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Abstract 

We study a static, spherically symmetric system of (2j + 1) mas- 
sive Dirac particles, each having angular momentum j, j = 1,2,..., 
in a classical gravitational and 517(2) Yang-Mills field. We show that 
for any black hole solution of the associated Einstein-Dirac-Yang/Mills 
equations, the spinors must vanish identically outside of the event hori- 
zon. 
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1    Introduction 

Recently the Einstein-Dirac-Yang/Mills (EDYM) equations were studied for 
a static, spherically symmetric system of a Dirac particle interacting with 
both a gravitational field and an SU{2) Yang-Mills field [1, 2]. In these 
papers, the Dirac particle had no angular momentum, and we could make 
a consistent ansatz for the Dirac wave function involving two real spinor 
functions. In the present paper, we allow the Dirac particles to have non- 
zero angular momentum jf, j = 1,2,    Similar to [3], we can build up a 
spherically symmetric system out of {2j + 1) such Dirac particles. In this 
case however, a reduction to real 2-spinors is no longer possible, but we can 
obtain a consistent ansatz involving four real spinor functions. 

We show that the only black hole solutions of our 4-spinor EDYM equa- 
tions are those for which the spinors vanish identically outside the black hole; 
thus these EDYM equations admit only the Bartnik-McKinnon (BM) black 
hole solutions of the SU(2) Einstein-Yang/Mills equations [4, 5]. This result 
extends our work in [2] to the case with angular momentum; it again means 
physically that the Dirac particles must either enter the black hole or escape 
to infinity. This generalization comes as a surprise because if one thinks of 
the classical limit, then classical point particles with angular momentum can 
"rotate around" the black hole on a stable orbit. Our result thus shows that 
the non-existence of black hole solutions is actually a quantum mechanical 
effect. A simple way of understanding the difference between classical and 
quantum mechanical particles is that for classical particles, the centrifugal 
barrier prevents the particles from falling into the black hole, whereas quan- 
tum mechanical particles can tunnel through this barrier. In our system, 
tunnelling alone does not explain the non-existence of black-hole solutions, 
because the Dirac particles are coupled to the classical fields; that is, they 
can influence the potential barrier. Our results are established by analyzing 
in detail the interaction between the matter fields and the gravitational field. 

In Section 2, we derive the static, spherically symmetric 577(2) EDYM 
equations with non-zero angular momentum of the Dirac particles. By as- 
suming the BM ansatz for the YM potential (the vanishing of the electric 
component), the resulting system consists of 4 first-order equations for the 
spinors, two first-order Einstein equations, and a second-order equation for 
the YM potential. This EDYM system is much more complicated than the 
system considered in [2], and in order to make possible a rigorous mathe- 
matical analysis of the equations, we often assume (as in [3]) a power ansatz 
for the metric functions and the YM potential. Our analysis combines both 
geometrical and analytic techniques. 



F. FINSTER, J. SMOLLER, S.-T. YAU 1233 

2    Derivation of the EDYM Equations 

We begin with the separation of variables for the Dirac equation in a static, 
spherically symmetric EYM background. As in [1], we choose the line ele- 
ment and the YM potential A in the form 

ds2    =    TFT^dt2 - -T^rdr2 - r2 dd2 - r2 sin2 $ dip2 (1) 

A   =   w(r)Tld$ + (costfr3 + w(r) sintf r2) dip (2) 

with two metric functions A, T, and the YM potential w. The Dirac operator 
was computed in [1, Section 2] to be 

G   =   iTj% + Y(iyfadr + l(>/A-l)-±y/A^\ 

+ 17% + i-yVdy + - (w - 1) (7f - Yrr) rr . (3) 
r 

This Dirac operator acts on 8-component wave functions, which as in [1] 
we denote by \I/ = {^aua)a,u,a=i,2, where a are the two spin orientations, u 
corresponds to the upper and lower components of the Dirac spinor (usually 
called the "large" and "small" components, respectively), and a is the YM 
index. The Dirac equation is 

{G - m) * = 0 , (4) 

where m is the rest mass of the Dirac particle, which we assume to be positive 
(m > 0). 

As explained in [1], the Dirac operator (3) commutes with the "total 
angular momentum operators" 

J = L + S + r , (5) 

where L is angular momentum, S the spin operator, and r the standard 
basis of SU(2)YM- Thus the Dirac operator is invariant on the eigenspaces of 
total angular momentum, and we can separate out the angular dependence 
by restricting the Dirac operator to suitable eigenspaces of the operators 
J. Since (5) can be regarded as the addition of angular momentum and 
two spins ^, the eigenvalues of J are integers. In [1], the Dirac equation 
was considered on the kernel of the operator J2; this leads to the two- 
component Dirac equation [1, (2.23),(2.24)]. Here we want to study the 
effect of angular momentum and shall thus concentrate on the eigenspaces of 
J2 with eigenvalues j(j +1), j = 1,2, Since the eigenvalues of Jz merely 
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describe the orientation of the wave function in space, it is furthermore 
sufficient to restrict attention to the eigenspace of Jz corresponding to the 
highest possible eigenvalue. Thus we shall consider the Dirac equation on 
the wave functions ^ with 

J2 * = jfj + i) * and Jz * = j * fj = 1,2,... )•    (6) 

Since (6) involves only angular operators, it is convenient to analyze these 
equations on spinors $aa('^, </?) on S2 (where a and a are again the spin and 
YM indices, respectively). Let us first determine the dimension of the space 
spanned by the vectors satisfying (6). Using the well-known decomposition 
of two spins \ into a singlet and a triplet, we choose a spinor basis Qst with 
s = 0,1 and — s < t < s satisfying 

(S + f)2 $3t = s(s + 1) <S>at , (Sz + TZ) $st = t$8t. 

