as T*5 with the standard symplectic structure. A 
solution of the real Monge-Ampere equation is used to determine the sym- 
plectic structure in the former case and to determine the metric structure, 
and therefore the complex structure in the latter case. 
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3.1    Transformation of a section 

We will construct the transform for a special Lagrangian exhibited as a 
section of the fibration, i.e. a graph over the base. 

Recall that a section of T*B is Lagrangian with respect to the standard 
symplectic form if and only if it is a closed one form, and hence locally exact. 
Therefore (or by calculation), a graph y(x) in M is Lagrangian with respect 

to v if and only if -^{yl(j>ik) = -^{fajV1), where 0y = ^^j, from which 
we get 

for some function / (locally), where (jjk is the inverse matrix of (j)jk. 

Now dzi = dxi+idyl and on C we have dy> = tf1 {Sh " ^ikpik) dxk' 

Therefore dzi = ^jk + ifi1 (^L, - ^^ Jl)) dxk over C. Notice that 

if we write g = (/)jkdxidxk as the Riemannian metric on the base, then the 
Christoffel symbol for the Levi-Civita connection is F^. = (f^9(f>ikp' Therefore 
Hess (/) = {wh - WikpU)dxldxK Hence 

dz1 f\...t\dzm\c   =   det(/ + i^1fl'e35(/))da;1A...Ada;m 

=   det (g)~l det {g + iHess (/)) dxl A ... A dxm, 

so the special Lagrangian condition (with phase) Im (dz1 A .... A dzm) \c = 
tan0 • Re [dz1 A .... A dzm) \c becomes 

Imdet (g + iHess (/)) = (tan 9) Re det (5 + iHess (/)). 

From these data, we want to construct a U (1) connection over the mirror 
manifold W which satisfies the deformed Hermitian-Yang-Mills equation. 
The dual manifold W is constructed by replacing each torus fiber T in M 
by the dual torus T = Horn (T, 51). If we write the dual coordinates to 
yl,...,ym as yi,...,ym, then the dual Riemannian metric on W is obtained 
by taking the dual metric on each dual torus fiber T: 

9 = ]C (fajd^d^ + ^dyidyj) . 
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We need to understand the complex structure and the symplectic structure 
on W (see for example [14] and [7]). First we rewrite y as follows, 

9 = J2<f>iJ {^k<t>ikdxk) (^i<t>jidxl) +dVidyj
yj . 

Notice that d (Sfc^da;^) = 0 because <f)jkl is symmetric with respect to 
interchanging the indexes. Therefore there exist functions Xj = XJ (a;)'s such 

that dxj — Yik<$)rjkdxk locally - then -^ = 4>jk - and we obtain 

g = ^2(f)lJ (dxidxj + dyidyj). 

So we can use Zj = Xj + iy^s as complex coordinates on W. It is easy to 
check that the corresponding symplectic form is given by 

to = - ^ c/fidzi A dzj. 

Moreover the covariant constant holomorphic m-form on W is given by 

O = dzi A ... A dzm. 

Again, as a direct consequence of (j) being a solution of the real Monge- 

Ampere equation, ft A O is a constant multiple of ujm. 

Remark 1. The mirror manifold W can be interpreted as the moduli space 
of special Lagrangian tori together with flat U(l) connections over them (see 
[14])- It is because the dual torus parametrizes isomorphism classes of flat 
£7(1) connections on the original torus. It can be checked directly that the 
L2 metric, i. e. the Weil-Petersson metric, on this moduli space W coincides 
with our g above. 

In general, the relevent metric on the moduli space W is given by a 
two-point function computed via a path integral, wihch includes instanton 
contributions from holomorphic disks bounding the special Lagrangian torus 
fibers. However, for our local Calabi-Yau M such holomorphic disks do not 
exist. This is because M is homotopic to any one of its fibers; but any 
such holomorphic disk would define a non-trivial relative homology class. 
Therefore our metric g coincides with the physical metric on the moduli 
space W. 

Remark 2. We note the symmetry between g (resp. UJ) andjj (resp. UJ). 

For one can write (f)13 as the second derivative of some function (j) with respect 
to the Xj's.  Simply write x3 = x3 (x), then |*r- = (f^k = ||- and therefore 

xi = JjJ- for some function, $, and it is easy to check that 0 = $. 
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On each torus fiber, we have canonical isomorphisms T = Hom(r, S'1) = 
Hom(7ri(T),S'1), therefore a point y =.(j/1, •••,ym) inT defines aflat connec- 

tion Dy on its dual T. This is the real Fourier-Mukai transform. Explicitly, 
we have 

gyi   T->i (R/Z) = S1 

and Dy = d + A = d + idgy = d + i^y^dyj. 

