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Abstract 

We compare some triple Massey products on elliptic curve with the cor- 
responding Fukaya products on the symplectic torus and recover the classical 
identity due to Kronecker. We also express triple Fukaya products correspond- 
ing to generic configurations of 4 circles on the symplectic torus in terms of 
indefinite theta series. The Aoo-constraint for these products leads to a 5-term 
identity between these series. 

This note is a complement to [10]. One of its goals is to show that some higher 
Massey products on an elliptic curve can be computed as higher compositions in 
Fukaya category of the dual symplectic torus in accordance with the homological 
mirror conjecture of M. Kontsevich [8]. Namely, we consider triple Massey products 
of very simple type which are uniquely defined, compute them in terms of theta- 
functions and compare the result with the series one obtains in Fukaya picture. The 
identity we get in this way was first discovered by Kronecker. 

e-print archive:   http://xxx.lanl.gov/math.AG/9803017 
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An interesting phenomenon is that although Massey products on an elliptic curve 
are partially defined and multivaled, one always has the corresponding univalued 
Fukaya product. Thus, the equivalence with Fukaya category equips the derived 
category of coherent sheaves on an elliptic curve with some additional structure. In 
order to understand this structure we study the relation between the triple products 
7713 and the triangulated structure. It turns out that using 777,3 one can define 
homotopy operators on cohomological long exact sequences associated with a generic 
distinguished triangle. Furthermore, higher products rrik with k > 4 define higher 
homotopy operators on these exact sequences. It seems that most of the AQQ- 

structure can be recovered from these homotopy operators. 

The rest of the paper is devoted to explicit computations of higher compositions 
7773 in Fukaya category of a torus corresponding to four lines with rational slopes. 
It turns out that the answer is given in terms of theta series associated with not 
necessarily definite quadratic forms on rank-2 lattices. Such series were introduced 
by L. Gottsche and D. Zagier in [6]. The idea is that when the quadratic form on 
the lattice is indefinite one has to restrict the summation over the lattice to the cone 
where the form is positive (introducing signs for different connected components of 
the cone). In the case when one takes the maximal cone on which the quadratic 
form is positive such a series is especially nice: as shown in [6] it is a Jacoby form. 
In the case when the quadratic form factors over Q into product of two linear forms, 
indefinite theta series for arbitrary cones can be expressed via the function 

, x      v^   exp(27ri(r772/2 + nx)) 
K(y,X]T)=   >       7-— r ,.     .   N ^—^ exp(27rznr) — exip(27riy) 

where r is in the upper half-plane. The latter function was introduced (with slightly 
different notation) by M. P. Appell in his study of doubly-periodic functions of the 
third kind in [1]. We write explicitly the Aoo-constraints between 7772 and 7713 
in Fukaya category of a torus as an identity between indefinite theta series. In 
particular, we recover some non-trivial identities involving hi and theta-functions. 

Our computation of univalued triple Massey products on elliptic curve can be 
generalized to the case of higher genus curves. The answer is always given as 
certain ratio of theta-functions. We expect that these products can be compared 
with Fukaya compositions on the symplectic torus, which is mirror dual to the 
Jacobian of a curve. This generalization will be considered in a future paper. 

Throughout this paper we use the notation e(z) — exp(27r^). 

Acknowledgment. I am grateful to M. Kontsevich for explaning to me the signs in 
Fukaya composition and to E. Zaslow for correcting some errors. This work was 
partially supported by NSF grant. 
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1    Triple Massey products 

1.1     General construction 

(cf. [3]) Let Xi A- X2 -4 X3 -4 X4 be a sequence of morphisms in a triangulated 
category such that /2 0 /1 = 0 and }% o $2 = 0. Then one can construct the subset 
of elements MP(/i,/2,/3) in Hom-1(Xi,Xi) which is a coset by the sum of the 
images of the maps 

Hom-1(X2,X4) -> Hom-1(Xl5X4) : g H> 9 o fu 

Rom'^XuXs) -^Hom-1(X1,X4) : h *-> f3 o h. 

Namely, k E MP(/i, /2, /s) iff A; = f o w and the following diagram is commutative 

X2 ^   X3 

(1.1.1) 

y 

where X2 —> X3 -» y -> -X"2[l] is an exact triangle. In particular, if Hom2(Xi, X3) = 
Hom2(X2, X4) = 0 for i = —1,0 then the compositions /2 o fo and /s 0/2 are always 
zero, hence, the Massey product MP(/i, /2, fs) contains one element, and we obtain 
the linear map 

ms : Hom(Xi,X2) (8)Hom(X2,X3) 0Hom(X3,X4) -> Hom"1^!,^). 

Here is a more concrete description of this map. Consider the exact triangle 

K -> Hom(X2, X3) 0 X2 -+ X3 -> K[l] 

Then our assumptions imply that the following natural maps are isomorphisms: 

a : Hom(Xi,if) -> Hom(Xi,X2) 0 Homp^Xs), 

/? : Hom-1(ii:,X4) -> Hom(X3,X4). 

Now ms is equal to the following composition 

Hom(X1,X2) 0 Hom(X2,X3) ® Hom(X3,X4)- 

Eom(XuK) 0Hom-1(^,X4) -> Hom-1(Xi,X4) 

where the last arrow is the natural composition map. 

a'1 (g)/?-1 
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1.2    Some Massey products on elliptic curve 

Let us consider the simplest example of triple Massey product on elliptic curve E 
over a field k. Namely, we want to descibe the Massey product 

Hom(O,(!)X0) ®Hom(OX0,/:[!]) ® Hom^l],^!]) -+ Hom(0,Ox) 

where x ^ XQ, C ^ (9, deg>C = 0. If £|a;0 is trivialized then using the Serre duality 
the source of this arrow can be identified with {C\x®uy where LJ is the stalk of the 
canonical bundle of E at zero, while the target is k. The dual map gives a canonical 
element s{C,x) G C\x ® LU. Note that C\x is a stalk of the Poincare line bundle V 
on E x E where E is the dual elliptic curve. It is easy to see the above Massey 
product is the value at the point (£, x) of the canonical rational section of V 0 u 
(with poles at x = xo and C = O). 

