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Abstract 

Four dimensional reflexive polyhedra encode the data for smooth 
Calabi-Yau threefolds that are hypersurfaces in toric varieties, and 
have important applications both in perturbative and in non-perturbative 
string theory. We describe how we obtained all 473,800,776 reflexive 
polyhedra that exist in four dimensions and the 30,108 distinct pairs 
of Hodge numbers of the resulting Calabi-Yau manifolds. As a by- 
product we show that all these spaces (and hence the corresponding 
string vacua) are connected via a chain of singular transitions. 
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1    Introduction and basic definitions 

Calabi-Yau manifolds provide some of the most beautiful examples of the 
interplay between theoretical physics and what was previously considered to 
be pure mathematics. With the discovery of the relevance of Calabi-Yau 
manifolds to string compactifications [1] it became necessary for physicists 
to get acquainted with techniques of algebraic geometry, but soon physicists 
were able to formulate conjectures that became the focus of mathematicians' 
interest, such as mirror symmetry [2, 3] and its application to the problem of 
counting rational curves on Calabi-Yau manifolds [4, 5]. Conversely, math- 
ematical developments such as the introduction of homogeneous coordinates 
for toric varieties [6] were almost immediately exploited for applications in 
string theory. While physicists found that the space of Calabi-Yau hyper- 
surfaces in weighted projective spaces is almost perfectly symmetric under 
mirror symmetry [7, 8, 9], and also provided the first explicit constructions 
of mirror manifolds [10, 11], it was the mathematician Batyrev [12] who 
provided the framework necessary for making this symmetry complete and 
explicit, namely the description of Calabi-Yau manifolds that are hypersur- 
faces in toric varieties in terms of reflexive polyhedra. 

Mirror symmetry is not the only reason why hypersurfaces and, more 
generally, complete intersections in toric varieties play a particularly promi- 
nent role among all Calabi-Yau manifolds. They constitute nearly all of the 
examples used in the physics literature, and they are also precisely the spaces 
occurring in the geometrical phase of Witten's gauged linear sigma model 
[13], which not only explains the connection between Landau-Ginzburg mod- 
els and Calabi-Yau compactifications, but is also relevant to the discussion 
of topology changing physical processes [14, 15]. In the context of string du- 
alities and non-perturbative string physics, reflexive polyhedra can be used, 
for example, for directly finding enhanced gauge groups [16]. 

Another point where physics and mathematics interact very strongly is 
the question of connectedness of the moduli space of Calabi-Yau manifolds. 
While this question was originally asked by a mathematician [17], it was 
later found that physical processes [18, 19] may interpolate between the 
corresponding different branches of the moduli space. Here, again, an im- 
portant role is played by reflexive polyhedra: They were used to demonstrate 
the connectedness of the space of Calabi-Yau hypersurfaces in weighted pro- 
jective spaces [20, 21]. In terms of polyhedra, two Calabi-Yau manifolds are 
connected if one of the corresponding polytopes is a subpolyhedron of the 
other or, more generally, if between the two polyhedra there is a chain of 
polyhedra that are mutually connected in this way. 
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For all of these reasons, a complete classification of reflexive polyhedra 
and thus of smooth Calabi-Yau manifolds that are hypersurfaces in toric 
varieties, is an important task. Until recently, the complete set of reflexive 
polyhedra was known only for the case of two dimensions, corresponding 
to one dimensional Calabi-Yau manifolds, i.e. elliptic curves. To change 
this situation, we developed an algorithm for the classification in arbitrary 
dimensions [22, 23] and, as a first step, used it to find all 4319 reflexive 
polyhedra in three dimensions [24], which give rise to K3 manifolds. In 
the present work we present the results of a complete classification in four 
dimensions, and as a side result we can state that the corresponding moduli 
space of Calabi-Yau threefolds is connected (this was almost, but not quite 
completely shown in [25]). We plan to make our complete results accessible 
at our web site [26]. 

In the remainder of this introductory section we give some of the neces- 
sary defintitions. In section two we briefly outline our classification algorithm 
and in section three we discuss the modifications and tricks that were nec- 
essary to make this algorithm work in four dimensions. Finally we present 
our results, both at the level of polyhedra and in terms of the geometry of 
Calabi-Yau threefolds. 

Reflexive polyhedra are defined in relation to some lattice M ~ Zn or 
its dual lattice iV, and the underlying real vector spaces M^ and 7%. They 
always have the origin 0 in their interiors; we will denote this property as 
the 'interior point property' or TP property'. Given such an TP polytope', 
the dual (or polar) polytope A* C i\% of A C MR is defined as 

A* = {yeiVM:     <y,s)>-l    Vz G A}, (1) 

where (y,x) is the duality pairing between y E N^ and x E MR. Because of 
the convexity of A, (A*)* = A. 

Given the lattice M, a lattice (or integer) polyhedron is a polyhedron on 
MR whose vertices lie in M. A lattice polyhedron A C MR is called reflexive 
if its dual A* C NR is a lattice polyhedron w.r.t. iV. Of course the same 
definitions are valid upon interchanging M with N and MR with ATR. 

2    Outline of the algorithm 

The basic idea of our algorithm is to construct a finite set S of "maximal" 
polyhedra such that every reflexive polyhedron is a subpolyhedron of some 
polyhedron in S. Given 5, all that is left to do is to construct all subpoly- 
hedra of all polyhedra in 5 and check for reflexivity.   By duality, the set 
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S* of polyhedra dual to the ones in S has the property that any reflexive 
polyhedron contains at least one element of 5* as a subpolyhedron, so these 
objects are "minimal" in a certain sense. More precisely, we can give the 
following definition of minimality: A minimal polyhedron V C iNfa is defined 
by the following properties: 

1. V has the IP property. 
2. If we remove one of the vertices of V, the convex hull of the remaining 
vertices of V does not have the IP property. 