In fact we get a torus family of one-forms, since y (hence A) has x- (or 
x-) dependence. Namely, we obtain a U (1) connection on W, 

DA = d + i^2y3dyj. 
3 

Its curvature two form is given by, 

\dxk 

Edy3   _ 
i—j-dxk Adyj. 

k,j 

In particular 

^£(lrlS)^ 
3,k 

0 9 Therefore, that DA is integrable, i.e. F^ = 0, is equivalent to the existence 

of / = / (^) such that yJ' — -gL = ft1*-^ because of dxj = Efc^rfx*.-' 
Namely, the cycle C C M must be Lagrangian. Now 

dyj        d2f 
dxk      dxjdxk 

In terms of the x variable, this is precisely the Hessian of /, as discussed 
above. Therefore the cycle C C M being special is equivalent to 

Im {u + FA)m = (tan 9) Re (2 + FA)m . 

For a general type-A super symmetric cycle in M, we have a special La- 
grangian C in M together with a flat U (1) connection on it. Since as before, 
C is expressed as a section of TT : M —>• B and is given by y3 = ^-^JF, a flat 
[/ (1) connection on C can be written in the form d + ide = d + iY,-J^dxk 

for some function e = e(a;).   Recall that the transformation of C alone is 



LEUNG, YAU and ZASLOW 1327 

the connection d + iT^y^dyj over W. When the flat connection on C is also 
taken into account, then the total transformation becomes 

DA   =   d + iT,yJdyj + ide 

=   d + ^Q^dyj + iX-^jdxj. 

Here we have composed the function e (x) with the coordinate transforma- 
tion x — x (x). Notice that the added term E J|JGK?J is exact and therefore 
the curvature form of this new connection is the same as the old one. In 
particular DA satisfies 

F0/   =   0, 

lmeie (u + F)m   =   0, 

so is a supersymmetric cycle of type-B in W. By the same reasoning, we can 
couple with C a flat connection on it of any rank and we would still obtain 
a non-Abelian connection DA on W satisfying the above equations. 

In conclusion, the transform of a type-A supersymmetric section in M is 
a type-B supersymmetric 2m-cycle in W. 

Remark 3. The real Fourier-Mukai transform we discussed above exchanges 
the symplectic and complex aspects of the two theories. 

On the A-cycle side, Donaldson and Hitchin [7] introduce a symplectic 
form on the space of of maps Map ((7, M) as follows. If v is a fixed vol- 
ume form on a three manifold C, then Jc ev*uj A v is a symplectic form on 
Map ((7, M) and it equips with a Hamiltonian action by the group of volume 
preserving diffeomorphisms of C. The zero of the corresponding moment 
map is precisely the Lagrangian condition on f G Map(C,M). 

If one restricts to the infinite-dimensional complex submanifold of Map 
(C, M) consisting of those f which satisfy f*Q = v, then the symplectic 
quotient is the moduli space of A-cycles. 

On the    B-cycle    side,     we consider the    pre-symplectic    form Im 
[/w (S + F)m][    on the space of connections A (W) (see section 4-3 or com- 
pare [10]).  This form is preserved by the group of gauge transformations and 
the corresponding moment map equation is the deformed Hermitian-Yang- 
Mills equations. 

If one restricts to the complex submanifold of A (W) consisting of those 
connections which define a holomorphic structure on the bundle, then the 
symplectic quotient is the moduli space of B-cycles. 
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Notice that the above real Fourier-Mukai transform exchanges the mo- 
ment map condition on one side to the complex condition on the other side. 
Such exchanges of symplectic and complex aspects are typical in mirror sym- 
metry. We expect this continues to hold true in general and not just for 
special Lagrangian sections in the semi-flat case. 

Remark 4. Unlike the Hermitian-Yang-Mills equation, solutions to the fully 
nonlinear deformed equations may not be elliptic. On the other hand, the 
special Lagrangian equation is always elliptic since its solutions are calibrated 
submanifolds. Nevertheless, deformed Hermitian-Yang-Mills connections ob- 
tained from the real Fourier-Mukai transformation as above are always el- 
liptic. 