Now assume that k — C and the elliptic curve E is C/T where T = rr = Z +Zr, 
r is in the upper-half plane. We want to express the above Massey product in terms 
of theta-function. Let us denote by TT : C —> E the canonical projection. Consider 
the line bundle L on E (equipped with a trivialization of its pull-back to C/Z) such 
that the classical theta-function 

0(z, T) = Y^ e(rn2/2 + nz) 
n 

is a section of L (as a function of z), so L ^ 0(£) where f = (r -h l)/2. Now set 
C = tyL®L~l where y G C is not a lattice point. We set XQ = 7r(0) and fix a lifting of 
the second point x to C (abusing the notation we denote this lifting by x G C). Then 
the trivialization of 7r*L induces trivializations of CXo and Cx, so we have canonical 
generators /i G Hom(0, Oxo), /2 G Hom(£, Oxo)* and /s G Hom(£, Ox). For anon- 
zero global holomorphic 1-form a G H0(E,u) we can consider the corresponding 
isomorphism of functors 

Sa : Hom(A,E)* -> Hom1^,^) (1.2.1) 

derived from the Serre duality. Then we have an element Sa(f2) G Hom((9Xo,>C[l]), 
and we can consider the triple Massey product MP(/i, 5a(/2), /s)- 

Lemraa 1.1. Let / G Hom((9,0^) 6e t/ie canonical generator, let a = 9,(1:~^)dz. 
Then the element Sa(f) G Ext1(0^,0) is represented by the extension 

O-tOAL^Oz^O. (1.2.2) 

Proof. We have the canonical extension 

0 -» CJ -> a;(0 ^ 0€ ->' 0. (1.2.3) 

Via the isomorphism O ^ u induced by a this extension represents Sa(f). Now we 
claim that the map 

L -> CJ(^) : s H->- - • a 

extends to the isomorphism between (1.2.2) and (1.2.3). Indeed, this follows from 
the fact that Res^f) = 1. □ 
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Proposition 1.2. Let a = e'{1^k)dz.  Then 

Mnh,sMjs) = /{X
+my%yf* (L2-4) 

where fx G Hom^Oz) is the canonical generator, £ = I^. 

Proof. It follows from the above Lemma that the element 5a(/2) correspond to the 
extension 

o -»• c *i> t;+?JL -»• oao -> o. 

The recipe for computation of Massey products is: first lift /i to the section s of 
t*+pL; then find the morphism g : t*+^L -> O^ such that the diagram 

^0 

«^L 

(1.2.5) 

O, 

t*     0 
commutes; and finally apply g to s. We have 5 = of^+r;, 9 is g/g+g) times the 
canonical generator of Hom(£*+£L, Ox) (induced by the trivialization of 7r*L), so 
we get (1.2.4). □ 

2    Comparison with Fukaya composition 

2.1    Triple Fukaya composition and triangulated structure 

In [10] we have constructed an equivalence between the derived category of coher- 
ent sheaves on an elliptic curve E and the Fukaya category of the corresponding 
2-dimensional torus with complexified symplectic form. An object of the latter cat- 
egory consists of the following data: a geodesic circle A G T = E2/Z2, an angle 
cf) G E such that Ee(</>) is parallel to A, and a local system £ on A. More precisely, 
one can consider formal direct sums of such objects. Note that the change of </> by 
0 + 1 corresponds to the translation functor on the derived category. Morphisms 
from (A, 0, C) to (A7, </>', £') (where A ^ A7) can be non-zero only if 0 < </>' < (/> -f 1. 
In this case the Horn-space is 

xeAnA' 

The composition is defined using holomorphic triangles bounding three given geodesies 
circles (see [10]). There are also higher compositions raft, k > 3 which are defined 
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using holomorphic (fc + l)-gons (see [5]). They satisfy Aoo-axioms (with mi = 0) of 
which the following is an example: 

^3(^2(oi,^2),asJ04) ±m3(01,7712(02,03),04) ±7713(01,02,7712(03,04)) 

±7722(7713(01,02,03)504) ±7712(01,7713(02,03,04)) = 0   (2.1.1) 

where 01,... ,04 is the sequence of composable morphisms, the signs depend on 
degrees of o^'s. Note that the proof of Aoo-identities for the Fukaya compositions in 
our case is easy. Basically they follow from additivity of the area of plane figures. 
For example, the usual associativity of 7772 (which is equivalent to the addition 
formula for theta function) can be proved by considering two ways of cutting a 
non-convex quadrangle into two triangles and converting this into the identity for 
the corresponding generating series. 

The functor from the Fukaya category to the derived category of coherent sheaves 
on elliptic curve is set up in such a way that one gets objects of abelian category 
(i.e. complexes concentrated in degree zero) for </> e (—1/2,1/2]. The functor 
is constructed on objects from this sub category using theta-functions. To obtain 
the entire derived category Vb(E) one has to deal with Ext1. We fix a generator 
a G H

0
(E,UJ) and use the corresponding duality isomorphism (1.2.1) (on Fukaya 

side the corresponding isomorphism is obvious). Then we get a functor 3>a from 
the Fukaya category to Vb(E). 

In [5] Fukaya constructs the functor on Ext1 in a different way. Namely, he 
starts with the same functor $ on abelian category and then proceeds as follows. 
Let o : X —> Y be a morphism of degree 1 in Fukaya category. To construct the 
corresponding morphism $(0) : $(X) -> $(F)[1] one has to choose a resolution 

0 _> $(y) *no) $(Zo) *^1) HZ,) *{42) *(Z2) 

such that Hom1(X, ZQ) = 0. Now consider the triple composition 7773(0,6/05^1) € 
Hom0(X, Zi). Then AQO-axioms imply that 7772(7773(0, do, di),^) = 0, hence, 
-$(7773(0,^0,^1))factors through ker^cfe) = im$(di),so it defines an element in 
Hom1($(X),$(y)) which we take to be $(0) (we have changed the sign compare 
to Fukaya's definition in order for Proposition 2.1 below to be true). In fact, in the 
above construction the condition Hom1(X, Zi) = 0 can be relaxed to the require- 
ment that 7772(0, do) = 0. The independence on a choice of a resolution is proven 
by providing an alternative definition via a resolution for $(X). Let us denote by 
$ the obtained functor from the Fukaya category to Vb(E). Fukaya showed in [5] 
that $ is an equivalence so it should coincide with $a for certain 1-form a. To find 
a we will use the following characterizing property of the functor F. 