It is easily checked that any reflexive polyhedron A* contains at least one 
minimal polyhedron. As we showed in [22], V must either be a simplex or 
contain lower dimensional simplices with the origin in their respective inte- 
riors such that any vertex of V belongs to at least one of these simplices. 
This leads to a coarse classification with respect to the number of vertices 
and the simplices they belong to: In two dimensions, the only possibilities 
are the triangle V1V2V3 and the parallelogram ViV^V/V^, where V1V2 and 
V1V2 are one dimensional simplices (line segments) with the origin in their 
respective interiors. In a shorthand notation, where a p-simplex is denoted 
by the number p + 1 of its vertices, this result may be summarized as {3; 
2+2}. In the same notation the result for three dimensions can be summa- 
rized as {4; 3+2, 3+3; 2+2+2} where the underlining symbol indicates a 

vertex occurring in both triangles (an Egyptian pyramid is an example of 
such a configuration). In the four dimensional case of our present study, the 
possibilities can be summarized as 

{5; 4+2, 3+3, 4+3, 4+4; 3+2+2, 3+3+2, 3+3+3; 2+2+2+2},  (2) 

where the three triangles in 3+3+3 have one common vertex and configura- 

tions with the same number of vertices are separated by commas. 

The fact that a simplex spanned by vertices Vi contains the origin in its 
interior is equivalent to the condition that there exist positive real numbers 
(weights) qi such that ^qiVi = 0. We call a set of weights for a simplex a 
weight system and the collection of weight systems for a minimal polyhedron 
(with q!-3' — 0 if Vi does not belong to the j'th simplex) a combined weight 
system or CWS. Perhaps the most important feature of these combined 
weight systems is the fact that they allow us to reconstruct V* and hence V 
in a simple way: If V has the vertices Vi,... , Vk, consider the map 

MK^M*,    jr-*x = (ZI,.. . ,3*) with^ = (^,X). (3) 

It is easily checked that this map defines an embedding such that the image of 
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MR is the subspace defined by Y^i HI 
xi — 0 Vj. Moreover, V* is isomorphic 

to the polyhedron defined in this subspace by xi > — 1 for i = 1,... , k. 

Looking for reflexive polytopes, we obviously require V to have the fol- 
lowing two additional properties: 

3. V is a lattice polyhedron. 
4. The convex hull of V* fl M has the IP property. 

3. implies that the qi can be chosen as rii/d, where the rti are integers with- 
out a common divisor and d = Ylini- ^n ^is case there is a unique lattice 
^coarsest that is generated by the vertices of V such that any lattice N on 
wich V is integer is a refinement of iVcoarsest- If we denote the lattice dual to 
•^coarsest as Mfinest, then it is easily checked that the image of Mfinest under 
our embedding map is nothing but the set of integer (xi,-... ,£&) fulfilling 

^2i nf'xi = 0 Vj. If 4. is fulfilled by any lattice M, it must also be fulfilled 
by Mfinest, so for analysing which weight systems play a role it is sufficient to 
restrict our attention to Mfinest. Among the consequences of the embedding 
map is the fact that a CWS q uniquely determines V and Mfinest- Given q, 
we define A(q) as the convex hull of V* fl Mfinest and say that q has the IP 
property if A(q) has the IP property. It is not hard to check that a CWS 
can have the IP property only if each of the single weight systems occurring 
in it has the IP property. As shown in [23], there is only a finite number 
of weight systems q with a given number of weights such that A(q) has the 
IP property. For 2 weights, there is just the system (711,712) = (1,1), with 3 
weights there are the systems (1,1,1), (1,1,2) and (1,2, 3) and with 4 and 5 
weights there are 95 and 184026 weight systems, respectively. Plugging them 
into the simplex structures and checking for 4., one gets a total of 201346 
CWS relevant to four dimensional reflexive polytopes. 

One way of finding all reflexive polyhedra in four dimensions would be 
to find all IP subpolyhedra A of A(q) for the above 201346 CWS and check 
whether there is a sublattice of Mfinest on which A is reflexive. The question 
of whether a given polytope A C MR can be reflexive on any lattice (and 
if so, on which lattices) may be approached in the following way: If A 
has ny vertices and np facets (a facet being a codimension 1 face), the dual 
polytope A* has ny facets and np vertices. In this situation there is not only 
a coarsest lattice iVcoarsest on which A* can be a lattice polytope (generated 
by the vertices of A*), but also a coarsest lattice Mcoarsest generated by the 
vertices of A, as well as the dual lattices iVfinest and Mfinest? respectively. We 
define the vertex pairing matrix X as the np x nv matrix whose entries are 
Xij = (Vi, V}), where Vj, and Vj are the vertices of A* and A, respectively. 
Xij will be —1 whenever Vj lies on the i'th facet, and the rank of X is just the 
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dimension n of M^. If there is any lattice such that A is reflexive on it, then 
all entries of X must be integer. Conversely, if X is integer, then MCoarsest 
is a sublattice of Mfinest and all lattices on which A is reflexive can be found 
as follows: By recombining the lines and columns of X in the style of Gauss' 
algorithm and keeping track of the GL(Z) transformation matrices used in 
the process, we may decompose X as X = W D-U, where W is a GZ/(np,Z) 
matrix, U is a GL(nv, Z) matrix and D is an np x ny matrix such that the 
first n diagonal elements are positive integers whereas all other elements are 
zero. In the same way as we defined an embedding of MR in M^, we now 
define an embedding in WlF such that Mfinest is isomorphic to the sublattice 
of ZnF determined by the linear relations among the Vi. In this context the 
Xij are just the embedding coordinates of the Vj. The GL(nF,Z) matrix 
W effects a change of coordinates in ZnF so that A now lies in the lattice 
spanned by the first d coordinates, i.e. we can interpret the first n entries of 
the j'th column of D • U as coordinates of Vj on Mfinest- Similarly, the lines 
of W • D provide coordinates for the vertices of A* on Nfinest, whereas U and 
W give the corresponding coordinates on the coarsest possible lattices. The 
intermediate lattices are in one-to-one correspondence to subgroups of the 
finite lattice quotient Mfinest/MCoarsest and can be found by decomposing D 
into a product of triangular matrices as described in [24, 27]. 