3.2    Transformation of a multi-section 

When C is a multi-section of TT : M —)• 5, the situation is more complicated. 
For one thing, holomorphic disks may bound C - a situation which cannot 
occur in the section case (see section 4.2). Here we propose to look at a line 
bundle on finite cover of W as the transform B-cycle. To begin we assume 
that C is smooth, TT : C —> B is a branched cover of degree r (as in algebraic 
geometry) and Vj V/^ = Sjh for simplicity. Away from ramification locus, C 
determines r unitary connections on W locally, and each satisfies the above 
equation. One might be tempted to take the diagonal connection on their 
direct sum, so that this U (r) connection satisfies a non-Abelian analogue of 
the equation. However, such a connection cannot be defined across ramifica- 
tion locus because of monodromy, which can interchange different summands 
of the diagonal connection. 

In fact, as mentioned in [11], it is still open (even in physics) to find or 
derive a non-Abelian analogue of the deformed Hermitian-Yang-Mills equa- 
tions via string theory (though there are some natural guesses). To remedy 
this problem, we would instead construct a U (1) connection over a degree 
r cover of W. This finite cover TT : W —> W is constructed via the following 
Cartesian product diagram 

W = CxBW   A   W 

C -^   B. 

Notice that W is a smooth manifold because C is smooth and TT : C —> B 
is a branched cover.    Moreover, the construction as before determines a 
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smooth unitary connection over W satisfying the above equation (with u 
replaced by 7r*uj). 

We remark that employing this construction is similar to the use of isoge- 
nies needed to define the categorical isomorphism which proves Kontsevich's 
conjecture in the case of the elliptic curve [13]. The point is that multi- 
sections transforming to higher-rank can be handled via single sections giv- 
ing line bundles, by imposing functoriality after pushing forward under finite 
covers. 

Even though this connection over W satisfies JF
0,2

 = 0 in a suitable sense, 
W is not a complex manifold. 

3.3    Transformation for more general cycles 

In the previous sections, we considered only sections or multi-sections on 
M and obtain holomorphic bundles on W which satisfied the deformed 
Hermitian-Yang-Mills equation. Notice that, for a Calabi-Yau threefold M, 
a multi-section of TT : M -> B can be characterized as special Lagrangian 
cycle C whose image under TT is of dimension three - namely, the whole B. 
If the image has dimension zero, then the Lagrangian is a torus fiber plus 
bundle and its dual is the point (0-brane) it represents on the corresponding 
dual torus. This is the basis for the conjecture of [14]. Here we are going to 
look at the other cases, that is the dimension of the image of C under TT is 
either (i) one or (ii) two. For simplicity we shall only look at the flat case, 
namely M — T6 = B x F where both B and F are flat three dimensional 
Lagrangian tori. 

Case (i), when dim7r (C) = 1. The restriction of TT to C express C as the 
total space of an one-parameter family of surfaces. In fact we will see that 
this is a product family of an affine T1 in B with an affine T2 in F. 

As before we denote the coordinates of B (resp. F) by re1, re2, a;3 (resp. 
y1,?/2, y3). Without loss of generality, we can assume that TT (C) is locally 
given by x2 = f (x1) and x3 = g (xl). Moreover the surface in C over 
any such point is determined by y3 = h{xl,yl,y2). In particular, C is 
parametrized by a;1,?/1 and y2 locally. 

The special condition Im (dzl A dz2 A dzz) \c = 0 implies that h is inde- 
pendent of xl. Namely the surface family C is indeed a product subfamily 
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of M = F x B. Now the Lagrangian conditions read as follow: 

These imply that, 

dg  dh     _ 

dx1 dy1 

df        do  dh 
-jL- H =    0. 
dx1      dx1 dy2 

f = x2 =   ax1 + a 

g = x3 =   bxl + 13 

/ 3 1    1        a   2        7 
y by       bu       b 

By analyticity of special Lagrangians, these parametrizations hold true on 
the whole C. We can therefore express C as the product CB X CF with 
Cj? C F being a two torus and CB C 5 being a circle. Here 

CB    =    {(a;1,a;2,a;3) = (l,a,6)a;1 + (0,a,/3)}, 

CF   =    {(v1,l/2,y3):(y1,y2,V3)-(l,a,6)=7}. 

Since our primary interest is when C is a closed subspace of M, this 
implies that both a and b are rational numbers and C is a three torus which 
sits in M = T6 as a totally geodesic flat torus. To describe a supersymmetric 
cycle, we also need a U (1) flat connection DA over (7. If we parametrize C 
by coordinate functions xl,y2 and y3 as above, then we have 

DA = d + i Cjdx1 + ady2 + Pdy3) , 

for some real numbers S, /? and 7. 