The spherical harmonics {Yik)i>o, _/<&<£, on the other hand, are a basis of 
L2(S2). Using the rules for the addition of angular momentum[6], the wave 
functions satisfying (6) must be linear combinations of the following vectors, 

YjjQoo (7) 
Yj-ij-^n (8) 

Y^-i$ii   , Yjj^o                                                     (9) 

Yj+ij-iSn , ^7+1^10 ,           y^+i^+i^i-i .          (10) 

These vectors all satisfy the second equation in (6), but they are not nec- 
essarily eigenfunctions of J2: We now use the fact that a vector \I/ ^ 0 
satisfying the equation Jzty = j^J is an eigenstate of J2 with eigenvalue 
j(j + 1) if and only if it is in the kernel of the operator J+ = Jx + iJy. 
Thus the dimension of the eigenspace (6) coincides with the dimension of 
the kernel of J+, restricted to the space spanned by the vectors (7)-(10). A 
simple calculation shows that this dimension is four (for example, we have 
J+ (Yjj-i $11) = Yjj $11 = J+ (Yjj $io)j and thus J+ applied to the 
vectors (9) has a one-dimensional kernel). 

We next construct a convenient basis for the angular functions satisfying 
(6). We denote the vector (7) by $o- It is uniquely characterized by the 
conditions 

L2 $o    =   j(j + 1) $o , Lz $o = j$0 

(£ + -70*o   =   0 , ||*o||5»  = 1- 

We form the remaining three basis vectors by multiplying <I>o with spheri- 
cally symmetric combinations of the spin and angular momentum operators, 
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namely 

$1    =   25r$o = -2rr$o 

$2   =    - {SL) $o = -- (ri) $o 
c c 

$3    =    -5r(5L)$o = --Tr(fL)$o c c 

where 

c =  y/JU + 1)  # 0. 

Since the operators Sr,Tr, and (<?Z) commute with J, it is clear that the vec- 
tors $i,... , $3 satisfy (6). Furthermore, using the standard commutation 
relations between the operators L, x, and S [6], we obtain the relations 

(SL)     =   lL+- ejki Si LjLk = - L   - - ejki Si ejkmLm 

=      I £2   _   1 §£ 
4 2 

(ST)2   -    1 r2 - I Sr = A - i .Sf v    / 4 2 16       2 
25r$o   =   -2Tr$o = $i 
2Sr$i   =   -2Tr$i = $o 

2Sr$2    =    2Tr$2   =  $3 

2Sr$3    =    2Tr$3   =  $2 

(5f)$o   =   -S2$o = -|j$o 

(^f)*!    =   2>Sfcrfc5
r$o = -2Sk(xS)Sk$o 

=   2S2 Sr $o - Skxk *o = i Sr $o = ^ *i 

(^f)$2   =   -(5f)(5L)$o = -(Lf)$o--(5L)(5f)$o c c c 

=   -- (SL) $o + |- {SL) $o = 7 $2 
c zc 4 

(5T)$3   =    - (5f) 5r(5f) $0 = - r7" (5L) $o - - Sr (ST)
2
 $O 

c c c 

=    2 $3 _ 2 ^ $2 = 4 *3 

(5L)$o    =    |*2 

(^L)$i    =   2(SL)Sr§o 

=   2 S-j [Lj, Sr] $o + 2 {5j, 5r} Lj $o - 2 5r (5L) $o 

=   -2i Sj ejki xk St <f>o - 2*3 
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c c 
-ejkl Xj ekim Sm $o -  2 $3  =  -*i - „ ^3 

(SL) $2 

(SL) $3 

!<«>'•.-KJ* 1   --'\ c 1 

- (SL) Sr (SL) $o = -- Sr (SL) $o - c 5r $o 
c c 

2    3       2    1 

and thus 

2(Sf-SV)Tr$o 

2(5f - )S
rTr)T'' $i 

2(5f-SV)Tr$2   = 

2(5f-S"'Tr)rr$3   = 

-2*1 

=    ^0 

=   0 

0. 

Using these relations, it is easy to verify that the vectors $0) • ■ • 5*3 are 
orthonormal on L2(S2). We take for the wave function $ the ansatz 

yaua(t,r, 0,tp) 

=    e-™ ^3 (a(r) $r(^) ^ Juji + 7(r) #r {^ v) ^ 
+ «/?(»•) $?«(<?, y.) (Jtti2 + iS{r) $?{#, ip) SUt2)     (11) 

with real functions a, /?, 7, and (5, where CJ > 0 is the energy of the Dirac 
particle. This is the simplest ansatz for which the Dirac equation (4) reduces 
to a consistent set of ODEs. Namely, we obtain the following system of ODEs 
for the four-component wave function $ := (a, /?, 7, £), 

/ w 

y/A& 

VA/ 

-UJT- m — 0 
r 

cuT -m 
w r 

0 
c 

c r r 
0 0 -uT -m 

r 
0 

c 
r 

uT- m 0 

\ 

$ (12) 

Similar to [3], we consider the system of (2j + 1) Dirac wave functions 
obtained from (11) by applying the ladder operators J±. Substituting the 
Einstein and YM equations [1] and using the ansatz (1) and (2), we get the 
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following system of ODEs, 

rA'   =   1 - A - -=• ^ r
J- 

2a;T2(a2+/32+72 + ^2) 

1   (I-™2)2 

2Aw ./2 
(13) 

 T'   =   A - 1 + 
e2        r2 

•2a;T2(a2+/32+72 + ^) - 

+T 

2Au; 

4c 

./2 

4u; 
2m(a2-/32 + 72-<52) + -M + /97) + — «/? r 

(14) 

1 r2 AT' w' 
r2Aw"    =    -w(l-w2) + e2rTal3 - -r2A'w' + .     (15) 

Here (13) and (14) are the Einstein equations, and (15) is the YM equation. 
Notice that the YM equation does not depend on 7 and 5; moreover the lower 
two rows in the Dirac equation (12) are independent of w. This means that 
the Dirac particles couple to the YM field only via the spinor functions a and 
/3. Indeed, a main difficulty here as compared to the two-spinor problem [2] 
will be to control the behavior of 7 and 5. 

