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ABSTRACT 

We study string compactifications with sixteen supersymmetries. 
The moduli space for these compactifications becomes quite intri- 
cate in lower dimensions, partly because there are many different 
irreducible components. We focus primarily, but not exclusively, 
on compactifications to seven or more dimensions. These vacua 
can be realized in a number ways: the perturbative constructions 
we study include toroidal compactifications of the heterotic/type 
I strings, asymmetric orbifolds, and orientifolds. In addition, we 
describe less conventional M and F theory compactifications on 
smooth spaces. The last class of vacua considered are compacti- 
fications on singular spaces with non-trivial discrete fluxes. 

We find a number of new components in the string moduli space. 
Contained in some of these components are M theory compacti- 
fications with novel kinds of "frozen" singularities. We are nat- 
urally led to conjecture the existence of new dualities relating 
spaces with different singular geometries and fluxes. As our study 
of these vacua unfolds, we also learn about additional topics in- 
cluding: F theory on spaces without section, automorphisms of 
del Pezzo surfaces, and novel physics (and puzzles) from equiv- 
ariant K-theory. Lastly, we comment on how the data we gain 
about the M theory three-form might be interpreted. 
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1    Introduction and Summary 

The moduli space of supersymmetric string compactifications is an immense- 

ly complicated object. One of the aspects that we might hope to understand 

are the discrete choices that characterize disconnected components of the 

moduli space. We shall focus on string compactifications with sixteen super- 

symmetries. Familiar examples of such compactifications are the heterotic 

string on a torus and M theory on a K3 surface. With this much super- 

symmetry, the moduli space cannot be lifted by space-time superpotentials. 

The number of distinct components in the string moduli space can, however, 

change as we compactify to lower dimensions. For example, when compacti- 

fied on a circle, there is a new component in the moduli space of the heterotic 

string which contains the CHL string [1,2]. 

We shall primarily, but not exclusively, focus on compactifications to 7 

or more dimensions. Our goal is to describe the different components of the 

string moduli space in each dimension. We also describe the various dual 

ways in which a given space-time theory can be realized in string theory 

or in M theory, its non-perturbative, mysterious completion. Down to 7 

dimensions, it seems quite likely that our study of the string moduli space 

captures all the distinct components. However, a proof must await a deeper 

understanding of M theory. As we analyze the various components of the 

string moduli space, we will learn about new phenomena in string theory and 

some interesting mathematical relations. Many of the results we describe 

call for a deeper analysis, or suggest natural paths for further study. There 
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are also tantalizing hints of how we might correctly treat the M theory 3- 

form. Some of these hints suggest relations between the 3-fbrm and Es gauge 

bundles which are somewhat reminiscent of [3,4]. In the remainder of the 

introduction, we shall outline our results. 

In the following section, we begin by describing the classification of flat 

bundles on a torus. While this might seem trivial at first sight, there are 

actually interesting new components in the moduli space of flat connections 

on T3, and on higher-dimensional tori. On T3, these new components corre- 

spond to "triples" of commuting flat connections which are not connected to 

the trivial connection—the case with no Wilson line. If we pick a connection 

in a given component of the moduli space, we can compute its Chern-Simons 

invariant. This is constant over a given component of the moduli space and 

actually uniquely characterizes each component of the moduli space. These 

new components in the gauge theory moduli space are the basis for a new 

set of components in the moduli space of the heterotic string on T3. Our 

discussion of these heterotic/type I toroidal compactifications begins with a 

discussion of anomaly cancellation conditions, and continues with a study of 

asymmetric orbifold realizations together with the structure of the moduli 

space for these new components. 

Let us summarize our findings: in 9 dimensions, we find only the 2 

known components in the heterotic/type I string moduli space. The "stan- 

dard" component unifies the conventional Es x Eg string together with the 

Spin(32)/Z2 heterotic/type I string. It is important for us to note that 

the gauge group for the Es x Es string is actually (Eg x Es) x Z2, as ex- 

plained in section 2.1.1.1 The other component contains the CHL string. 

In 8 dimensions, we still have the standard component. There is still only 

one other component which now contains both the CHL string and the com- 

pactification of the type I string with no vector structure. The interesting 

new physics appears in 7 dimensions where we find 6 components in the 

Nevertheless, throughout this paper we use the common nomenclature,  "Es x Eg 
string." 
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moduli space. These components can be labeled by a cyclic group Zm for 

m = 1,2,3,4,5,6. This cyclic group appears naturally in the construction 

of the Zm-triple for an E§ gauge bundle. Like the CHL string, these new 

components have reduced rank and interesting space-time gauge groups like 

JP4 and G2. The ra = 1 case is just the standard compactification of the 

heterotic string, while the Z2-triple contains the CHL string in its moduli 

space. 

We then proceed in section 2.4.2 to describe duality chains relating het- 

erotic compactifications with different gauge bundles. These chains gener- 

alize the usual T-duality relating the Spin(32)/Z2 and Es x Es string on 

S1. In some cases, we follow these chains all the way down to 5 dimensions 

finding new relations as we descend. The relations involve "quadruples" and 

"quintuples" which are analogues of triples for T4 and T5. Unfortunately, 

the classification of gauge bundles on tori of dimension greater than 3 is un- 

known. This is an outstanding open question. In section 2.4.4, we conclude 

our discussion of the heterotic string by describing an intriguing connection 

between the Z2-triple and a Hof ava-Witten style construction of the Es x Es 

string with background 3-form flux. 

In section 3, we turn to orientifold string vacua. Proceeding again di- 

mension by dimension, we find only the two previously known components 

in 9 dimensions: the first is the standard component containing the type I 

string. The second is the (+, —) orientifold which contains no D-branes and 

has no enhanced gauge symmetry. We use + to refer to an 0+ plane, — to 

refer to an 0~ plane, and —' to refer to an 0~ plane with a single stuck D- 

brane. This notation and our conventions are explained more fully in section 

3. This is a new component in the string moduli space beyond those with a 

dual heterotic description. In 8 dimensions, we find three components: the 

standard one, the orientifold realization of type I with no vector structure 

and the compactification of the (+, —) orientifold which is the (+, +, —, —) 

orientifold. Again, there is only one new component beyond those already 

described. 
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In 7 dimensions, we again find new physics. The compactifications of the 

8-dimensional constructions give three components. However, there is now 

an interesting subtlety with the case of (+4, —4). We can imagine arranging 

the 8 orientifold planes on the vertices of a cube. However, there are 2 

distinct ways of arranging the orientifold planes which are not diffeomorphic. 

The first arrangement is the one obtained by compactifying (+,—) on T2. 

The four + planes lie on a single face of the cube. The — planes lie on the 

four vertices of the opposite face. If we exchange one adjacent pair of + 

and — planes, we find an inequivalent configuration. As perturbative string 

compactifications, we show that these two configurations are inequivalent.2 

Whether these orientifolds are distinct non-perturbatively is more subtle to 

determine, and we comment on this in section 4.6.1. This question of how we 

order the orientifold planes continues to be important in lower-dimensional 

compactifications. Therefore, there are two new components in the moduli 

space of perturbative string compactifications to 7 dimensions. We also give 

evidence against the existence of an 06"" plane—a conclusion arrived at 

independently using different arguments in [6]. 

In dimensions below 7, our classification of orientifold configurations is no 

longer complete. However, we find evidence for a number of interesting rela- 

tions including a 6-dimensional duality between (+' , —'l ) and a quadruple 

compactification of type I with no vector structure. We also find evidence 

for a 5-dimensional equivalence between (—' ) and (+16, —16). There are a 

host of open questions concerning the complete classification of orientifold 

configurations below 7 dimensions, the action of S-duality etc. 

In section 4, we turn to M and F theory compactifications. Our starting 

point is 6-dimensional M theory compactifications without flux. The com- 

pactifications we study are on spaces of the form (Z x Sl)IG where Z = KZ 

or T4 and G is a discrete group acting freely. For Z = ifS, the choice of 

groups G has been classified by Nikulin. In our M theory context, the pos- 

sible choices are G = Zm with m = 1,... , 8, while for Z = T4, G = Zn with 

2 An interesting paper with a similar conclusion appeared shortly after our paper [5]. 
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n = 2,3,4,6. We describe both the lattices for these compactifications and 

the singularities of Z/G. Only some of these M theory compactifications 

can be lifted to 7-dimensional F theory compactifications. For Z = K3, 

the cases m = 1,... ,6 lift to new 7-dimensional theories which are dual 

descriptions of the heterotic triples constructed in section 2. It seems worth 

mentioning that studying D3-brane probes on these backgrounds, along the 

lines of [7-12], should be interesting. 

All of the Z = T4 theories lift to 7 dimensions. The case G = Z2 is an- 

other description of the compactified (+, —) orientifold while the 3 remaining 

cases are new components in the string theory moduli space. We also point 

out the existence of a new F theory vacuum in 6 dimensions associated with 

G = Z2 x Z2. In studying these vacua and their dual realizations, we arrive at 

a natural interpretation of F theory compactifications without section [13]: 

the type IIB circle which should decompactify under M theory/F theory 

duality as the volume of the elliptic fiber on the M-theory side goes to zero 

has a non-trivial twist. On decompactifying the circle, the twist becomes 

irrelevant and we gain additional degrees of freedom beyond those that we 

might have expected. The F theory compactification then "attaches" to a 

larger moduli space. 

