
©  2000 International Press 
Adv. Theor. Math. Phys. 4 (2000) 1259-1319 

On the General Structure of the 

Non-Abelian Born-Infeld Action 

L. Cornalba 

Ecole Normale Superieure 
Paris, France 

cor nalba@lp t. ens. fr 

Abstract 

We discuss the general structure of the non-abelian Born-Infeld 
action, together with all of the a' derivative corrections, in flat D- 
dimensional space-time. More specifically, we show how the connection 
between open strings propagating in background magnetic fields and 
gauge theories on non-commutative spaces can be used to constrain 
the form of the effective action for the massless modes of open strings 
at weak coupling. In particular, we exploit the invariance in form of the 
effective action under a change of non-commutativity scale of space- 
time to derive algebraic equations relating the various terms in the a' 
expansion. Moreover, we explicitly solve these equations in the simple 
case D — 2, and we show, in particular, how to construct the minimal 
invariant derivative extension of the NBI action. 

1    Introduction 

The dynamics of massless open string states propagating in flat space-time 
can be described, at weak string coupling, by an effective action 
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5(4) ~— [TrC(A) 
9s J 

which is function of a U(N) gauge potential A and where the lagrangian 
density C is, in general, an expansion in af written in terms of arbitrary 
powers of the curvature F and of its covariant derivatives. The action S 
has various equivalent interpretations. First of all, it reproduces, at tree 
level, the disk amplitudes computed directly in string theory. Secondly, the 
equations of motion derived from S correspond to the condition of confor- 
mal invariance of the open string sigma model with Wilson line interactions 
TrPexp (i JaE A) on the boundary <9£ of the string world-sheet. In fact, it 
was shown by Tseytlin and Andreev [4] that the effective action itself can be 
identified with the partition function of the cr-model. Finally we recall that, 
using T-duality, the action S(A) also describes the weak coupling dynamics 
of D-branes of all dimensions. 

New progress in the understanding of the general form of the effective 
action S has been made in a recent work by Seiberg and Witten. In [1] 
the authors show that, if the open string propagates in a space-time with 
a constant background NSNS two-form field JB, then the dynamics of the 
open-string modes can be described in two equivalent ways. Firstly, one 
can consider the original action 5, and add to the curvature F a central 
term B • 1. Alternatively, one can replace the original U(N) gauge theory 
by a gauge theory on a non-commutative space, with non-commutativity 
parameter 6 related to the background metric g and two-form B. The action 
then takes the same form as the original action S, with the gauge potential 
A replaced with the gauge potential A of a non-commutative gauge theory, 
and with products of fields replaced with Moyal products * with parameter 
6. More conjecturally, it is shown in [1] that one can in fact choose the 
parameter 8 freely by properly adjusting the central term $ • 1 added to the 
non-commutative curvature F. For each value of 0, the action describing the 
open-string dynamics has then the same exact form as the original action 
S. The parameter 6 is then a redundant parameter, since different values of 
6 correspond to the same underlying physics. On the other hand, the simple 
fact that the form of the action at various values of 6 is invariant imposes 
severe restrictions on the possible structure of the original action S. This 
paper is devoted to the understanding of those restrictions. Previous work 
on this subject is contained in [10, 11]. 

Before describing the results let us remark a basic fact. In order to attack 
the problem of invariance, one need not consider the full U(N) theory. In 
fact, if one restricts the attention to the U(l) case, but considers non-zero 
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values of the non-commutativity parameter 6, one is then considering a 
theory which is effectively non-abelian. From an algebraic point of view, the 
requirements imposed by form-invariance of the action are identical in the 
17(1) and U{N) case as soon as 9 ^ 0. For this reason we work throughout in 
the U(l) case, but the results will, at the end, be valid in the general U(N) 
setting. It is really quite remarkable that the simpler abelian theory contains, 
in an subtle way indeed, the complete information about the general non- 
abelian theory. 

Let us now describe the general results of this paper. As just remarked, 
they are valid in the general non-abelian i7(iV) setting. An invariant action 
S is given as a linear combination S — J2ici^i 0^ basic actions J^, which 
we call invariant blocks. A single block / has itself the following structure. 
First write / as an expansion in a', as 

I<xj:(a')LIL 
L>P 

where we call a term proportional to (a') a term of level L. The lowest level 
term Ip is a pure derivative term. The precise meaning of this notion will 
be given later in the paper, but informally we can say that pure derivative 
terms are those which are invariant under addition of a central term to the 
curvature F (the basic example is the F2 term at level P = 2). The higher 
level terms II are then needed in order to achieve invariance of the full 
action I under a change of the parameter 9. The basic result of this paper is 
to reduce the question of invariance to a set of algebraic equations relating 
the various terms II- In particular, we will show that the requirement of 
invariance can be rephrased in terms of four basic algebraic operators 

which depend on an arbitrary antisymmetric matrix Aa^ and which satisfy 
the basic commutation relations 

[A,A] = [M] = 2L-!, (1) 

where D is the dimension of space-time.  The various terms II then must 
satisfy the equations 

_A/L   =   SJL+X (2) 

A/L+1   =   SIL. 

A term of lowest level satisfies then Alp = Sip = 0. 
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We also show in this paper how the above equations can be explicitly 
solved in D = 2. This is clearly a toy model, since gauge-bosons in two 
dimensions do not have propagating degrees of freedom. On the other hand, 
the algebraic equations are perfectly well defined in dimension 2, and are 
highly non-trivial. This model is useful for a variety of reasons. First of 
all, one can show that, starting from the lowest level F2 term, one can 
reconstruct the full BI action, plus a minimal set of derivative corrections 
which are required for invariance of the action (we show that derivative 
corrections already enter at level 4). Similarly, one expects that the invariant 
block built from F2 in general dimension D will be the minimal derivative 
extension of the NBI action. Finally, the construction in D = 2 is a first 
indication of how to solve the equations (2) in the general case. 

We have said that the action S is a linear combination of invariant blocks. 
The specific coefficients are not constrained by the methods of this paper, 
and should be determined by other means. However let us note that none 
of the arguments which follow rely on supersymmetry, and therefore we 
expect supersymmetry to impose constraints on the coefficients themselves, 
restricting even more the set of allowed forms of the action. 

We shall now describe the contents of this paper. First let me note that 
section 5.2 contains a concise summary of the results, which includes the 
main equations in the text. The structure of the paper is as follows. In 
section 2 we review the general structure of the action 5, as can be inferred 
from the analysis of scattering amplitudes of gauge bosons. We then use this 
knowledge in section 3 to rewrite the effective action as a matrix action. In 
doing so, we review the general form of the Seiberg-Witten map which relates 
commutative and non-commutative gauge potentials, and we introduce the 
formal algebraic machinery which is required in the sequel of the paper. We 
also derive the second equation in (2). Section 4 is then devoted to rewriting 
the results of section 3 in an invariant operator language. The purpose is 
two-fold. On one side, the structure of the action becomes more transparent. 
Moreover, in this setting, the question of invariance from 9 is more easily 
understood and solved. Section 5 then applies the results of section 4 to the 
specific problem at hand, and completes the derivation of the equations (2), 
together with the basic commutator (1). Section 6 is then devoted to the 
explicit solution of equations (2) in the case of D = 2. We conclude in section 
7 with discussion and comments on open problems for future research. 

The results of this paper require, together with the general discussion, 
a considerable number of technical lemmata. We have tried to limit the 
technical discussion to a minimum in the main body of the paper, leaving 
the precise proofs of many statements to a rather large appendix. 
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2    The General Form of the Effective Action 

We consider an open string propagating in flat jD-dimensional space-time 
M with coordinates xa and with constant metric g^. Throughout the paper 
we use units such that 

27ra' - 1. 

We concentrate on the physics of the massless U(N) gauge bosons, to 
lowest order in the string coupling constant gs. The amplitude A{pI) for the 
scattering of n gluons with momenta p1 - with g^p^pl = 0 - is computed 
starting from the disk n-point function of the corresponding vertex opera- 
tors, cyclically ordered on the boundary of the string world-sheet, and then 
by summing over the cyclically inequivalent orderings. More precisely, one 
has that 

.A(p')~0r2   E  wv">pffn) 
cr cyclically 
inequivalent 

where Fg depends on the metric g and is invariant under cyclic permutations 
of the arguments1. 

One can equivalently summarize the information about disk amplitudes 
by introducing an effective action S(A), function of a U(N) connection A on 
M, such that the tree level amplitudes of S are equal to the disk amplitudes 
A. The general form of the action S is well known and reads 

^ [*>, 
9s J 

S(A, g, 9s) = — I dux det f gab ( 1 + \FabFcdg
ac9bd + ■••).        (3) 

We have absorbed any numerical prefactor in the definition of gs. Moreover, 
the terms hidden in • • • contain both higher powers of the field strength and 
derivative terms2. As a note on conventions, in all that follows actions will 
always be written assuming a Euclidean signature of the metric. 

1We omit explicit reference to polarizations. 
2Various facts are known about the terms in (3).   First of all, in the U(l) case, the 

terms without derivatives resum to the Born-Infeld lagrangian [14, 12] 

5(A) = — [ dDx det i {g + F). 
Qs J 

In the non-abelian case even the non-derivative terms are not completely known. At 
order FA the computation can be explicitly carried out in string theory, and the result is 
proportional to [5] 

Tr (FabFcbFadFcd + ^FabFcbFcdFad - ^FabFabFcdFcd - ^FabFcdFabFcd J . 
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Let us now introduce a constant background NS-NS two-form field B^. 
In the presence of open strings, a constant field B is not pure gauge and 
does affect the dynamics of the gauge bosons. In particular, the effects have 
been very clearly analyzed in [1, 2] and can be summarized as follows 

• The momenta of the asymptotic gluon states satisfy a modified on-shell 
condition. More precisely, gluons are massless with respect to an effec- 
tive open string metric G — g — B^B and therefore the corresponding 

momenta satisfy GabPaPb — 0. 

The effective coupling constant is modified to an open string value of 
Gs = Qs det 2Gdet "h (g + B) 

Finally, the disk scattering amplitudes are modified by momentum 
dependent phase factors. In particular, in terms of the antisymmetric 
matrix #_1 = B — g-j^g, the amplitudes are given by 

^(p/)~G?-2      53     ^(p'V" ,pff»)e-^oi£'>-'IW       (5) 
cr cyclically 
inequivalent 

The above dynamics can again be summarized in tree diagrams of a 
modified effective action which can be written, starting from (3), in various 
different but equivalent ways . Let me briefly review the various options: 

At higher orders in F, the more reasonable proposal is a natural extension of the Born- 
Infeld action proposed by Tseytlin [5] in terms of a symmetrized trace prescription 

S{A) = — f dDx det i {g + F). (4) 
9s   J 

The above prescription not only matches (up to order F4) with the scattering computations 
in superstring theory, but also matches results for D-brane actions derived within matrix 
theory. [17, 18]. On the other hand, it is known that the symmetrized trace prescription 
is incomplete at order F6. In [19], the authors study the spectra of excitations around 
diagonal and intersecting D-brane configurations on tori, and find discrepancies with the 
prescription (4). The correction terms at order a'3 have been explicitly computed in [20]. 

Some derivative corrections are known, both in the U (1) case, as well as in the non- 
abelian setting. For the U(l) theory, some derivative terms have been computed [4]. In 
particular, for bosonic open string theory, the authors find terms at order F2dFdF. Still in 
[4], derivative correction in superstring theory at order F2ddFddF are discussed. In [21], 
the author finds derivative corrections at order F5 (and FSD2F), proportional to C(3), 
by studying 5-point disk amplitudes. Finally, in the bosonic theory, there is a known 
derivative term at order F3 which is proportional to 

Tr(Fab[Fbc,Fca]). 
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1. On one hand, one can follow the usual prescription by starting with 
the action (3) and by simply adding to the field strength F the central 
term B • 1. 

2. On the other hand, one can follow the ideas of [1]. In this case, one 
considers the action (3) with the replacements g^ —> G^ and^s —> 
Gs. This correctly reproduces the modified gauge coupling and the 
modified mass-shell condition. Phase factors in (5) are reproduced 
by reinterpreting the matrix 6 as a non-commutative scale of space- 
time, and substituting, in the action (3), ordinary products of fields 
with Moyal products in terms of 9. Correspondingly, the U(N) gauge 
potential A is now mapped into a gauge potential 

of a U{N) non-commutative gauge theory, and the gauge group is 
modified accordingly. We will call the map Asw the Seiberg-Witten 
map. 