Now let us define the transformation of (C,L). First, the mirror of 
M = B x F equals W = 5 x F where i*1 is the dual three torus to F. A 
point (xi,a;2,£3,yi,y25y3) = (x^y) £ W^ (note x = 2? here, by flatness of the 
metric) lies in the mirror lC,L) of the SUSY cycle (C, L) if and only if the 

flat connection which is obtained by the restriction of DA to x x CF twisted by 
the one form i ^ yjdyi is in fact trivial. That is, ady2 + /3dy3 + ^ yjdyi = 0. 
Using the equation (y^y2,^3) • (l,a, 6) = 7, we obtain that 

m   =   ayi - 5, 

ys    =   byi - (J. 

Or equivalently, C = CBXC^ withC^ = |(yi,y2,ys) = (1,a, b) yi - ^0,5,^J j 

and CB = {(^17^27^3) = (l,a,6)rci + (0,a,/?)}. In particular C is a holo- 
morphic curve in W. The last step would be to determine the U (1) connec- 
tion D^ on C. By essentially the same argument as above and the fact that 
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there is no transformation along the base direction, we obtain 

Dj = d + i (7^1 - -jdyi). 

Now the deformed Hermitian-Yang-Mills equation Im (a; + F^)n = 0 is equiv- 
alent to Fj = 0, which is obviously true for the above connection D^ on 

C. 

Case (ii), when dimyr (C) — 2. The restriction of TT to C express C as the 
total space of a two-parameter family of circles. As before, let us write the 
parametrizing surface S in B as x3 = / (a;1, a;2) and the one dimensional fiber 
over any point of it by y2 = g (a;1, a;2, y1) and y3 = h (a;1, a;2, y1). Namely C 
is parametrized by a;1, a;2 and y1 locally. 

Now the Lagrangian condition would imply that each fiber is an affine 
circle in T3 = F, among other things. On the other hand, the special 
condition Im (dz1 A dz2 A dz3) \c = 0 implies that the surface S CT3 — B 
satisfies a Monge-Ampere equation: 

det(V2/)=0. 

We would like to perform a transformation on C which would produce 
a complex surface in W together with a holomorphic bundle on it with 
a Hermitian-Yang-Mills connection. Notice that the deformed Hermitian- 
Yang-Mills equation in complex dimension two is the same as the Hermitian- 
Yang-Mills equation. To transform C in this case is not as straight forward 
as before because the equation governing the family of affine circles is more 
complicated. However the above equation should imply that / is an affine 
function which would then simplify the situation a lot. 

4    Correspondence of Moduli Spaces 

Vafa [15] has argued that the topological open string theory describing 
strings ending on an A-cycle is equivalent to the topological closed-string 
model on a Calabi-Yau with a bundle.3 Equating the effective string-field 
theories leads to the conjecture that the ordinary Chern-Simons theory on an 
A-cycle be equivalent to the holomorphic Chern-Simons theory on the trans- 
form B-cycle. Gopakumar and Vafa have verified equality of the partition 
functions for the dual resolutions of the conifold [5]. Further, all structures 
on the moduli spaces of branes must be equivalent. 

3In order to get a bundle, we consider only sections or multi-sections. 
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In the previous section, we used the Fourier-Mukai transform in the semi- 
flat case to identify moduli spaces of A- and B-cycles as a set. In this section, 
we extend our analysis to the Chern-Simons functional for connections which 
are not necessarily flat or integrable. Then we study and relate various geo- 
metric objects on the moduli spaces related by the transform. In particular, 
we verify Vafa's conjecture in this case. 

4.1     Chern-Simons functionals 

In this section, we show the equivalence of the relevant Chern-Simons func- 
tionals for corresponding pairs of super symmetric cycles in our semi-flat case. 
In fact, we will do this "off-shell," meaning that the equivalence holds even 
for connections which do not satisfy the flatness or integrability conditions, 
respectively. The argument is essentially the one given on pp. 4-5 of [6]. 

So, instead of flat connections, we consider a general U (1) connection 
d + A on the special Lagrangian section C in M, then the above transform 
will still produce a connection on W which might no longer be integrable. 
In real dimension three, flat connections of any rank can be characterized as 
those connections which are critical points of the Chern-Simons functional, 

CS (A) = f Tr (AdA + ^Asj 

To be precise, one would need to impose boundary condition or growth 
condition for A because C is not a closed manifold. 