In principle we now have a complete algorithm. It turns out, however, 
that we need far less than the above mentioned 201346 CWS for our clas- 
sification scheme if we choose suitable refinements of our original defini- 
tion of minimality. While there are several possibilities of doing this (see 
[22, 24, 27]), we will mention only the one that is most powerful for the case 
of four dimensions considered here. We call a polytope A C M^ r-maximal 
if A is reflexive w.r.t. the lattice M but is not contained in any other poly- 
tope that is reflexive w.r.t. M. The duals A* of these objects are called 
r-minimal; these are the reflexive polytopes that have no reflexive subpoly- 
topes. As shown in [23], for n < 4 A(q) is reflexive whenever it has the IP 
property. In this case we define a CWS to be r-minimal if A(q) is r-maximal. 
It is not hard to see that every reflexive polytope must be a subpolytope of 
A(q) on some lattice M C Mfinest> where q is an r-minimal CWS. With our 
algorithms it is easy to check for r-minimality by checking whether (A(q))* 
contains a reflexive proper subpolyhedron. In this way we found that only 
308 of the 201346 CWS are r-minimal (these 308 CWS are listed in ap- 
pendix A). Nevertheless, as we will see, there are further polytopes that are 
r-maximal with respect to proper sublattices of Mfinest- 

Thus we can find all reflexive polytopes in four dimensions by finding 
all IP subpolytopes A of the 308 A(q) with r-minimal q and applying our 
method for identifying all lattices on which A is reflexive. 
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3    Improvements of our basic algorithm 

For the classification of reflexive polyhedra in three dimensions [24] we used, 
more or less, an implementation of the algorithm outlined in the previous 
section already. Our programs, however, would not have worked for the four 
dimensional case because everything that can go wrong in large computer 
calculations would have gone wrong: Within a rather short time we would 
have run out of RAM and disk space, would have encountered numerical 
overflows, and even without these problems we would not have been able 
to obtain our results within a reasonable time. To understand where these 
problems came from and how we eventually managed to solve them, it is 
necessary to go into some technical details of our approach. 

One of the main parts of our package is a set of routines for analysing a 
polytope A given in terms of the lattice points whose convex hull it repre- 
sents with respect to the following questions: 
What are the vertices of A? 
What are the equations for the bounding hyperplanes of A? 
Is A IP? 
Is A reflexive? 
The basic form of our algorithm is as follows: Fist one looks among the given 
points for a set of points that span a simplex S = AQ of the full dimension. 
By imposing extremality conditions on the coordinates of these points, one 
can choose these points in such a way that they are vertices Vi,... , V^+i 
of A. Then one checks for every bounding hyperplane H of AQ if there are 
still points of A outside H. If this is the case, one picks one of these points, 
again in such a way that it is a vertex (Vr

ri+2) of A. There are new bound- 
ing hyperplanes connecting V^+2 with vertices of H (which is subsequently 
omitted from the list of bounding hyperplanes). Proceeding in this way one 
obtains successively larger polytopes A^ with vertices Vi,... , V^+i+i whose 
bounding hyperplanes are known. Finally, if for some k no point of A lies 
outside of A^, we know that A = A^ and we have found all vertices and 
defining equations of A. 

In this form, there are the following problems: For every new hyperplane, 
we have to calculate an equation from n points. The corresponding linear 
algebra is time consuming and prone to overflows. Besides, for four dimen- 
sional polytopes, connecting every new vertex with every subset of 3 points 
of an old hyperplane H with k vertices introduces a combinatorial factor of 
(3) (this was no problem in the three dimensional case with (2) and usually 
moderate k). Therefore it is desirable to connect the new vertex only with 
all codimension 2 faces of H. At first sight this seems to require even more 
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linear algebra, but this can be evaded with the following trick: To every 
hyperplane H we assign a bit pattern with the z'th bit equal to 1 if Vi lies 
on H and equal to 0 otherwise. Intersecting hyperplanes then corresponds 
to bitwise 'logical and' operations, and this type of operation is provided by 
the operator & in the C programming language. Among such bit patterns 
('unsigned integers' in C) there is a natural partial ordering defined by the 
bitwise ordering 0 < 1. In order to find the facets of if, one can proceed in 
the following way: Among all the bit patterns coming from 'bitwise inter- 
sections' of H and all other hyperplanes, the facets of H correspond to the 
maximal objects with respect to the partial ordering. Thus it is sufficient to 
connect the new vertex only with the vertices encoded in the corresponding 
unsigned integers. 

Even the remaining linear algebra can be avoided in the following way: 
Every codimension 2 face is the intersection of two facets given by equations 

n 

EW(x) = J2afxJ-c{l)l=0>        1 = 1,2. (4) 
3=1 

Any new hyperplane passing through the codimension 2 face must be de- 
scribed by an equation of the form 

E(x) - Ai^1) (x) + A2£(2)(x) = 0, (5) 

so the equation for the new facet passing through the vertex V is just given 
(up to scaling) by Ai = E^(V), A2 = —E^(V). In this way we have 
replaced the solution of a system of n linear equations by the evaluation of 
two expressions. 