NOTATION. We have denoted in (3) by S{A,9,gs) the effective action 
at zero B field, as a function of the gauge potential, the metric, and the 
coupling constant. At finite I?, there are two new relevant parameters 
in the description of the action - a possible central term added to the 
curvature, and a possible non-commutativity parameter. In general, 
the action will then depend on five parameters 

^(potential, metric, coupling, central term, NC paramter). 

Then the equivalence of the descriptions 1 and 2 above is just 

S(A,5,<78)B,O) = S,(A,G,G„O,0). 

3. Finally, one can follow a naive procedure, which is usually not consid- 
ered, but which will be important for our future discussion. In fact, 
this procedure is the most natural one if we are given only the informa- 
tion about the amplitudes (5), without any reference to an underlying 
string theory. Specifically, we may wish to reproduce directly the am- 
plitudes (5) using a standard U(N) theory, without using any previous 
information about the theory at zero B. Firstly, the kinetic term of 
the theory must be 

^ j dDx det ^Gab (^GacGbdFabFc^ (6) 
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in order to reproduce the correct mass-shell condition. We can write 
the above equation in a more suggestive form by introducing the matrix 
F = g+B and by first noting that, since Tr (F A F) is a total derivative, 
then 

f dDxTr (FabFcd + FacFdb + FadFbc) = 0. 

This identity, together with the facts that 2Gab = Tab + rba and that 
Gj1 det 2G = gj'1 det 2r, can be used to show that the kinetic term 
(6) is equal to 

fdDx det tTab ( ^racraoFabFcd + i;ra0Fabr
caFcd — fdDx det2Tab (-V

ac^db^ - * • '   ^afc^.-pcd 
98 J V4 

The above is nothing but the quadratic term coming from the expan- 
sion of the Born-Infeld action y/g + B + F = y/T + F. The matrix T, 
which is not symmetric, now plays the role of the metric and there- 
fore more tensor structures are possible (in fact, the expansion of the 
BI action includes all powers of F, including the odd ones). In some 
sense, we have traded the central term B • 1 added to the curvature F 
with an addition to the metric g —¥ g + B, by allowing metrics to be 
non-symmetric. This invariance is natural from the point of view of 
the open string a-model 

f gabdXadXb + f B+ f   A 
JY, JY, JdT, 

where we see, using J^E A — JE F, that only the combination g-\-B + F 
has an invariant meaning. We are then led to conclude that there is an 
extension of (3) in the case of a non-symmetric metric F of the general 
form 

/ dDx det 2ra6 
9s 

1 - l-YabFab + (7) 

which reproduces the amplitudes (5). Moreover, we claim that all con- 
tractions of indices in • • • are done with Yab (no terms containing Yab). 
This fact can be shown starting with (5). In fact, these amplitudes are 
just functions of G~l and 0, which only depend on Tab. This shows 
that the amplitudes do not depend on Yab. To show the same fact for 
the vertices of the action, we must show that the subtractions coming 
from poles in the various subchannels also share the same property. 
The only problems could come from internal propagators p~2Gab. We 
recall though that [1], for amplitudes of the form (5), a general tree 
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graph is computed by first analyzing the graph at 6 — 0, and then by 
multiplying it by a phase factor depending only on external momenta. 
Moreover, the graph at 6 — 0 has all propagators p~2Gab contracted 
with metrics Gab on the vertices, thus proving that the subtraction is 
again just a function of G_1 and 6. Using the general form (7) of the 
action we can then give a meaning to the function S when the metric 
is not symmetric. We can then summarize the equality of descriptions 
1 and 3 by saying that 

S(A,g,g3,B,0) = S(A,g + B,g8,0,0). 

We have then seen that we can trade a central term B • 1 with either 
a non-commutativity parameter 9 or with an addition g -> g + B to the 
metric. It is natural (following [1, 15]) to conjecture that, in fact, one has a 
continuous family of possibilities, parametrized by a central term $ • 1 and 
by a free parameter 9. The effective non-symmetric metric F then combines 
with the central term $ into the invariant combination r+$, which, following 
again [1], is given by 

1 +. i 

r+$ g+B 

The effective coupling again depends only on the sum F + $, and is given by 

—- det 2 (F + $) - — det 2 (g + B). 
(Js 9s 

Finally, the gauge potential is given by the Seiberg-Witten map A = AswiA, 9). 
The action S(A, F, G5, $, 9) is then independent of $ and 9. 

3    The Effective Action as a Matrix Action 

In this section we continue our general analysis of the effective action 5, 
but we restrict our attention to the U(l) case. As already noted in the 
introduction, whenever the non-commutativity scale 9 is non-zero, the U(l) 
case contains the physics of the full U(N) theory, and we therefore lose 
nothing in concentrating on the effective action for N = 1. 

3.1    Choosing the central term 

In the previous section we have argued that the effective action describing the 
dynamics of gluons in space-time is given by a function S(A, F, Gs, $, 9) of 
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five arguments - i.e. the gauge potential A, the generalized non-symmetric 
metric F, the coupling Gs, the central term $ and the non-commutativity 
parameter 9. 

The arguments of the action S are not all independent, since physically 
different backgrounds are parametrized only by the closed string parameters 
A, g + B and gs, which we keep fixed. In fact, the same physical situation 
corresponds to a family of different values of the arguments of 5, parame- 
terized by $ and 0, which we consider as free parameters. The remaining 
variables A, F and Gs are then determined, in terms of the fixed closed string 
parameters, by the equations 

A   =   Asw(A,e) 

-J- det £ (F + $)    =    — det * (g + B). (9) 
Gs gs 

The action S is then independent of $ and 8. 

We use this freedom to choose the central term $. Throughout the paper 
we will denote with K the inverse of 0 

Using the independence of S on $, we set 

$ = -#. 

The only free parameter is then the non-commutativity scale 9. 

Equation (8) can be easily rewritten in terms of the combination 

1=g+B-K 

and reads 

r = -K-K. (10) 
7 

Finally equation (9), which determines the coupling, becomes 

-^ det 2 r = —det iff. (11) 
Gs 9s 
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3.2    A matrix action 

Let us now consider the expression for the field strength F and its covariant 
derivatives. We start by introducing the coordinate functions 

and the combinations 

Xa   =   6ab\b = xa + 9abAb. 

Note that we raise and lower indices with the matrix 0, K. Using the simple 
fact that, for any function /, 

daf = -i[xaJ], 

we quickly see that the commutator — i[Aa, A&] is given by 

-^[Aa, Aft]     =     Fafc - ^5 

=     Fab + ^ab 

and therefore computes the field strength with the addition of the correct 
central term. Moreover, for any function / which transforms in the adjoint 
representation of the non-commutative gauge group, the commutator 

-*[Aa,/]    =   daf-i[AaJ] 

=     Daf 

computes the covariant derivative Daf. Therefore, any expression involving 
products of covariant derivatives of the field strength, with the addition of 
the central term $ = — if, can be expressed in terms of • products of the 
functions Aa - for example, an expression like (F + $)aft * DC(F + $)rfe can 
be rewritten as i[Aa, A&] • [Ac, [A^, Ag]]. We conclude that the general form of 
the effective action S is 

j- J^ j'dDxdet*r  (Aai*.--*AaB)7/ai-a 

n even 

where the coefficients rf1'"0,71 are constructed from the matrix ra6. We may 
further manipulate the above equation using (10) and (11) and raising and 
lowering indices with the matrix O^K. We can then write 

5=— Y^   [dDxdet2K   (A1*---*An)rh...„ (12) 
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We have used a compact notation for indices, which will be used extensively 
in the sequel, substituting ai -> 1, 0,2 -» 2, • • •. Moreover, the symbol 
^i-n represents the tensor which is built from the matrix 7afo exactly as 
r]l"'n is constructed starting from Tah. For example, if 771234 = r13r24 then 

771234 =713724- 

REMARK . Let us recall that, in the general U (N) effective action, the distinction 
between derivative and non-derivative terms is ambiguous, since a commutator of 
covariant derivatives (DaDt — D^DQ) • • • is equivalent to a commutator with the 
field strength [i^ftj''' ]• I*1 fact, when one writes the action in matrix form as in 
(12), all terms (derivative and non-derivative) are included on an equal footing. In 
particular, the ambiguity discussed above becomes naturally the Jacobi identity of 
the commutator [Aa, A ]. 

3.3     Gauge invariance and invariance under addition of a cen- 
tral term 

In the previous subsection we have rewritten the action S in the compact 
form (12), which is more suited for discussing the action in its entirety, in- 
cluding terms with arbitrary powers of the field strength and with arbitrary 
number of derivatives. On the other hand, the gauge invariance of the origi- 
nal action is not immediately transparent in this new notation, and one needs 
to restate the requirement of gauge invariance in terms of the tensors 77i...n. 
This is easily done by noting that the functions Aa, when used in covariant 
expressions, always appear within commutators, and therefore adding a con- 
stant ea to the function Aa does not change the action. Gauge invariance 
becomes then, within the matrix formulation (12) of the action, invariance 
under translations Aa —> Xa + ea. This requirement quickly translates into 
the following algebraic relation which must be satisfied by the tensors 77 

*7l23...n + *7213...n + %31-n + ' ' ' + ^S-ln + %3-nl = 0. (13) 

We will call tensors satisfying the above equation gauge invariant (GI). 

In order to rewrite the effective action as a matrix action, we had fixed, 
in section 3.2, the central term $ to —K. We must then require by hand 
that the action (12) be independent of the choice of central term. This re- 
quirement will again be written as an algebraic identity involving the tensors 

Let us then add a small central term n^ to Fa&, and at the same time 
subtract the same tta& from the effective metric ra&-  The two effects must 
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compensate each other, yielding a vanishing total variation of the action. 
Adding K to F means that 

-z[Aa, A6] -> -i[\a, A6] + Aa6, (14) 

with 

A = -6K6. 

Therefore, a term with n + 2 coordinate functions Aa will go into a term with 
n functions Aa. More precisely, the variation of a term 

(A1*---*A"+2)r?1...„+2 

will be of the form 

where (Ar?^ is again gauge invariant and depends on v7i...n+2 arl(i on 

Aa6. We will show in the appendix (Lemma 6) that 

(^) l-n = -^ hl-nab + Vl-anb + "') , (15) 

where ••• indicates all the terms with the indices I,--- ,n in increasing 
order, and the two contracted indices a, b in all possible positions with a 
preceding b. Let us just note that, for n = 2, the above result follows from 
(14), since a gauge invariant rjab is necessarily antisymmetric, and therefore 
Aa*ASa6 = i[Aa,A6K6. 

As noted previously, the variation (14) must be compensated by a corre- 
sponding change in the metric F -> F — K. In particular, in expression (12) 
this will affect both the measure of integration and the tensors 771...n. The 
measure changes by 

det^r-^det2r(l + ^a6r
a6 

and the tensors by 

8 

Noting that Kabr
ab = 'yabA

ab and that 

9 /   A   ^       d 

dVab djab 
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we then conclude that the variation of a term (A1 * • • • * An) rii...n will be 

where 

d 5=\{:rabA
ab)+(1A1)ab 

#7, ab 

Let us now combine the two variations. To this end, recall that the sum 
of terms in (12) runs only over even values of n. In particular we will say 
that a tensor r)l... 2L wtth 2L indices is of level L, and we will denote it with 
r]L. The operator A lowers level by one, whereas S leaves the level invariant. 
In order to balance the two variations A and 6 and to have invariance under 
a change of the central term we must then have that3 

Ar7L+1 = 5r}L. 

3.4    The Seiberg-Witten map following Jurco and Schupp 

In section 3.2, we have written the action S in terms of the functions 
Aa, which implicitly depend on the non-commutative gauge potential A = 
Asw(Ai8). In order to analyze the independence of the action from the 
non-commutativity parameter 0, it is convenient, as will become clear later, 
to rewrite S in terms of the ^-independent abelian potential A. To this end, 
we follow the analysis of Jurco and Schupp [8], whose work describes the 
Seiberg-Witten map Asw in cm invariant way, which is best suited for our 
purposes. Most of this section is then nothing but a review of the ideas of 
[8], rewritten in the notation of this paper. 