We proceed in section 4.3.2 to study del Pezzo surfaces with automor- 

phisms. We show that the list of possible automorphisms of del Pezzo sur- 

faces is classified by exactly the same data that classifies commuting triples 

of Es. This is naturally suggested by the existence of F theory duals for 

the heterotic triples, and confirmed by direct analysis. This also suggests 

a possible way of classifying Eg bundles on higher-dimensional tori using a 

purely geometric analysis. We also recover our heterotic anomaly matching 

condition directly from the geometric analysis. 

Compactifications with flux are the next topic of discussion. In section 

4.4, we start by describing type IIA compactifications on quotient spaces 

Z/G with RR 1-form flux. These arise by reducing M theory on (Z x Sl)/G 
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to type IIA on the Sl fiber. These models generalize the 6-dimensional 

Schwarz-Sen model which is dual to the 6-dimensional CHL string [14]. We 

begin by describing equivariant line bundles on T4 and the computation 

of the relevant equivariant cohomology groups. This approach is naturally 

suggested from our geometric M theory starting point. We then proceed to 

explain in what sense the 1-form flux is actually localized at the singulari- 

ties of T4/G by studying the local holonomies for these bundles. We then 

generalize our discussion to the case of singular K3 surfaces. This gives us 

a technique for finding the group of 1-form fluxes given the sublattice of 

vanishing cycles of the singular KZ surface. 

The description of RR charges and fields in type II string theory seems to 

involve K-theory rather than cohomology, at least at zero string coupling. In 

section 4.5, we study torsion RR 1-form and 3-form fluxes on orbifolds from 

the perspective of equivariant K-theory. Our analysis is for local singularities 

of the form C2 /G. As usual, to preserve supersymmetry, G should lead to 

singularities of .AI?i2-type. A torsion 1-form RR flux can be measured by a 

DO-brane, while a 3-form RR flux can be measured by a D2-brane. In both 

cases, the D-brane acquires an additional phase factor in the string theory 

path-integral. We describe how this phase can be computed for a given flux 

in terms of a reduced eta-invariant for the virtual bundle representing the 

flux. 

The group of RR 1-form fluxes (modulo higher fluxes in a sense explained 

in section 4.5) is given by Hl(G,U(l)) which agrees with the result from 

equivariant cohomology. This is reassuring since we expect to be able to trust 

a straightforward analysis of fluxes for type II backgrounds that descend from 

purely geometric M theory compactifications. The case of RR 3-form flux is 

more interesting: with vanishing 1-form flux, we find that the group of 3-form 

fluxes is given by H3(G, U(l)). However, the full group of 1-form and 3-form 

fluxes exhibits an unusual additive structure. The physical interpretation of 

this effect is that 3-brane flux can be induced by the presence of 1-brane 

flux: the 3-brane flux has a shifted quantization law.  It might be possible 
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to verify this from a dual description, perhaps one involving branes along 

the lines of [15]. This is quite critical because our later results suggest that 

it is far from clear that equivariant K-theory is the right framework even in 

string theory. For example, from equivariant K-theory, we find Z120 as the 

group of RR 3-form fluxes supported by an E% singularity. Are all of these 

fluxes actually possible, or are some choices inconsistent? 

In section 4.5.5, we present an alternate algebraic method for comput- 

ing the desired K-theory quotients. The groups arrived at via this method 

confirm the results obtained from the reduced eta-invariant approach. 

In section 4.6, we turn to the issue of M theory compactifications with 

flux. We are immediately met by the challenge of not knowing the correct 

framework in which to study the M theory 3-form. This is a basic problem 

for smooth compactifications. In our case, the problem is only compounded 

by the fact that our compactifications involve singular geometries. The only 

previously known case is that of a D^+n singularity which comes in two 

flavors: a conventional resolvable singularity with space-time gauge group 

50(8 + 2n), and a partially frozen variety with gauge group Sp{n) [16,17]. 

The 1)4 frozen singularity appears in the M theory description of 06+ planes. 

In section 4.6.1, we argue that our new 7-dimensional components in the 

string moduli space imply the existence of frozen variants of EQ, EJ and E% 

singularities. Each of these singularities can support a variety of fluxes with 

different associated space-time gauge groups. For example, E% comes in 5 

frozen, or partially frozen, variants. This result is starkly different from what 

we might expect, for example, from equivariant K-theory. 

We propose M theory duals for our new 7-dimensional heterotic models, 

and for our new 7-dimensional F theory models. The M theory duals are 

on singular KZ surfaces with various combinations of frozen D and E sin- 

gularities. We then proceed to argue for the existence of dualities that map 

type IIA compactifications on singular spaces with RR 1-form flux to type 

IIA compactifications on spaces with completely different sets of singularities 



J. DEBOER ET AL. 1007 

and RR 3-form flux. 

In section 4.6.2, we turn to the possibility that 3-form flux could be 

described by equivariant cohomology—perhaps with additional consistency 

conditions from equations of motion, or anomalies. We describe the com- 

putation of the relevant equivariant cohomology group using T4/Z2 as an 

example. Section 4.6.3 extends our discussion of 1-form holonomies to tor- 

sion 3-form fluxes. Working under the premise that the physical choices for 

3-form flux form a subset of choices predicted by equivariant cohomology, 

we study the global orbifold T4/I>4 in section 4.6.4. This orbifold has 2 

D4 singularities, and we show that there is a choice of flux with holonomies 

localized at those singularities. This is a natural concrete proposal for the 

M theory dual of the 7-dimensional CHL string. 

We turn to some puzzles in matching M theory with type IIA in section 

4.6.5. These puzzles involve the spectrum of 2-branes computed both in M 

theory and type IIA. A generalization of the Preed-Witten anomaly [18] for 

D2-branes resolves the puzzle and leads us to speculate about a generaliza- 

tion of the anomaly in the context of K-theory. In section 4.6.6, we present 

some comments on the framework in which the M theory 3-form should 

be studied. Using a line of reasoning suggested by anomalies in wrapped 

branes, we are actually able to reproduce our list of frozen singularities. 

This is quite exciting, although the arguments are preliminary, and leave 

many (interesting) unresolved questions. The final section concludes with a 

brief summary of known F theory compactifications with flux. We find no 

new models beyond those previously studied. 

As a guide for the reader, we summarize our results on the moduli space 

of 7-dimensional string compactifications in table 1. This includes a listing 

of all (known) dual ways of realizing a given component of the moduli space. 
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Heterotic 

description 

Orientifold 

description 

M theory on K3 

with frozen 

singularities of type 

F theory 

compactified on 

"standard component" (-8) smooth KZ KZxS1 

Z2 triple 

CHL string 

no vector structure 

(-6,+2) Di^Di (K3 x 51)/Z2 

Z3 triple Ee © Ee (K3 x S^/Zs 

Z4 triple E7®E7 (K3 x 51)/Z4 

Z5 triple Es®E8 (K3 x S^/Zs 

Ze triple E8®Es (2f3 x 51)/Z6 

C"4^4)! {DAY (T4 x 51)/Z2 

(-4
)+

4)2 

(Ee)3 (r4 x 51)/Z3 

D4®E7® E7 (T4 x 51)/Z4 

Di ® EQ ® Eg (T4 x S^/Ze 

Table 1: A summary of 7-dimensional string theories with 16 supercharges. 
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2    The Heterotic/Type I String on a Torus 

2.1    Gauge bundles on a torus 

Let us begin by reviewing the choice of gauge bundles on tori. While we need 

specific results only for the case of an E% or Spin(32)/Z2 bundle, we shall 

include some general comments independent of the choice gauge group. For 

a more detailed review of this topic as well as further references, see [19]. We 

want our gauge fields to have zero curvature. This ensures that when we turn 

to string theory, they contribute nothing to the energy. A flat connection 

of Yang-Mills theory with gauge group G on Tn is specified by a set of n 

commuting elements of G, denoted £V These Wilson lines, which specify 

the holonomies around the n non-trivial cycles of the torus, are not unique. 

The same classical vacuum is also described by any other choice fl^ obtained 

by a global gauge transformation, 

Classifying all flat connections on Tn with gauge group G therefore amounts 

to classifying all sets of commuting elements in G up to simultaneous con- 

jugation in G. 

The simplest way to construct a set of commuting elements is as follows: 

exponentiating the Cartan subalgebra of G gives a maximal torus T^?, which 

is an abelian subgroup of G. By choosing our fti 6 TG, we obtain a flat 

connection on Tn. For particular groups like G = SU(N) or G = Sp(N), all 

flat connections are gauge equivalent to a flat connection with holonomies 

on a maximal torus, for any n. However, in general the moduli space of flat 

connections contains additional components beyond the one containing the 

trivial connection. This insight was crucial in resolving some puzzles about 

counting vacua in four-dimensional gauge theory [17,20-25]. 

How do we describe the component of the moduli space containing the 

trivial connection? With all n holonomies on a maximal torus, we can use 
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a gauge transformation to set the corresponding gauge potentials Ai to con- 

stant elements of the Cartan subalgebra. The centraliser of this connection— 

the subgroup of G commuting with each Vti—clearly contains the maximal 

torus as a subgroup. Therefore the rank of the centraliser of this flat con- 

nection equals the rank of G. We can characterize elements of the Cartan 

subalgebra by vectors on the space W with r the rank of G. To represent our 

n holonomies, we can therefore choose n vectors a; where we identify vectors 

that differ by elements of the coroot lattice. This identification simply cor- 

responds to quotienting out periodic gauge transformations. The resulting 

moduli space is then compact. Lastly, we can conjugate each fi^ simulta- 

neously by elements of the normalizer of TQ- This corresponds to further 

quotienting our moduli space by the action of the Weyl group W on each 

vector a^ simultaneously. In later applications to string theory, we shall 

deal exclusively with simply-laced groups where we can normalize the roots 

to have length y/2. The roots and coroots can then be identified. As an 

example, let us take the familiar case of SU(N) for which the moduli space 

is (T^-^/W. 