A further source for saving calculation time comes from the fact that 
in our classification scheme the polytopes are generated by starting with a 
small number of objects and obtaining all others by dropping vertices from 
the sets of lattice points of polyhedra that have already been analysed. If 
we obtain a polytope A from a polytope A by dropping the vertex V, then 
we can make use of the following facts: All vertices of A except for V are 
vertices of A, and all facets of A not containing V are again facets of A. 
Thus we already have the data for A, except for a 'hole' that is bounded by 
the codimension 2 faces that are intersections between facets of A containing 
V and other facets. Then one can first 'close the hole', i.e. find the data for 
the polytope A7 which is the convex hull of the vertices of A except V and 
then proceed to find the remaining vertices and facets of A as in our basic 
algorithm. 'Closing the hole' can be done in the following way: First one 
connects the codimension 2 faces bounding the hole with the other vertices 
along the hole in the way described above.   Then one checks whether the 
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resulting collection of facets of A' is already complete. This can be achieved 
with an algorithm that relies again on intersections of bit patterns and that 
returns the vertices belonging to the missing facets. The missing facets can 
be found by connecting the corresponding vertices. 

Even for the smallest of our r-maximal polytopes (the one with 47 lat- 
tice points), each of the above tricks (using incidences to find codimension 2 
faces, getting new equations from old ones and using the data of previously 
analysed polytopes) improves calculation time by a factor roughly of the 
order of two. Together they yield a factor of eight, and for larger polytopes 
the improvement is probably even much better. This takes care of the prob- 
lems with calculation time and some of the overflows. Overflows occurring 
at other points in our programs could be circumvented by improving basic 
routines of linear algebra, for instance by rearranging lines and columns be- 
fore and during the application of Gauss-type algorithms, or simply by using 
double precision integers (64 bit) for certain routines. 

This still leaves us with RAM and disk space problems. Clearly the first 
thing to do is to compress our data as far as possible. A factor of more than 
two can be gained immediately by making use of mirror symmetry: For every 
mirror pair, we kept only the smaller of the two polytopes, together with 
information on which of them had already been found. In order to be able to 
check efficiently if a polyhedron was new it was essential to define a normal 
form based on intrisic properties of the polytope [24] and an ordering which 
allowed us to store the polyhedra in a sorted list that could be searched by 
bisection. The coordinates in the normal form were then shifted to non- 
negative values and interpreted as digits of a number in a sufficiently large 
basis. This number was stored in binary format, so that we could put an 
average of 3 coordinates on one byte. With these methods we needed about 
20 bytes to encode a mirror pair of reflexive polyhedra, reducing the size of 
our data to approximately 4.5 GB which fit easily on the harddisks we were 
using but not into the RAM of our computers. This meant that whenever our 
programs found a reflexive polytope, it had (at least in principle) to read 
frome the hard disk to see whether this polytope had been found before. 
To avoid the enormous time consumption involved in reading large portions 
from the disk, we had to structure our data in the form of a database in such 
a way that disk operations were minimized. We achieved this by keeping 
approximately every 64'th polytope in the RAM, so that after a bisecting 
routine using only data in the RAM the program had to read only a single 
block of 64 or less polytopes from the disk. As a side effect we could also 
make effective use of the disk cache in this way, i.e. in most cases even the 
reading of this block was substituted by a (much faster) reading from the 
disk cache. 
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Another point that required care, in particular in view of the question 
of connectedness, was the distinction between polyhedra that are reflexive 
on the original lattice Mfinest of one of the 308 polytopes coming from r- 
minimal CWS (we will call them 'OL-polyhedra'), and reflexive polyhedra 
on sublattices. We chose the following strategy: We kept a large list of OL- 
polyhedra and in addition a small list of polyhedra that were not reflexive 
on the original lattice but on some sublattice and were not (yet) contained 
in the list of OL-polyhedra. The complete list can then be generated by 
looking for all possible lattices for all polytopes of either list. 

The two most time consuming tasks in our program are the analysis of 
a polyhedron, which can be performed about 2100 times per second on a 
PentiumIII/600 and 1400 times on an Origin 2000 processor, respectively, 
and the evaluation of the normal form, for which the corresponding numbers 
are 1800 and 900. The PC is therefore faster by a factor of 3:2 for the first 
task and by a factor of 2:1 for the evaluation of the normal form although 
everything is done with pure integer arithmetics. This apparent discrepancy 
is probably explained by the 64-bit architecture of the Origin 2000: Whereas 
the time-critical part of the evaluation of the normal form only uses 32-bit 
integers, the analysis of the incidence structures of the polyhedra required 
64 bit, since the vertex number often exceeded 32 (but never 64). As most 
of the polyhedra that occurred in our computations were not reflexive (in 
which case no normal form was calculated), the main portion of the total 
CPU time was consumed by polyhedron analysis. 

4    Results 

After more than half a year, using two dual Pentium III/600MHz PCs and 
between 10 and 30 processors on a 64 processor SGI Origin 2000, our pro- 
grams produced the following results: A list of 473,800,652 reflexive poly- 
topes that are subpolyhedra of the 308 polytopes we started with on the 
original lattice (i.e., OL-subpolyhedra), and 98 additional polytopes that 
are subpolytopes of the 308 on a sublattice but not reflexive on the original 
lattice.1 Among the 473,800,652 OL-polyhedra there are only 124 polytopes 
whose duals are not in the same list. Looking for different lattices for the 
OL-polyhedra yields 95 polytopes not yet in that list, and looking for all 
possible lattices for the other 98 polyhedra leads to 102 polytopes not among 

1More precisely, whenever we found a polytope only on a sublattice in the 'big run', we 
didn't proceed to look for its subpolyhedra. In this way we got 70 such polytopes, and in 
a second run found that they had 28 subpolytopes that had not yet been found in either 
list. 
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the 473,800,652. The union of the respective sets of 95 and 102 polyhedra 
consists precisely of the 124 polytopes that are required to make the large 
list mirror symmetric, leading to a total of 473,800,776 reflexive polyhedra. 
More precisely, there are 236,879,533 dual pairs and 41,710 self-dual poly- 
hedra. 