There is also a complexified version of Chern-Simons for any holomorphic 
bundle E on a Calabi-Yau threefold W with holomorphic three form Q, ([3] 
[16]). Namely, if A is a Hermitian connection on E which might not be 
integrable, then the holomorphic Chern-Simons functional is given by 

CShol (A) =[ Trn A (ABA + | M)3 

Notice that CShol (A) depends only on the (0,1) component of A. As in the 
real case, A is a critical point for the holomorphic Chern-Simons if and only 
if Fjl   = 0, that is an integrable connection. 

As argued in [15] [16], the holomorphic Chern-Simons theory on W is 
conjectured to be mirror to the usual Chern-Simons theory on C C M, with 
instanton corrections given by holomorphic disks on M with boundary lying 
on C (as we will see in the next section, there are no such instantons in our 
setting).   In fact, we can directly check that the Fourier-Mukai transform 
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not only sends flat connections on C to integrable connections on W, but 
it preserves the Chern-Simons functional for an arbitrary connection on C 
which is not necessarily flat. Moreover, this holds true for connections of 
any rank over C. 

We consider C = < yJf = ^k-§^ \ C M as in section 3.1, and now d+A = 

d + iejc (x) dxk is an arbitrary rank r unitary connection on C. The real 
Fourier-Mukai transform of C alone (resp. C with the above connection) is 

the connection Ao = d+i<jtk-^dyj (resp. A = d+i ((^k^dyj + ek<^kdxj\) 

onW. 

Recall that {Ao) ' determines a holomorphic structure on a bundle over 
W, which we use as the background d operator in defining the holomorphic 
Chern-Simons functional. That is, CShoi (-4) — CShoi {A,AQ). In fact if we 
vary d continuously among holomorphic bundles, the holomorphic Chern- 
Simons functional remains the same. 

Now, 

CSHOL {A, Ao) = f TrQ A (B (d - ^^dz^j B+^ (B)s 

where B = (A - Ao)0'1 = %ek(/)jkd]^. Now 

f TrnB(f>jk-%dTiB   =    (const) [ TrM^Ld^B 
Jw dxk    3 v ) Jw dxJ    J 

=    - (const) / Tr (s2) dfdyidy^dys 

=   0. 

Here e = f e^^ dxk is a matrix-valued one form, and therefore Tr (e2) = 0. 
Using the fact that dB =|g|r (ek^k) dzidzj, we have 

CShoi(A,Ao)    =    (const) [ Trti A (BdB+1(B)3 

Jw \ * 

=    (const) /   Tr I ede + -e3 J dyid&dys 

=    (const) / Tr (AdA + -A3) 

=   (const) CS (A).    □ 

When the dimension of M is odd but bigger than three, the Fourier- 
Mukai transform still preserves the (holomorphic) Chern-Simons functional 
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even though their critical points are no longer flat (or integrable) connection. 

Instead the Euler-Lagrange equation is (FA)
71
 = 0 (or iFj^ ) = 0) where 

dimcM = m = 2n + l. 

4.2    Graded tangent spaces 

Transforming A-cycles to B-cycles is only the first step in understanding 
mirror symmetry with branes [15]. The next step would be to analyze the 
correspondence between the moduli spaces of cycles (branes). In the next 
two sections, we identify the graded tangent spaces and the holomorphic 
m forms on the two moduli spaces of supersymmetric cycles. Generally, 
this would involve holomorphic disk instanton contributions for the A-cycles 
(analgously to the usual mirror symmetry A-model), but in our simplified 
setting we now show these are absent.4 

Let D be a holomorphic disk whose boundary lies in the special La- 
grangian section C. Since we are in the local case, C is homeomorphic to a 
ball and we can find a closed disk D' C C with dD = dDf. Now using the 
assumption that C is a section and 7r2 (Tm) = 0, the closed surface DUDf is 
contractible in M. Therefore fDuDt w — 0 by Stokes theorem. Now J^, CJ = 0 
because D' lies inside a Lagrangian and JDUJ > 0 because it is the area of 
D. This is a contradiction. Hence there are no such holomorphic disks on 
M. 

First we discuss the graded tangent spaces of the moduli of A- and B- 
cycles. After that we verify that the real Fourier-Mukai transform does 
preserve them in the semi-flat case. 