For other components of the moduli space, we typically have a reduction 

of the rank of the centraliser of a flat connection. It is clear in this case that 

we cannot simultaneously conjugate all holonomies into a maximal torus. 

However, it is possible to gauge transform to a set where each holonomy Qi 

can be written as the product of two commuting elements. One element is 

on a maximal torus while the second element implements a discrete trans- 

formation: either an outer automorphism, or a Weyl reflection. Let us now 

consider the possibilities for various choices of n. 

2.1.1    Bundles on S1 

A flat connection on a circle is specified by a single holonomy ft. The topo- 

logical types of bundles over S1 are in natural one-to-one correspondence 

with 7ro(G). If ft is in a component Gc of G connected to the identity, then 
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we can always choose a maximal torus TQ containing fi. The rank of the 

centraliser of £l then equals the rank of G. To find something new, we require 

a component of G not connected to the identity. It is clear that conjugation 

with O maps Gc to itself. Therefore O represents an automorphism of Gc and 

because £2 ^ Gc, it is an outer automorphism. In order to realize a holon- 

omy which acts as an outer automorphism of Gc, the gauge group G must 

be disconnected. The gauge group G typically takes the form G = Gc x T 

where T is a finite group (acting by outer automorphisms) and x denotes 

semi-direct product. 

The outer automorphisms of a compact, simple, connected, and simply- 

connected Lie group are in correspondence with the symmetries of its Dynkin 

diagram. The only compact, connected, and simply-connected simple Lie 

groups with outer automorphisms are SU(N), Spin(2N) and EQ. These 

outer automorphisms permute the nodes of the Dynkin diagram. Thus, 

gauge theories with gauge groups SU(N) xi Z2 for iV > 2, Spin(8) x 63, 

Spin(2N) xi Z2 for N > 4, and EQ X Z2 all admit non-trivial bundles over 

s1. 

The abelian group U(l) = 50(2) admits an outer automorphism. The 

group manifold U(l) is a circle and the outer automorphism acts by reflection 

on the circle. It can be represented as complex conjugation on C/(l), or as 

an element of 0(2) with det = — 1 when Gc = SO(2). For the gauge group 

we take G = 17(1) x Z2 = 0(2). 

A group G with a subgroup containing multiple isomorphic factors gives 

another example. There are outer automorphisms which permute the iso- 

morphic factors. 

Turning to the cases of interest to us, we note that Spin(32)/Z2 does not 

have an outer automorphism, although 5^^(32) does. The group Spm(32) 

has two isomorphic spin representations that are interchanged by its outer 

automorphism. Only one of these spin representations occurs as a represen- 

tation of 5pm(32)/Z2, and therefore the outer automorphism of Spin(32) 
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does not descend to a symmetry of Spin(32)/Z2. 

Although Es itself does not admit any outer automorphisms, the product 

E$ x Eg has two isomorphic factors and therefore has an outer automorphism 

exchanging the two Es factors. Compactifying (Eg x Es) x Z2 gauge theory 

on a circle with holonomy interchanging the two Es factors leads to a theory 

that has rank reduced by 8 because the group elements invariant under the 

holonomy must be symmetric in the two Es factors. This construction is the 

one employed in [2] in their realisation of the 9-dimensional CHL theory [1]. 

2.1.2    Bundles on T2 

A flat connection on T2 is specified by two commuting holonomies. Let 

us first dispense with some simple extensions of our prior discussion. We 

can always pick two holonomies, fij, on a maximal torus of G. A second 

possibility is to have an outer automorphism, as in our S1 discussion, as 

one holonomy and a group element left invariant by this automorphism as a 

second holonomy. 

The next question we should ask is whether gauge bundles can have any 

non-trivial topological types on T2. The first obstruction is measured by an 

element of if^T2; 7ro(G)) as we discussed in section 2.1.1. Let us assume that 

G is connected so this obstruction is trivial. A non-trivial topological type 

then requires a non-simply-connected group. For Es, there are therefore no 

non-trivial choices. However, for Spin(32)/Z2 there is a non-trivial choice. 

We begin with a general discussion about how this topological choice comes 

about. Take G to be connected but pick a holonomy fli for one cycle that 

has a disconnected centraliser Z(fii). Elements of the disconnected part 

of Z(Qi) map the connected part to itself, and are allowed choices for the 

second holonomy ^2- For simplicity, take T2 = S1 x S1. By dimensional 

reduction on the first circle with holonomy fli, we may regard this as a 

theory with gauge group Z(fti) on the remaining Sl. Therefore this is to 

some extent the same as our previous example.  This is the situation that 
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occurs for 't Hooft's twisted boundary conditions [26]. 

The group G should be non-abelian since we require a disconnected cen- 

traliser for fix G G. Let us assume that G is simple. A theorem by Bott, as 

quoted in [22,24], states that the centraliser of any element from a simple 

and simply-connected group is connected. Therefore G should be a non- 

simply-connected group. Examples of non-simply-connected groups include 

SU(n), 5p(n), Spin(n), EQ and E7 quotiented by a non-trivial subgroup 

Z of their centers. Let us denote the simply-connected cover of G by G. 

The allowed representations of the gauge group are then restricted to those 

which represent Z by the identity element. We can now choose holonomies 

which commute in G but commute to a non-trivial element in the kernel of 

G —>• G [27]. The obstruction for lifting G bundles to G bundles is measured 

by a characteristic class ^2 G H
2
(T

2
,Z^/ZG), where Zg and ZQ are the 

centres of G and G, respectively. 

More explicitly for the case of Spin(32)/Z2, there is one choice, measured 

by a generalized second Stiefel-Whitney class, which determines whether the 

compactification does or does not have "vector structure" [17,28]. The case 

of no vector structure corresponds to taking Wilson lines, (fti,^)* which 

commute to the non-trivial element in the kernel of the map Spin(32) —> 

Spin(32)/Z2. In the component without vector structure, the rank is re- 

duced by 8. This is our only discrete choice on T2. 

2.1.3    Bundles on T3 

The simplest way to construct commuting triples is to pick an element of 

the maximal torus that commutes with two holonomies constructed with 

the methods that we just described. Again, this is essentially a dimensional 

reduction of our prior discussion. However, we shall meet new possibilities 

on T3. 

For the groups Es and 5pm(32)/Z2, compactification on T3 introduces 
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no additional topological choice beyond the choice of the generalized Stiefel- 

Whitney class in JH
r2(T3,Z2). Up to automorphisms of T3, there are two 

topological types for the case of Spin(32)/Z2: Bundles of trivial class which 

are liftable to Spin(32), and non-liftable bundles. If we choose coordinates 

(xi: X2')xs) for T3, we can always choose these non-trivial bundles to be 

unliftable on the T2 parametrized by (xi^X2) and liftable on all other two- 

tori. For £3 bundles, there are no non-trivial topological choices. 

Even after fixing this topological choice, there is the possibility of ad- 

ditional components in the moduli space of flat connections. For example, 

in the case with trivial generalized Stiefel-Whitney class, these additional 

components consist of connections with three holonomies, ftj, which com- 

mute but which are not connected by a path of flat connections to the trivial 

connection. 

Let us again begin by framing our discussion in more general terms, 

before turning to the special groups of interest to us. Let G be simply 

connected. Pick an element fix with centraliser Z(Cli) so that Z(Q,i) contains 

a semisimple part ZS5(fii) that is not simply-connected. We can then choose 

holonomies ^2 and i^ from Zss(fii) that obey twisted boundary conditions: 

they commute in Z33(Qi) but their lifts O2 and ^3 to the simply-connected 

cover Zss(Qi) do not commute. In this way, we achieve rank reduction even 

in a connected and simply-connected group. The groups Spin(n > 7) and 

all exceptional groups have non-trivial triples of this kind [17,20-24]. 

If G is not simply-connected (but still semisimple), it is also possible 

in specific cases to choose an element fii with centraliser Z(Cti) such that 

the semisimple part Zss(ft,i) has a fundamental group strictly larger than 

the fundamental group of G. Then we can pick elements O2 and ^3 from 

ZS5(0i) so that their lifts O2 and ^3 to the simply-connected cover Z5S(fii) 

commute up to an element that is not contained in the fundamental group of 

G. Compactifying with £2i, 0,2 and fis as holonomies leads to rank reduced 

theories, but the rank reduction can be larger than would be the case for 
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a compactification with twisted boundary conditions on a two-torus and a 

third holonomy from the maximal torus. 