At this point it is appropriate to discuss the reliability of our results. 
Given the numbers of polyhedra that we found, the complexity of our pro- 
grams, and the calculation time of several processor years, one may certainly 
wonder whether our results should be trusted. The reason why we are sure 
that they are correct is the following: While our whole construction is man- 
ifestly asymmetric with respect to duality, starting with 'large' polyhedra 
and getting all others as subpolytopes, the result is perfectly symmetric. 
Assuming that by some unknown error we had missed precisely 1 polytope, 
the probability that it were self mirror (and thus not seen to be lacking) 
would be around 10-4; if we had missed 2 polytopes, there would have been 
a chance of roughly 10~8 of both being self mirror and of approximately 
2 x 10-9 that these two polytopes constituted a mirror pair. Clearly one 
would expect most sources for errors in our results to produce larger num- 
bers of missing polytopes, making the perfect symmetry of our results even 
more unlikely.2 We therefore conclude that the only reasonable explanation 
for the symmetry of our results is their correctness. 

As we mentioned, every reflexive polytope is a subpolytope of one of 308 
objects either on the same lattice or on some sublattice. Asking ourselves 
about a complete list of r-maximal objects (such that every reflexive polytope 
is a subpolytope of one of them on the same lattice), it is clear that we need 
additional polyhedra because of the 124 polytopes that are not found on the 
original lattices. This was to be expected, since even in three dimensions 
there is a polytope that is not of this type [24]. As a matter of fact, even 
before we finished the classification we could find 25 additional r-maximal 
polytopes by considering the original 308 objects on different lattices. It 
turned out, however, that even taking into account the subpolytopes of these 
25 polyhedra was not sufficient to complete the full list. Given the fact that 
all except 124 reflexive polytopes are OL-subpolytopes of the 308, it is clear 
that the search for additonal r-maximal objects can be restricted to these 
124 polytopes. The result is that these 124 polytopes contain 32 r-maximal 

2 Actually, this is what really happened: In the first run we ended up with 476 missing 
mirror polyhedra. It turned out that all of them could only come from 3 different r- 
maximal objects. Moreover, all of the 3 respective files were created in the last days of 
November 99 on the Origin 2000. It seems that some processor(s) on that machine had 
a problem at that time. Repeating the calculation for these 3 files produced exactly all 
missing mirrors and the desired symmetric result. 
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polytopes, i.e. in addition to the 308 + 25 polyhedra mentioned above there 
are 7 further r-maximal polytopes, yielding a total of 308 + 25 + 7 = 340 
r-maximal polyhedra in four dimensions. Information on these objects is 
given in appendix A. Tables 1-7 contain the 308 CWS that define r-maximal 
polytopes of the type A(q) as well as information on additional r-maximal 
polytopes that we obtained by considering A(q) on sublattices of Mfinest- It 
turns out that the corresponding 25 polytopes all occur for 'Fermat type' 
CWS where V* = A(q). The 7 last polytopes (more precisely, their r- 
minimal duals) which are of neither of the aforementioned types are listed in 
table 8 in the normal form coordinates produced by our programs. Despite 
their different structure, each of these r-minimal polytopes contains a single 
minimal subpolytope, which is not reflexive and turns out to be a simplex 
in each of the 7 cases. Thus even these polytopes are connected with weight 
systems in a unique way. For example, the first polytope in table 8 contains a 
simplex with the same weights as the reflexive simplex corresponding to the 
quintic hypersurface, but on a lattice on which it is not reflexive. Addition 
of the vertex vi turns this simplex into an r-minimal polytope. 

It is now possible to state the connectedness of all four dimensional poly- 
hedra in the sense described in the introduction: Connectedness of all poly- 
hedra is now equivalent to connectedness of the 340 r-maximal polytopes. 
This could be shown as a by-product of our classification scheme: During 
the determination of the subpolytopes of the 308, we checked that each r- 
maximal polytope contained at least one OL-subpolytope that is also an 
OL-subpolytope of some other of the 308 objects. This re-established the 
connectedness of the 308, which had been shown in [25] already. Finally, by 
considering the OL-subpolytopes of the remaining 32 r-maximal polytopes, 
connectedness of all reflexive polyhedra was established. 

Before proceeding to an interpretation of our results in terms of the 
geometry of Calabi-Yau hyper surf aces, let us briefly mention a few facts 
relating mainly to the structures of polyhedra. The numbers of lattice points 
in the polytopes we found were of course bounded by the corresponding 
minimal and maximal polytopes and ranged from 6 to 680. The numbers of 
vertices ranged from 5 to 33. An interesting object that we encountered is 
the 24-cell, a self dual polytope with 24 vertices and 24 facets which arises 
as a subpolytope of the hypercube. It is a Platonic solid that contains the 
Archimedian cuboctahedron (with symmetry order 48) as a reflexive section 
through the origin parallel to one of its 24 bounding octahedra. It has the 
maximal symmetry order 1152 = 24 * 48 among all 4 dimensional reflexive 
polytopes (in our context symmetries are realized as lattice isomorphisms, 
i.e. as subgroups of GL(n,Z) and not as rotations). The corresponding self 
mirror Calabi-Yau manifold has Hodge numbers (20,20). The polytope with 
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the largest order, namely 128, of Mfinest/Mcoarsest is determined by the weight 
system (1,1,1,1,4)/8. For the Newton polytope of the quintic hypersurface 
in P4, this order is 125. 