For the A side, the tangent space to the moduli of special Lagrangians 
can be identified with the space of closed and co-closed one forms (we called 
such forms harmonic). This is proved by McLean [12]. We denote it by 
H1 (C,M). If DA is a flat U (r) connection on a bundle E over C, then the 
tangent space of the moduli of such connections at DA can be identified 
with the space of harmonic one forms with valued in ad(E). We denote it 
by Hl (C,ad(E)). When r - 1 the spaces H1 (C,ad(E)) and iHl (C,R) 
are the same. For r bigger than one, it is expected that H1 (C, ad(E)) 
is the tangent space at the non-reduced point rC: If there is a family of 
special Lagrangians in M converging to C with.multiplicity r, then it should 
determine a flat U (r) connection on an open dense set in C. This connection 
would extend to the whole C if those special Lagrangians in the family are 

4The following argument is a variation of the one given on pp. 25-26 of [16]. 
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branched covers of C in T*C. Then the tangent of this moduli space at rC 
should be H1 (C,ad(E)). It is useful to verify this statement. 

The graded tangent spaces are defined to be ®kHk (C, M) ® C, or more 
generally (BkHk (C,ad(E)) ® C, the space of harmonic k forms and those 
with coefficient in ad (E). 

On the B side, a cycle is a U (r) connection P 4 on a bundle £ over W 
whose curvature FA satisfies J7^ = 0 and lmeie (u 4- FA)

171
 = 0. If we 

replace the deformed Hermitian-Yang-Mills equation by the non-deformed 
one, then a tangent vector to this moduli space can be identified with an 
element B in ft0'1 (W,ad(£)) satisfying dB = 0 and S^A dB = 0. The 
second equation is equivalent to d*B = 0. That is B is a d-harmonic form 
of type (0,1) on W with valued in ad(£). The space of such B equals the 
sheaf cohomology Hl (W, End(E)) by Dolbeault theorem, provided W is 
compact. 

It is not difficult to see that a tangent vector B to the moduli of B-cycles 
is a deformed d-harmonic form in the following sense:5 

dB   =   0, 

Ime^ + ^r^AdS   =   0. 

In general a differential form B of type (0, q) is called a deformed S-harmonic 
form (compare [10]) if it satisfies 

dB   =   0, 

Ime^ + J^r^Adtf   =   0. 

We denote this space as Hq (W,End(£)). When the connection DA and 
the phase angle 9 are both trivial, a deformed 9-harmonic form is just 
an ordinary <9-harmonic form. It is useful to know if there is always a 
unique deformed <9-harmonic representative for each coholomology class in 
Hq (W, End (£)). One might want to require that CJ+FA is positive to ensure 
ellipticity of the equation. 

As argued in [15], mirror symmetry with bundles leads to an identification 
between H* (C,ad(E)) ® C and H* (W,End{£)) for each q.6 This can be 
verified in our situation as follows. For simplicity we assume that the phase 
angle 6 is zero and E is a line bundle. 

5If the rank of E is bigger than one, then we need to symmetrize the product in the 
second equation, as done in [10]. 

6In [15], the author uses Hk (W^EndiS)) instead of Hk (W,End(£)). 
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First we need to define the transformation from a degree q form on 
C C M to one on W. We need one transformation $ corresponding to 
deformations of special Lagrangians and another \I/ corresponding to defor- 
mations of its flat unitary bundle. 

W{C,ad(E))®C   ->   n0>q{W,End(£)) 

B1+iB2   H*   $ (Bi) +m (B2) 

If B is a g-form on the section C C M, in the coordinate system of x's we 
write S = ^bjlmm,jq (x) dx^1 • • • dx^q. It suffices to define the transformations 
for B = dxi, by naturality. The first (resp. second) transformation oidx^ is 

given by $ (£) - (^dyk)0,1 (resp. * (B) = (dz'")0,1 = (^d^)0,1). When 
5 equals one, these transformations are compatible with our identification of 
moduli spaces of A- and B-cycles. 

Now let B = E6j (x) dx^ be any one-form on C C M. Then we have B = 

$ (J5) = (Zbj^dyk)0'1 = iSbj (J) ^'^C Therefore <9£ = fE^ (6^- (£) ^) 

dzidzk and its vanishing is clearly equivalent to <iB = 0 under the coordi- 
nate change -^ = (f)lk -^. It is also easy to see that this equivalence between 
dB — 0 and dB = 0 holds true for any degree q form too. 

Our main task is to show that d*B — 0 if and only if Im (5 + JrA)rn~q A 
dB = 0 for any degree g form j5 on C C M and B = $ (5). Notice that, by 
type considerations, the latter condition is the same as Im d [(cD + TA)m~q B\ — 
0. 