First recall that, on the manifold M, one can define, in a natural way, 
two distinct symplectic structures, defined by the two form K and by the 
combination 

u = K + F, 

where F = dA is the usual abelian field strength. Since F is exact, the forms 
K and u define the same class in cohomology, and therefore, by Darboux's 
lemma; there is a diffeomorphism A : M —> M such that 

\*UJ = K. (16) 

3We have checked invariance of the action under infinitesimal changes of $ around 
$ = — K. On the other hand, this is sufficient, since invariance under variation of the 
central term is a property of the structure of the action, property which is independent of 
the specific value of <£. 
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Starting from the two symplectic structures if, CJ, one can, first of all, 
define the corresponding Poisson brackets 

{/, 9}K = Oabdafdbg {/, g}^ = (oj-^dafObg. 

It is clear that the two brackets are related by the diffeomorphism A. More 
precisely, for any two functions /, g, one has the trivial identity 

A*{/^}«=.{A7,A^}« (17) 

where A*/ = / o A. 

From the two symplectic structures K and u one can also construct, 
following Kontsevich [9], associated star-products 

In particular, *K is nothing but the usual Moyal product, since in the coor- 
dinates xa the symplectic structure K is constant. The product ^ is, on the 
other hand, the full product of Kontsevich, which is expressed in terms of 
a complicated diagrammatic expression involving derivatives of the Poisson 
structure a;"1, and for which there is an elegant path-integral expression, by 
Cattaneo and Felder [7]. In what follows, we will not need the explicit form 
for ^ On the other hand, since K and UJ are related by diffeomorphism, 
it is a general result of Kontsevich that the two products *# and ^ are 
equivalent. More precisely, there is a map T defined on functions such that, 
for and functions / and g, 

T(f*UJg)=Tf*KTg. (18) 

The above expression is the analogue of expression (17), and in fact one can 
show that4 

T = A*(1 + •■•), (19) 

where • • • are higher order terms (more precisely, if we replace K, UJ -> 
^K, ^CJ, then the terms in • • • are higher order in ft). 

Given these facts, one can define, in terms of T, the Seiberg-Witten map 
as follows 

Aa = Txa = xa + 9abAb. 

4We thank A. Cattaneo for pointing out that (19) is a simple consequence of formality, 
as defined in [9]. 
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We need to check that the map Asw implicitly defined above maps gauge 
orbits of the abelian theory to gauge orbits of the non-commutative theory. 
On one side, it is clear that different abelian potentials A which are gauge- 
equivalent do give the same map A, since T is only defined in terms of 
the combination CJ, which is itself gauge-invariant. Moreover, on the non- 
commutative side, we note that the map T defined in (18) is only defined up 
to transformations 

Tf^A*KTf*KA-\ (20) 

which leave (18) invariant5. This in turn generates gauge transformations 

Aa->Aa + iA*K daA~l + k*KAa*K A-1, 

therefore showing that the transformation Asw does map gauge orbits into 
gauge orbits. 

3.5    Integration 

In the previous section we have reviewed the Jurco-Schupp construction 
of the Seiberg-Witten map. In this section we wish to discuss some issues 
about integration of functions over M which are closely related to the discus- 
sion in the previous section, and which will be important in our subsequent 
discussion. 

Corresponding to the two symplectic structures K, u, one has two volume- 
forms on M, respectively dDx det ^K and dDx det 20;, which are related by 
the map A.   More specifically, if / is a generic function which vanishes at 
infinity, using the fact that A*a; = K, it is immediate to show that 

! dDx det hK A*/ =  ! dDx det 20; /. 

Similarly, we may consider, recalling from (19) that T ~ A*, the correspond- 
ing integral of Tf. We then have, in general, that 

f dDx det *K Tf= f dDx V{u)) /, (21) 

5The infinitesimal version of equation (20) is given by Tf -¥ Tf+[p, Tf]K- This change 
of T is analogous to the fact that the map A is defined up to symplectomorphisms of the 
manifold (M, K). In fact, if x '• M -* M is such that x*K — K> then the composite map 
Ao^ still satisfies (16). Recalling that symplectomorphisms are generated by Hamiltonian 
flows, the change A* -» (A o x)* is given infinitesimally by A*/ —> X* f + {p, A*/}ir- 
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where V(<JO) is a volume element depending on uo and its derivatives, of the 
general form 

V{u) = det 20; (1 + •■■)> 

where ••• denotes, as in (19), higher order derivative corrections in a;-1 

which vanish if u; is constant. Let me note that, since / dDx det 2 K f^KQ — 

J dPx det 2 if g+Kf, the ambiguity (20) in the definition of T does not affect 
the definition (21) of V(a;), which really only depends on the symplectic 
structure UJ. Moreover, from the definition (18) of T, we have in general 
that 

j dDx V{ui) f*„g = JdDx V(u>) g*uf. 

The explicit form of V(u) is not know. On the other hand we will show in 
the rest of the paper that some properties of V(UJ) can be proven indirectly, 
and this will suffice for our purposes. 

3.6    Back to the matrix action 

In this section we use the results just discussed on the Seiberg-Witten map 
and on integration to rewrite the action (12) 

^S n even ^ 

in an almost final form (we are now showing in the star-products *K the 
explicit dependence on the symplectic structure). Using the facts that Aa — 
Txa and that T (/ ^ g) = Tf *K Tg, one quickly sees that 

(A1 *K '' • *K An) = T (xl *„••'*„ xn) . 

Using then equation (21) on integration one concludes that the action (12) 
can be rewritten as 

S=- E   [dDxV(u)   (a;1*w---*u,<K...n- 
^S n even ^ 

The above action is written almost exclusively in terms of the closed string 
parameters A^g-\-B and gs. Moreover it is explicitly a gauge invariant func- 
tion of A, since the dependence on the gauge potential is uniquely through 
the gauge invariant expression u = K + F. On the other hand, the action S 
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above still depends on the parameter 0, through the definition of CJ - which 

effects -ku and V{<JJ) - and through the effective metric 7 = g + B — K - 
which is the building block for the tensors 77. However the action S must be 
independent of 6, and the analysis of this requirement will be the subject of 
the rest of the paper. 

REMARK . We are now in a position to give some very intuitive arguments for the 
appearance of the full Kontsevich product in the effective action. The arguments 
which follow are vague and not precise. On the other hand, they provide a useful 
intuition, which, if made rigorous, could be of importance. 

Let us start by recalling [3, 4] that the effective action can be considered as the 
partition function for an open string sigma model 

S{A) oc f DX e-Is-lA (22) 

where 

Is   =   A f 9abdXadXb 

IA   =    f B+ f   A 

If we consider the naive limit af —> 0, the term Is dominates, and we should 
consider I A as a perturbation. On the other hand, we recall that, in [1], Seiberg 
and Witten consider the limit o1 ^Qab —* 0, with gab/c/ —>> 0. Therefore, in this 
case, the dominating term is I A- We also note that 

IA = J(B + F) (23) 

and that the above is nothing but the Cattaneo-Felder model [7] 

1 

/ 
riaAdXa + -aM(X)r,aAr,b 

in the special case of invertible Poisson structure aa , with a = B + F. In 
this case, one can integrate out the one-forms %, which appear quadratically, and 
recover (23). We recall that the perturbation theory of the Cattaneo-Felder model 
generates the Kontsevich graphs, which are the basis of the product *B+F' One 
then expects (in an undoubtedly vague way) to obtain effective actions based on 

the full Kontsevich product. Moreover one expects to obtain, among the various 
products considered in [9], the simplest one, defined using the harmonic angle map. 
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Along the same lines one could also expand (22) in powers of Is and obtain an 
expansion like 

fox e-lAIsIs~ IdDxV{u) [xaA^[xc,x%ga :9bd 

where the RHS above is nothing but the F   term in the action, which dominates 
in the a7 ->> 0 limit of [1]. 

3.7    Behavior at infinity and cyclic tensors 

We have seen that the general action describing the dynamics of gauge fields 
is of the form 

- J2   [dDx.V(u>)   (x1*a,---*a,Or?1...n (24) 
^S n even ^ 

Let us now proceed by first concentrating on a single term in the sum (24). 
In particular let us focus on the expression 

r)(x) = xl +U • ■ • *„ xn Tj!..^ 

The above clearly defined a function rj of the coordinates re, which is written 
in terms of a;-1 and its derivatives. We will assume throughout the paper 
that 

F(x) -* 0 when x —> oo 

This implies that, for large x, the symplectic structure UJ —> K becomes 
constant, and that the star-product ^ becomes the Moyal product ^K with 
respect to 9. In general then, for x —> oo, the function r)(x) is a polynomial 
of degree n in the coordinates xa. If we assume further that r]^.^ is a gauge 
invariant tensor, then we can quickly see that, again for x -> oo, 

r){x + e) - r) (x) = e1x2 *K---*KXn (Vn-n + mi-n + ■■■) = 0 

and therefore the function 77(x) approaches a constant rj^ at infinity. Sim- 
ilarly, the volume form V(UJ) converges to the constant det 2 K as x -> 00. 
It is then clear that the integral fdDxV(uj)rj in general diverges unless 
r/oo = 0. In order to define the action properly we should replace 

I dDxV(uJ)r] -»■ I dDxV(u) [V - 77J (25) 

thereby eliminating the infinities coming from integration over an infinite 
world-volume.   Let me note that, since Tl = 1, one has JdDxV(u) = 



1278 ON THE GENERAL STRUCTURE ... 

J dDxdet 2 if, and therefore the subtraction (25) is independent of F. Re- 
placement (25) is then nothing but a constant addition to the action. 

We will now show how the subtraction (25) can be achieved in an invari- 
ant way, without explicitly considering the behavior at infinity. First let us 
recall that, for functions / and g which vanish at infinity, we have that 

JdDxV(cv) f*UJg = JdDxV(u) g*„f. 

We are therefore tempted to say that the integral / dDx V(u)) (xl *UJ- — *{Jj x
n) 

is invariant under cyclic permutations of the indices 1,2, • • • , n. This is, on 
the other hand, not quite correct, since the coordinate functions xa which 
enter in expression (24) clearly do not vanish for x —> oo. Nonetheless let us, 
for the moment, blindly assume cyclicity of the integral. We may then sub- 
stitute, in expression (24) for the action, the tensors 77i...n with the cyclically 
symmetrized tensors 

Tl...n = - (*h...n + cycl...n) , (26) 
lb 

where cyci...n denotes the sum over cyclic permutations of the indices 1, • • • , n. 
Gauge invariance of the tensors 77 then translates into the following algebraic 
property satisfied by the tensors r 

T123-71 + r213-n + T231-n H h T23...1n = 0- (27) 

Note that the above expression is very similar to (13), with the only difference 
that the moving index 1 runs only over the cyclically independent orderings, 
and therefore the last term in (13) is absent in (27). Tensors which satisfy 
the above relation will be called cyclic gauge invariant (CGI). We leave the 
proof of (27) to the appendix (Lemma 1). 

We may now consider, similarly to the previous analysis, the function 

T\Xj — X   "k^ ' ' ' "kfjj X    T\...>n 

and in particular its behavior at infinity. As shown in the appendix (Lemma 
2), for n even (which is the case relevant to equation (24)) one has that 

T(X) -± 0 

for x -» 00. Therefore the integral 

dDxV(u))T 
/■ 
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is well defined.   Moreover we will show in the appendix (Lemma 3) that, 
generically, one has that 

I dDxV{uj)T = J dDxV(w) [T? - r? J 

so that we have lost nothing by assuming cyclicity6. In fact, using cyclic 
gauge invariant tensors, the subtraction which was needed in (25) in order 
to properly define the action S(A) is automatically incorporated into the 
formalism. We will therefore consider, from now on, the final form of the 
action 

S - - ]r   I dDx V{u))   {xl *„■•■•„ xn) Ti...n (28) 
^s n even ^ 

where the tensors r are cyclic gauge invariant. 

We have seen in section 3.3 that, in order for the tensors 77 to define an 
action, they had to be gauge invariant and they had to satisfy A?7L+1 = 
6r)L. These two properties impose restrictions on the cyclically symmetrized 
tensors r. Gauge invariance of the 77's implies cyclic gauge invariance of the 
T'S. The equation A?7L+1 = l)r)L implies a similar equation for the r's, which 
we now describe. 