Proposition 2.1. Let a G Hom(X,y); b G Hom(y,Z), c G Hom(Z,X[l]) be mor- 
phisms in Fukaya category such that $(o); $(6) and $(c) form an exact triangle. 
Assume in addition that Hom(Y,X) = 0.  Then 7773(0,6,0) = id*. 

Proof. Let us use the above definition to compute $(c). Namely, let us choose a 
resolution for $(Z) of the form 
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Then we have the induced resolution for $(X) which fits into the commutative 
diagram 

*(o) $(d2) 
0-^$(X)    *(r)    $(Ti) ^#(T2) 

*(di) (2-1.2) 

*(Z) 

Then by definition $(c) is induced by the morphism —$(7713(0,0,7712(6,^1))). Now 
the AQQ-constraint implies that 

777,3(0, a, ra2(Mi)) = 7772(7713(0, a, 6), di). 

It follows that    $(c)    is the composition of    —$(7773(0,(2,6))    with    $(c), i.e. 
7712(7773(0, a, 6), c) = —c. Now again by Aoo-axiom we deduce that 

^2(0,7773(0,6,0)) = -7772(7773(0, a, 6), c) = c. 

Since Hom(Y, X) = 0 this implies that 7773(0,6, c) = idx- □ 

The following corollary can be found in Fukaya's paper [5]. 

Corollary 2.2. Let a G Rom(X,Y), b G Hom(y,Z); c G Hom(Z,X) 6e a triple of 
morphisms in Fukaya category such that boa — 0 and cob — 0.  Then ±$(7773(0,6, c)) G 
MP($(o),$(6),$(c)). 

Corollary 2.3. Let 

x A Y 4 z 4 x[i] 
be a distinguished triangle in Vh{E) identified with the Fukaya category using the 
functor $. Assume that 

lW(X,y) = Hornby, Z) = Homi+1(Z,X) = 0 

for i j£ 0. Then for every object T G Vb(E) there is a canonical homotopy op- 
erator Hi on the corresponding long exact sequence of morphisms from T to the 
above triangle, i.e. Hid + dHi — id where d is the differential in the latter exact 
sequence. Namely, for f G Hom(T,X) one should take Hi(f) = ±mz(f,a,b) G 
Hom(T, Z[— 1}), etc. Furthermore, one can define higher homotopy operators by 
setting Hzif) = ±7714(/,0,6,c), Hs(f) = ±7775(/,o,6,c,a), etc., such that Hf = 
H2d + dH2, H1H2 — H2H1 — H^d + dH^, etc. Similarly, there are canonical ho- 
motopy operators H! for the long exact sequence of morphisms from the triangle to 
T. 

The proofs of both corollaries are easy exercises in applying Aoo-axioms which 
we leave to the reader. In particular, for the second corollary one has to use that 
fact that higher products containing an identity morphism vanish. 
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Proposition 2.4.  One has $ = $27ridz' 

Proof. Let us consider the following three of objects in Fukaya category: Ai = (£, 0) 
with trivial local system, A2 = (t,t) with trivial local system, A3 = (1/2, t) with 
the connection tridt. Then we have canonical morphisms e* from Ai to A^-j-i such 
that deg(ei) = deg(e2) = 0 and deg.(e3) = 1. It follows easily from Lemma 1.1 that 
the morphisms $(ei), $(62) and $e'(t)dz(e3) iovm an exact triangle 

O -> L -> O^ -^ <9[1] 

where ^ = ^y^. On the other hand, it is easy to compute that 

^3(61, 62, 63) = -^T"- 

It follows that 7713(61,62,^^63) = 1 while $(ei), $(62) and $27ridz(-pf{hje3) form 
an exact triangle, hence $27™^ = $• □ 

2.2    Fukaya series 

Let us consider the triple Fukaya composition that corresponds to the Massey prod- 
uct considered in 1.2. The corresponding four objects of the Fukaya category of a 
torus are: Ai = (t, 0) with trivial connection, A2 = (0, t) with trivial connection, 
A3 = (£, —ai) with the connection (—2mPi)dx, A4 = (—a2,t) with the connection 
Zirifady. Here OLi,OL2ifliifl2 are real numbers. There is an essentially unique choice 
of logarithms of slopes for Ai such that Horn0(A;, A^+i) ^ 0 and with such a choice 
one has Hom~1(Ai, A4) 7^ 0. Moreover, all these spaces are one-dimensional so the 
corresponding Fukaya composition 7713 is just a number. This composition is defined 
only if ai and 0:2 are not integers. Then it is given by the following series 

y^ signal + m) e(r(ai + m)(a2 + n) 4- (ai + m)^ 4- (0:2 + ri)Pi) 
(ai+m)(a2+n)>0 

where we denote sign(t) = 1 for t > 0, sign(^) = — 1 for t < 0, the sum is over 
integers m and n subject to the condition that (ai + m) has the same sign as 
(0:2 + n), The restriction on m and n is imposed by the condition for maps from 
the disk to be holomorphic in the definition of Fukaya composition while the sign 
comes from the canonical orientaion of the corresponding moduli space. We can 
write the above expression in the form 

e(ra1a2 + ax02 + ^2pi)f(^ir + /?i, c^r 4- 02] r) 

where 

f(zi,Z2', r) = ^2 sign(a(zi) 4- m) e(rmn + nzi 4- m^) 
(a{zi)+m){a(z2)+n)>0 

is a holomorphic function of zi and Z2 defined for Imz* ^ Z(Imr), where a(z) = 
Im(z)/Im(r). 