The various possible flat connections are characterised by two sets of 

data: first, the topological type of the bundle measured by the generalized 

Stiefel-Whitney class. Second, for a fixed topological choice, there can be 

different components of the moduli space. An important characteristic of a 

connection A in some component of the moduli space is its Chern-Simons 

invariant which is defined by, 

Lcsw = ukL«{AdA+lA3)- w 
where h is the dual Coxeter number. The Chern-Simons (CS) invariant 

is well-defined in E/Z and is constant over a connected component of the 

moduli space. These invariants, which have been computed for all simple 

groups in [24], are typically rational for non-trivial components3. A key 

result is that these components can be distinguished by their CS invariant 

[24]. In fact, fixing the generalized Stiefel-Whitney class, CS embeds the set 

of components of the moduli space of a fixed type into Q/Z. By the order 

of a component ft, we mean the order of its CS' invariant in 

Tables 2 and 3 summarize the structure of the moduli space for E$ and 

Spm(32)/Z2. In the latter case, we include both bundles with and without 

vector structure. Note that there are 12 distinct components for Eg and 6 for 

Spin(32)/Z2. The Chern-Simons invariants of a component of order k are 

of the form n/k with 1 < n < A; and n relatively prime to k. There is exactly 

one component of order k for each such n. For example in the Es case, there 

are 2 components with k = 6. We can distinguish these two components by 

their CS invariants which are 1/6 and 5/6 mod Z, respectively. Denoting 

the moduli space of flat connections on T3 of a given topological type by M 

and letting X be a component of .M, we note that [24] 

J2(\dim(X) + l) = h. 
xeM 

3Those that do not contain the trivial connection. 
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Order of Maximal Unbroken 
Component Gauge Groups Degeneracy Dimension 

1 £8 1 24 
2 i<4, C4 1 12 
3 G2 2 6 
4 Ax 2 3 
5 {e} 4 0 
6 M 2 0 

Table 2: The structure of the moduli space for E%. 

Order of 
Component 

Maximal Unbroken 
Gauge Groups Degeneracy Dimension 

(No) Vector 
Structure 

1 
2 
2 
4 

£>16 

#12 
£>„ x Cm, n + m = 8 
■Sn x Cm, n + m = 5 

1 
1 
2 
2 

48 
36 
24 
15 

VS 
VS 

NVS 
NVS 

Table 3: The structure of the moduli space for 5pm(32)/Z2. 

Since there are no topological choices for EsxEs, all solutions are character- 

ized by the CS invariant for each E$ factor. The case of integer CS invariant 

corresponds to no rank reduction. For CS = |, the rank is reduced by 4, 

CS = (^, |) give a rank reduction of 6, CS = (j, f) give a rank reduction 

of 7, while CS = (g, §, |, |, g, |) give a rank reduction of 8. For E$ x E$ 

we therefore have 144 different combinations with possible rank reductions 

of 0,4,6,7,8,10,11,12,13,14,15 and 16. Note that for an Es x E8 bundle 

where both factors have identical triples, we can further impose the CHL 

outer automorphism on one of the holonomies leading to rank reductions of 

12,14,15 and 16. The moduli space of Spin(32)/Ij2 is slightly more intricate, 

but as we shall see in section 2.2, we do not require a detailed description of 

the non-trivial components in the moduli space beyond the usual no vector 

structure compactification with CS = 0. 
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2.1.4    Bundles on T4 

As usual, we can extend our prior discussion to the case of T4 in a simple 

way. We add a circle to T3 and choose the holonomy around the circle to 

lie in the maximal torus of G, and commute with the other holonomies. 

However, there are again new possibilities that cannot be obtained this way. 

Beyond T3, there is no complete analysis for the general case so we shall 

restrict ourselves to examples which naturally arise in string theory. 

Let us begin our discussion with 5,pm(32). We note that the group 

5pm(32) admits holonomies that break the group to a subgroup of the form 

Spin(2N) x Spin(2N') x G, where N,N' > 4 and G is some product of 

?7(n)-factors, possibly not semisimple, of rank 16 — TV — iV'. In fact the 

semisimple part of this subgroup is two-fold connected so we should include 

a quotient by some Z2; however, we will ignore this subtlety since it plays 

no role in our current considerations. The point is that both Spin(2N) and 

Spin{2N') have non-trivial triples. We may therefore construct S'^m(32) 

holonomies that implement a triple in each subgroup. This leads to a non- 

trivial quadruple. It results in a rank reduction of 8 which is twice the 

reduction of a triple. We also note that the CS invariants defined for any 

sub-three-torus of T4 are always integer. 

A similar construction can be applied to the case of Spm(32)/Z2 without 

vector structure. Pick a holonomy that breaks the group to a subgroup 

Spin(2N) x SpinfiN') x G, where iV, N' > 6 and G is some (possibly not 

semisimple) group of rank IG—N—N'. We have again ignored the topology of 

the subgroup. We imposed the restriction AT, TV' > 6 because Spin(2N > 12) 

admits triples without vector structure that lead to rank reduction beyond 

the reduction that follows from no vector structure [24,29]. Constructing 

such a triple in each of the factors of Spin(2N) x SpinQN') leads to two 

possibilities with rank reduction 14. One of these has a half-integer CS 

invariant on a three-torus, but the other has integer CS on all sub-three-tori. 

We shall meet these gauge bundles when we discuss orientifold constructions 
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in section 3. 

A new topological possibility that occurs in compactifiying Spm(32)/Z2 

without vector structure on T4 was briefly described in [17]. Recall that 

the class w^ is an element of .H'2(T4
7Z2) = Z^. The new possibility appears 

when {02, viewed as an antisymmetric 4x4 matrix, has maximal rank. This 

happens precisely when iuf ^ 0. Such bundles have no vector structure 

over two complementary two-tori. The orientifold realization of this type of 

bundle was discussed in [17]. 

Thus for Spin(32)/Z2 bundles on T4, we encounter altogether three new 

types of bundles. On the other hand, for Es or E$ x Eg no new bundles 

appear, since neither Es nor Es x Es admit non-trivial quadruples. 

2.1.5    Bundles on T5 

A T5 compactification can be achieved in the usual trivial way: add a circle 

to T4 with a holonomy from the maximal torus chosen to commute with the 

other holonomies. For the groups of interest to us, there are some interesting 

new possibilities to which we now turn. 

The group *Spm(32) has an element whose centraliser is (Spin(16) x 

Spin(lQ))/Z2. The group Spin(W) admits a non-trivial quadruple [22]. 

The argument proceeds along the lines sketched for 5pm(32): the group 

Spin(16) has elements that have as centraliser (Spin(8) x Spin(8))/Z2. Since 

Spin(8) is among the groups that have a non-trivial triple, we construct one 

in each factor of Spin(8) x Spin(8). This results in a non-trivial quadru- 

ple of Spin(16). Constructing a non-trivial quadruple in each factor of the 

Spm(16) x £pm(16) D Spin(32) leads in turn to a non-trivial quintuple for 

Spin(32). For this case, the rank reduction is complete and equals 16. 

On the other hand, the group Es has an element that has as its centraliser 

Spin(16)/Z2. Constructing a non-trivial quadruple in Spin(16) leads to a 

non-trivial quintuple in .Eg, with a complete rank reduction of 8.   For an 
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E% x E% bundle on T5, we can embed a quintuple in one or both Eg-factors. 

This leads to rank reductions of 8 and 16, respectively. 

2.2    Anomaly cancellation 

2.2.1    A perturbative argument 

Our primary interest is in constructing consistent string compactifications. 

We need to know which of the many possible gauge bundle configurations 

actually give anomaly-free compactifications. The issue can be addressed 

from multiple perspectives. Let us begin with the familiar heterotic/type 

I anomaly cancellation conditions. Let us phrase our discussion in the lan- 

guage of the heterotic string. Up to irrelevant coefficients, the NS-NS iJ-field 

of the heterotic string satisfies, 

H = dB + CS(u) - CS{A), (2) 

where u is the spin connection, and A is the connection for either an E$ x Es 

or Spin(32)/Z2 bundle. For a toroidal compactification, CS(CJ) vanishes. 

For a flat geometry to remain a solution of string theory, the ff-field cannot 

have energy which would warp the background geometry. This requirement 

can only be satisfied if the if-field is torsion or trivial in cohomology. On T3, 

there is no possibility for torsion so the iJ-field must be trivial. Integrating 

equation (2) over T3 leads to the requirement that the total CS invariant 

for A vanish. 

Anomaly cancellation therefore rules out all the components in table 3 

with non-vanishing CS invariant. We are left with two Spin(32)/Z2 com- 

pactifications: the component of order one with vector structure, and the 

component of order two without vector structure but with vanishing CS in- 

variant. Of the 144 possible choices of Eg x E^ gauge bundle, only 12 survive. 

These choices correspond to taking two i^ gauge bundles with opposite CS 

invariants. 
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2.2.2    An M theory argument 

For the case of the JBfe x E% string, we can revisit anomaly cancellation 

from the perspective of the strong coupling Hof ava-Witten description of M 

theory on Sl /Z2 [30]. Let us sketch the argument without worrying about 

overall constants that are not needed for this argument. In the presence 

of boundaries at x11 = 0 and at x11 = TT, the definition of the M theory 

four-form G is modified. The component of G with legs on the torus and a 

leg on x11 satisfies [30], 

Gnxyz ~ <^11)CS(A1) + Six11 - 7r)CS(A2) + ... , (3) 

where Ai and A2 are connections for the Es x E$ bundle. The terms omitted 

involve the C-field which is constant on T3 (see section 2.4.4) . For a flat 

geometry like T3, we require that G/27r be an integral cohomology class [31], 

Integrating eq. (3) over T3 x 51//^2 then implies that the total CS invariant 

must cancel between the two Es bundles. This is just the strong coupling 

version of perturbative anomaly cancellation. 