Let B be any degree g form on the special Lagrangian C. Using the 
symplectic form a;, we obtain a g-vector field VB, i-e. a section of A9 (TM). 

Then using arguments as in [12] or [7], we have 

*B = ±LvB Imfi. 

Therefore d*B = 0 if and only if Imd(^Bf2) = 0 on C. If we write S = 
Efr*...;, (s) da^'i • ■ ■ dx^ then T,B = X%,..^lfcl • • • ^^■■■^.Soon 

C, we have 

LVBn    =    ^B (dx1 + idy1) A • • • A (dxm + idym) 

=    ±Xbjl...jqftlkl • • • </>>***{* Y[ (dxl + tdyz) 
l^h 

±*bn„,q^. • • ^H« n (d*1+^ (f^) dx* 
l^pki 



LEUNG, YAU and ZASLOW 1337 

Now we consider the corresponding B = $ (B) over W. Explicitly we 
have 

Therefore we consider the form (2 + TA)™'9
 & of type (m — q, m) on W: 

{Z + FA)m-qB 

=    (S (>'* + 'tfgfe) ^i A^Y"1 (i^bn...jq^ ■ ■ ■ ^d\ ■■■d\q). 

After the coordinate transformation ^ = (/>lk-^k^ it is now easy to see that 

Im(i[(S + J^)m~^] = 0 if and only if Imc/(^B0) = 0. That is, B is a 
co-closed form on C of degree q. So $ carries a harmonic g-form on C to 
a deformed harmonic (0, g)-form on W. Now if E is a higher rank vector 
bundle over C, then the only changes we need in the proof are B and VB 

now have valued in ad (E) and we would replace the exterior differentiation 
by covariant differentiation and also we need to symmetrize the product in 
the <9-harmonic equation. The proof of the equivalence for \I/ is similar, and 
we omit it. 

Therefore, we have proved that Bi -1- iB2 is a harmonic form of degree q 
over C if and only if $ (Bi) + i^ (B2) is a B-harmonic form of degree (0, q) 
over W. In particular $ + W maps H^ (C, ad (E)) ® C to H? (W, End (£)). 

4.3    Holomorphic m-forms on moduli spaces 

The moduli spaces of A-cycles and B-cycles on a Calabi-Yau m-fold have nat- 
ural holomorphic m-forms. As explained in [15], these m-forms, which inclde 
holomorphic disk instanton corrections on the A-cycle side, can be identified 
with physical correlation functions derived from the Chern-Simons partition 
function. Under Vafa's version of the mirror conjecture with bundles, these 
partition functions and correlators should be the same for any mirror pair M 
and W, at least in dimension three. In this section we recall the definitions 
of the holomorphic m-forms and verify this equality our semi-flat case. 

First we define a degree-m closed form on Map (C, M) by fc ev*ujm 

where u is the Kahler form on M and C x Map (C, M) —> M is the evalu- 
ation map. For simplicity we will pretend C is a closed manifold, otherwise 
suitable boundary condition is required. If v is a normal vector field along a 
Lagrangian immersion / E Map(C, M), then v determines an one form riv 

onC. At f e Map{C,M) we have fcev*u;m (vi, ...,vm) = JcriVlA...AriVrn... 
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Next we need to incorporate flat connections on C into the picture. We 
denote A (C) the afRne space of connections on C. On C x A (C) there is a 
naturally defined universal connection D and curvature F (see for example 
[10]). With respect to the decomposition of two forms on C x A(C) as 
n2 (C) + nl (C) ® n1 {A) + n2 {A), we write F = F2'0 + F1'1 +1^'2. Then for 
(x,A) E CxA(C) andu E TXC, Ben1 (C,End{E)), we have I^'0 (x,A) = 
FA, F1'1 (x,A)(u,B) = B(u) and IF^'2 = 0. We consider the following 
complex valued closed m form on Map (C, M) x A (C), 

^0= / Tr(e7;*a; + F)m. 

Since the tangent spaces of the moduli of special Lagrangian and the moduli 
of flat U (1) connections can both be identified with the space of harmonic 
one forms7. A tangent vector of the moduli space A-M {M) is a complex 
harmonic one form rj + i/x. Then ^£2 is given explicitly as follows 

Aft(rj1 + i^1,...,7]m + inrn) = / Trfai + i/i^A.-.A^ + i/O. 