For later use, we also give the equations for the following composite 
functions, 

r2 (Aw')'   =   -w{l - w2) + e2 r T ap + J r 

r(AT2)'   =    -4u;T4(a2 + /32 + 72 + <52) 

1 -2 (AT2)' wl 

2'       T2 

AA T2 w'2 

+T3 2m (a2-/?2+72-<52) + 7 M + M) + ^T <*& 

(16) 

.(17) 

Also, it is quite remarkable and will be useful later that for w = 0, the 
squared Dirac equation splits into separate equations for (0,7) and (/?, 5); 
namely from (12), 

VAdr(y/AdrQ)  =   ('rn2 + ^2J^ 

+ VI 
( (^      0 -^   0 \ 

0      -(f)' 0      £ 
-40       00 

V    0" £ 0      0  J 

+ 
0 \ W2 Q WC 

0   ^   0 
^i   0    0    0 

V b WC 
7? 0      0/ 

$ . (18) 
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3    Non-Existence Results 

As in [2], we consider the situation where r — p > 0 is the event horizon of 
a black hole, i.e. A(p) = 0, and A(p) > 0 if r > p. We again make (cf. [1]) 
suitable assumptions on the regularity of the event horizon: 

(Ai) The volume element i/| det gij\ = |sin#| T
1
A~

1
 T~~2 is smooth and 

non-zero on the horizon; i.e. 

(An) The strength of the Yang-Mills field F^ is given by 

lAw'*1      (1 - w2)2 

TriFijFV) =  —£- + 

We assume that it is bounded near the horizon; i.e. 

w and Aw1   are  bounded for p < r < p + e. (19) 

Furthermore, the spinors should be normalizable outside and away from the 
event horizon, i.e. 

J n 

OO rp 
2     1 

$\2 —p=  < oo for every e > 0. (20) 
p+e VA 

Finally, we assume that the metric functions and the YM potential satisfy a 
power ansatz near the event horizon. More precisely, setting 

u = r — p , 

we assume the ansatz 

A(r)   =   AQ U
S
 + o{us) (21) 

W-WQ    =   wi uK + o(uK) (22) 

with real coefficients AQ •£ 0 and w\, powers 5, K > 0 and WQ — limy.^ w{r). 
Here and in what follows, 

f[u)  — o(^)   means that 35 > 0 with limsup|^_i/~  /(^)|  < oo . 

Also, we shall always assume that the derivatives of a function in o{uv) have 
the natural decay properties; more precisely, 

j{u) = o(uv) implies that /(n)(u)  = o{uv-n) . 
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According to Aj, (21) yields that T also satisfies a power law, more precisely 

T(r) - u-i + o{u-i) . (23) 

Our main result is the following. 

Theorem 3.1. Under the above assumptions, the only black hole solutions 
of the EDYM equations (12)-(15) are either the Bartnik-McKinnon black 
hole solutions of the EYM equations, or 

4 1 
s =  - and n —  - . (24) 

o o 

In (24); the so-called exceptional case, the spinors behave near the horizon 
like 

(a/3)(r)  - 1/3+0(^3), 0 < (7<5)(p)  < 00. (25) 

Our method for the proof of this theorem is to assume a black hole 
solution with $ ^ 0, and to show that this implies (24) and (25). The proof, 
which is split up into several parts, is given in Sections 4-7. 

In Section 8, we will analyze the exceptional case. It is shown numerically 
that the ansatz (24),(25) does not yield global solutions of the EDYM equa- 
tions. From this we conclude that for all black hole solutions of our EDYM 
system, the Dirac spinors must vanish identically outside of the event hori- 
zon: 

4    Proof that v = 0 

Let us assume that there is a solution of the EDYM equations where the 
spinors are not identically zero, $ ^ 0. In this section we will show that 
then u) must be zero. First we shall prove that the norm of the spinors |$| 
is bounded from above and below near the event horizon. We distinguish 
between the two cases where A~2 is or is not integrable near the event 
horizon. 

Lemma 4.1. If A~2 is integrable near the event horizon r = p, then there 
are positive constant k and e such that 

\ < |$(r)|2  < fc, ifp<r<p + e. (26) 



1240 ABSENCE OF BLACK HOLE SOLUTIONS 

Proof.    Writing (12) as VA$' = M$, we have 

IVA-^-m2 = ^$*(M + M*)$ 
2 dr 2 

=    - (a? - /32) - 2m (a/? + j6) + — (cry - (38) 
r r 

< -(a2-/?2) +m(a2+/32 + 72 + <52) + - (cry - fiS) 
r r 

< ci |$|2 . (27) 

Here the constant ci is independent of r G (p, p+1], since w; is bounded near 
the horizon according to assumption An. Since we are assuming that $ ^ 0 
in r > p, the uniqueness theorem for solutions of ODEs yields that |$|2 > 0 
on (p,p+ 1]. Then dividing (27) by i\/]4|$|2 and integrating from ri to r2, 
p < ri < r2, we get 

r2    i 
|log|$(r2)|2 - logl^rx)!2!   <  2ci  /     A-5(r)dr. 

Taking the limit ri \ p in this last inequality gives the desired result.       ■ 

Lemma 4.2. If A   2  is not integrable near the event horizon r 
co 7^ 0; then there are positive constants k and e such that 

<  \®(r)\2  < k ifp<r<p + e. 

p and 

(28) 

Proof.    Define the matrix J by 

J 

u)T 
w 

'ruT       + wT 

w 
"nJf 

m 

\      ruT 

ruT 

0 

rojT 
m 
uT 

ru)T 

0 

0 

0    1 + ^/ 

and notice that, since T(r) -> 00 as r \ p, J is close to the identity matrix 
for r near p. If we let 

F(r) = <$(r), J(r) $(r)> , 

then a straightforward calculation yields that 

F' =  <$(r), J^r) $(r)> . 
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In a manner similar to that in [2], we can prove that | J'| is integrable near 
r — p, and as in [2], it follows that (28) holds. ■ 

Lemma 4.3. If $ ^ 0 for r > p, then u) = 0. 