2.3    Gauge bundles in string theory 

We now turn to a detailed discussion of toroidal compactifications of the het- 

erotic string. While our discussion is in the context of the weakly coupled 

string, supersymmetry should guarantee that results about moduli spaces 

remain uncorrected at strong coupling. Since the data specifying perturba- 

tive type I compactifications is identical to the data specifying 5pm(32)/Z2 

heterotic compactifications, our results also apply to the type I string. 

From our prior discussion, we saw that all gauge bundles on a tor^is can 

be characterised by commuting holonomies tti which we can write in the 

form, 

fti = exp (Znisii) 0;, (4) 



J. DEBOER ET AL. 1021 

where a^ an element of the Cartan subalgebra. The second factor 0^ im- 

plements a discrete transformation (but may be set to the identity on the 

group). For the decomposition of the holonomy given in equation (4) to be 

unambiguous, we demand that the two factors commute with each other. 

The 6i implement automorphisms of the group lattice. These can be either 

inner automorphisms which constitute the Weyl group, or outer automor- 

phisms. Let us denote the automorphism implemented by G^ by 0$, and note 

that our requirement of commutativity allows us to choose, 

G^1 exp (271-^) @i  = exp(27ri0i(ai))  <£> a; = 0;(ai). (5) 

In string theory, this decomposition of the holonomy into a component on 

the maximal torus and a discrete part is convenient since the two factors are 

treated differently in the world-sheet conformal field theory. 

The factor representing the maximal torus contribution can studied with- 

in the usual framework of Narain compactification [32,33]. The discrete 

factor ®i can be implemented by the asymmetric orbifold construction [34, 

35]. Let us first turn to Narain compactifications, postponing the asymmetric 

orbifold discussion until later in this section. 

2.3.1    Holonomy in string theory I: Narain compactification 

For simplicity, we will consider the heterotic string theory on a rectangular 

torus. We therefore set the metric on the torus gij — Sij, and display the 

radii Ri explicitly. The heterotic NS-NS two-form field B will not enter our 

considerations so we will set it to zero. The Regge slope af will eventually 

enter our discussion so we shall keep it explicit. With these conventions, the 

momenta of the heterotic string are denoted by: 

SiL,R 

(q + ^a^-, 
i 

ni - q • ^ - Ysj iN • a,-      ^ 

(6) 

(7) Ri                         a'   • 
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In these formulae, no summation is implied unless explicitly stated. The 

vector q takes values on the lattice Fg © Fs or Fie for the E% x E% or the 

Spin(32)/Z2 heterotic string, respectively. The rii and Wi are integers cor- 

responding to the momentum and winding numbers, respectively.   When 

rescaled by ^/a//2, these momenta are dimensionless and take values on an 

even self-dual lattice FiG+^d. 

Restricting to states with Wi equal to zero, the spectrum exhibited in eqs 

(6) and (7) is that of compactified gauge theory with holonomies parame- 

trised by a.i. We may take the az- used for a specific compactification of Yang- 

Mills theory as a starting point for discussing a similar compactification 

of heterotic string theory. However, the string theory spectrum is richer 

because states with non-zero winding have to be added to the spectrum. 

In the decomposition of eqs (6) and (7), the vectors k correspond to 

quantum numbers reflecting the group lattice. In gauge and string theory, 

the group is broken to subgroups by expectation values for the Wilson lines 

a^. In gauge theory, the weight lattices for these subgroups correspond to 

sublattices of the group lattice—an observation which is crucial to the anal- 

ysis of [22,24]. This essential point however is not true for string theory! 

Winding heterotic strings have bosons on their world-sheet that are charged 

with respect to the holonomies. Therefore the momenta of these bosons 

receive corrections reflected in (6). This implies the existence of represen- 

tations of the gauge group that would not be present in pure gauge theory, 

where winding modes are absent. In particular, the topology of the unbro- 

ken subgroup will be different from the topology that would be deduced 

from an analysis of the low energy gauge theory. With respect to the use of 

the phrase "low energy theory," note that the extra representations can be 

arbitrarily heavy because they arise from strings that may wrap arbitrarily 

large circles. 

Which compactifications feel this difference between gauge and string 

theory? Those compactifications with holonomies implementing outer auto- 
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morphisms are not affected. By construction all a; should commute with the 

outer automorphism. This implies that although there will be extra repre- 

sentations, these representations are invariant under the outer automorphism 

and therefore cannot obstruct the compactification. In particular, the con- 

struction of the CHL string in [2] completely parallels the construction in 

gauge theory described earlier. 

For compactifications with twisted boundary conditions, at least one of 

the a^ is not invariant under the action implemented by one of the Qj [27] 

(with i ^ j). Instead, we have 

dj{si) — a^ + z^-     <^     Q~l exp (27ria^) 9j exp (—27na;) = exp (27riz^). 

(8) 

This equation implies that z^ is a vector on the (co)weight4 lattice of the 

original group, since the commutator on the left hand side should be equal to 

the identity. The group element 0^ implements a length preserving (orthog- 

onal) automorphism, and hence a^ has the same length as ^(a;). Putting 

these facts together, we see that the insertion of winding states not only leads 

to the introduction of states with group quantum numbers a^, but also auto- 

matically generates images for these states. Therefore Oj is also a symmetry 

of the string theory. Although the explicit representation content of string 

and gauge theory are distinct, the constructions are completely parallel so 

the arguments used in [17] and [36] are not affected. 

The construction of triples is affected by the extra winding states. Recall 

that to construct a non-trivial triple, we have to turn on holonomies that 

leave a non-simply-connected subgroup unbroken, or a subgroup with funda- 

mental group larger than the fundamental group of the original group. The 

topology of the unbroken subgroup can be deduced from the representation 

content of the theory, and this is modified by the presence of winding states. 

We will return to this point momentarily. 

For constructions of quadruples and quintuples, it is hard to make a 
4Actually it is the coweight lattice [27], but since we will discuss string theory with 

simply-laced groups only, we can identify the coweight lattice with the weight lattice. 
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general statement. The construction of quadruples and quintuples may be 

viewed as an inductive process, where triples are constructed in an interme- 

diate step. These triple constructions may be restricted by winding states, 

but one has to check the topology of the gauge (sub)group case by case. 

2.3.2    The topology of subgroups in string theory 

We have seen that some gauge theory vacuum configurations cannot be re- 

produced in string theory. We will now investigate which configurations 

remain in E% x E% and Spin(32)/Z2 string theory for the specific case of 

triples. This will provide an alternate derivation of the constraints obtained 

in section 2.2. Recall that we should look for group elements, to be used as 

holonomies, with a non-simply-connected centraliser. 

Our analysis is based on theorem 1 of [22]. Equivalent results can be 

found in [24]. This theorem states that any element of a simple group can 

be conjugated into the form, 

/ r \ 
exp I 27ri Yj SJUJJ J , (9) 

\      i-1        J 
where r is the rank of the group, and the Uj are the fundamental coweights 

of the group. The Sj are a set of non-negative numbers satisfying 

j=o 

with gj the root integers. This last relation determines the number SQ. The 

theorem further states that the centraliser of this element is obtained by 

erasing all nodes i for which Si y£ 0 from the extended Dynkin diagram, and 

adding 17(1) factors to complete the rank of the group. The fundamental 

group TTI of the centraliser contains Z factors for the added 17(1) factors. In 

addition, there is a Zn where n is the greatest common divisor (gcd) of the 

coroot integers of the erased roots. 

For the non-simple group Es x E^ any element can be conjugated to an 

element that is a product of two elements of the form (9). Since the group is 
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simply-laced, we will drop the distinction between root and coroot, weight 

and coweight. Let us first consider one of the ^-factors, setting the group 

element for the other factor to the identity. 

Figure 1: The extended Dynkin diagram of Es- The integers are the (co)root 
integers associated to the respective nodes. 

If we desire that the centraliser of an element contains an m-fold connected 

factor with m 7^ 1, we cannot erase the extended root ao which has root 

integer 1. Therefore, we have to set so = 0. The extended root ao will now 

survive as a root of the subgroup. The simple factor of which ao is a root is 

either SU(n) with 2 < n < 9 or Spm(16). 

In heterotic string theory, there are winding states on the weight lattice, 

8 

2_" SJUJJ + roots, 

of the unbroken gauge group. We easily find that, 

8 

< ^ SjWj, ao >= 5o - 1 = -1, (10) 

and therefore Y^j=i sjUJj projected onto the subgroup containing ao is mi- 

nus the weight corresponding to the simple root ao in the unbroken gauge 

group. Therefore, there is at least one state, with winding number 1, which 

transforms in the ii irreducible representation (the anti-fundamental rep- 

resentation) of an SU(n) factor, or the 16 (the vector representation) of 

Spin(16). This state is a singlet with respect to other simple factors in 

the centraliser because < Yljz=isjUJj^ai >— si = 0 when a^ is a root of 

a surviving subgroup. Note that this then implies that the relevant state 

transforms in a simply-connected representation, unless it transforms in the 
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16 of Spin(16). In this single exceptional case, the vector lattice of Spin(16) 

has to be added to a group lattice that already contains a spin weight lattice 

and the root lattice. Again, the result is the lattice of a simply-connected 

group. 