A. POLISHCHUK 1195 

2.3    The function f(ziJZ2^T) 

The function f(zi,Z2]r) is well-known (cf. [9], [11],[12]). It extends to a meromor- 
phic function in zi, z? with poles at the lattice points zi G rr or Z2 € rr where 
rr = Z + ZT, and satisfies the following identities: 

f{z2,z1\r) = f(z1,Z2',T), (2.3.1) 

f(zi +m + nT,Z2]T) =e(<-nz2)f(zi,Z2]T), (2.3.2) 

f(zi, ^2 + m + nr; r) = e(-nzi)/(2:i, ^2; r). (2.3.3) 

Using this quasi-periodicity properties of / it is easy to derive the following 
identity (2.3.4) which was first discovered by Kronecker [9] (see also [11], ch. VIII): 

fl'((T + l)/2,T) 0(Z1+Z2-(T+1)/2,T) 
nzu*2,T) - ^ ■ e{zi _ {r + 1)/2jr)e{z2 _ (r + i)/2,r)      [Z'6A) 

Note that */((r^]/2,r) = Un^A1 - Q71)3 where Q = e(r)- 

It is clear from the definition that 

/(2I,22;T + 1) = f(z1,Z2]T). 

Now using the identity (2.3.4) one can easily deduce from the functional equation 
for theta function that /(21,22; T) satisfies the functional equation of the form 

f(z1/r, Z2/T] -T~
1
) = (-T- e(z1Z2/T)f(zuZ2\r) 

where ( is a root of unity. Using the property 

f(-Z1,-Z2lT) = -/(2Ji,2?2;T) 

we immediately conclude that (2 = 1, so £ = ±1. Finally substituting zi = (r+l)/2, 
Z2 = r/2 and looking at the sign of both sides when T = it, t € R and £ -» +00 we 
find that £ = 1. So the functional equation for / becomes 

f{zi/r,Z2IT] -T~
1
) = r • e{z1Z2lr)f{zuZ2\T). 

In fact, f(zi,Z2,r) is a meromorphic Jacobi form of weight 1 for the lattice Z2 with 
the quadratic form Q(m,n) = ran (cf. [6]). 

This equation can also be derived from the representation of / in the following 
form (cf. [11], ch.VIII): 

f(zUZ2,T)- — > 
2m        t-^e z\ + w 

provided that 0 < a{zi) < 1 for i = 1,2. Here ^e denotes the Eisenstein summation 
over the lattice rr, x is the character of rr such that x(l) = e(—^(^2)), x(r) = 
e(z2 -a(z2)T). 
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2.4    Comparison 

Now we want to interpret the identity (2.3.4) as an equality of the triple Fukaya 
product with the corresponding Massey product asserted in Corollary 2.2. Using 
the explicit construction of the functor $ (cf. [10]) we compute that $(Ai) = 0, 
$(A2) = 0*0, ^(As) = t*yL 0 L"1 where y = OUT + ft, $(A4) = Ox where a: = 
^T + ft- Let e^ € Hom*(Ai, Ai+i), i = 1,2,3, be canonical generators, where 
deg(ei) = deg(e3) = 0, deg(e2) = 1. Then using the notation of 1.2 we have 
$(ei) = /i, $a(e2) = Sa(f2), and $(63) = e(Ta1a2 + aift + OL2pi)h' Also for 
a canonical generator e 6 Hom0(Ai,A4) we have $(e) = /x. Now for a = ^(O? 
where ^=(T+l)/2we derive from (1.2.4) that 

AfP(*(ei), ^/(0dZ(e2), $(63)) = e(raia2 + ai/fe + «2ft) • g^^^j^ ' A 

Thus using the above computation of 7713(61,62,63) and Proposition 2.4 we get 

e(Ta1a2 + aift + <X2Pi)f{x,y) • fx = $(7713(61,62,63)) = 

MP($(6i), $2^(62)^(63)) = ^MP($(6i),^(0dz(62),$(63)). 

Using the above expression for the Massey product in the RHS we obtain the identity 
(2.3.4). 

Remark. It is not hard to see that Fukaya triple products involving four lines 
forming any parallelogram with sides of rational slopes are expressed via the function 
/ and the equality with the corresponding (univalued) Massey products follows from 
the identity (2.3.4). 

3    Higher compositions in Fukaya category 

3.1    Trapezoid compositions 

Now we are going to consider some compositions 777,3 in Fukaya category of a torus 
such that the corresponding triple Massey products on elliptic curve are not well- 
defined. Namely, consider four lagrangians: Ai = (£, —t) and A4 = (t, 0) with trivial 
connections, A2 = (£, —0:2) w^h the connection —2iri(32dx, and A3 = (—ai,i) with 
the connection 27ripidy, where a*, fa are real numbers, ai £ Z. There is a natural 
choice of logarithms of slopes so that Horn0(A;, Ai+i) ~ C and Hom~1(Ai, A4) ~ C. 
Note that Horn0(Ai, A3) ^ 0, so the corresponding triple Massey product on elliptic 
curve is not defined. The Fukaya composition 

777,3 : Hom(Ai,A2) <8> Hom(A2, A3) 0 Hom(A3, A4) -+ Hom"1(Ai,A4) 

is just the number given by the series 

y^   sign(777,+a2)e((77,+aiH )(m+a2)r-f(mH-Q:2)A + (m+^2+^+^i)/?2). 
(n+ai)(m+a2)>0 
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Let us define 

9(ZI,Z2]T) = J^ sign(m + a(^2))e((n + m/2)mr + mz1 + (m + n)z2) 
(n-{-a{z1))(m-{-a(z2))>0 

where as before a(z) = Im(z)/Im(r), a(zi) ^ Z, afa)  $. Z.   Then the above 
composition is equal to 

e((ai +a2/2)a2r + Q;2/3i + (ai + a2)l32)9(aiT + 0i,a2T + far). 