Proof.   Assume that u> ^ 0. We write the (AT2)' equation (17) as 

r (AT2)' = -4a, T4 |$|2 - ^- T2 

+ 4w 4c 
2m (<** - p2 + T - 8A) + af3 + — (a5 + fa) 

r r 
(29) 

According to hypothesis An, the left side of this equation is bounded near 
the event horizon. The Lemmas 4.1 and 4.2 together with An imply that 
the coefficients of T4, T3, and T2 in this equation are all all bounded, and 
that the coefficient of T4 is bounded away from zero near r = p. Assumption 
An implies that T(r) —» oo as r \ p. Hence the right side of (29) diverges 
as r \ p. This is a contradiction. ■ 

5    Reduction to the Case a(p) = 0, P(p) ^ 0 

Since LJ = 0, the Dirac equation (12) reduces to 

/ w/r —m c/r 0     \ 
/"7 x.i             —rn —w/r      0 —c/r 

c/r        0         0 —m 
\    0 -c/r -m 0     / 

$ = M$ (30) 

The following Lemma gives some global information on the behavior of the 
solutions to (30). 

Lemma 5.1.   The function (a/3 + ^6) is strictly positive, decreasing,  and 
tends to zero as r —> oo. 

Proof.   A straightforward calculation gives 

VA{a(3 + j5y = -m|$|2, 

so that (a/3 + jS)(r) is a strictly decreasing function, and thus has a (pos- 
sibly infinite) limit as r -^ oo.   Since |$|2 > 2 |a/3 + 7<$|, we see that the 
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normalization condition (20) holds only if this limit is zero. It follows that 
(a/? + 7^) is strictly positive. ■ 

Next we want to show that the spinors have a (possibly infinite) limit as 
r \ p. When A~ 2 is integrable near the event horizon, it is an immediate 
consequence of Lemma 4.1 that this limit exists and is even finite. 

Corollary 5.2. If A~z is integrable near the horizon, then $ has a finite 
limit for r \ p. 

Proof    We can integrate (30) from ri to r2, p < ri < r2, 

rr2      1 
$(r2)-$(ri)  =   /     A   2(r) M(r) $(r) dr . 

•/ri 

Lemma 4.1 yields that the right side converges as n \ p, and hence $ has 
a finite limit. ■ 

In the case when A~2 is not integrable near the horizon, we argue as follows. 
According to the power ansatz (22), the matrix in (30) has a finite limit on 
the horizon. Exactly as shown in [7, Section 5] using the stable manifold the- 
orem, there are fundamental solutions of the Dirac equation (that is, a basis 
of solutions of the ODE (30)) which behave near the event horizon exponen- 
tially like exp(Aj / A~ 2), where Xj E IR are the eigenvalues for r \ p of the 
matrix in (30) (notice that the Xj are real since they are the eigenvalues of 
a symmetric matrix). Thus for any linear combination of these fundamental 
solutions, the spinor functions are monotone in a neighborhood of the event 
horizon, and hence as r \ p, $ has a limit in IR U {±00}. We set 

*(p)  =  lim$(r), (ap)(p)  =  lim(a/3)(r) . 
r\p r\p 

Proposition 5.3.  (a/3)(p) = 0. 

Proof    We consider the (Aw')' equation (16) with UJ = 0, 

r2 (Aw')' = -w(l - w2) + e2 r (y/AT) ^ + ^^ Aw' .      (31) 

Suppose that 

(<*P)<J>)  > 0. (32) 
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From hypotheses Aj and and An, we se that the coefficient of aPA~2 is 
positive near r = p, and the other terms on the right side of (31) are bounded. 
Thus we may write (31) in the form 

(Aw1)' = *(r) + -^ , (33) 

where $ is bounded and ^ > 0 near p. Thus we can find constants $0) ^o 
satisfying 

(Av/)' > $o + -7= , *o > 0, (34) 
VA(r) 

for r near p. Then exactly as in [2, Section 3], it follows that the spinors 
must vanish in r > p. 

If on the other hand 

(a(3)(p) < 0. (35) 

then (33) holds with *(r) < 0 near p. Thus 

-(Av/)' = -*(r) - 4= • (36) 

Setting w = —w, (36) becomes 

(Aw')' = -$(r) - /M _     *^        *((»■) 

v^w" 
where — \I/(r) > 0 for r near p. Thus we see that (33) holds for w replaced 
by w. This again leads to a contradiction. ■ 

The next proposition rules out the case that both a and /3 vanish on the 
event horizon. 

Proposition 5.4. Either a(p) = 0, (3(p) ^ 0 or a(p) ^ 0, (3(p) = 0. 

Proof.    Suppose that 

a(p) = 0 = p{p) . (37) 

According to Lemma 5.1, 7 and 6 cannot both vanish on the event horizon. 
Using (30), we have for r near p, 

yfAol   =    -7 + o(l) (38) 

y/Atf   =   --S + o(l). (39) 
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If A 2 is not integrable near the event horizon, these equations show that 
j(p) and S(p) are finite (otherwise multiplying (38) and (39) by A~ 2 and 
integrating would contradict (37)); if A~2 is integrable near p, Corollary 5.2 
shows that j(p) and S(p) are again finite. 