For calculating the Hodge numbers of the Calabi-Yau hypersurfaces cor- 
responding to our reflexive polyhedra, we used the following well known 
formulae [12]: 

/i1i=Z(A*)-5-      Y,     r(0*)+      Y     l*(e*)l*(d) (6) 
codim#*=l codim#*=2 

(this is also the Picard number) and 

h12 = l(A)-5-     Yl    l*W+    E    1*(0T(0), (7) 
codim^=l codim^=2 

where 9 and 9* are faces of A and A*, respectively, and /(•) and /*(•) denote 
the numbers of integer points and integer interior points of polytopes. The 
result is a collection of 30,108 distinct pairs of Hodge numbers, consisting 
of 14,986 'pairs of pairs' with hn ^ hi2 and 136 pairs with hu = /112, 
i.e. x — 2(/iii - hu) = 0. These Hodge numbers are shown in the plot in 
appendix B. Because of the symmetry of the complete plot, we have only 
displayed the half with hn < hu- While the general shape of this diagram 
has remained very similar to corresponding plots of earlier lists of Hodge 
pairs [7, 8, 9, 28, 29], there is a striking difference with regard to the density 
of points in the plot. In particular, there is a large region, roughly bounded 
by hn > 15, hu > 15 and hn + hu < 175 in which every pair of numbers 
actually occurs. 

A peculiar feature of the complete plot is the existence of a few 'isolated' 
Hodge pairs in the lowest region. In particular, there are the pairs {21,1}, 
{20,5}, {19,7} (these are the only ones with hn + hu < 28) and {29,2}. 
The Hodge pair hn = 1, hu = 21 is well known to correspond to a quotient 
of the quintic hypersurface by a Z5 symmetry that acts without fixed points. 
It is quite peculiar from the lattice point of view: Although the N lattice is 
not the lattice iVfinest generated by the vertices of A*, the only lattice points 
of A* are its vertices and the IP. Thus it provides an example where the 
N lattice is not even generated by the lattice points of A*. In terms of the 
geometric interpretation, this is necessary because modding without fixed 
points means that no extra divisors and hence no extra lattice points of A* 
(except, possibly, points interior to facets) may be introduced. In a similar 
way the model with Hodge numbers (2,29) comes from modding the bicubic 
hypersurface in P2 x F2 by a fixed point free Z3. The hypersurface with 
Hodge numbers (7,19) corresponds to a dual pair of polytopes where A* has 
9 vertices and 12 lattice points and A has 10 vertices and 24 lattice points; 
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for the model with Hodge numbers (5,20) the corresponding numbers are 9, 
10, 10 and 25, respectively. 
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Appendix A: r-minimal CWS and polytopes 

d ni n2 na 714 n*, 

5 1 1 1 1 
6 1 1 2 2 
7 1 2 2 - 

7 1 1 3 - 

8 2 2 2 2 
8 1 2 3 - 

8 1 1 4 3 
9 2 2 3 - 

9 1 3 3 1 
9 1 2 4 - 

10 2 3 3 - 

10 2 2 4 - 

10 1 3 4 - 

10 1 2 5 - 

11 2 3 4 - 
11 2 2 5 - 
11 1 3 5 - 

12 2 3 3 - 

12 3 3 4 1 
12 2 4 4 - 
12 2 3 5 - 

12 1 4 5 - 

12 2 2 6 1 
12 1 3 6 - 

13 3 4 4 - 
13 3 3 5 - 
13 2 4 5 - 
13 2 3 6 - 
13 1 4 6 - 
14 3 3 4 - 

14 3 4 5 - 

14 2 4 6 - 

14 2 3 7 - 

14 1 4 7 - 

d ni n2 nz n^ n5 

15 2   2   3   3   5 - 

15 113   5   5 - 

15 113  4  6 - 

15 112   5   6 - 

15 113   3   7 - 

15 112  4  7 - 

15 1115   7 - 
16 114   5   5 - 

16 114  4   6 - 

16 113   5   6 - 

16 113   4   7 - 

16 112   5   7 - 

16 113   3   8 - 

16 112   4   8 1 
16 1115   8 - 
17 114   5   6 - 

17 2   2   3   3   7 - 

17 113   5   7 - 

17 113   4   8 - 

17 112   5   8 - 

18 114   6   6 - 

18 114   5   7 - 

18 113  6   7 - 

18 2   2   3   3   8 - 

18 113   5   8 - 

18 112   6   8 - 

18 113   4   9 - 

18 112   5   9 - 

18 1116   9 - 

19 114   6   7 - 

19 113   6   8 - 

19 113   5   9 - 

19 112   6   9 - 

20 2   2   5   5   6- 

d ni n2 nz m ns 
20 1   5 6 7 - 

20 1   4 6 8 - 

20 1   4 5 9 - 

20 2   3 3 10 - 

20 1   4 4 10 - 

20 1   3 5 10 - 

20 1   2 6 10 - 

21 1   5 7 7 - 

21 1   5 6 8 - 
21 1   4 7 8 - 

21 1   4 6 9 - 

21 1   3 7 9 - 
21 1   4 5 10 - 

21 1   3 6 10 - 

21 1   2 7 10 - 
22 1   5 7 8 - 

22 1   4 7 9 - 

22 1   4 6 10 - 

22 1   3 7 10 - 
22 1   4 5 11 - 

22 1   3 6 11 - 

22 1   2 7 11 - 

23 1   5 7 9 - 

23 1   4 6 11 - 

23 1   3 7 11 - 
24 1   6 8 8 - 
24 1   6 7 9 - 
24 1   5 8 9 - 
24 3   4 4 10 - 
24 1   4 8 10 - 

24 1   3 8 11 - 

24 1   4 6 12 - 

24 1   3 7 12 - 

24 1   2 8 12 - 

Table la: r-minimal weight systems with d < 24. Here and in tables 2-7, 
the last column indicates the number of additional lattices on which A(q) is 
r-maximal. 
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d ni n2 n3 n4 ns 