On the W side we have universal connection and curvature on the space 
of connections A (W) as before and we have the following complex valued 
closed m form on A (FT), 

/ 
Jw 

Bn= /   ttATrF71. 
Jw 

As before, #£2 descends to a closed m form on BM {W), the moduli space 
of holomorphic bundles, or equivalently B-cycles, on W. It is conjectured 
by Vafa ([15]) that under mirror symmetry, these two forms A^ and #0 are 
equivalent after instanton correction by holomorphic disks. 

In our case, where M is semi-flat and C is a section, there is no holomor- 
phic disk. Also the real Fourier-Mukai transform gives mirror cycle. Now 
we can verify Vafa's conjecture in this situation. Namely ^£2 and #0 are 
preserved under the real Fourier-Mukai transform. 

For a closed one form on C which represents an infinitesimal variation of 
a A-cycle in M, we can write it as drj + idfj, for some function rj and /JL in x 
variables. Under the above real Fourier-Mukai transform, the corresponding 

infinitesimal variation of the mirror S-cycle is 8A — i [d-rdxj + d~:dyjj. 

7If the rank is greater than one, these harmonic forms will take values in the corre- 
sponding local system. 
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Therefore its (0,1) component is {SA)0'1 = f (-§3- + i^M-\ (dxj - idfij). So 

Bn(5Au...,8Am)   =    I a/\TrWn{5Au...,&Am) 
Jw 

=    I Cl/\[5A^--/\5Am)sym 
Jw 

=    (const) /   Hj (dry • + id[j,j) dyi-- dy^, 
Jw 

=    (const)' I  Uj (drjj + idfij) 
J c 

=    (const),An(dr)1+idfj,1,...,d'r)m + idiJ,m). 

Hence we are done. Note that the same argument also work for higher- 
rank flat unitary bundles over C. 

5    B-cycles in M are A-cycles in T*M 

We now show that a B-cycle in M can also be treated as a special Lagrangian 
cycle in the cotangent bundle X = T*M -^ M. We include this observation 
for its possible relevance to the recovery of "classical" mirror symmetry from 
the version with branes, as outlined briefly in [8]. The reader is be warned 
that the 2n-form that we use for the special condition on X may not be the 
most natural one. 

Recall that cotangent bundle of M, or any manifold, carries a natural 
symplectic form # = I!ldxk A du^ + T:dyk A dv^ where rr's and y's are local 
coordinates on M and u's and u's are the dual coordinates in T*M. Moreover 
the conormal bundle of submanifold C in M is a Lagrangian submanifold 
with respect to this symplectic form on X. There are a couple other natural 
closed two-forms on X: (i) the pullback of Kahler form from M, namely 7r*uj 
and (ii) the canonical holomorphic symplectic form 'dhoi via the identification 
between T*M and (T*M ® C)1,0. In term of local holomorphic coordinates 
zl,..., zn on M we have 

7r*uj   =   iT,gjjidzj A dzk, 

fihol    =    Hdz3 Adwj. 

Here z? = x-7 + iyi and Wj = Uj + ivj. We define the 2n form 0 on X using 
a combination of 7r*u; and fihol'- 

e = {7r*u + Im$hol)
n. 



1340 FROM SPECIAL LAGRANGIAN TO ... 

Notice that G0 = #2n and the restriction of 6 to the zero section is a 
constant multiple of the volume form on M... 

A Lagrangian submanifold S in X is called special Lagrangian if the 
restriction of 0 to 5 satisfies ImO = tan6Re© for some phase angle 9. 
Equivalently lme^0 vanishes on S. 

Next we consider a Hermitian line bundle L over M. Let DA be a 
Hermitian integrable connection on L, that is F^ = 0. With respect to a 
holomorphic trivialization of L, we can write DA = d+d+d(f) locally for some 
real valued function <f) (z, z). This determines a Lagrangian submanifold S = 

1 WJ ~ dzT :«? = ■"■' "">n r in ^ with respect to ??. Notice that the definition 
of S depends on the holomorphic trivialization of L. The restriction ^hoi to 
5 equals 

#hol\s    =    XdziAdfJ^L 

=    E-^Tdzj Adzk. 
ozWz1* 

This form is pure imaginary because 0 is a real valued function. Therefore 
the restriction of 0 to S equals 

e|s = 
E(^ + ^)^A^ 

= (u> + F)n . 

Therefore S is a special Lagrangian in X if and only if (L, DA) satisfies the 
deformed Hermitian-Yang-Mills equation on M. 
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