3.2    Properties of g(zi,Z2]T) 

The function p is holomorphic for a(zi) $. Z, i = 1,2, and satisfies the following 
quasi-periodicity identities 

#(zi +m + nr,2;2;r) = e(-nz2)g{zuZ2]T), (3.2.1) 

5(21,Z2 + m + nr;r) = e(-n2r/2 - n^i + Z2))g(zi)Z2]T). (3.2.2) 

In other words, g can be considered as a holomorphic section of a line bundle on 
E2 over the open subset (E \ S)2 where S = E/Z C C/rr. However, it doesn't 
extend to a meromorphic section on E2. On the other hand, let us denote by go 
the restriction of g to the region 0 < a(zi) < 1, 01(22) ^ Z. Then we claim that #0 
extends to a meromorphic function on C2 with poles of order 1 at Z2 € rr. Indeed, 
if we sum first over n in the series defining g we get 

£0 (zuZ2]T)= 2^  ^j— 
e(m2r/2 + m(z1 + Z2)) 

_     e(mr + Z2) 

The latter series clearly satisfies the properties we claimed. However, go lacks the 
quasi-periodicity of g. More precisely, it is easy to see that g and #0 are related as 
follows: 

00(21,22;r) -g(z1,Z2)T) =P(ZI,T)6(ZI +Z2;T) 

where P(Z,T) is the following piecewise polynomial function of e(zi): 

p(z,T) 
- Eo<n<a(2) e(-n2r/2 + nzi),    a{z) > 0, 

,£a(z)<n<o e(-n2r/2 + n^i),       a(z) < 0 

Let us consider the following series 

/ \      \-^ e(n2/2r + nx) 
^  e(nr)-e(y) 

This function is holomorphic for y $. Yr and satisfies the difference equation 

«(2/, x + m + r; r) = e(y)^(2/, x; r) + (9(a;, r) 

where ra G Z. Then we have 

0O(*1,*2;T) = -d<-Z2)K{rZ2,Zi + Z2\T) = K(Z2,T - ZI -2f2;r). (3.2.4) 
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Remark. The function K and its derivatives were used by M. P. Appell to rep- 
resent an arbitrary doubly-periodic function of the third kind as a sum of simple 
elements (cf. [1],[7]). On the other hand, tz can be expressed via the bilateral basic 
hypergeometric series. Namely, using notation of [2] we have 

/cfo, x- T) = (1 - e(-y))-1 - ifoW-vY, 05 <
T - J/); e(r), e(a; + (r + l)/2)). 

3.3    Trapezoid Massey products 

The geometric meaning of the function K above is the following: the pair (tt(y, x; r), 
8(X,T)) determines a global section of a rank 2 bundle Fy on E which is a non- 
trivial extension of L by the line bundle of degree 0 corresponding to y. Namely, 
the bundle Fy is defined as follows 

Fy = C* x C2/(z,v) H-> (z - e(T),Ay(z)v) 

where 
A (z) - M        1 

We claim that some of triple Massey products corresponding to the trapezoid Fukaya 
products considered above are univalued and are also expressed via K. Namely, 
consider the triple Massey product for Xi = O, X2 = L, X3 = £[1], Xj = 0^[1] 
where £ is a non-trivial line bundle of degree 0, £ = (T+1)/2. Then Horn* (Xi, X3) = 
0 and Hom0(X2,X4) = 0. Furthermore, the composition map 

1Elom(XuX2)®Eom-1(X2,X4) -> Horn"1^!,^) 

is zero since the unique section of L vanishes at £. It follows that the Massey product 
is well-defined and univalued in this case. To compute it one should include the 
non-zero morphism X2 -> X3 into an exact triangle 

X2 -4 X3 -» C ^ X2[l] 

then lift the morphisms Xi -> X2 and X3 -> X4 to morphisms Xi -> C[— 1] and 
(7—^X4 and compose the obtained two morphisms. In our case one starts with 
a global section 5 : O -> L, then s can be lifted canonically to a section s of Fy 
where £ ~ ^-k-1 01/. Now one chooses a splitting r : (jPy)^ —► C of the embedding 
C c^ £f -)• (Fy) and applies r to 5(£). The result doesn't depend on a choice of 
splitting at £ since s(£) = 0. More concretely, for s = 0(a;, r) we have s = ^(2/, a;; r), 
hence, the above Massey product is given by K(y, (r -I- l)/2;r). One can easily 
check that this answer agrees with the corresponding Fukaya product. Note also 
that in fact this Massey product can still be expressed via theta functions due to 
the identity 

2™% - z±l) «(»»—^—) 



A. POLISHCHUK 1199 

If we replace £ by another point on E the Massey product will no longer be 
univalued. However, if one chooses a splitting of the embedding C -» Fy over some 
open subset U C E and a trivialization of C\u then replacing r by this splitting 
we get a univalued operation. The function K(y,x]r) appears as such operation 
corresponding to the choice of a splitting over E\S coming from the trivialization 
of the pull-back of Fy to C*. 

Another example of well-defined Massey products that are expressed in terms 
of the function K is the following. Consider an extension 

0->£ AF AM->O 

where M and C are line bundles, degM > 0, deg>C = 0, £ $£ O. Then as we have 
seen before for any section s : O -* M the triple product 7713(5, c, a), where c : M -* 
C[l] is represented by the above extension, is a lifting of s to a section of F. The 
corresponding Massey product is well-defined so we have MP(s,c, a) = 7713(5,0, a). 
The latter Fukaya product is of trapezoid type since deg£ = degO = 0, so it can 
be expressed via K. 

3.4    Associativity constraint 

Let us consider an example of associativity constraint for Pukaya's Aoo-category of 
a torus involving triple products computed above. 

Let us consider the following five lagrangians in E2/Z2: Ai = (£, —i) with trivial 
connection, A2 = (£,#2) with 27rz/?2da;, A3 = (—ai — 0:2,t) with 2'Ki{f3i + ^dy, 
A4 = (t, ai 4- a2 + as) with 27rz(/3i + P2 + Pz)dx^ A5 = (0, t) with trivial connection. 
Here c^,/^ are real numbers, ai + 0:2 £? Z, ai + as ^ Z. We choose liftings of A* 
to objects in Fukaya category in such a way that there is a non-zero morphism ai 
of degree 0 from A* to Af+i. We want to write the above Aoo-identity for these 
morphisms. Note that all the Horn-spaces between our objects are either zero or 
one-dimensional, so the relevant compositions 7712 and 7713 are just numbers. Taking 
into account the fact that A2 fl A4 = A3 fi A5 = 0 the identity boils down to 

7712(Ai, A2, A3)m3(Ai, A3, A4, A5) -h m2(Ai, A4, Kh)m^u A2, A3, A4)-     ^ 4 _ 
m2(Ai,A2,A5)m3(A2,A3,A4,A5)=0 \ - - ) 

where for example 7712(Ai, A2, A3) is the unique non-zero m2-composition of mor- 
phisms between Ai,A2,A3, etc. 