From (17) with u = 0 we have 

r{AT2y   = 
4.7/1 4-/° 

2m (a2 - /32 + 72 - ^2) + — a/3 + — (a<J + fa) 
r r 

/2\ - ^ (Ati/^) T^ . (40) 

Since the coefficients of T3 and T2 are bounded, as is the left-hand side, we 
conclude that, since T(r) —> 00 as r \ p, the coefficient of T3 must vanish 
on the horizon, 

Aw 4c 
2m (or - ^ + 7^ - r) + — a/3 + — (a* + ^7) = 0 

r=p 

As a consequence, j(p)2 = 8(p)2: and Lemma 5.1 yields that 

7(P)  = *(/>)  ^ 0 . 

Furthermore from (38) and (39), for r near p, 

sgn a(r)  = sgn 7(7-)    and   sgn /3(r)  =  —sgn 5(r) 

(41) 

(42) 

(43) 

From (42) and (43), we see that for r near p, the spinors must lie in 
the shaded areas in one of the two configurations (I) or (II) in Figure 1. 
Now we claim that in either configuration (I) or (II), the shaded regions are 
invariant. For the proof, we consider the Dirac equation (30). One easily 
checks that the shaded regions in the a//?-plots are invariant, provided that 
7 and 5 are as depicted in their shaded regions. Similarly, one verifies that 
the shaded regions in the 7/5-plots are invariant, provided that a and (3 lie 
in the shaded regions. Moreover, Lemma 5.1 shows that the spinors cannot 
leave their regions simultaneously (i.e. for the same r). This proves the 
claim. 

Next we consider the situation for large r.   In the limit r 
matrix M in (30) goes over to the matrix S given by 

S = 

00, the 

/    0 —m 0 0 ^ 
—m 0 0 0 

0 0 0 —m 
I  0 0 —m 0   / 
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(I) 

(H) 

Figure 1: Invariant Regions for the Spinors 

In 5, the non-zero 2x2 upper and lower triangular blocks, 

0      -m 
-m      0 

have eigenvectors (1,1)* and (1,-1)* with corresponding eigenvalues — m 
and TTi, respectively. Since the system of ODEs 

splits into separate equations for (a,/3) and (7,5), we see that (a(r),/?(r)) 
must be a linear combination of e~c^ r (1,1)* and ed^ r (1, — 1)*, where the 
functions c and d are close to m. Since the spinors are assumed to be nor- 
malizable (i.e. (20) holds), and are non-zero for r > p, it follows that for 
large r, the spinors are close to a constant multiple of e~c^r (1,1)*, and 
thus for large r, sgn a(r) = sgn (3(r). Similarly, for large r, sgn 7(7-) = 
sgn 5(r). This is a contradiction to the shaded invariant regions of Figure 1. 

The two cases in Proposition 5.4 can be treated very similarly. Therefore 
we shall in what follows restrict attention to the first case. Furthermore, we 
know from Lemma 5.1 and Proposition 5.3 that {j5)(p) > 0. Using linearity 
of the Dirac equation, we can assume that both j(p) and 5(p) are positive. 
Hence the remaining problem is to consider the case where 

a(p)  = 0 , m + 0, 7(p), *(p) > 0 (44) 
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6    Proof that A~ * is Integrable Near the Event Hori- 
zon 

In this section we shall assume that A~ 2 is not integrable near the event hori- 
zon and deduce a contradiction. We work with the power ansatz (21),(22) 
and thus assume that s > 2. 

We first consider the case WQ ^ 0.  The first component of the squared 
Dirac equation (18) is 

\fAdr[\fAdrOL) 

a +^—2 ^7- (45) 
2   |   c

2 + i£;2   |    /T/^V]       ,   c (w ~ V^4) 
m   +  2— + 

The square bracket is bounded according to An. Since a(p) = 0 and 7(p) > 
0, our assumption wo 7^ 0 implies that the right side of (45) is bounded away 
from zero near the event horizon, i.e. there are constants J, e with 

±y/Adr{y/Adra) > 5 for p<r < p + e, 

where "±" corresponds to the two cases WQ > 1 and WQ < 1, respectively. 
We multiply this inequality by A~ 2 and integrate from ri to r2, p < ri < r2, 

±A/Aa.a > 6  /    i4-2 

The right side diverges as ri \ p, and thus linv^p \fAdra = =Foo. Hence 

near the event horizon, ^fdra > A"*, and integrating once again yields that 
linvx^ a = ±00, in contradiction to a(p) = 0. 

Suppose now that WQ = 0. We first consider the A-equation (13), which 
since UJ = 0 becomes 

rA' = l-A-\{-^--^AW'\ (46) 

Employing the power ansatz (21),(22) gives 

Oiu3-1) = 1 + 0(us) - ^2 + 0(u2«) + 0(U
8+2K

-
2
) .       (47) 

Here and in what follows, 

f(u)  =  O^) means that limix_z/ f{u)  is finite and non-zero, 
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also we omit the expressions "0(1^)." The constant term in (47) must vanish, 
and thus e2p2 = 1. Using also that 0(us) is of higher order, (47) reduces to 

Oiu8-1) = 0{u) + 0(u2K) + 0{U
S+2K

-
2
) . (48) 

Suppose first that s > 2. Then (48) yields that K = \. Substituting our 
power ansatz into the ^W-equation (16) gives 

0{us~^) - 0(%jfc) + e2rTa(3 

and thus a/3 = 0(u~). Since /?(p) ^ 0, we conclude that there are 
constants ci, 6 > 0 with 

1-1-3 

|a|  < ci u 2 for p < r < p + 6. (49) 

From this one sees that the first summand on the right side of (45) is of 
higher order; more precisely, 

VAdr{VAdra)  = 0(u*) . 

Multiplying by A~2 and integrating twice, we conclude that 

a = 0{u2-s) , 

and this contradicts (49). 