The conclusion then is that in E$ x E$ string theory the holonomies 

that are trivial in one E$ factor do not give non-simply-connected sub- 

groups at all. Closer inspection shows that the only way to get non-simply- 

connected subgroups in string theory, is to use holonomies that in gauge 

theory would break each Eg factor to a group containing a semisimple, non- 

simply-connected factor. In gauge theory, this would result in a semisimple 

part with fundamental group Zni x Zn2. An analysis of the group elements 

that give rise to such a centraliser shows that in string theory, the semisimple 

part has fundamental group Zn with n = gcd(ni,n2). 

It is therefore possible to construct triples in the E$ x E$ theory, but of 

the 144 components of the E$ x E$ gauge theory only a set of 12 "diagonal" 

constructions can be realized in string theory. This is in complete accord 

with our earlier anomaly cancellation results. A similar analysis can be 

performed for the Spin(32)/Z2 string. As the techniques involved are the 

same as for the E$ x Es heterotic string, we will give fewer details. 

Figure 2:  The extended Dynkin diagram of DIQ (Spin(32)).   The integers 
are the (co)root integers associated to the respective nodes. 

As remarked before, the standard compactifications with and without 

vector structure are not obstructed in any way. Let us first consider the 

gauge theory triple in Spin(32) with vector structure. It is not hard to show 

that it is impossible to construct this triple in string theory because there 

is no element that gives a centraliser with non-simply-connected semisimple 
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part in Spinffi). There are elements that have a centraliser with non- 

simply-connected semisimple part in Spin(32)/Z2, but this is because the 

group itself is not simply-connected, and therefore results in compactifica- 

tions without vector structure rather than a triple with vector structure. 

Moving to compactifications without vector structure, let us first note 

that Spin(32)/Z2 has a non-trivial center which is isomorphic to Z2. We 

need two holonomies to encode the absence of vector structure. The third 

holonomy has to commute with the other two, but is otherwise unrestricted. 

In particular, if O is an allowed choice, then so is ztt, z being the non-trivial 

centre element in the centre of Spin(32)/Z2. These two choices are repre- 

sented as points in two disconnected components which have an identical 

structure. 

The element z is represented by the identity in the vector representation 

of Spin(32). In particular, the two components mentioned above cannot be 

distinguished by their holonomies in SO(32), and have an identical orien- 

tifold description [29]. This degeneracy should not persist in a consistent 

string theory, and indeed it does not. As an example, set Q to the iden- 

tity. Then fi has Spin(32)/Z2 as its centraliser. On the other hand, for 

O = z = exp(27riai), with a^ on the vector weight lattice, the centraliser 

in gauge theory would also be Spin(32)/Z2') but in string theory it turns 

out to be5 5pm(32)—a simply connected group! It therefore destroys the 

possibility for absence of vector structure. By continuation, we see that the 

degeneracy is completely lifted, and only one of the degenerate components 

survives. 

For gauge theory on T3 with Spin(32)/Z2 gauge group, and absence of 

vector structure, two more components exist. One may construct holonomies 

parametrising these components by the methods of [24] as mentioned ear- 

lier, or with an alternative approach [29]. Attempting to construct these 

holonomies in heterotic string theory does not lead to flat bundles.  These 

5We are ignoring the Kaluza-Klein gauge bosons here. 
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choices therefore are not realized in toroidally compactified string theory. 

2.3.3    Holonomy in string theory II: asymmetric orbifolds 

Having dealt with the intricacies of Narain compactification, we should now 

implement the discrete transformations @j appearing in equation (4). This 

can be done by means of the asymmetric orbifold construction [34,35]. We 

will briefly review the general formalism and then apply it to our problem. 

Essentially by definition, an asymmetric orbifold uses the fact that the 

left and right-moving degrees of freedom on the world-sheet are largely in- 

dependent. The orbifold group can therefore have a different action on the 

left and right-movers. For heterotic strings, where left and right-movers live 

on different spaces, this possibility is quite natural. Let us use PL (PR) 

to denote the left-moving (right-moving) momenta of the heterotic string. 

The group elements g of the orbifold group act separately on the left and 

right-moving momenta since mixing left and right-movers typically leads to 

inconsistencies. The action of g consists of a combination of a rotation 9L 

and a translation az, acting on the left-moving sector. Similarly, a rotation 

9R and translation CLR acting on the right-movers. The action of g on states 

in the Hilbert space takes the form, 

9\PL,PR) = e2^p^-p^a^\9LPL,eRPR). (11) 

The orbifold construction leads to untwisted and twisted sectors in the the- 

ory. In the untwisted sector, describing states invariant under the orbifold 

action, we encounter (in the partition function) a sum over a lattice / which 

is the sublattice of ri6+d,d invariant under rotations by 0. In the twisted 

sector, we find a lattice /* + a*, where /* is the lattice dual to / and a* is 

the orthogonal projection of a = (a^, CLR) onto / [34]. 

The left- and right-moving sectors of the closed string are not completely 

independent. The constraint of level matching connects both sectors. This 

constraint leads to consistency conditions on the asymmetric orbifold. Let 



J. DEBOER ET AL. 1029 

the group element g have finite order n. The eigenvalues of di are then of 

the form exp (2mri/n), i = 1,... ,19, while exp {2msiln), i = 1,2,3 are the 

eigenvalues of 9R. The consistency conditions for n odd are: 

^rf = (na*)2    mod n. (12) 
i 

For even n, this condition is replaced by a more stringent one. There are 

supplementary conditions, 

J^r?    =    (na*)2    mod2n, (13) 
i 

J2si = 0   mod2, v6l/2v = 0   mod 2. (14) 
i 

The last condition should hold for any v E Fie+^d, where 0B is a block 

diagonal matrix with 6L and 6R on the diagonal. 

In our applications, the asymmetric orbifold construction will be used 

to implement outer automorphisms, or Weyl reflections on the gauge group. 

Since the gauge group comes from left-moving excitations, we set 0R = 1 and 

drop the subscript on 9L = 9. This conforms with notation used in previous 

sections. Notice that the first condition in (14) is trivialized. 

The shifts CLL^R will be interpreted as physical translations. We therefore 

take a minimal lightlike vector in a F^i sublattice, divide it by n, and iden- 

tify the shifts (AL^K) with the components of that resulting vector. There 

is only one ambiguity in this prescription: there is the possibility of a relative 

sign between the components CLL and CLR (there is another overall sign cor- 

responding to a parity transformation). The difference in sign comes from 

the choice of fractionalizing either the winding numbers, or fractionalizing 

the momenta. Both choices are related by a T-duality. We shall return to 

this point later. In the following discussion, we fractionalise the winding 

numbers because this has an obvious space-time interpretation. 

After quotienting string theory by #, we obtain a theory with a clear 

geometric interpretation.   Traversing the cycle on the spatial torus in the 
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direction of (a^j &#) gives a holonomy implementing a Weyl reflection or an 

outer automorphism (see also [2,36]). We have now gathered all the elements 

needed to construct the orbifolds. 

2.3.4     Triples in string theory 

In this section, we present an analysis of some non-trivial heterotic compacti- 

fications on a 3-torus. For non-trivial compactifications on lower-dimensional 

tori, we refer the reader to [2,36]. 

Since we earlier ruled out the existence of triples in Spin(32)/Z2 string 

theory, we deal exclusively with the E% x E% theory in this section. Our 

previous analysis combined with results in E% gauge theory [19,21-24] lead 

us to expect non-trivial triples for which one holonomy implements a Weyl 

reflection generating a cyclic group Zm with m = 2,3,4,5 or 6. 

In this section, we will construct asymmetric orbifolds for special choices 

of holonomy. The extension to the general case will be delayed until section 

2.4. Our choice will be to embed the holonomies for the Zm-triples in "min- 

imal" subgroups of £?8- These are the smallest simply-laced subgroups that 

contain a Zm-triple. This choice can be motivated along the lines sketched 

in [22]. The maximal torus of the group has a subtorus T that commutes 

with the triple. The centraliser of T is a product of T with a semisimple 

group C. This semisimple group C is the "minimal" subgroup which we 

require. For Es gauge theory, C = D^EQ^E^^ES or E& for the Zm-triple 

with m = 2,3,4,5 or 6, respectively. For Eg x Es string theory, we find that 

C = D4 x D4, etc. The subtorus T corresponds to surviving moduli, so we 

can interpret the group C as representing eliminated moduli. Our choice is 

dictated by the desire to make C manifest in the construction. The entries 

from the list of possible C's will reappear later in our paper. 

The holonomies are essentially fixed by the decision to embed them in 

a "minimal" subgroup. The only remaining freedom corresponds to global 
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gauge transformations, or equivalently, lattice symmetries of the heterotic 

string. Triples embedded in these subgroups have a number of convenient 

properties. One is that all three holonomies are conjugate to each other [24], 

which implies that they have the same set of eigenvalues in every represen- 

tation of the gauge group. Further, from the minimality property, it follows 

that these eigenvalues are of the form exp(27rm/ra) where n G Z [21,23]. 

This is convenient for checking the asymmetric orbifold consistency condi- 

tions (12), (13) and (14). Additional properties will emerge in the construc- 

tion. 

Let us now specify values for some of the quantities appearing in the 

formulae for the momenta, (6) and (7). We work on a 3-torus so i = 1,2,3. 