Now we can express all ingredients of (3.4.1) in terms of theta-functions, and 
functions / and g introduced above. Namely, denoting zi = c^r + A for z = 1,2,3 
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we obtain 

m2(Ai,A2,A3) =e(a^+ai/3i)<9(^i,r), 

m2(Ai,A4,A5) = 

e((ai +a2+a3)2^ + (ai +^2+^3) (A +P2+fc))8{zi +Z2+Z3IT), 

m2(Ai,A2,A5) =e(al^+a2P2)0(z2,T), 

m3(Ai,A3,A4,A5) = 

e((—g— + a3)(ai + a2)T + (ai + "s)^ + ^ + ^3) + "s^i + ^2))5(23,21 + z2; r), 

m3(Ai,A2,A3,A4) =e((-±- ^r + arfi - a3p3)9{-Z3,z1 + Z3;T), 

m3(A2,A3,A4,A5) = 

e((ai +a2)(ai + a3)T + (ai +a2)(/?i +/?3) + (ai +0:3) (A +/?2))/(^i +^2,^1 +^3;^), 

Substituting this into (3.4.1) and deleting similar terms we obtain the following 
identity 

0(zur)g(z3,z1 + Z2\T) + e{z1 + Z2 + z3,T)g(-z3,z1 +Z3;T) = (342) 
9(z2,r)f(z1 +Z2Jzi +Z3;T). \ - • ) 

By (3.2.4) this implies the following identity between meromorphic functions of C3: 

e(2/)0(2/ + z, T)K,(y, z - x\ r) - e(-x)6(x -.z, T)K(-X, y + z; r) = 6(z, r)f(x, y; r) 
(3.4.3) 

where we have put x = z\ -f ^2, y — z\ + z3, z — Z2. 

We used the fact that Fukaya composition satisfies axioms of AOQ-category to 
derive the above identity. However, it can be also proved in a straightforward way 
comparing residues of both sides at poles and using the difference equation for K. It 
appears in a slightly different form in Halphen's book [7] (p.481, formula (45) and 
the next one). 

3.5    More Fukaya products 

Let us consider another example of triple Fukaya products where none of the four 
lines are parallel. Namely, let Ai = (ai + £, —ai +£), A2 = (—0:2,£), A3 = (t,0), 
A4 = (£,—£). Then we can choose (essentially uniquely) lifts of the correspond- 
ing lagrangain circles in E2/Z2 to objects of Fukaya category in such a way that 
there is a non-zero morphism of degree zero from A^ to A^+i. All the Horn-spaces 
Hom(A;, Ai+i) are 1-dimensional, however, Hom_1(Ai,A4) is 2-dimensional since 
the corresponding circles have 2 points of intersection. Let us consider the compo- 
nent of the triple product corresponding to the point (OJI, — o^i) € Ai fl A4. Then 
as before its value is expressed via certain holomorphic function of z\ — a\T and 
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Z2 — a2T (one could add some monodromies in the above picture to get all values 
of complex variables zi and 22). This function has the following form 

h(z1,Z2]T) = 

^       sign(m + ai^zx)) e {^- (2m2 + 4mn + n2) + 2(m 4- n)^i + (2m + n)z2 J 
(m+a(2i))(n+a(z2))>0 

It is holomorphic in the region a(zi) gZ and can be considered as a section of a line 
bundle on E2 over the corresponding open subset of E2 because of the following 
quasi-periodicity: 

h{zi +m + T,Z2]T) =e(-T-2zi -2z2)h(zi,Z2]T), (3.5.1) 

h{z1,Z2+m + TiT) =e{-r/2-2z1 - Z2)h(z1,Z2',T). (3.5.2) 

Let us denote by ho the restriction of h to the region 0 < a(zi) < 1 for i — 1,2. 
Then it is easy to see that HQ extends to a holomorphic function on C2 (the series 
converges absolutely). 

As before we can translate certain Aoo-associativity axiom into an identity in- 
volving h(zi,Z2). More precisely, we can consider five lines: two with slope 0, one 
with slope 1, one with slope -1, and one with slope 00. Their relative position is 
described by three parameters. Adding monodromies we get the following identity 
with three complex variables 21,22,23- 

<9(22i +23,r)ft(2i +23,-21+22 -23;T)+<9(2I +22+23,T)/l(-2i -23,23^) = 
= 0(222, 2T)P(-2I +22-23, -21 - 22;r) + (9(22i, 2r)p(23,21 + 22) 

(3.5.3) 

Using difference equations for h and g we can further transform this into the fol- 
lowing identity involving ho and tt: 

0{2x + y, T)ho(x, 2; r) - 9(2x + 2, r)ho{x, y\ r) = 
= 6(2(x + 2),2T)K{-2X -y-z,2x + y + T',T)- (3.5.4) 
-8(2(x + y),2T)K(-2x - y - 2,2x + 2 + r;r) 

Substituting y = — x in this identity we can express /io(a;,2;r) via ho{x, —X]T) 

and functions K and 6. We claim that ho(x) \— ho(x, —x;r) can also be expressed 
as a rational function of K, and 9. Indeed, we have 

ho(x) = ^ sign(m + 1/2) e (J- (2m2 + 4mn + n2) + nx) . 
(m+l/2)(n+l/2)>0 

Hence, 

ho(x + T) =e(-+x) x ^2    sign(m + l/2)e 
(m+l/2)(n+l/2)>0 

(^ (2(m + I)2 + 4(m + l)(n - 1) + (n - I)2) + (n - l)a;) = 

= e(^+x)(ho(x)-0{x,T))+9(Q,2T). 
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Let us denote ^{x) = 9{x — (r 4-1)/2, T)ho{x). Then ij) satisfies the equation 

^ + r) = e(^l)V(a;) + e(^)6»(a:iT)ff(a: - Itl.r) +5(0,2^(1 + ^.r). 