Consider a gauge invariant tensor ^i...n+2- We can construct, given Aab 

and equation (15), the tensor (Ar?^ , which is also gauge invariant for any 
choice of Aab. We may then consider the cyclically symmetric combination 
Si-"n — ^ {^Vi-n + cyci•••7i)> which will be a cyclic gauge invariant tensor. 
At first sight the tensor gi...n is a function of the original tensor r/1...n+25 but, 
as we will prove in the appendix (Lemma 7), it is actually just a function of 
the cyclically symmetrized tensor Ti...n+2- We will then denote the tensor 
gi...n with (Ar)1  n, where 

(Ar)lwn   =    -^(^J-J Aa6 [nTi...na6 + (n - 1) ri...an6 + • • • + 0 ■ ral...n6] 

+cyc1...n 

Nothing on the other hand needs to be altered in the definition of the oper- 
ator 

6 = l{iabA
ab)+(1A1)ab 

d 
fry, ab 

6Let me note that, although the functions r and 77 — 77^ have the same integral, and 
therefore define the same functional of A, one has in general that r ^ rj — rj^. 
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which commutes with the symmetrization (26). We then have the require- 
ment on the tensors r 

Ar^+1 = 8T
L

. (29) 

EXAMPLE. Let us compute, as an important example, the first non-vanishing 
tensor r2. If we consider the expansion of the Born-Infeld action (with f2 = F — K) 

V/det(r + Q) <x 1 - l-Tabnab + \TacTdbSlabSlcd + \TabSlabT
cdSl 

we can quickly see that 

*       --au    ■     A"       -       --aw--cc6    '     n -       --uu*       --cd 

Vl2     =     jj^2-721) 

^1234     =     -4(713742-723741+731724-732714) 

-g (712734 - 721734 + 712743 " 72l743) • 

We may then compute the cyclically symmetrized tensors r. Clearly T12 = 0. A 
simple computation also shows that 

111 
7"1234 = 7512534 + T514523 - ■X913924, (30) 

where, we recall, 

1 ,   ■ 

9ab - -^Klab+lba) 

is the symmetric part of the tensor 7Q6. One can also check, given (30), that 

AT
2
 = 0, 

which is consistent with (29) and the fact that r1 = 0. 

4    Operator Description 

In this section we leave momentarily the analysis of the effective action 5, 
and we develop some formal tools which will allow us both to rewrite the 
various equations in a more compact and natural way, and also to tackle the 
problem of the independence of the action S on the parameter Q. 
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First we analyze, within a general framework, the description of the ac- 
tion using operators. We then study a simple 2-dimensional example, which 
is not directly relevant to our more general situation, but which is com- 
pletely tractable and which will be a useful frame of reference in discussing 
the general case. We then move on to the situation most relevant for this 
paper, and discuss, in that case, the generalization of the results obtained 
in the 2-dimensional setting. 

4.1    Operator representation of star products 

Let us consider first a flat symplectic structure K. We introduce a set 
of operators Ja with commutation relations [Ja, Jb] = i6ab, which can be 
represented on the Hilbert space H = L^IR^/2) as linear combinations of the 
standard p, q operators in quantum mechanics (recall that we are assuming 
8 invertible). To any function / on phase space M = RD we can associate, 
using Weyl ordering, an operator QK{S) acting on H. It is then well known 
that, if / and g are two generic functions, then QK{f)QK{g) = QKH *K g)- 
Moreover, if / vanishes at infinity, one also has (up to an overall constant 
(27r) ' which can be, for example, reabsorbed in the definition of the trace) 
that Tr(Q^(/)) = JdDx det *K f. We will call Q a quantization map. 

Consider now a general symplectic structure uo. Since any two symplectic 
structures on M are related by a diffeomorphism, one can follow section 3.4 
and find a map T on the space of functions such that, for general /, #, one 
has T (/ ^ g) = Tf *# Tg. One may then define a new quantization map 
Qu, related to the symplectic structure CJ, by the following relation 

QM) = QK(Tf). (31) 

It is then simple to show that 

QM)QU9) = QM *u g) (32) 

and that 

Tr(Quf)) = JdDxV(u) f. (33) 

Let us note that, for any fixed symplectic form a;, the map Q^ is actually 
only defined up to conjugation. Recall first that the map T is defined up to 
a redefinition of the form Tf -> Tf = A*K Tf*K Af1- Using T in equation 
(31), and letting x = T~1A, we obtain a new map Q^ which reads, in terms 
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of the original Qu 

QM  =  QUx)QM)QZ1(x) (34) 

We now use this notation to rewrite the action S in a compact and 
invariant way. First define the operators 

Xa = QK(Xa) - Qu(xa). 

Then the action (28) can then be compactly written as 

s = 7 E,&(*1-*BK- 
^s n even 

The ambiguity (34) is reflected in a possible redefinition Xa —>> OXaO~l, 
which on the other hand does not affect the action. 

The action S written above implicitly depends on a specific choice of 
non-commutativity parameter 9. The dependence is two-fold. On one hand 
the tensors r are built starting from the metric 7, which linearly depends 
on K. On the other hand, the parameter K enters into the definition of the 
symplectic structure a;, and therefore it implicitly determines the operators 
Xa = Quj(xa). It is then clear that we need to understand the variation 
of the quantization map Q^, when we add to uab a constant antisymmetric 
matrix Aa&. This is the subject of the next two sections. In particular, in 
the next section, we analyze this problem within a simple two-dimensional 
model, related to the general framework which we developed above. In this 
two-dimensional model the variation of Q^ for u —> u + A can be completely 
analyzed. Moreover the solution will give us the correct ansatz to tackle the 
general problem. 

4.2    A simple 2-dimensional example 

The general framework of this section follows closely [13]. We consider the 
space V of complex functions on the complex plane C, and the subspace 
H C V of holomorphic functions. We then make V into a Hilbert space by 
choosing a real positive function C on the complex plane and by letting the 
inner product of two function T/J, (j) 6 V be given by 

<v#> = / d2zCi><t>. 
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Associated to C we have a natural symplectic form icu dz A dz on C with 

uj = -ddlnC. 

One may also consider the orthogonal projection 

TT : V -+ W, 

which clearly depends on the choice of inner product on V, and therefore 
on C. Given a generic function /, we may then consider the corresponding 
operator 

defined by 

Qu(f)'n = nfV' 

for rj E K. In words, the operator Quj(f) first multiplies pointwise by / - 
which is not assumed to be holomorphic - and then extracts the holomorphic 
part of the resulting function using the projector TT. It is shown in [13] that, 
given two functions /, g, 

QUDQUg)  = QM*u>9) (35) 

TrniQM))    =   fd2zV(u;)f 

where ^ is a holomorphic star product (/ ^ g = fg if either / or g are 
holomorphic) related to u and V(CJ) = u;(H ). The operator Q^ actually 
depends on C, and not simply on u. On the other hand, a change of C which 
leaves OJ invariant changes the operators Quif) by conjugation, exactly as 
in (34). 

We may now consider the variation UJ —>> cu + A, with A an infinitesimal 
constant. This corresponds to 

C -» C = Ce -zzA 

We need to understand the change in TT. Let then (|) denote the original 
inner product with C, and let |n) be an orthonormal basis for %. Then 
TT = Yin ln)(nl' ft is easy ^0 show that the vectors 

\n) = \n) + — ^ \m) (m\zz\n) 
m 
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satisfy (n\e~zzA\fh) = £n)m (to first order in A) and that the new projection 

TT related to C is given by TT = ^2n \n)(ri\e~zzA. Using the explicit expression 
for |ri), one can then show that 

TT = TT + A (TTZZTT — TTZz) . 

Let now / be a generic function and F — Quj{f) = TT/. Noting that TTZ = z 
one can show that 

Qu+A(f)    =   nf = F + A(<jrzznf-TTzfz) 

=   F + A(ZZF-QuQsf)Z) 

where Z = Quiz) and Z = Quffl. Using the fact that the star product is 
holomorphic and that Quj{zf) = QUJ{Z*UJ f) = ZF, we arrive at the result 

QCO+AU) - F + A(ZZF - ZFZ). 

The exact form of the above equation depends on the specific quantiza- 
tion model we chose to analyze. On the other hand the general lesson that 
should be drawn is that the variation QUH-A(/) 

— Qu(f) contains F and two 
powers of the coordinate operators Xa = Quj{%a), with some ordering. We 
will use this intuition in the next section to compute Qw+Aif) in the setting 
of section 4.1. 

4.3    The quantization map QU+A in the general case 

We have seen, from the previous example, that, if / is a generic function, then 
the variation QU+AU) — Qu(f) ls proportional to A^ and to the product of 

F = QM) 

and of two coordinate operators Xa = Qcjix*1) in some specific ordering. 
More precisely, the operator QU+AU) must be equal to F+jAai)(aXaXbF+ 
bFXaXb + cXaFXb), for some choice of the coefficients a, 6, c. It is shown 
in the appendix (Lemma 4) that, in the case in which the underlying star- 
product is that of Kontsevich, the correct coefficients are a = b = 1, and 
c=-2. 

We have then the basic relation 

QW+A(/) = F+ l-Aab [xaXbF + FXaXb - 2XaFXb) . (36) 
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The above can be alternatively rewritten as 

Qu+A(f) = QM + Rf)- (37) 

where 

Rf = l-Aab (x
a *ux

b*uf + f *„ xa *„ xb - 2xa *„ f *u x
b) . (38) 

As a consequence of the above facts, we have the following two results. First 
of all combining (37) and (32) we obtain 

/ *W+A 9 = f *u 9 - ^ Aa6 [xa, f]   *„ \x\ g]   . (39) 

Also, taking the trace of (36) and using (33) we deduce that, for functions 
/ vanishing at infinity, 

I dDx V(oj + A)f = I dDx V{u>) [f + Rf]. (40) 

REMARK . The fact that the variation of the star-product ^ under the change 
u —> CJ + A is given by an expression involving a quadratic combination (39) of 
the coordinate functions xa can also be understood intuitively using the Cattaneo- 
Felder model. As in the remark in section 3.6, the argument is very vague, but it 
would be very useful to make it rigorous. 

The star product fic^g is given by the disk expectation value (/(X(0))g(X(l))), 
with weight / DX   exp (— /SCJ).   Therefore, under the change u —)* u + A, 
one has that / *U+A g - f *„ g is given by - /E (A f(X(0))g(X(l))).   But 
A = 2^abdXa A dXb', thus giving a quadratic expression in the coordinate func- 
tions. 

5    Invariance of the Action 

5.1    Invariance under a change in 9 and the basic commutator 

We now have all the tools that we need to tackle our main problem. Let me 
first recall were we stand. The action is given by 

S=- Y, lt(*1---*n)Ti...„. (41) 
a   n even 
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where Xa = Quj{xa) and the tensors r are cyclic gauge invariant tensors 
built from 7. The tensors r satisfy the consistency condition 5T

L
 = AT

JL+1
, 

where rL denotes the tensor at level L, with 2L indices. 

The action S depends on a specific choice of non-commutativity param- 
eter 6. The dependence is two-fold, through 7 = g + B — K and through 
UJ = K + F. We have argued in previous sections that the total dependence 
on 6 should vanish, and therefore the two variations of the action under a 
change of K should compensate each other and sum to zero. This clearly 
imposes additional restrictions on the possible forms of the tensors r, which 
we now analyze. 

Let us start by considering an infinitesimal variation of K given by 

K-iK + k, 

where Aab is an arbitrary antisymmetric constant matrix. The metric 7 then 
changes as follows 

7 —>• 7 — A 

therefore implying a change in the tensors r given by 

r —>> r — Jr, 

where 8 is the differential operator defined by 

S = Aab-—. 

On the other hand, the symplectic structure UJ changes by a constant term 

u -> (JJ + A. 