The final case to consider is WQ = 0 and 5 = 2. Now the Ait/-equation 
(16) gives 

0{uK) = 0{uK) + e2Tap 

and thus a = o(u). This gives a contradiction in (45) unless w — VA = 
o(u)i and we conclude that K = 1. Now consider the Dirac equation (30). 
Since w(p) = 0, the eigenvalues of the matrix in (30) on the horizon are 
A = ±\Jm2 + c2/p2.  As a consequence, the fundamental solutions behave 

near the horizon ~ vr^ v m +c If* . The boundary conditions (44) imply that 

a ~ u+Vm2+c2/p2 j whereas ^,7, S ~ ^-vm2+c2//?2 7 and we conclude that 

(a5 + /37)(p)  > 0. (50) 

Next we consider the AT2-equation (17), which for a; = 0 takes the form 
(40). It is convenient to introduce for the square bracket the short notation 

[]  = 2m(a2-/32 + 72-52) + — ap + - {a5 + (3>y) . (51) 
r r 



1248 ABSENCE OF BLA CK HOLE SOL UTIONS 

We define the matrix B by 

B = 

/   m w/r 0 c/r \ 
w/r —m c/r 0 

0 c/r m 0 
\  c/r 0 0 -m / 

A short calculation shows that 

[]  = 2<*, B^> , 

and furthermore, using the Dirac equation (30), 
/on \ I Ar* 

[]'   =   2 <*, B' *> = 4^ ^-J   -_(aJ + 07) 

4«;' 4U;    ^      4C .   „     „ , ,    s 
=    —"Z3- ;5-«/*- ^(^ + ^7). (52) 

Since (a/3)(p) = 0 and (aJ + fil){p) > 0 according to (50), 

-[]'  >  C2 for p < r < p + 5 

and a constant C2 > 0 . Integrating on both sides shows that 

|[]|  > c^u foip<r<p + 5 

with C3 > 0. As a consequence, the first summand in (40) diverges for r \ p, 
whereas the left side and the second summand on the right are bounded in 
this limit. This is a contradiction. 

We conclude that A~ 2 must be integrable near the event horizon, and 
so s < 2. 

7    Proof of the Main Theorem 

In this section we shall analyze the EDYM equations with the power ansatz 
(21),(22) near the event horizon. We will derive restrictions for the powers 
s and k until only the exceptional case (24) of Theorem 3.1 remains. So 
far, we know from Section 6 that s < 2. A simple lower bound follows from 
the ^.-equation (13) which for UJ = 0 simplifies to (46). Namely in view 
of hypothesis An, the right-hand side of (46) is bounded, and thus s > 1. 
The case s = 1 is excluded just as in [2] by matching the spinors across 
the horizon and applying a radial flux argument. Thus it remains only to 
consider s in the range 

1  <  s < 2. (53) 

We begin by deriving a power expansion for a near the event horizon. 
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Lemma 7.1. Suppose that WQ ^ 0 or K ^ s/2. Then the function a behaves 
near the horizon as 

a = aoua■+ ofa") , ao ^ 0, (54) 

whei "e the power a is either 

„-!-§ (55) 

or 

a' ~  \ 2 - s + min(«, s/2) «/^o = 0. 
(56) 

Proc if.   We set 

cr = sup < p : limsup|^ 'p a(r)\  < oo >   <  oo . (57) 
[ r\p J 

Suppose first that cr < oo. Then for every v < a there are constants c > 0 
and e > 0 with 

|a(r)|   <  cu" for p < r < p + s. (58) 

We consider the first component of the squared Dirac equation (45) and 
write it in the form 

yfAdT{y/AdrOL)  = fa + g, (59) 

where / stands for the square bracket and g for the last summand in (45), 
respectively. Multiplying by A~2 and integrating gives 

y/Adra(r) =   f A'^ {fa + g) + C 
Jp 

with an integration constant C. We again multiply by A~2 and integrate. 
Since a(p) = 0, we obtain 

a(r)  =   /   A-^(s)ds      A'* (fa + g) + C J   A'2 . (60) 
Jp J p J p 

Note that the function /, introduced as an abbreviation for the square 
bracket in (45), is bounded near the horizon. Hence (58) yields a polynomial 
bound for \fa\. Each multiplication with A~2 and integration increases the 
power by 1 — |, and thus there is a constant ci with 

/   A-*(s)ds I   A-*\fa\  < ciu2-s+" for p<r<p + s.      (61) 
J 0 J 0 
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Since 2 — s > 0, (61) is of the order o(w1_ 2+"), and thus (60) can be written 
as 

a(r) -   f A-2(s)ds f A"2 g + C f A^ + oiu1'^) .        (62) 
J p J p J p 

Consider the behavior of the first two summands in (62). The function g 
stands for the last summand in (45). If WQ 7^ 1, it has a non-zero limit on the 
horizon. If on the other hand WQ = 1, then g ~ u*. Substituting into (62) 
and integrating, one sees that the first summand in (62) is ~ v? with a given 
by (56). The second summand in (62) vanishes if C = 0, and is ~ ucr with 
a as in (55). According to (53), l-f<2-s<2-s + min(/c, 5/2). Thus 
the values of a in (55) and (56) are different, and so the first two summands 
in (62) cannot cancel each other. If we choose 1/ so large that 1 — | + v > <T, 

(62) yields the Lemma. 

Suppose now that a given by (57) is infinite. Then choosing 

v = max 1 — -, 2 — s + min(K, 5/2) 

we see that the first two summands in (62) are of the order 0(us) with 5 
according to (55) and (56), respectively, and the last summand is of higher 
order. Thus (62) implies that a as defined by (57) is finite (namely, equal 
to the minimum of (55) and (56)), giving a contradiction. Thus a is indeed 
finite. ■ 

In the proof of Proposition 5.4, we already observed that the square 
bracket in the AT2-equation (17) vanishes on the horizon (41). Let us now 
analyze this square bracket in more detail, where we use again the notation 
(51). 

Proposition 7.2. K < 1 and 

[] = Oiu^) + 0{u) (63) 

with a as in Lemma 7.1. 