25 6 8 9 

25 5 8 10 

25 5 7 11 

25 5 6 12 

25 4 7 12 

25 3 8 12 

26 6 8 10 

26 5 7 12 

26 5 6 13 

26 4 7 13 

26 3 8 13 

27 6 9 10 

27 5 9 11 

27 5 7 13 

27 3 9 13 

28 7 9 10 

28 6 9 11 

28 4 9 13 

28 4 4 14 

28 5 7 14 

28 4 8 14 

28 3 9 14 

29 7 9 11 

29 5 8 14 

29 4 9 14 

30 7 10 11 

30 6 10 12 

30 6 8 14 

30 4 10 14 
30 6 7 15 

30 5 8 15 

30 4 9 15 

30 3 10 15 

31 7 10 12 

31 6 8 15 

d ni n2 "3 n4 ns 

31 4 10 15 

32 8 10 12 

32 6 8 16 

32 .5 9 16 

32 4 10 16 

33 8 11 12 

33 7 11 13 

33 6 9 16 

33 4 11 16 

34 8 11 13 

34 6 9 17 

34 4 11 17 

35 7 9 17 

35 5 11 17 

36 9 12 13 

36 8 12 14 
36 5 12 17 

36 7 9 18 

36 6 10 18 

36 5 11 18 

36 4 12 18 

37 9 12 14 

37 7 10 18 

37 5 12 18 

38 7 10 19 

38 5 12 19 

39 9 13 15 

39 5 13 19 

40 10 13 15 

40 8 10 20 

40 7 11 20 
40 5 13 20 

41 8 11 20 

42 10 14 16 
42 6 14 20 

d ni n2 ns n4 ns 

42 8 11 21 

42 6 13 21 

42 5 14 21 

43 6 14 21 

44 8 12 22 

44 6 14 22 

45 11 15 17 

45 9 12 22 

45 6 15 22 

46 9 12 23 

46 6 15 23 

48 12 16 18 

48 9 13 24 

48 6 16 24 

49 7 16 24 
50 10 13 25 

50 7 16 25 

51 7 17 25 
52 10 14 26 

52 7 17 26 
54 7 18 27 

56 11 15 28 

56 8 18 28 

57 8 19 28 

58 8 19 29 

60 12 16 30 

60 8 20 30 
63 9 21 31 

64 9 21 32 

66 9 22 33 
70 10 23 35 
72 10 24 36 
78 11 26 39 
84 12 28 42 

Table lb: r-minimal weight systems with d > 25. None of the corresponding 
polytopes is r-maximal on a different lattice. 
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d n^nsJ^nsne d nin2n3n4n5n6 d nininzni n^n& 

4 11110 0 5 12 110 0 6 13 110 0 
4 110 0 11 2 8 2 4 0 0 11 - 10 3 5 0 0 11 - 

4 11110 0 5 12 110 0 6 13 110 0 
5 12 0 0 11 - 8 4 2 0 0 11 - 12 4 6 0 0 11 - 

4 11110 0 5 12 110 0 7 2 3 110 0 
6 110 0 2 2 - 9 3 4 0 0 11 - 7 2 3 0 0 11 - 

4 11110 0 5 12 110 0 7 2 3 110 0 
6 2 2 0 0 11 - 10 3 5 0 0 11 - 8 2 4 0 0 11 - 

4 11110 0 5 12 110 0 7 2 3 110 0 
6 13 0 0 11 - 12 4 6 0 0 11 - 9 3 4 0 0 11 - 

4 11110 0 6 112 2 0 0 7 2 3 110 0 
7 2 3 0 0 11 - 6 110 0 2 2 - 10 3 5 0 0 11 - 

4 11110 0 6 2 2 110 0 7 2 3 110 0 
8 2 4 0 0 11 - 6 2 2 0 0 11 - 12 4 6 0 0 1 1 - 

4 11110 0 6 2 2 110 0 8 2 4 110 0 
9 3 4 0 0 11 - 6 13 0 0 11 - 8 2 4 0 0 11 1 
4 11110 0 6 2 2 110 0 8 2 4 110 0 

10 3 5 0 0 11 - 7 2 3 0 0 11 - 9 3 4 0 0 11 - 

4 11110 0 6 2 2 110 0 8 2 4 110 0 
12 4 6 0 0 11 - 8 2 4 0 0 1 1 - 10 3 5 0 0 11 - 

5 12 110 0 6 2 2 110 0 8 2 4 110 0 
5 12 0 0 11 - 9 3 4 0 0 11 - 12 4 6 0 0 11 - 

5 12 110 0 6 2 2 110 0 9 3 4 110 0 
5 2 10 0 11 - 10 3 5 0 0 11 - 9 3 4 0 0 11 - 

5 12 110 0 6 2 2 110 0 9 3 4 110 0 
6 2 2 0 0 11 - 12 4 6 0 0 11 - 10 3 5 0 0 11 - 

5 12 110 0 6 13 110 0 9 3 4 110 0 
6 13 0 0 11 - 6 13 0 0 11 - 12 4 6 0 0 11 - 

5 12 110 0 6 13 110 0 10 3 5 110 0 
6 3 10 0 11 - 7 2 3 0 0 11 - 10 3 5 0 0 11 - 

5 12 110 0 6 13 110 0 10 3 5 110 0 
7 2 3 0 0 11 - 8 2 4 0 0 11 - 12 4 6 0 0 11 - 

5 12 110 0 6 13 110 0 12 4 6 110 0 
7 3 2 0 0 11 - 9 3 4 0 0 11 - 12 4 6 0 0 11 - 

Table 2: r-minimal CWS of the type 4+4. 
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d nin2W3«4W5«6 d nln2n3n4n5?^6 d ni^nsj^nsne 