Then, as discussed in the previous section, the coordinate operators Xc 

change as 

Xc -> Xc + - Aab (x
aXbXc + XcXaXb - 2XaXcXb] .    (42) 

We can now discuss the variation of the term Tr (X1 ■ • • Xn~2) Ti...ri_2. 
It will consists of two parts, coming from the variation of the tensor r and 
from the variation of the coordinate functions Xa. The first part is simply 

-Ta:(X1-XB-2)(tfT)1...B_2. 
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The second will involve the trace of n coordinates, and will be of the general 
form 

^(^■..^(Ar)^, 

where the tensor (Ar)^.^ is built from ri...n_2 and from Aafc. Applying 
equation (42) to the expression Tr [X1 • • • Xn~2) and rearranging cyclically 

under the trace it is easy to show that 

i (n — 2\ 
(Ar)i...n = - ( —— J (Ai2r345...n - Ai3T245."n) + cycx..^ (43) 

First we note that the above tensor Ar is cyclic gauge invariant for any 
choice of Aafc. This fact is proved in the appendix (Lemma 5). Moreover, 
the fact that both r and Ar are cyclic gauge invariant is crucial in a more 
careful derivation of (43). In fact, the use of cyclic symmetry under the 
trace is formally correct, and does give the correct answer. On the other 
hand, one needs to check that the formal manipulations can be justified, 
since the coordinate functions do not vanish at infinity, and therefore one 
might forget important boundary terms. The detailed proof of equation (43) 
is again given in Lemma 5. 

We can then finally state the main algebraic equation which must be 
satisfied by the tensors r in order for the action (41) to be invariant under 
changes of #. Again indicating with L the level of a tensor T\„. ^L with 2L 
indices, we have the basic equation 

AT
L
 = 5rL+1 (44) 

which must be considered together with the equation 

AT
L+1

 = 8rL (45) 

previously analyzed. 

The above two equations involve the basic operators A,<5, A, 5, which 
in general depend on two distinct antisymmetric matrices A^ and Aab. 
Without loss in generality we can assume that 

A   Acb — fib 
^ac*-*     — Va- 

in this case one has simple relations between the operators 5,5 and A, A, 
which we now describe.   First we introduce the operator N which simply 
counts the number of indices of a tensor, and which is defined by 

JVri...n = n • Ti...n. 
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It is then easy to see that, since T\...2L is built from L copies of 7, one has 
that 

27a6-— = N. 
d-Tab 

Using the above relation one then discovers quickly that 

where, we recall, D is the dimension of space-time. 

The relation between A and A requires, on the other hand, a very long 
a quite technical analysis, which we leave to the appendix. Fortunately, 
though, the answer is very simple, and completely parallel to the above 
results. In fact, as shown in Lemma 8, one has that 

[A,A]=N-^. 

We see that the structure of the seemingly different pairs of operators A, A 
and 5, S is actually very similar and compatible, and we will use the above 
results heavily in the next section to solve the invariance equations for the 
simple case D — 2. 

Let us conclude this section by discussing the general form of the solution 
of equations (44) and (45). We introduce the concept of lowest level tensor, 
by which we mean a CGI tensor p which satisfies 

Ap = dp = 0. (46) 

A general solution of (44) and (45) will then consist of a lowest level tensor 
T
P
 at level P, together with tensors rL at higher levels L > P, which 

are required in order to obtain an invariant action. At each level L, T
L
 is 

determined using (44) and (45) in terms of the tensors of lower level, up to an 
addition rL —>> rL + p of a lowest level tensor p. Let us suppose that we can, 
given a T

P
 satisfying (46), construct, in a canonical way, a tower of tensors 

rL, L > P so that (44) and (45) hold. We will then call the full set {rL}L>p 

the invariant block generated by T
P

. The above discussion then shows that 
a solution of (44) and (45) is, in general, a linear combination of invariant 
blocks. We will see in the next section that, in the simple case D = 2, we 
will indeed be able to construct canonically invariant blocks starting from 
generic lowest level tensors. 

NOTE. Recall, from the example in section 3.7,  that r2 is given by equation (30) 
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and satisfies AT
2
 = 0. It is trivial to check that also 8T

2
 — 0 holds, since r2 

depends only on the symmetric part of 7a&. Therefore r2 is a lowest level state, as 
is natural to expect. 

To conclude, let us comment on the question of uniqueness of the solution 
of the recursion equations (44) and (45). As we just discussed, we do not 
expect the solution to be unique, since general solutions are in one to one 
correspondence with lowest level tensors. An appropriate way of thinking 
about (44) and (45) is probably by analogy with general relativity. In that 
case, one is free to write actions of different type, subject only to the general 
principle of covariance under diffeomorphisms on the underlying space-time 
manifold. In a similar way, equations (44) and (45) imply that the action 
not only must be invariant under reparametrizations of the world-volume of 
the brane, but must also be invariant under a more general set of transfor- 
mations, parametrized by changes in 6. It would then be of great practical 
importance to have an explicitly covariant notation, for which invariance 
under (44) and (45) is manifest. 

5.2    Summary of the basic results 

We now summarize, in a compact but self-contained way, the results of this 
paper. Invariant actions are described by tensors rL for L > 2 such that 

1. The tensor rL has 2L indices and is built from a basic matrix jab. 

2. The tensors rL are cyclic gauge invariant - i.e. are cyclic tensors which 
satisfy the algebraic relation 

Tl23-n + T213-n + T231-n H 1" T23-ln = 0. 

3. For any choice of antisymmetric matrix A^ (with Aab indicating the 
inverse of Aab) the tensors rL satisfy the basic relation 

AT
L
   =   ST

L+1 

AT
L+1

   =   5T
L 

where the differential operators 5,5 are given by 

, s 
1 = 7-»£ 
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and the algebraic operators A, A are given by 

(Ar)l...n = 2  ( "TT" ) ^Al2r345-Tl ~ A13T245...n) + CyCi..^ 

and 

• [nTi...nab + (n - 1) Ti...anb + • • • + 0 • rai...n6] + cyq..^ 

The operators A, A, 5, <£ satisfy the commutation relations 

[SJA]^=[*>J]^=(2L-|) rL. 

6    A Solution in 2 Dimensions 

In this section we describe a general constructive solution of the invariance 
equations (44) and (45) in dimension D = 2. This is clearly a toy model, 
since gauge fields have no propagating degrees of freedom in 2 dimensions. 
On the other hand the solution is still highly non-trivial, and it exhibits 
many of the features which are expected to be present in the general D- 
dimensional case. 

6.1    The general strategy 

It is convenient, in two dimensions, to use on M complex coordinates 

z = x1 + ix2 z = x1 — ix2 

with a hermitian metric 

9zz = 9 

and gzz = g^z — 0. Similarly, the antisymmetric tensors .Ba& and Kab have a 
single independent component 

BZz = iB Kzz = iK 

The tensor ^ab is then given by a single complex number 

Izz    =   g + i(B-K)=x + iy 

Izz •    ~   Izz = x — ty 
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Finally we will use Z, Z for the operators which correspond to the coordinates 
z,z under the map Q^. 

We adopt, in this section, a notation which is not well suited for the 
general D-dimensional case treated in the remainder of the paper, but which 
is more economical in the present setting. Consider a general term of level 
L in the action 

T1...2LTV(X
1
...X

2L
) 

and let the various indices 1,2, •■• ,21/ run over their possible values z,z. 
We obtain a sum consisting of traces of monomials in Z, Z, multiplied by 
polynomials of degree L in x, y. In particular, the monomials under the trace 
satisfy the following two properties 

1. They are constructed with L coordinates Z and L coordinates Z. 

2. Monomials which differ only by a cyclic permutation of the coordinate 
operators Z, Z should be considered, as we recall from section 3.7, as 
identical. 

We call objects which satisfy (1) and (2) cyclic words of level L - or simply 
words - and we will denote with WL the space of their linear combinations 
(for example, for L = 2, the space W2 is spanned by the two words ZZZZ 
and ZZZZ). Also we let PL be the space of polynomials in x, y of degree L. 

Among the possible cyclic words in WL-, we must consider the subspace 

GLCWL 

of cyclic gauge invariant combinations. Following once more the discussion 
of section 3.7, we define the space GL as follows. First introduce canonical 
creation and annihilation operators a and a^, which satisfy [a,a'] = 1, and 
let O be the space of polynomials in a,a^. Consider then a map 

r : WL -> O 

defined by taking a word w in WL and by constructing the operator r(w) 
by replacing Z, Z with a,a^, and then by summing over the possible cyclic 
permutations. For example, we associate to the word w = ZZZZ the oper- 
ator7 

r(w) = aWaa + aa'a'a + aaa'a' + a'aaa'. 

7Note that the sum over cyclic permutations is crucial in order to have a well-defined 
map r, since WL consists of words defined only up to cyclic permutation of the letters 
Z, Z. In the above example, the same word w can be equally represented by any of 
the permutations w = YZZZ = ZZZZ = ZZYZ = Z~ZZZ, but the operator r{vS) is 
independent of the choice of representative for w. 
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We then have that 

GL = ker r. 

This equation restates the fact (proven in Lemma 2) that, given a cyclic 
gauge invariant tensors TI...2LV the function (rz1 *UJ ' "*u x2L) Ti-2L vanishes 
whenever UJ = K is constant. 

The operators 5,5, A, A act naturally on the spaces PL and GL- In 
particular the operators S and S act on the spaces PL of polynomials 

5 :    PL^PL+I 

6 :    PL^PL-I 

Choosing, without loss in generality, AZz = A^^ = i, we have 

8   =    -y + 2Xy--(X   -y)- 

One can check explicitly that [6,5] — 2xdx + 2ydy — 1 = 2L — 1. 

The operators A, A on the other hand act on the spaces GL 

A    :    GL-^GL+I 

A    :    GL^GL-I 

We will be more explicit on the precise form of A and A in the next subsec- 
tion, but we know, from the general arguments of section 5.1, that [A, A] = 
2L - 1. 

With this notation in place we can now easily construct invariant actions. 
In particular, we will first show how to canonically construct, starting from 
a lowest level term, a complete set of terms which combine into an invariant 
block. A general invariant action is then given, following the discussion at 
the end of section 5.1, by linear combinations of invariant blocks. 

Let us then first describe the form of a lowest level term. In general, 
given the above discussion, a generic term in the action at level L will be of 
the form 

SL=5>y.- 
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where the gl
L are a basis for GL and the pl

L are polynomials in PL. A term 
Sp — Y^i Plp9lp (we will reserve L for a general level index, and P for lowest 
level states) will be of lowest level if 

<ySp = 0 ASP = 0 (47) 

The first equation implies that the polynomials pp depend uniquely on x, 
and therefore that plp = CiXP. Then 

Sp = 2;P9P 

where pp = ^^ c^p satisfies, using the second equation in (47), 

Agp = 0. 

Let us then start with a lowest level term Sp and construct a full invariant 
block S of the form 

L>P 

SL     =    PL9L- 

The above is invariant if 

ASL   =   5SL+l (48) 

~5SL   =   ASL+1 

To solve the above constraints we construct the higher level QLS using A 

gL+i = AgL 

We must then find polynomials PL which satisfy 

SPL+I = PL (49) 

and such that 

A#L+I    =   CLgi 

SPL   =   cLpL+i (50) 

for some constant CL> First we compute AgL+i- Using the fact that [A, A] = 
21/ — 1, and that Agp — 0, we obtain 

AgL+1   =   AAL+1-pgP = ((2L-l) + --- + (2P-l))gL 

=    CLQL 
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with 

cL = (L + P-l)(L-P + l). 

Using equation (50) 

PL+l = (L + P-1)(L-P + 1)~SPL (51) 

to define higher level polynomials, we can check, using [£, 5] — 2L — 1 and 
§pp = 0, that the remaining equation (49) is satisfied, and that we have 
indeed a solution to the invariance equations. 

6.2    An important example 

In this subsection we use the general construction described above and apply 
it to a specific important example. In particular we show again that the 
basic F2 term is lowest level, and we construct part of the invariant block 
constructed from it. We recover in particular the Born-Infeld action, and 
we compute the first non-trivial derivative corrections at level 4 which must 
be present in order to make the full action invariant. 

We start by analyzing the explicit form of the operators A, A, recalling 
that AZz = Azz = i. We define for convenience the field strength F as 

F=[Z,Z]. 

Then equation (42) reads, in the present case, 

AZ   =    hzF + FZ) 

AZ   =    j(ZF + FZ). 

The above then defines the action of A on GL, since A acts as a derivation 
on each coordinate forming the words in GL- Similarly A is defined by 

AF = 1. 

More precisely, given a word w G WL, we cyclically rearrange the coordinates 
in each word so as to obtain a gauge invariant (not cyclic gauge invariant) 
form, containing only commutators. We then apply A on each fundamental 
commutator F as a derivation. 