We will turn on holonomies in the 1 and 2-directions, and use direction 3 

for the shift accompanying the orbifold projection. The holonomy in this 

direction, as, will be set to zero for the moment. In equation (7), the inner 

products a; aj appear. Since the holonomies at the relevant point in moduli 

space are conjugate to each other, we see that 

a2 -a2 

Let us introduce the notation a^ = (a[, a^7) to display the Wilson lines in the 

'first' (I), and 'second' (II) E% factor. It is convenient to set ai = (ai,ai) 

and a2 = (S2,— 62)- This eliminates the inner product ai • a2 from our 

formulae, leaving only diagonal terms in the spatial momenta. We will use 

an orbifold projection that is symmetric in both E% factors. Notice that in 

this way, we implement the prescription that the contributions of each E% 

factor to the Chern-Simons invariant cancel each other. There are other 

ways of implementing this constraint; for example, by choosing ai and a2 

symmetric in both factors, and choosing opposite orbifold projections in the 

two J^s's. This would leave us with off-diagonal terms in the momenta, and 

we consider this less convenient. Nevertheless, it should provide equivalent 

results. 

The value of a2 = a2 can be found in various ways. In the setup we have 
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chosen, the holonomy parametrized by ai eliminates only one node from 

each E% extended Dynkin diagram, and from the discussion around eq. (9), 

it follows that ai is of the form (ujhj1, ujjhj1). Here ujj is the (co)weight 

and hj the (co)root integer associated to the node.6 We now easily find a? 

by noting that the weight can be expanded in the simple roots, 

k 

It is then trivial to show that a? = 2p\l(hi)2 (no summation implied), where 

p\ is a diagonal element of the inverse Cartan matrix. For the cases under 

consideration, we find that a? = 2(m — l)/m.7 

Combining these conventions and results, we find the momenta for the 

compactified heterotic string before the orbifold projection: 

k  =   (q+yi^^v— > (15) 

mni-mq'3.i-Wi(m-l)     WiRi . 
mRi a' 

k3L,R    =     ^±—■ (17) 

Because of the eigenvalues of the holonomies, q • a; is always a multiple of 

1/ra. Therefore, the combination mrii — raq • a^ — Wi(m — 1) is always an 

integer, and actually can take any integer value. 

We have now arrived at the point where we want to perform the orbifold 

construction. From the gauge theory interpretation of the theory, we should 

be confident that orbifolding will lead to a consistent theory. Nevertheless, 

we shall verify that the theory given by equations (15), (16) and (17) has 

the right symmetries, and that the orbifold operation obeys the consistency 

conditions (12), (13) and (14). 

6For m < 5, there seem to be more options but only one corresponds to a minimal 
triple. 

7It can be proven that this is the minimal value that af can have for an m-triple. This 
provides another invariant way of characterising these holonomies. 
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The orbifolding operation consists of a shift a, and a transformation 6 

acting on the gauge part of the lattice. The transformation 6 is an element 

of the Weyl group of E8 x E%. Since the rank of E§ x E% is 16, the Weyl 

group is a discrete subgroup of the orthogonal group 0(16). As discussed 

before, the requirement of commuting holonomies does not necessarily mean 

that 0(ai) is equal to a;, but rather implies the weaker condition (8) where 

zij is some lattice vector. There is some ambiguity in the choice of z^-, but 

in the cases of non-trivial commuting triples, the lattice vector cannot be set 

equal zero. The choice z^- = 0 corresponds to a trivial triple, which should 

be equivalent to a conventional Narain compactified theory. 

To see that the lattice has the right symmetry, we construct the image of 

a vector with labels (q,n^Wi^n^^w^). There should exist a vector labelled 

by (q7,77^,1^,ng, 103) with q' = #(q + wiai + ^2^2). We expect existence 

for generic radii of the spacial torus which implies wi = w^ W3 = w^ and 

77,3 = 77/3. We are therefore led to the equations, 

q'   =   e(q)+^i(e(ai)-ai)+t^(e(a2)-a2), (18) 

rii-q'-SLi    =   ni-q-SLi        2 = 1,2. (19) 

Equation (18) is consistent by construction since both the left and right hand 

side contain lattice vectors only. We still have to verify that (q7 — q) • a; is an 

integer for i = 1,2. We will show that both (#(q) — q) • a; and (Ofa) — a;) ■ ay 

are integers, and hence (19) always has a solution. 

The quantity (0(ai) — a^) • aj is actually zero for % ^ j because of the 

specific choice of ai, a2, and because 8 is symmetric in both E$ factors. We 

remarked previously that 0(a^) — a^ = z^ for some lattice vector Zj. Then 

(Ofai))2 — a? = z? + 2ai • z^ + a?, where use was made of the fact that 

6 G 0(16). Since z^ is on an even lattice, it immediately follows that a^ • z^ 

is an integer. Finally, rewriting (0(q) — q) ■ a^ as (^~1(ai) — ai) • q, we notice 

that this is an inner product between two lattice vectors, and hence also 

integer. Therefore an image point always exists. 

For the orbifold consistency conditions (12) and (13), we need the eigen- 
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m 2 3 4 5 6 

n 1 1 2 1 2 3 1 2 3 4 1 2 3 4 5 

multiplicity 8 6 6 4 6 4 4 4 4 4 2 4 4 4 2 

Table 4: Eigenvalues ri ^ 0 for the Zm orbifolds 

values rj of 6. These can be obtained from group theory [21-24] and are 

listed in table 4. We set the shift a to a light-like vector so (a*)2 is always 

zero. In all cases, the orbifold consistency conditions are satisfied. For future 

use, we remark that the eigenvalues and multiplicities appearing in table 4 

are identical to the eigenvalues and multiplicities of automorphisms K3 [37]. 

The last condition that we need to check is the second condition of 

eq. (14). It can be shown that this leads to the same condition for n = 2,4,6 

(compare with table 4). In all cases Og is a matrix that reflects 8 orthogonal 

roots. It is then easily checked that (14) is satisfied. 

With the table of eigenvalues, it is also easy to calculate the zero-point 

energies for the twisted sector(s). An eigenvalue ri contributes, 

!-!(2^-l)2 (20) 
48      16 V   m       / v    J 

to the zero-point energy. A periodic boson has n = 0, and hence contributes 

— 5j. Summing all contributions leads to a remarkably simple result: the zero 

point energies are — 1/ra for the twisted sector(s) of the Zm-orbifold. With 

all the requirements checked, we found—as expected—that the asymmetric 

orbifolds are consistent. 

2.3.5    Anomaly cancellation and winding states 

In the previous section we barely mentioned the Chern-Simons invariant, 

which provides another way to decide which orbifolds are consistent. Never- 

theless, both orbifold analysis and the Chern-Simons analysis lead to iden- 

tical results.  Let us examine the relation between the approaches in more 



J. DEBOER ET AL. 1035 

detail. 

According to our analysis of the topology of subgroups in string theory, 

it is the presence of winding states that rules out particular gauge theory 

compactifications in string theory. Let us consider such a state with wi = 

1 and W2 = W3 = 0,q = 0. We have seen that such a state carries a 

gauge group representation vector equal to ai. We denote this state by |ai). 

Consider parallel transport of this state along the following path: we start 

by going around a closed cycle in the 2 direction then a closed cycle in the 3 

direction, around the 2 direction with the opposite orientation, then around 

the 3 direction with the opposite orientation. Because of the background 

gauge fields, the state transforms in the following way, 

|ai)       -► e27ri(ara2) ^ _>       ^(a^) ^^ 

_>     e27rt((ai-0(ai)).a2) ^(ax))     ->       ^((ax-^ai))^) j^      ^ 

With the results from [24], the Chern-Simons invariant can be expressed 

in terms of the gauge fields as (0(ai) — ai) • a2. On the other hand, we 

transported a state around a contractible curve in a flat background, and 

consistency requires that the final phase factor appearing in (21) equal unity. 

The conclusion is that the Chern-Simons invariant must be integer, precisely 

as was argued in section 2.2. Analogous arguments apply to other winding 

states. 

To complete the connection, we remark that (21) only expresses the 

change in phase caused by the gauge fields. The state |ai) is due to a 

winding string, and in the transport process sketched above, it sweeps out a 

two-dimensional world sheet. It therefore also picks up another contribution 

exp(27r2/S) to the phase, where the integral is over the world sheet area 

sweeped out. The surface integral can be converted to a volume integral 

giving the total phase change: 

exp Urn f{dB - CS{A)}] = exp (2m f H\ . 

The right hand side states that the total phase change should be attributed 
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to the gauge field strength to which the string couples. This equation is just 

a global version of anomaly cancellation (2). 

2.4    Moduli spaces 

Our previous discussion focused on orbifold descriptions appearing at specific 

points in the orbifold moduli space. In this section, we extend the discussion 

to cover the whole moduli space of asymmetric orbifold theories. 

2.4.1     Lattices for the orbifolds 

In the standard toroidal or Narain compactification of the heterotic string, 

a central role is played by the even self-dual lattice Td+ie,d [32,33]. The 

momenta lie on this lattice. In the construction of the moduli space for 

a Narain compactification, we further divide out by a discrete subgroup 

corresponding to the symmetries of IYhi6,d- In an attempt to set up a similar 

structure for the CHL string and its compactifications, Mikhailov introduced 

lattices for these theories [38]. In a somewhat more laborious construction, 

the same can be done for the asymmetric orbifolds of the previous section. 

Recall that for all orbifolds corresponding to triples, we had a transfor- 

mation 9 which has order m. For each 9, we can define a projection PQ acting 

on M3 19 by, 

1   m— 1 

Pe = -Tl 0
n. (22) 

71=0 

From 9P0 = Pe 9 = Po, we see that PQ projects all lattice vectors in Fs^g onto 

the space invariant under 9. In particular, for the holonomies introduced in 

the previous section we have Peisi) = 0. 