4 11110 0 9 3  114 0 0 6 1113 0 0 
3 10 0 0  11 - 3 10 0 0  11 - 4 2 0 0 0  11 - 
5 1112 0 0 9 4  13  10 0 6 3  1110 0 
3 10 0 0  11 - 3 10 0 0  11 - 4 2 0 0 0 11 - 
5 2  1110 0 10 3  115 0 0 7 2  113 0 0 
3 10 0 0  11 - 3 10 0 0  11 - 4 2 0 0 0  11 - 
6 2  112 0 0 10 5  13  10 0 7 3  12  10 0 
3 10 0 0  11 - 3 10 0 0  11 - 4 2 0 0 0  11 - 
6 1113 0 0 12 4 116 0 0 8 2  114 0 0 
3 10 0 0  11 - 3 10 0 0  11 - 4 2 0 0 0  11 - 
6 3  1110 0 12 6  14 10 0 8 4  12  10 0 
3 10 0 0 11 - 3 10 0 0  11 - 4 2 0 0 0  11 1 
7 2  113 0 0 4 11110 0 9 4  13  10 0 
3 10 0 0  11 - 4 2 0 0 0  11 - 4 2 0 0 0  11 - 
7 3  12  10 0 5 1112  0 0 10 5  13  10 0 
3 10 0 0  11 - 4 2 0 0 0  11 - 4 2 0 0 0  11 - 
8 2  114 0 0 5 2  1110 0 12 6  14  10 0 
3 10 0 0  11 - 4 2 0 0 0  11 - 4 2 0 0 0  11 - 
8 4  12  10 0 6 2  112  0 0 
3 10 0 0  11 - 4 2 0 0 0  11 - 

Table 3: r-minimal CWS of the type 4+3. 

d ninzmriinsne d nin2n3n4n5nG d ni«2«3«4W5n6 

4 11110 0 6 1113  0 0 9 113 4 0 0 
2 0 0 0 0  11 2 2 0 0 0 0  11 - 2 0 0 0 0  11 - 
5 1112 0 0 7 112 3 0 0 10 113  5 0 0 
2 0 0 0 0  11 - 2 0 0 0 0  11 - 2 0 0 0 0  11 - 
6 112 2 0 0 8 112 4 0 0 12 114 6 0 0 
2 0 0 0 0  11 - 2 0 0 0 0  11 1 2 0 0 0 0  11 - 

Table 4: r-minimal CWS of the type 4+2. 

d ni^nsn^nsnG d niT^ns^nsne d nln2n3n4n5ri6 
3 
3 

1110 0 0 
0 0 0  111 1 

3 
4 

1110 0 0 
0 0 0 2  11 . 

4 
4 

2  110 0 0 
0 0 0 2  11 1 

Table 5: r-minimal CWS of the type 3+3. 
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d ni "2 "3 n4 ns ne 717 

3 1 1 0 0 0 0 

3 0 0 1 1 0 - 

3 0 0 0 0 1 

3 1 1 0 0 0 

3 0 0 1 1 0 - 

4 2 0 0 0 0 1 

3 1 1 1 0 0 0 
4 2 0 0 1 1 0 - 

4 2 0 0 0 0 1 

4 2 1 1 0 0 0 
4 2 0 0 1 1 0 1 
4 2 0 0 0 0 1 

3 1 1 1 0 0 0 
3 1 0 0 1 1 0 - 

2 0 0 0 0 0 1 

3 1 1 1 0 0 0 
4 2 0 0 1 1 0 - 

2 0 0 0 0 0 1 
4 2 1 1 0 0 0 
4 2 0 0 1 1 0 1 

2 0 0 0 0 0 1 

3 1 1 1 0 0 0 
2 0 0 0 1 1 0 - 

2 0 0 0 0 0 1 

4 2 1 1 0 0 0 
2 0 0 0 1 1 0 1 
2 0 0 0 0 0 1 

Table 6: r-minimal CWS 
3+3+3, 3+3+2 and 

of the types 
3+2+2. 

d ni n2 n3 n^ 71$ n6 n-j ns 

2 110   0   0   0   0   0 
2 0   0    110   0   0   0 
2 0   0   0   0    110   0 1 
2 0   0   0   0   0   0    11 

Vl «2 V3 V4 «5 V6 Vl 

1 0 -2 0 0 2 

0 1 -1 0 0 0 

0 0 0 1 0 -1 

0 0 0 0 1 -1 

0 1 1 1 1 1 

1 0 0 -2 0 -3 
0 1 1 -3 0 -4 

0 0 2 -3 0 -4 

0 0 0 0 1 -1 

3 2 2 0 1 1 

1 -1 0 0 -2 0 2 

0 0 1 0 -1 0 -1 

0 0 0 1 -1 0 0 

0 0 0 0 0 1 -1 

0 0 2 1 1 1 1 

1 0 -1 0 -2 0 -1 

0 1 1 0 -2 0 2 
0 0 0 1 -1 0 0 
0 0 0 0 0 1 -1 

3 0 0 1 1 1 1 

1 0 -1 0 -1 0 -2 

0 1 1 0 2 0 -4 

0 0 0 1 -1 0 0 
0 0 0 0 0 1 -1 

4 0 0 2 2 1 1 

1 1 -3 0 -4 0 1 
0 2 -2 0 -3 0 3 
0 0 0 1 -1 0 0 
0 0 0 0 0 1 -1 

3 0 0 1 1 1 1 

1 1 -3 0 -5 0 1 
0 2 -2 0 -3 0 3 
0 0 0 1 -1 0 0 
0 0 0 0 0 1 -1 

4 0 0 1 1 1 1 

Table 7: The r-minimal CWS of the 
type 2+2+2+2. 

Table 8: The 7 last r-minimal 
polytopes: Vertices, weights 
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Appendix B: The Hodge-plot 
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Fig. 1: /in + h\2 vs. Euler number x = 2(^ii - hn) for all pairs (^11,^12) with hu < h^. 
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