Let us the consider the term 

#2 = P252 
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with 

P2 = x2 92= 2i?2- 

Clearly Sp2 = 0. Moreover Ag2 = F = 0, since we recall that, as a word in 
Wi, the commutator i71 is zero. Therefore 52 is a lowest level state, and we 
can construct the corresponding invariant block. 

First we do some computations explicitly.   The polynomials p^ and p^ 
are given by 

h        2 P3   =   -^op2 = yx 

P4    =    g^ps = --x  + -y X . 

We then compute 53 and 34. First, applying the operation A to F we obtain 

AF = i (.F2 + ZFZ - ZFZ). 

This means that (recall that the RHS below is a word in W3, and that cyclic 
rearrangements are allowed) 

53    =   A52 = ^F(AJP) + i(AJP)JP = JP(AF) 

The computation of #4 is just slightly more complex, and we leave it for the 
appendix (Lemma 9). The result is 

where 

£>•.• = [£,.■■] P... = [Z,---]. 

We can now combine the polynomials and the gauge invariant words. To 
make contact with standard notation we write the action for y = 0 (7a6 

symmetric) and revert to more standard notation 

F   ->   iFz-z=iF (52) 

zz 
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which give the following U{N) lagrangian 

"2^ (i?2) - 8^ (^ + ^^^l) + • • • " (53) 

We see that the above action, written up to level 4, contains the first part of 
the Born-Infeld action (in 2-dimensions there is no ambiguity about ordering 
of the F2n terms), but already at level 4 we have derivative corrections, which 
are required for the total invariance of the action8. 

Let us now schematically consider the higher terms QL. We wish to sketch 
how one can recover, within the F2 invariant block, the complete Born-Infeld 
action (a much more detailed discussion on this point and related issues will 
appear in [16]). To this end, we first note that, in general, 

gi — CLF   + derivative terms. 

We have that C2 — C3 — 1/2, C4 = 1,- • •. We can use the basic commutator 
[A, A] and the fact that AFL = LFL~l to compute all the CL'S. In fact, 
applying the basic equation [A, A] = 2L—1 to gi (recalling that Ag^ = gi+i 
and that A does not decrease the number of derivatives) one obtains the 
recursion relation 

which is solved by CL = (L — 2)CL-I, or by 

CL = |(L-2)! 

The F2 invariant block then contains the sum J2LcLPL{%,y)FL- Let us 
consider more closely the polynomials PL. First of all, from the general 
relation (51) one can easily show that the polynomials PL vanish for L odd 
if y = 0. On the other hand, for even levels, one has that 

P2L (x, 0) = d2LX 
2L 

8It has been shown in [6] that, at level 4, the effective action can be written only 
as the F4 term, with no derivative corrections. This result is not in contradiction with 
equation (53), since one can always allow for field redefinitions. In particular, consider, 
in general D dimensions, the field redefinition Aa -> Aa + cFabDcFbc> This induces a 
change in the action at level 4, coming from the F2 term, of the form Fda-Dd (FabDcFbc) = 
^Fab [DcFbcjDdFad], which in two dimensions is proportional to F[DF, DF]. Therefore, 
for an appropriate choice of c, one can remove the derivative term in (53), thus resolving 
the apparent contradiction with [6]. 
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Therefore, the relevant part of the action is given by (again substituting 
x -> 1/g and F ->- iF) 

Y,c2LdJ-=£Tr(F^). (54) 
L y 

To compute the coefficients cfoio ^ us firs^ n0^e that, since Sp2L-i — P2L-2, 
one must have that P2L-1 = ^2L-2^2L~2y + o (y3). This implies, using (51), 
that d2L = ~4L(L-i)^2L-2' w^0'1 is solved by (recall that 6/2 = 1) 

d2L = 
pL-l 

4/       L!(L-1)!' 

Therefore, equation (54) gives the complete Born-Infeld action 

£ lV'->   (21-2)1 J^^^/TI^. 
L    x2j Ll{L-l)\g*L      v       ; V        9 

7    Discussion 

In this paper we have analyzed in detail the general structure of the non- 
abelian Born-Infeld action, together with the higher a' derivative correc- 
tions. We have shown how the requirement of invariance of the action under 
a change of non-commutativity scale 6 imposes severe restrictions on the 
possible terms which can appear. More specifically, we can construct invari- 
ant actions starting from invariant blocks, which are themselves obtained 
from a lowest level term (in a loose sense, a pure derivative term). Terms at 
higher level are then constructed so as to achieve invariance under a change 
in 9. A general action is then a linear combination of invariant blocks, with 
coefficients which must be determined from a different computation. No 
argument in this paper assumes supersymmetry, and the results are there- 
fore valid in bosonic open string theory, as well as in superstring theory. 
In particular, supersymmetry will impose restrictions on the allowed lin- 
ear combinations of invariant blocks, possibly determining in part, or even 
completely, the effective action. 

Let us now comment on interesting directions of possible future investi- 
gation. 

It is first of all important to explicitly solve the invariance equa- 
tions AT

L
 = 8T

L+1
 and AT

L+1
 = 5rL in the general jD-dimensional 
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case. Similarly to the 2-dimensional case discussed in the text, we 
should study the algebra of operators A, 5, A, 6 given by the relations 
[A, A] = [J, S] = 2L — D/2. The algebra now depends on more param- 
eters, since the underlying matrix A^ now hais D (D — 1) /2 compo- 
nents. It is important, in particular, to have a canonical construction 
of higher level terms, starting from the lowest level. This would in turn 
give a canonical definition of invariant block. 

• 

• 

It is important to understand how invariant blocks appear in the un- 
derlying boundary conformal field theory. In particular, the relation 
between the analysis of this paper, which is at the level of the effective 
action, and conformal field theory is of importance both conceptually 
and from a practical point of view. 

The results of this paper do not depend on super symmetry. Under- 
standing the additional constraints imposed by SUSY is an impor- 
tant task for the future. A first step in this direction is the following. 
Given an invariant action, we may use T-duality to describe the weak- 
coupling physics of D-branes. In particular, we expect, in a supersym- 
metric theory, to have minima of the effective action corresponding to 
holomorphic curves, surfaces, • • •. Very possibly, a careful restatement 
of this fact in terms of invariant blocks will impose constraints which 
must be satisfied in a supersymmetric theory. 

Given the invariant description of the action (41) as an operator trace, 
it is very tempting to resum the full series in one specific invariant 
block. In fact, although the action is usually written by artificially 
choosing a parameter 6 and then by writing the expression in terms 
of coordinate operators Xa, it is nonetheless true that the opera- 
tor 0(6) = J2LX

1---X2Lrl...2L has a trace Tr(O(0)) which is 0- 
independent. It is then tempting to conjecture9 that the various oper- 
ators 0(0) not only have the same trace, but are related by a unitary 
transformation, and are then isospectral. 
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9    Appendix 

Definition 1. A tensor r]1...n is called gauge invariant (GI) if 

Vl23.-n + *?213».n + ^Sl-n + '"+ %3-ln + ^S-nl = 0- 

A tensor ri...n is called cyclic gauge invariant (CGI) if 

Tl23-n + ^213-n + 7"231-7i H h /7"23-ln = 0. (55) 

Lemma 1.  (Section 3.7) Let rii...n be gauge invariant. Then 

is cyclic gauge invariant. 

PROOF. Let us write the left hand side of equation (55) in terms of rj. 
Neglecting the multiplicative factor of 1/n, we have the expression 

Vl2S-n + *?213...n + *?231-..n + " * " + ^S-ln + 

to-nl + ^13».n2 + %l-»n2 + * " ' + ^3».ln2 + 
7?3-nl2 + 7?3-n21 H 

 1" r?ln23---n-l + 

VnttS-n-l + r7n213-n-l + 77n231--n-l H + 7?n23-n-lll 

The above expression contains (n — 1) n terms (n lines with n — 1 terms 
each). Consider the sequence of terms in the order written, and assemble 
them now into groups of n terms. It is then easy to see that each individual 
group vanishes since 77 is gauge invariant. □ 

Lemma 2.  (Section 3.7) Let ri...n be cyclic gauge invariant and let 

T^XJ =z X   "k^j ' ' ' ~k(jj X    TI...TI. 

Then, for x —>■ oo; T(X) grows linearly with x. Moreover, if n is even, then 

T(X) -> 0 

for x —> 00. 

PROOF. We use the fact that, at infinity, u —> K approaches a constant, 
and that we can therefore compute the variation 

T{X + e)- T{X)   =   elx2 *K • • • *K xn{Ti2...n + • • • + r^-ni) 
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where 

h{x) = X2 *K ' ' ' *K Xn   ^TU-n- 

It is immediate to see that, for any e, the tensor e1Ti2...n is gauge invariant 
in the indices 2, • • • , n and that, using the results of section 3.7, the function 
h(x) is constant at infinity. This implies that r(x) is at most a linear function 
of the coordinates x, when x —> oo. We now note that x1 *%; ''' *K x71 is a 

polynomial of degree n, with monomials of degrees n, n — 2, n — 4, • • •. In 
particular, if n is even, we do not have a linear term and the function r 
approaches a constant at infinity. We now wish to show that the constant is 
0. Consider the polynomial xl *K ' * • *K xn. It will be of the form 

xl*K'~*KXn = Cl"'n + o(x). 

We have just seen that we do not need to consider the o{x) part, and we 
therefore just need to prove that Cl"'nTi...n — 0. It is not difficult to show, 
using the Moyal product *#, that 

Cl"n cx Y^(-y{(T)e(Tlcr2''' 0an-ian (56) 
a 

where J(cr) counts the number of pairs (J2i-i,o'2i for which (722-1 > ^22- 
Then, in order to finish the proof, one has to show that the quantity 

B-)J('"1)T*I-- (57) 

vanishes for cyclic r's. Let us then fix a given permutation a, and let me 
denote with TT the basic cyclic permutation (1, • • • , n) —> (2, • • • , n, 1). Con- 
sider then the permutations pk = 7rk o a. Let us first show that (—)J(pk ) 
is alternating with k. In fact, for k -)- k + 1, almost all the pairs cr2i-i^2i 
go into the pairs (J2i-i + l^z + 1- This is, on the other hand, not true 
for the single pair with either (72i-i or G2i equal to n, since n —> 1. Only 
this one pair changes the ordering of its components, and therefore the sign 
(—) Ji<Pk ) changes if k -> k + 1. Consider then the set of permutations pk, 
cyclic permutations of cr, for 0 < k < n. This gives, in the sum (57), 

-^ \1~(Ticr2cr3---(Tn ~~ T(T2cr3---CTnai "i   /7*a-3---crncri<T2 ~~ ' ' ' ~~ 'r(Tn(Ticr2-~0'n-l) 

The terms come with alternating signs, and since n is even the number of 
+ signs is equal to that of — signs. Moreover, all the terms are actually 
the same, since r is cyclically symmetric. The above sum then vanishes. 
Partitioning the set of all permutations a in sets of cyclically related permu- 
tations, we can then show that the full sum (57) vanishes. □ 
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Remark 1. (Lemmata 3 and 5) We make a general comment on integration 
of commutators, which will be useful in the rest of the appendix. Consider 
two functions f and g, and look at the integral 

JdDxV(uj) U*u9-9*u>f)- 

It f and g vanish at infinity, then the above integral vanishes, as was dis- 
cussed in the main text. If, on the other hand, f and g do not go to zero for 
x -» oo; we can proceed as follows. Assume that UJ = K outside of a compact 
domain D C M and consider the integral of [/, g]^ over D 

1= f dDxV(uj) [/,0]w (58) 
JD 

If fi9 — 0 on dD and outside of D, the above expression vanishes, and 
therefore, in general, the integral (58) must reduce to a boundary integral over 
dD. We can then continuously deform UJ —> K in the interior of D without 
changing the integral. This means, in particular, that, for any functions f 
andg, 

1= f dDx detk2K[f,g]K. 
JD 

From the above arguments it is also clear that the above equality holds even if 
f and g depend themselves in a local way on UJ. For example, if f = fi*u$2, 
then we have 

1= [ dDx detJin/i*tf/2,</k. 
JD 

In practice, when integrating commutators, we can replace UJ with K in all 
the expressions without changing the integral. 