It is easy to see that this equation has the unique holomorphic solution, namely, 

i>{x) = 6(0,2T)K(^,X+ I±i;T) + 

r+1 /   r      r+1 r+1 r r+l r+1 
e("Y"'2r)' {e{2H^r>2x- "y";2r) "e(a;" 2M""^'2a: + -T-;2r) 

3.6    Generic case 

Let us consider four lines Li(2/i) = {(^x^,^)}, « = 1,2,3,4, where the slopes A^ are 
distinct rational numbers, yi are fixed real numbers. Let us denote by Li(yi) the 
image of Li in E2/Z2. The intersection oiLi(yi) and Lj(yj) consists of the following 
set of points: 

ea,6.(2/t,2/i) = (VijiVij) + ,  J   ,   (l,Ai)    mod Z2 

Aj — Ai 

where a, b are integers, yij = .j[3'I^., 2/^- = iyxZ.\yi • Note that if a and 6 are 

integers then L^^ + aA^ + 6) = L(yi). Furthermore, we have 

^a,b{yi,yj) - eo,o(yi - aXi - b,yj) = eo,o(yi,yj + aA^ + 6). 

For every i < j and an intersection point p G Li(yi)nLj(yj) we denote by [p] the 
corresponding morphism from Li{yi) to Lj(yj) in the Fukaya category. Also let us 
denote e^- = 60,0(2/*,^). Note that deg[e0,6(2/t,2/j)] = cieg(i, j) where deg(z,jf) = 0 
if Xi < Xj and deg(i, j) = 1 otherwise. We want to compute the Fukaya product 
7^3 ([^12], [^23], [^34]), so we assume that 

3 

J] deg(2, i + 1) = deg(l, 4) + 1 (3.6.1) 
2=1 

(otherwise this product is zero). 

For every rational number A let us denote by I\ C Z the subset of n G Z such 
that nA G Z. To each quadruple of distinct rational numbers Ai,... , A4 we associate 
a lattice A = A(Ai, A2, A3, A4) and a sublattice A+ = A+(Ai, A2, A3, A4) as follows: 

A(Ai3 A2, A3, A4) = 
4 4 

= {n= (ni,712,713,714) G Q4 I Ylni = 0,^2Xini = 0;n2 G I\2,n3 G /AS}, 
i=l 2=1 

A+(Ai,A2,A3,A4) = {nG A(Ai,A2, A3, A4) | m G /AJ. 
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Equivalently, the sublattice A+ is distinguished in A by the condition n^ G /A4- 

Consider the following quadratic form on A 0 E: 

Q(x) = <9A1,A2,A3,A4(a;) = (*3 - A4)a;3a;4 + (Ai - A2)xia;2. 

Clearly, Q takes integer values on A+. However, it is in general indefinite. Let 
C C A-0 E ~ E2 be the subset consisting of x such that (Ai_i — Xi)xiXi-i > 0 
for all i = 1,2,3,4 (where we set XQ = x^). Then clearly Q(x) > 0 for any x G C. 
Note that our assumption (3.6.1) implies that C is non-empty. It is easy to see 
that two of the four inequalities defining C are redundant, so C is always a region 
in the plane bounded by 2 lines. Let C = C+ U C~ be a decomposition of C into 
connected components, e : C —> ±1 be the function assigning 1 (resp. —1) to points 
of C+ (resp. C~). Note that for any quadruple of real numbers y = (2/1,2/2,2/3,2/4) 
the vector 

V(y) = (2/14 -2/12,2/12 -2/23,2/23 -2/34,2/34 - 2/14) 

(where y^- = f^Efr) belongs to the subspace A ® E C E4. Now for no G A 0 Q and 

z G C4 we set 

-^Ai,A2,A3,A4;no v^) = 

= J^ e(n + v(a(z))) ■ e(-Q(n) + mzi + 712^2 + ns^s + 7142:4)) 
ne(A++no)n(C-v(a(2))) 

where r • a is the first projection of the direct sum decomposition C4 — rE4 0 E4. 
For z varying in some open subset of C4 (in fact, in the complement to codimension 
one analytic subset), this is a holomorphic function of z. Note that linear relations 
between m imply that 

rtizi + n2Z2 + n3Z3 + 77,42:4 = (Ai - A2)(^i4 - ^12)^2 + (Ai - Xs)(zu - ^13)^3, 

where Zij — ^3~^..   On the other hand, the vector V(OL(Z)) is determined by its 

first two components 0^(^14 — Z12) and a{zi2 — £23) = ^I^1 0^(^12 — 213)• Thus, F 
actually depends on two holomorphic variables Z13 — 2:12 and 2:14 — zw 

Proposition 3.1. Assume that Y^i=i degfe^i+i] = deg^i^] + 1.  Then one has 

m3([ei2],[e23],[e34]) = ±e(-A(2/i,2/2,2/3,2/4)) ■ (3.6.2) 

5Z     i?A1,A2,A3,A4;^(r^)[e-fc2-A;3,A2fc2+A3A;3(2/l52/4)]- 
IeA/A+ 

where 

«»,»,».»)-*«&-_% Z-Z 
Proof. The idea is to parametrize the quadrangles contributing to 777,3 by elements 
of A. Namely, let p^+i, i = 1,... ,4 be the vertices of such a quadrangle (where 
the edge between Pi-ij and Pi,;+i belongs to Li(yi) modulo Z2). Then denoting 
the difference between the first coordinates of pi-ij and Pi,i+i by rii we find that 
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(ni,712,723,714) belongs to A(Ai, A2, A3, A4). The condition n+t>(y) £ C is equivalent 
to the requirement that the lagrangians come in the correct order when one goes 
clockwise along the quadrangle. □ 

In the above proposition we consider Li(yi) equipped with trivial local systems. 
If we add non-trivial connections along Li(yi) the formula (3.6.2) will change by 
adding some linear combinations of these connections to the arguments of the func- 
tion F. 

For five lines L(yi),i = 1,... , 5 we can consider the identity obtained by compar- 
ing the coefficients with [615] in the AOQ-constraint (2.1.1) for ai = [^12], ^2 = [623], 
as = [^34] and 04 = [645]- 

Before writing the corresponding identity let us introduce some more notation. 
Let Ai, A2, A3 be a triple of distinct rational numbers. We denote 

Ai,A2,A3       ■'A2 ' ' ~\ \   ■*Ai • 
A3 — A2 

One easily checks that ^1^2,A3 = ^Aa^.Ai- Assume that 

deg(l, 2) + deg(2,3) = deg(l, 3). (3.6.3) 

Then similarly to the previous proposition one checks that 

TO2([ei2],[e23]) = 

e(-2A(2/i>2/2,2/3)) • ]C OxiMM;no(T(yi,y2,y3))[eno-\2n0(yuy3)] 
no€l\2/I\ly\2,\3 

where 
A(o,   1,   o,\- Hot A723 " yi2    yi3 ~ Vl2\ 

^A1,A2,A3;no(^1^2,^3) = 

E/(A3 - A2)(A2 - AI)T 2 \ 
6 V 2(A3-Ai) ^    n^      ^       ^0)^23 - ^12) ) • 

Note that the condition (3.6.3) implies that (A3 — A2)(A2 — Ai)(A3 — Ai)-1 > 0 so 
the above series converges. 