Proof. The derivative of the square bracket is again given by (52). Now 
a0 = 0, /?o ^ 0 and from Lemma 5.1, ao^o + A)7o 7^ 0; thus using (21), (22), 
and (54), we get, for r near p, 

[]' = 0K-1+(7) + ua+^ + 0(1) , (64) 
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where we again omitted the expressions uo(u')" and we use the notation 

K   if u>o = 0 
^  ~~   ^   0    if ^o^O 

Integrating (64) and using that []r=p = 0 according to (41), we obtain that 

[] = 0{uK+(7) + ua+W+l + 0(u) . (65) 

Suppose K > 1. Then K + a > 1 and a + (K) + 1 > 1, and (65) becomes 

[] = 0(U). 

We write the 74T2-equation (40) as 

r(AT2y = T3[] - 4A^/2. (66) 

Since (AT2)' is bounded and T3 = 0(ii"""^) (by virtue of hypothesis Aj), 
(66) behaves near the event horizon like 

u0 - CV'T) + 0(^-2) . (67) 

Since 2K — 2 > 0 and 1 — y < 0, the right side of (67) is unbounded as 
r \ p, giving a contradiction. We conclude that K < 1. 

For K, < 1, the second summand in (65) is of higher order than the first, 
and we get (63). ■ 

In the remainder of this section, we shall substitute the power expansions 
(21)-(23) and (54) into the EDYM equations and evaluate the leading terms 
(i.e. the lowest powers in u). This will amount to a rather lengthy consider- 
ation of several cases, each of which has several subcases. We begin with the 
case wp ^ 0,ibl. The A-equation (13) simplifies to (46). The AT2-equation 
(17) for UJ = 0 takes the form (40), and we can for the square bracket use 
the expansion of Proposition 7.2. Finally, we also consider the ^W-equation 
(16). Using the regularity assumption Aj, we obtain 

A-eqn:       O^5"1)  -  1 -  (1 " Wp    + 0(uK) + 0(u'+2*-2) (68) 

AT2-eqn:       u0  =  0(uK+a-3f) + 0{ul-%) + 0(U
2K
-

2
) (69) 

Aw'-eqn:       0(ns+K-2) = w0 (1 - tog) + 0{uK) + Oiu^i) .     (70) 
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First consider (68). According to An, S+2AV—2 > 0, and so all powers in (68) 
are positive. We distinguish between the cases where the power s + 2K — 2 
is larger, smaller, or equal to the other powers on the right of (68). Making 
sure in each case that the terms of leading powers may cancel each other, 
we obtain the cases and conditions 

3 
(a) K,< S + 2K-2   =*   wl = l±ep, K = s- 1, 5 > -       (71) 

3 
(b) K = s + 2K - 2   =»   wl = 1 zb ep, K = 2 - 5, 5 > -       (72) 

1 3 
(c) K > s + 2K - 2 > 0   =>   t^o = 1 ± ep, K = -, 5 < -      (73) 

^ z 

(d) s + 2K - 2 = 0   =>   K = 1 - | . (74) 

In Case (a), the relations in (71) imply that 

1 - -^  <  2s-4 = 2K - 2 . 

Hence (69) yields 1 - 35/2 = « + a - 3^/2, so 

o- = l-« = 2-5. (75) 

This is consistent with Lemma 7.1. But we get a contradiction in (70) as 
follows. Since K — s — 1, we have S + K — 2 = 25 — 3>0;on the other hand, 

s s        ^     35 
a-- = 2-s-- = 2-Y<0. 

Thus the left-hand side of (70) is bounded, but the right-hand side is un- 
bounded as r \ p. This completes the proof in Case (a). 

In Case (b), (70) yields that 

cr >   | . (76) 

We consider the two cases (55) and (56) in Lemma 7.1. In the first case, 
(76) yields that 5 < 1, contradicting (53). In the second case, (76) implies 
that 5 < |. This contradicts the inequality in (72), and thus completes the 
proof in Case (b). 

In Case (c), the relations in (73) give S + K — 2 = 5 — §<0, and thus (70) 
implies that 5 + n — 2 = a — f, so a = | (5 — 1). According to Lemma 7.1, 
a = 2 — 5orcr = l — f. In the first of these cases, we conclude that 5 = 5 
and a = |. Substituting these powers into (69), we get 

u0 = Oiu-1) + 0(ri-i5) + O^"1) , 
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which clearly yields a contradiction. Thus a = 1 — |, giving 

S     =     7   5 ^^^ ^'   =      n    ■ (77) 4 ' 2 8 v    / 

This case is ruled out in Lemma 7.3 below. 

In Case (d), we consider (70). Since s + K, — 2 = —K < 0, we obtain that 
s + K, — 2 = a — | and thus a = s — 1. Lemma 7.1 yields the two cases 

4 1 1 
s   =   - , ^^s' a=3 and ^78^ 

5   ^    I '      ■    « =  i ' * =  5 ■ (79) 

The first of these cases is the exceptional case of Theorem 3.1, and the 
second case is excluded in Lemma 7.4 below. This concludes the proof of 
Theorem 3.1 in the case WQ ^ 0, ±1. 

We next consider the case w§ — ±1. Then the expansions (68)-(70) must 
be modified to 

A-eqn:       O^5"1)  -  1 + 0{U
2K

) + 0{U
S
+

2K
-

2
) (80) 

AT2-eqn:        u*  = OK+<7-^) + O^1"^) + O^"2) (81) 

Aw'-eqn:       0(us+K-2)  = O(^) + O^'f) . (82) 

One sees immediately that, in order to compensate the constant term in 
(80), s + 2K — 2 must be zero. Hence s + K — 2 = —n < 0, and (82) yields 
that S + K — 2 = a — | and thus a = s — 1. Now consider Lemma 7.1. In case 
(55), we get the exceptional case of Theorem 3.1, whereas case (56) yields 
that 

3 1 1 
2 ' 4 ' 2 

This case is ruled out in Lemma 7.4 below, concluding the proof of Theo- 
rem 3.1 in the case WQ = ±1. 