Lemma 3.  (Section 3.7) Let r]h..n be gauge invariant and let 

1 / 

Define 

rj(x)    =    x1 *„ • • ■ *w x
n r]1...n 

TyXJ     —     X   yc^ * • * yc^ X    ^~'l---n 

with r](x) -* T/OQ for x —> oo. Ifn is even, then 

I dDxV(u;) T = I dDxV(u;) [r, - lyj 
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PROOF. First it is clear that 

T(x)     =     -Vl-n(x1*cj---*u,Xn + 

~T~X   yCfjj • • • "Xfjj X    y^Qj X    ~t~ ■ * * 

~i~X    "K^ X    TCQJ • • • -k^j X j. 

Therefore, the difference 77 — r is given by 

77 ~T   =    -7?i...n([^1^2^---^^nL 
/1 

-r\X    "kfjj X   , X    ^k^ • • • i^Lj X   Jo; "r ' * ' 

•  L*^    *UJ ' ' ' ^LJ % ? %   jUj)' 

Recalling remark 1, we will be done once we show that the RHS above is 
equal to 

when we replace u ->► K. We must therefore prove that 

^00 = - *h...n([s\ Z2 *K-'*K ^K + -- + [X1*K -•*!< Xn-l,Xn}K). 

(59) 

Both the LHS and the RHS above are constant, since 77 is GL Let us introduce 
a compact notation 

'ni:-nxl*K-'*KXn   -4    [l--.n] 

Vl-n^+K •••*!< Xn*KXl     ->     [2"-nl] 

Using formula (56) and the arguments which follow it, we can show that 

[k...nl---k-l} = (-l)k-1[l-..n] = (-l)k-lr]c 

Then the RHS of (59) is given by 

too- 

 [12 • • • n] - -[23 • • • nl] -[nl • ■ • n - 1] 

ri_        ,/n-l      1      1 1 
=   [12 • • • n]    + + •■■ + - 

\    n        n     n n 
=   [12- .-n] 

as was to be shown. D 
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Lemma 4. (Section 4-3) Let f be a generic function, and let F = Quj(f), 
where UJ is an arbitrary symplectic structure. Let also A^ be a constant 
antisymmetric matrix.  Then, to first order in A, 

QU+A = F+ jKb (xaXbF + FXaXb - 2XaFXb) . 

PROOF. We start by noting that, if u = K is constant, a simple compu- 
tation using the Moyal product *K shows that 

f*K+Ag-f*Kg  =  -z-(eAe)abdaf*Kdbg= (60) 

-z-Aab[xaj}K*K [x\g]K. 

We must then consider the product / *OJ+A g for general u. As always, we 
look for a map T such that T (f ^r^+A g) = Tf ^ Tg. If we work to first 
order in A, and accordingly let T = 1 + R (with R or order A), one has that 

/*W+A g - f *„ g = Rf *u g + f *UJ Rg - R(f *UJ g) - (61) 

The map T = 1 + R also relates Q^+A and Q^ as follows 

Qu,+A(f) = QM + Rf). 

We have seen from the example in section 4.2 that the we should consider 
general variations QUJ+AU) — Quif) of the form 

j Aab (aXaXbF + bFXaXb + cXaFXb) , 

where a, 6, c are constants which we must determine. It is then clear that 

Rf = ^ Aab{axa • xb • / + bf • xa • z6 + cxa • / • xb). 

Using the above fact in the RHS of equation (61), and comparing, for UJ — K: 

with the RHS of equation (60), we obtain that a = b = 1,6 = —2, as was 
required. □ 

Lemma 5. (Section 5.1) Let Ti...n-2 be a cyclic gauge invariant tensor, and 
let Aab be a constant antisymmetric matrix.  Then the tensor 

(Ar)l...n = 2  \~nr) (Al2r345-n _ A13r245-n) + CyCx..^ 

is itself cyclic gauge invariant. Moreover, if u is a generic symplectic struc- 
ture and Xa = Qu{xa), then, under the variation UJ —>► UJ + A, the oper- 
ator Tr (X1 • • ■ Xn-2) Ti...n_2 varies by Tr (X1 • • - Xn) (Ar)^.^ whenever n 
is even. 
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PROOF. First we show that the tensor Ar is indeed cyclic gauge invari- 
ant. Written in full, we want to show that the following sum 

(Ai2r345...ri - Ai3T245-..n) + Cyc123...n (62) 

(A2lT345...n - A23Ti45-n) + cyc213-n 

(A23T45-ln - ^24^35'"ln) + cyc23-ln 

vanishes. To this end, we consider three significant cases, with the hope that 
the reader can understand from them the general line of the argument. 

Let us first consider, within the above sum, terms which are proportional 
to A12. They come only from the first and the last line and are 

T345""n — Tn34--n-l = 0. 

Similarly, terms proportional to A21 come from the second and third line 
and exactly cancel each other. Consider now terms proportional, say, to 
A23. These terms are present in every line of the above sum, and they are 

(Tl45-n - Tl45».n) + (ri45...n + T4i5...n H H ^45--In) 

The above vanishes since r is cyclic gauge invariant. Finally we consider 
terms which are proportional to A2n. In this final case, we can check that 
no terms in the sum (62) contain A2n- The reader can convince him or 
herself that all other combination of indices fall in one of these three cases. 

Remark 2. Let us note that, in the above proof, we have not used the fact 
that Aab is antisymmetric. In fact, we have shown more generally that the 
tensor 

(-Al2T345-n " ^13T245-n) + CyCx..^ 

is cyclic gauge invariant for any choice of A, whenever r itself is CGI. 

We now move to the second part of the lemma. Introduce the following 
two functions on M 

A{x)      =     X1*^'--*^ X71"2 Ti...n_2 

B{x)   =   x1*us-"*uxn (Ar)^.^. 

Since both r and AT are CGI, the two functions A and B tend to 0 as x -¥ 00 
(we are assuming n even). Recall that, under a variation UJ —>> u + A, the 
star product of two functions f^g changes by Rf*g + f*Rg — R{f*g) (we 
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do not show the explicit w dependence in *), where R is given in equation 
(38). Therefore, given three functions, the variation of / • g • h is Rf * g • 
h + f * Rg* h + f *g *Rh - R{f *g* h), and similarly for products of more 
functions. In particular, the variation of the function A is given by 

A -» A + C - RA (63) 

where 

C(x) =Rx1*u-' •a, a;71-2 ri...n_2 + •' ■ + ^ ^ • • ■ ^ Rxn'2 ri...„_2. 

Since we are interested in traces of operators, we must consider also the 
variation coming from the change of integration measure. We use equations 
(40) and (63), together with the fact that A vanishes at infinity, to show 
that the variation of 

Tr (X1 • • • Xn-2) Ti...n-2 =  f dDx V{u) A 

is simply given by 

fdDxV{uj)a 

We must then prove that 

f dDxV(cj) {B-C) = 0. 

It is simple to show that the function B is obtained by cyclically rearranging 
the coordinate functions which build C. Following remark 1, the integral 
above reduces to a boundary term, and to show that it vanishes we just 
need to prove that B = C whenever cv — K is constant. On one side, we 
know that B = 0 for u = JFC, since AT is cyclic gauge invariant. We then 
need to prove that, for constant symplectic structures, C = 0. This is shown 
in two steps. First look at the operation R on coordinate functions in the 
case of flat symplectic structure 

Rxa     -     ^Ahc(xb*KXC*KXa+Xa*KXb*KXC-2xb*KXa*KXC} 

=   M^xb 

with 

M,a = --fl^A, T,lx" " cb- 2 
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It is then clear that 

C(x)    =   xl *Uj'--*UJ x
n~2 7ri...n_2 

ni-n-2     =     MiTa2...n-2 H 1" ^n-2rl-n-3,a 

It is now quite easy to show that TT is cyclic gauge invariant, therefore im- 
plying that C = 0. □ 

Lemma 6. (Section 3.3) Let r/1...n+2 be gauge invariant, and let us con- 
sider the combination C = (A1 * • • • * An+2) r/i...n+2- V we add a central 
term Aab to the commutator —i[Aa,A6]; then the expression C varies by 
- (A1 • • • • • An) (AT/)lmmmn, where 

(Ai7)1-"n = -iA^(^1...n^ + f/l...fln6+ ■-■)• 

Moreover, for any Aafe
; the tensor Arj is gauge invariant. 

PROOF. First it is clear that, if ^...^ and i/i...m are gauge invariant, 
then so is (r]i/)i...n+m = 7?i...n^n+i-n+m- Moreover, if da is any one-indexed 
tensor, then (rfr/Ji-n+i = diV2-~n+i "~ ^i-n^n+i is again gauge invariant. 
These two facts can either be checked algebraically, or one can simply note 
that they correspond respectively to the product and covariant derivative of 
gauge invariant operators. In fact, any gauge invariant tensor is built using 
the two operations just described. 

In order to prove the lemma we first show that it holds for n = 0. Then 
r)ab is an antisymmetric tensor and Aa*A6 r)ab = |[Aa, A6] r)ab —> ^[Aa, A6] r/a6+ 
|Aa677a6. Now suppose that we have proved the result for r)x...n and v\...m. 
Then we must show that A{r\v) — (Ary)^ + r?(A^). This is easily done, since 

A(771/) - (AT/)!/ - T/(AI/) oc 

^(^a,!,- ,n-l + ^l^,.. 5n-l + ' ' ' + ^1,... .n-l.a) ' 

'{yb,n- ,n+m-2 + ^nfi,- ,n+m-2 + ' ' ' + ^n,- ,71+771-2,6) 

which vanishes since T/ and u are gauge invariant. Finally me must show 
that, given a generic rf0, one has A(dT/) = d(Ari). Again this is easy to show 
using the gauge invariance of 77, since 

A(dT7) - d(AT/) a Afl6da(T7Mi...jn + T/1A...jn + • • ■ + Vi,..,n,b) = 0. 

This concludes the proof, since any gauge invariant operator is a product of 
covariant derivatives of the field strength. '□ 
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Lemma 7. (Section 3.7) Let 7/i...n+2 ^e 9au9e invariant and let Ti...n+2 be 
the associated cyclic gauge invariant tensor. Let Aab be antisymmetric, and 
define 

Qi-n = - (AVi-n + cyci...n) (64) 

where AT/ is given by expression (15). The tensor g is then uniquely a 
function of T, and is explicitly given by the expression 

- g ( —rfT ) Aa6 [nTl-no6 + (n - 1) Ti...0„6 + • • • + 0 • Tal...n6] + cycx..^ 

(65) 

which will be denoted by Ar. 

PROOF. Define the following tensors 

fcl-nab     =    ^l-noft + cycl-.n 

kl.-.anb     =     Vl—anb + cycl-n 

fcl-n-lA^n     —     f/l-n-l^n + CyCl-n 

which have two selected indices a, 6 and are cyclically symmetric in the other 
indices 1, • • • , n. It is clear that 

Tl..„„t + cyc,..„   _       1    „,..„„, + eye,. J 
n + 2 

1     /, Ti-anb + cyCi..^    =    —— (A;i...an6 + cyCi..^^) 
n + 2 

We can also express equation (64) for g in terms of the tensors k as 

9l-n   =   -2rfAaJl-* 
Jl~-nab     z=    TlKl-'-nab   •   ^^l-'-anb   •" 

where, as in Ary, the indices a, & are in all possible positions with a preceding 
b. We then want to prove that the above expression is equal to (65), which 
we can also write in terms of the tensors k as follows 

1     Aab J 

2n2 h"nab 
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with 

Jl-nab     =    n {fa-nab + cych-nab) 

+ (n - 1) (ki...anh + cycx..^^) 

+ ••• 
+0 • (kal...nb + cycal...n6) 

We will actually prove that Ji...na& = Jv.-nab- In order to do this, we use 
the gauge invariance of the tensor 77, which implies various linear relations 
among the tensors k 

0     =     kabl-n + foal-n + fola-n H H ^61-na (66) 

0     —     kaiiJ...n + kiab...n + kiba...n + • • • + kib2...na 

We then need to prove that the difference J — J can be written as a linear 
combination of the above equations. 