Now the AQO-constraint leads to the following identity. 
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n€A2345/A+345>n2€/2 + ^f^/i 

^2 ' ^ i711234,n(^)^145,<(^) + 

neA1234/A+34>n4G/4+^i-/5 

^3' ^ Fl34:5,k"u"+k,"u"'{z)Ql23,k(z) + 

^4 • 2^ -^1235,fc'i;'+A;//i;"(^)^345,A;(^) + 

*€/4//345,fce^t/l + ^J/2 + ^fJ3 

^5 ' /-y ^1245,A;/'u;/+/c//'L(;"+A;//,ti;,//(^)^234,fe(^) = 0. 

*E/3/i.34,^^/1 + ^/2+^/4 

Here 2; is in C5 minus some analytic subset of codimension 1, however, all the 
functions in this identity actually depend on three holomorphic variables: 213 — Z12, 
Z14 - Z12 and 215 — Z12 (where as before Zij = (ZJ — Zi)/(Xj — A;)). For every 
1 < i < 3 < k < I < 5 we denote Fijki^(z) = Fx^x^Xk^nizi,Zj,zk,zi). Similarly, 
0ijk,n(z) = OxitXjMiniziiZjiZk)- Also we write for simplicity /» = /A., A^/ = 
A(Ai, Aj, Afe, A/), etc. The elements of Aijki <S> Q are denoted by n — (n^n^n^n/). 
The multiple Si before each term is ±1 if the conditions, on the degrees are satisfied 
(we will specify the sign later), and 0 otherwise. For example, £1 = 0 unless 
deg(l, 2) + deg(2,5) = deg(l, 5) and deg(2,3) + deg(3,4) + deg(4,5) = deg(2,5) + 1. 
In the first two terms of the identity we denote 712 = n^ H- n'^ (resp. 714 = n'A + n'l) 
with respect to the inclusion 77,2 G h + ^I^/i (resp. 714 G 1^ + ^I^/s). Similarly, 
in the last three terms the decomposition k = k1 -{- k" -\- k"1 corresponds to the 
inclusion of k into sum of three ideals. Note that although & is a representative of 
a coset, the condition that k belongs to the sum of three ideals is well-defined. In 
3rd and 4th term this is clear, while in the 5th term the inclusion 

A5 — A2 .,       A5 — A4 
-i234 C —12 + T r-^4 

A5 — A3 A5 — A3 

follows from the identity 

A5  — A2      , A4  — A3    .        A5  — A4      , A3  " A2 , V 

A5 — A3  A4 — A2    A5 — A3  A4 — A2 
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Finally, we denoted 

/ _ /(A4 - A3)(A2 - Ai) Ai - A2 Ai — A2 v 

(A4 — Ai)(A3 — Ai) A3 — Ai Ai — A4 

" — /(A5 - A3)(A2 - Ai) Ai - A2  A2 - Ai 

(A5 — Ai)(A3 — Ai) A3 — Ai ' A5 — Ai 

/ _ /A5 — A4  A5 - A4 (A5 - A4)(Ai — A3). 

A5 — Ai  A3 - A5 (A5 - Ai)(A3 - A5) 

// _ /n A5 — A4 A5 - A4 (A5 — A4)(A2 — A3). 

' A5 - A2 ' A3 - A5 (A5 — A2)(A3 — A5) 

, _ A5 — A3 A4 — A3 A3 — A2 A3 — Ai 

A5 — Ai A2 — A4 A2 — A4 A5 — Ai 

// _ /Q (A5 - A4)(A2 - A3) A3 — A2 A3 — A2 v 

(A5 — A2)(A2 — A4) A2 — A4 A5 — A2 

m — (c\  ^4 ~ ^3 (A5 — A2)(A3 — A4) A3 — A4 

A2 — A4 (A2 — A4)(A5 — A4) A5 — A4 

Note that there is an ambiguity of sign in the definition of Fijki. The claim 
is that for every given configuration of deg(ei,eJ) there exists a choice of signs in 
Fijki and Si which makes the above identity true. For example, let us assume that 
A3 < Ai < A4 < A2 < A5. Then all si are non-zero. Let us choose the positive 
components C+ of the cones Cijki entering in the definition of Fijki as follows: 

C2345 : 722 > 0,77,3 > 0,724 < 0,725 > 0, 

CJ234 : 72i > 0,722 < 0,723 < 0,724 > 0, 

^1345 • ^1  > 0,723 > 0,724 < 0,725 > 0, 

£1235 : fti > 0,712 < 0,723 < 0,725 > 0, 

^1245 : ^1 > 0,722 < 0,724 < 0,725 > 0. 

Then the signs should be chosen as follows: ei = 62 = £5 = Ij £3 = 64 = —1. To 
see this we note that for purely imaginary r we can represent each of five terms of 
our identity in the form 

5 

^jT £(n)cnlm e(]P Zi(n, m)zi) 
n,m i=l 

where the sum is taken over a coset for a lattice in (Aijki 0 Q) x Q, k are some 
rational linear functions of (n,m), and the coefficients c^m are positive. It is easy 
to see that k are linearly independent, so there are no cancellations in the above 
Fourier series. Now we consider a term corresponding to n G C2345 and_m >> 0 
(resp. m << 0) and find out that the only term it can cancel out with has 72' € Cjt^g 
(resp. n7 e ^45), hence, £4 = -£i (resp. £5 = £i)- On the other hand, a term 
corresponding to 72 € £^34 and m » 0 (resp. m « 0) can cancel out only with 
the term which has n' € C1345 (resp. n' 6 C{^45), hence, £3 = -£2 (resp. £5 — 62). 
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