The final case to consider is WQ = 0. In this case, the expansions corre- 
sponding to (68)-(70) are 

,4-eqn:       O^5"1)  =  1 - -L + 0(U
2K

) + 0(us+2"-2)     (83) 
ezpz 

AT2-eqn:       u0  =  0{uK+a-^) + O^1"^) + 0(U
2K
-

2
) (84) 

yW-eqn:        0(us+K-2)  = 0(uK) + 0(^-f) . (85) 

If s + 2K, — 2 = 0, we obtain exactly as in the case WQ ^ 0, ±1 above that 
(j = 5 — l. It follows that K > |, and Lemma 7.1 yields either the exceptional 
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case of Theorem 3.1, or s = 2, contradicting (53). If on the other hand 
s + 2K — 2 > 0, we can in (83) use the inequality s + 2K — 2 < 2K to conclude 
that s — 1 = S + 2K — 2 and thus K = |. Now ^ < f, and Lemma 7.1 together 
with (85) yields the two cases 

and 
5 1 3 
4' 

« = 
2 ' a=  8 

8 1 9 

5 ' 
K   = 

2 ' 
a = io 

The first case is ruled out in Lemma 7.3 below, whereas the second case 
leads to a contradiction in (84). This concludes the proof of Theorem 3.1, 
except for the special cases treated in the following two lemmas. 

Lemma 7.3. There is no solution of the EDYM equations satisfying the 
power ansatz (21), (22), and (54) with 

5 1 3 
5 = 4' K=2> a=8- 

Proof.    Suppose that there is a solution of the EDYM equations with 

A(r)    =   AQU*  + o(u4) 

w{r)    =   wi w* + o(u2) 

with parameters AQ,WI ^ 0. Consider the A-equation (46). The left side 
is of the order (r — p) 4. Thus the constant terms on the right side must 
cancel each other. Then the right side is also of the order u±. Comparing 
the coefficients gives 

5      A l    A      2 

4^° = -^2 A)^- 

This equation yields a contradiction because both sides have opposite sign.  ■ 

Lemma 7.4.   There is no solution of the EDYM equations satisfying the 
power ansatz (21), (22), and (54) with 

3 1 1 f**\ 8=   g , *  =   £ , *  =   - . (86) 

Proof.   According to (21), we can write the function VA as 

VI = ut + /(«) with / = o(uf). (87) 
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Employing the ansatz (21),(22) into the A-equation (46), one sees that 

Aw'2 = u0 + J + o(ii4) . (88) 

We solve for (it/)-1 and substitute (87) to obtain 

1 3 
= U4+u + cif + o(u) (89) 

wr 

with a real constant ci. Now consider the AT2-equation (40), which we write 
again in the form (66) and multiply by A, 

r A (AT2)' = (AT2)I A^ [} - ^ (AT2) (Awf2) . (90) 

As in the proof of Proposition 7.2, a good expansion for the square bracket 
is obtained by integrating its derivative. Namely, according to (52), 

[]'  -  -w'aP + u0 + o(u0) 
r 

and thus 

A~^(r)[] =  - A~~*   /   (w' a/3)(5) ds + u± + o(u*) . 
r Jp 

Substituting into (90) and using Ai and (88), we obtain 

A~2(r)   /   w' af3 = ^0 + u* + o{uZ) . 
J P 

We multiply by \/A, substitute (87) and differentiate, 

w' a(3 = u~^ + u0 + C2 /' + o(^0) . 

Multiplying by l/w' and using (89) gives the following expansion for a/3, 

a/3 — u* + u* 4- C3U4 f + C4U_4 / + 0(144) . (91) 

Next we multiply the Au/-equation (16) by \/A and write it as 

r2VA{y/A(VAw,)y = e2r (VAT) {a(3) + u* + o(J) . 

We apply Aj and substitute (87), (88), and (91). This gives an equation of 
the form (modulo higher order terms), 

U2   + U*   + Ti*  /' + uf + ^~4   /   +   lA0    =    ^2   + U*   + 1^4   /' + U~4   f  . 
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The constant term ~ ?i0 must vanish since all the other terms tend to zero as 
u —> 0. Furthermore, the u^ terms must cancel because all the other terms 

i 
are 0(^2). We thus obtain 

3 13 
U*   f   +   U~4   f    =    U4    +.   uf   +   f  , 

so that 
5 1 

uff + f = u + u4ff + u4f = u + o(u) , 

and we find that / satisfies an equation of the form 

di u f + d2 f = ds u + o(u) . 

A straightforward but tedious calculation yields that the coefficients di and 
d2 both vanish, and that d^ is non-zero. This is a contradiction. ■ 

8    The Exceptional Case 

In this section, we consider the exceptional case 

4 1 1 
3 ' 3 ' 3 

By employing the power ansatz (21), (22), and (54) into the EDYM equa- 
tions and comparing coefficients (using Mathematica), we find that the 
solution near the event horizon is determined by the five free parameters 
{Poilo,™, c, p). The remaining parameters are given by 

wo    = 

^0    = 

ao    =    -3 

V^2- -$ 
2c 

+ — rm Polo 

c^o 
Po 

9/?o    , /m
2' r2 Pi — 2cmr Polo + c27o2 

r    y r2 — (1 — WQ)
2 

mrPo - C70 

Wl 

rVAo 
9ao/3o 
2rAo 

Expanding to higher order, we obtain after an arduous calculation two fur- 
ther constraints on the free parameters, thus reducing the problem to one 
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involving only three parameters. We investigated this three-parameter space 
numerically starting at ro = p + e and found strong evidence that no global 
black hole solutions exist. Indeed, either the power ansatz was inconsistent 
near the event horizon (that is, for r close to ro + e the numerical solution 
deviated from the power ansatz, and became singular as e \ 0), or else the 
solutions developed a singularity for finite r. 
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