In order to write an efficient and clear proof, we will concentrate, from 
now on, on the case n = 4. The proof in the general case is absolutely 
identical, but the added notation would obscure the result without adding 
new ideas to the ones already contained in the special case discussed below. 
We introduce the following compact notation 

kl2S4,ab    ->      •    •    -    •    a    b 

kuzaib    -*     •    •    •    a   •    b 

where the dots   •    •    •    •   indicate the indices 1,2,3,4. We then arrange all 
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the possible tensors k in the following tableau 

• a b b   a 
• a b ■ • b a    - 
a b • b a 

■ a b b a • 

a    b b a 
• a • b b • a 

a b b a    • 
• a ■ b b a 
a    - b • b a 

a • b b • a 
-    a b b a    - 
a b b a 

a b b • •    a 
a b • b a    • 
a    • b b • a 

which has on the left all terms with a preceding 6, and on the right all terms 
with b before a. From top to bottom, the terms are, on the other hand, 
arranged in groups with a fixed number of indices between a and b. We 
then denote any linear combination of the tensors k with a horizontal box 
of coefficients 

aiazasa^as bibzhb^ C1C2C3 did2 ei 

/1/2/3/4/5 9192939A h^hs hh h 

where the top line corresponds to the coefficients of the left column in the 
tableau, and the bottom line to the right column (the above box is then a 
compact notation for the sum aik^uab + «2^i23a46 H 1" /i&i234&a H )• 
The main statement which we want to prove can now be compactly written 
as 

44444 4444 444 44 4 
=r 

44444 3333 222 11 0 
00000 0000 000 00 0 00000 1111 222 33 4 

(67) 

In fact the LHS above is nothing but J. To show that the RHS is J we just 
note that 

K-nab + CyCl...nab     = 

kl-anb + CyCl...anb     = 

11111 0000 000 00 0 
00000 0000 000 00 1 

00000 1111 000 00 0 
00000 0000 000 11 0 
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To prove the equality (67) we use the linear relations (66), which can also 
be compactly rewritten as 

a>i = bj = 0, 

where 

ai 

a>2 

«3 

a4 

as    = 

10000 1000 100 10 1 
10000 0000 000 00 0 

01000 0100 010 01 0 
01000 1000 000 00 0 

00100 0010 001 00 0 
00100 0100 100 00 0 

00010 0001 000 00 0 
00010 0010 010 10 0 

00001 0000 000 00 0 
00001 0001 001 01 1 

bi = 

b2 = 

h = 

h = 

b5 = 

00001 0001 001 01 1 
00001 0000 000 00 0 

00010 0010 010 10 0 
00010 0001 000 00 0 

00100 0100 100 00 0 
00100 0010 001 00 0 

01000 1000 000 00 0 
01000 0100 010 01 0 

10000 0000 000 00 0 
10000 1000 100 10 1 

Summing either all the a's or all the 6's we first of all obtain the following 
interesting identity 

mil mi m n i 
mil mi m n i 

-0. (68) 

44444 5555 666 77 8 
44444 3333 222 11 0 

Combining the above equation with (67) we can then reduce the statement 
of the lemma to the following equality 

;«   I  77  I  8 
0. 

666 | 2TZ I 11  I U 

The LHS above is nothing but 

4(ai + 6i) + 3(a2 + 62) + 2(a3 + 63) + 1(04 + 64) + 0(05 + 65), 

and therefore the proof is complete. □ 

Remark 3.  Using the box (68) we can show that the expression 

[nTl-nab + (n - 1) Ti...anb + • • • + 0 • Tal...n6] + cycj..^ 

in (65) is antisymmetric in a and b. 

Lemma 8. (Section 5.1) Let Ti...n be a cyclic gauge invariant tensor, and 

let Aab be an arbitrary invertible antisymmetric matrix with inverse A . 
Then 

[A,A]T= (n-ioir. 
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PROOF. First we recall the expression for Ar, which is given by 

(AT)!...^ = - ( ^Tj J (Al2T345...n+2 " Ai3r245-n+2) + CyCi..^^. 

We then concentrate on the expression AAr by recalling, first of all, that 
the operation A on Ar consists of a contraction of two indices of the tensor 
Ar with the antisymmetric tensor Aa6. It is then clear, since Ar itself is 
built from the tensors ri...n and Aafc, that 

AAr = A + B + C, 

where A contains the terms where Aa6 is contracted uniquely with Aa& and 
B contains terms in which the two indices in Aa6 are contracted one with 
Aa6 and one with T\...n. Finally C consists of the remaining terms, with 
contractions of Aa6 only with ri...n. We will prove in the sequel that 

A   =    —DT 
2 

B   =   nr 

C   =   AAr, 

thus proving the lemma. 

Let me start by concentrating on the terms in A. First recall the expres- 
sion for AAr 

*AT = -f (^r)Aa6 [n ■(Ar)i-^+""+1' <ATW.»d+cyci-« 
(69) 

The only terms in the above equation which contribute to A are the first, 
second and last within the square bracket. In particular the first term reads 

(^)A^(Ar),..na6 + cyc,..n 
i fn + 2 

1 
4 
1 

=     ^ab [(Al2T3...no6 - &lZT2A-nab) + Cyq...,.^] + CyCi...n 

— ^Aa6Aa6Ti...n + eye!...,! + terms not in A 

D .    A — —n—Ti...n + terms not in A, 

where we have used that 

A0.hA
a6 = -D 
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and that r is cyclic. Similarly, the second term is given by 

=    (n — 1) —T\...n + terms not in A. 

Finally the last term 

i fn + 2 
(!^)Aa6(AT)la2..^ + qrc1...1 

=    4^A"6 [(Aia^-nft - Ai2ra3...n6) + cycla2...n6] + cycx...,, 

D 
=    — —T\...n + terms not in A 

Summing the three contributions we obtain 

as was to be shown. 

We now move to the analysis of the terms in B. Again we consider equa- 
tion (69), and we focus once again on the first term in the square brackets 

-Aa6 [(Ai2T3...na6 - Ai3T24..-na&) + CyCi...na6] + CyCi..^ 

We concentrate on the terms in 5, with Aa6 contracted both with Aa& and 
with T\...n 

-Aa6 [Anarw...n_i + A6ir2...na] + cycx..^ 

—-Aa   [AaiTft2..-n + &nbTa\-n-l + ^n-l,a^nbl-"n-2 + &b2Tl2>...na] 

+cyci...n 

=    — (4n ri...n - n T2i2>-n - n Tm-in) + cyci...n (70) 
4n 

The second term in (69) 

( ~An~ ) Aa6 ^ Al2r3-an6 " A13^24...an6) + cyc!...^ + cycx..^ 
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gives as contribution to B 

1 n 
An Aa   [A6iT23-an + &nbT\-n-\a. + ^■n-l,aTnbl-n-2 + AonT6i...n_i] 

- ( -T j Aa6 [A(,2Ti3...an + An_2,a7-n_i)n)61l-,n-3] + CyCi..^ 

(n-l\. 
— ( —7  ) \T21Z-n + ^S-ln — T2Z\-n — 7"23- .l.n-l.n — 2TI...„J + 

+CyCl...n (71) 

In order to write equations in a compact form let us introduce some notation. 
We explain the notation in the case n = 4, but then we continue the proof 
in a general setting. We wish to consider tensors r... with the indices given 
by 2,3,4 in increasing order, and with the index 1 in a given position. For 
example, if the index 1 is in the 3rd position we are considering the tensor 
^2314, which we will denote with the following box 

^2314 

Moreover, linear combinations of the various tensors will also be denoted by 
a single box in the following obvious way 

0    0    10 

a b c d 1 0    0    0+60100 

+c 0010   +d 000 1 

Let us now return to the general proof, by first showing some simple prop- 
erties of the box just introduced. Cyclicity of the tensor r implies that 

1    0    •••     0    0   -   0    0    ••■     0    1 (72) 

Moreover, cyclic gauge invariance of r implies the two equivalent identities 

1     1     ■••     10 1     1   =0 

which can be summed to obtain 

1    2 2    1   =0 (73) 

We can use this notation to compactly rewrite the first two terms in AAr 
given by equations (70) and (71). They now read 

4n 
2n —n 0 0 -n 2n + cyc!..^ 
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and 

—   -(n-1)    n-1    -(n-1) 
4n '— L-1 '— '- 

-(n-1)    n-1    -(n-1)   +cycl...n 

We notice that both terms are represented by boxes which are symmetric 
about a vertical axis of symmetry. Moreover we can do computations similar 
to the ones above to convince ourselves that the {k + l)-th term in AAr is 
given by the following box (we just show the left side of the box, since the 
right side is just its mirror copy) 

1 
4n 

0 0    n — k    —(n — k)    n — k    —(n — k) + cyci...n 

with k — 2 zeros on the left before the term n — k. Writing at once all the 
contributions to B we get the following tableau 

+ cycx... 

2n —n 

1 -(n-1) n-1 -(n-1) 

4n 
n-2 -(n-2) n-2 -(n-2) 

n-3 -(n-3) n-3 -(n-3) 

where we must sum the coefficients in each column. The result is then 
1 

+ cyCi. 
An 
1 

2n - 1    -2    -2    • • •     -2    -2    2n - 1 

1    0    •••     0    1 + cyCi... 1    0    •••    0 + cycx..^ 

where we have used equations (73) and (72). Going back to the usual tensor 
notation we have then obtained 

B = Ti...n + cyci..^ = TIT. 

We conclude the proof by showing that C = AAT. Consider again the 
first term in AAr 

-Aab [(Ai2T3...n06 - Ai3T24...na&) + cyCx...^ + CyCx...,, 

and concentrate on the terms which contain T...a(, - i.e. terms for which the 
indices in r contain a just before b - 

- (Ai2A
a6 {T3...nab + cyc3...n) + cycx...,,) 

-- (AisA06 (T24...na6 + CyC24...J + cyc1...nj 

+ -(A12A
<l6T3-na6 + cyC1...n) 

(74) 
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Terms with T...a(, are also contained in the second and third contribution to 
AAT in (69) 

( ^IrT ) ^ ^Al2T3-a"6 _ A13T24-an6) + CyCi...^] + CyCi...,, 

( ^in" ) ^ KAl2T3-a'"-1'"6 _ ^137-24-a,n-l,nft) + Cy^l-a,n-l,nA + Wl-n 

They are respectively 

-j (A^A^rs-nat + eye!...,,) -2 ( ^L-i ) (A12A^ra...^ + cyCi..^ ) (75) 

and 

?—pj (A12A
o6T3..-naft + cyCi..,,) . (76) 

Summing equations (74),(75) and (76) we then obtain (the last line in (74) 
is canceled by (75) and (76)) 

- (Ai2A
a6 .(T3...na& + CyC3...n) + CyC!..^) 

-- (Ai3AG6 (T24...na6 + CyC24...n) + CyC^.^) . 

But this is exactly the result which is obtained by computing terms propor- 
tional to T...a& in AAT, since 

AAr =  %2  (!L^)  [Al2 ^M-n - A13 (A^)24...n + ^l-n] 

and, if we concentrate on terms of the form T...ab, 

(AT)34...n = -%2 (^2) ^ ^-nab + CyCa.^) . 

Similar arguments can be used for terms proportional to T...a...&, with differ- 
ent number of indices between a and b. We have then shown that C = AAT, 

thus completing the proof. □ 

Lemma 9.  (Section 6.2) IfF=[Z,~Z], then 

AF3 = 2FA + \F[DF,DF]. 
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PROOF. We compute the word w 6 W4 

w = AF3. 

First we have that 

w = 3F2 (AF) = I (F4 + F [FZ,FZ\) . 

We then use cyclicity to show that 

F [FZ, FZ]    =   F4 + F2[F,Z]Z + F2 [Z, F] Z 

=   Fi + ZF2 [F, Z\ + ZF2 [Z, F] 
=   F4 + F2Z[Z,F] + ZF2[Z,F] 

and therefore that 

w = 3F4 + I (F2Z [Z, F] + ZF2 [Z, F}) . (77) 

Now, since 

F2Z \Z, F\ = [F2Z, Z\F = -F4 - ZF2 [Z, F] - FZF [Z, F] 

and since 

-FZF[Z,F}   =   FDFDF-ZF2[Z,F] 

=   -FDFDF-F2Z[Z,F] 

=   i (F[DF, DF] - ZF2 [Z, F] - F2Z [Z, F}) 

we obtain that 

I (F2Z [Z, F] + ZF2 [Z, F}) = -F4 + ^FlDF, DF]. 

The above fact, together with (77), concludes the proof of the lemma. □ 
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