As our starting point, we return to the momenta (15), (16) and (17) 

of the heterotic string prior to orbifolding. In the orbifolded theory, the 

untwisted sector consists of those states that are left invariant under the 
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projection. These are of the form 

m—1 

N Y^ exp (2mna • p) \0n{k),p). (23) 

Here, we symbolically denote the spatial momenta by p, the group quan- 

tum numbers by k, while a and 6 are the shift and rotation of the orbifold 

symmetry. There is also a normalization constant N. 

To these states, we associate a lattice in the following way: first we define 

<linv = y/mPgiq), 

where the reason for the factor of ^/r:rl will soon become clear. We also set 

rii = mrii — raq • a^ — Wi(m — 1), 

for i = 1,2. We will rescale the radii for the 1 and 2 directions by defining 

R'i = mRi. We also define a" = ma'. Note that the invariant radii Rij^fa! 

are only rescaled by a factor yjm. 

Now define a lattice by projecting the Narain lattice (15), (16) and (17) 

onto the invariant subspace of Q. We call this lattice /. With the reparametri- 

sations introduced above, its vectors are given by: 

v = (q;m;)y^7, 

«*,* = ^ ±-^r,   » = i,2 (24) 

n3      mw^Rs 

The vectors VH^R and vSL,R form a lattice, which when rescaled by ^a,,/2 

may be called r252 © Ti^ra). Here we follow the notation of Mikhailov [38], 

defining the lattice Ti^ra) to be a lattice of signature (1,1) generated by 

2 vectors e and / with scalar product (e • /) = m. For a summary of our 

lattice conventions, see Appendix A. This lattice arises as an intermediate 

step because we have not yet included the twisted sectors. 
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The vectors v are the vectors of Fg © Fs projected onto the subspace 

invariant under 0 and suitably rescaled. This defines a different lattice for 

every ra, which can be deduced from group theory. The lattices are .D40D4, 

A2 ®A2, Ai ®Ai for ra = 2,3,4, respectively. The lattice for the cases ra = 5 

and ra = 6 is the empty lattice. These lattices are usually defined so their 

roots are normalized with length y/2. In the symmetry groups which arise 

in gauge theory, these form the short roots of non-simply-laced algebras at 

level 1. For example, at the point in moduli space constructed here the 

gauge group is F4 x F4 for the ra = 2 case, and G2 x G2 for the ra = 3 case, 

with long roots which have length 2 and \/6, respectively. The gauge group 

SU(2) in the ra = 4 case has roots of length \/8 (it is at level 4). The vectors 

with length y/2 = \/8/2 are on the weight lattice of SU(2). Although there 

is no simple 4-laced algebra, there is a 4-laced affine Dynkin diagram that 

plays a role in the description of the group theory [24]. Interestingly, the 

lattices of F4, G2 and Ai at level 4 all satisfy a 'generalised self-duality' in 

the sense that their weight lattice is identical to the original lattice. For the 

simply-laced E$ lattice, this notion of 'generalised self-duality' coincides with 

self-duality. There is an interesting connection between this observation and 

S-duality of four-dimensional theories, which we shall discuss later. 

In the twisted sectors, the momenta lie on the lattice /*, which is dual to 

the lattice / of invariant vectors. As in the case of the untwisted sector, we 

will treat the parts of the lattices that represent the group quantum numbers, 

and the part that represents the space quantum numbers separately. 

Obviously the lattice / of invariant vectors is a sublattice of the lattice 

/. It can be verified that the group part of the lattice / of invariant vectors 

is the lattice which we will denote y/2(Dl 0 £>!), y/3(AZ © A%), 2(J4J © AJ) 

for ra = 2,3,4, respectively. As usual, the star denote the dual lattice which 

is, of course, the (co)weight lattice. The stars arise because we define the 

lattices / relative to the lattices /, which forces us to keep track of relative 

orientations. It is now trivial to construct the group part of the lattices I*: 

these are (£4 © D4)/V2, {A2 © ^/V^, (Ai © Ai)/2, for ra = 2,3,4. 
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We now construct the spatial part of the invariant lattice /. First note 

that for invariant vectors, 

JMq + X)™*8*) = Jc59(q) ^q + ^^a^. 
i i 

Since Pe(q) is a sum of elements of the root lattice, it again lies on the root 

lattice. It then follows that Wia.i is on the root lattice. Because a^ is on the 

weight lattice, we deduce that for invariant vectors, Wi has to be a multiple 

of m, say Z;ra. Another way to see this is from the value of a? = 2(m — l)/m. 

Also, if q+X) Wi&i is on the invariant lattice then its dot product with either 

aj has to vanish: 

(q + Yl WiSLi">'a^ = Pe^ + Yl WiSii>>' ^ = (q + Y WiaLi>)' ^fo) = 0- 
i i i 

This leads immediately to q- a^ = — 2^(m — 1). The spatial momenta on the 

invariant lattice are thus given by, 

rii + li(m-l)     mURi      . m      wsR3 

Ri a1 its        a! 

Note that rii + li(m — 1) can take any integer value, while lim is always a 

multiple of m. The momenta on the dual to the spatial part of the invariant 

lattice are then given by the vectors, 

ni      ,   WiRi . _ -,   9 
n3  j_ W3R3 

miti       a' its 
±^i,    ^ = 1,2        ^±^31M. (26) 

We complete the construction of J* with the same reparametrisations as in 

the untwisted sector: multiply the group parts of the lattices by y/m, define 

R!i = mRi for i = 1,2 and set a" = ma'. Note that in all cases, we have the 

simple result I — I*, confirming a result from Appendix A of [34] for our 

specific case. 

To construct the twisted sectors, we still need the shift a*. It is given by 

multiples of 

A^L,* = ±-^7 = ±^. (27) 
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We remind the reader that the sign choice between the left and right-moving 

parts of the shift reflects our choice of fractionalizing the winding numbers. 

Because the lattices /* are identical to 7, and because the momenta in the 

nth twisted sector are given by /* + TIAVSL.R with n = 1,... , (ra — 1), we 

can assemble the lattices into a single lattice A. In the process of assembly, 

the spatial part of the lattice is completed to Fs^. 

We only computed the lattices for very specific orbifolds with special 

values of the holonomies and other background fields. To extend to the 

general case, first note that the metric and antisymmetric tensor field did 

not play any role so far, and the moduli corresponding to these fields survive 

the orbifold projection. For the holonomies, we took special values that had 

Pd
L(ai) = (l-P0)(sii) = 3Li. 

For the general case, we take holonomies parametrized by a^, subject to 

PoHO = *4- (28) 

The possible moduli for varying the holonomies are then given by P^(a[). 

We may use general formulae from [32,33,39] to show that this results in a 

moduli space that locally has the form, 

0(19 - Ar, 3)/ (0(19 - Ar) x 0(3)), 

where Ar* is the rank reduction for the Zm orbifold. 

As usual, we should also divide on the left by a discrete group of lattice 

symmetries. Following Mikhailov [38], we propose that this discrete group 

is formed by the symmetries of the lattice A constructed above. This is a 

non-trivial statement with regard to those symmetries in A that connect dif- 

ferent twisted and untwisted sectors. Mikhailov demonstrates this explicitly 

for his lattice. For our cases, we will not attempt to prove this. However, 

we note that from a gauge theory point of view, all holonomies are on equal 

footing (and in special situations, even conjugate to each other). We stress 

that the asymmetry in our treatment of the various holonomies is purely 
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technical, caused by the fact that we are working at the level of the algebra 

rather than the group. There is therefore every reason to expect symme- 

try transformations that connect the various sectors, and lift the apparent 

asymmetry between the holonomies. 

We therefore propose that the moduli space of these asymmetric orbifolds 

is given by, 

0(A) \ 0(19 - Ar, 3) / (0(19 - Ar) x 0(3)) (29) 

The lattices A and the rank reduction Ar are collected in table 5, where other 

relevant results are summarized. We have included the standard Narain 

compactification, denoted by Zi, which fits perfectly in the picture when 

we take trivial holonomies and m = 1. In a separate column, we list the 

lattices A1- which are the lattices of vectors orthogonal to the A sublattice 

of Fig^. Not surprisingly, the lattices are those of the 'minimal subgroups' 

C for m-triples. 

A A-1 Ar Et 

Zi r3,3 ®E8®E8 0 0 -1 

Z2 rs.s © D4 e D4 1)4 ©D4 8 -1/2 

Z3 r3,3 © A2 © A2 Ee^Ee 12 -1/3 

Z4 Ts.s ®A1<5)Ai E7®E7 14 -1/4 

Z5 ra.s EsQEs 16 -1/5 

Ze r3,3 E8®E8 16 -1/6 

Table 5: Lattices A, complements A1, rank reduction Ar and zero-point en- 
ergies in the twisted sector Et for the Zm asymmetric orbifolds corresponding 
to triples. 

We note that the entries in the Z2 row are identical to those for the CHL 

string: the same Mikhailov lattice, the same rank reduction and the same 

zero-point energy. It can indeed be proven that the Z2-triple and the CHL 

string are equivalent.   We will encounter these and many other dualities 
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in the next section. To conclude this discussion of the moduli spaces for 

these compactifications, let us make a preliminary count of the number of 

distinct 7-dimensional heterotic compactifications that we have constructed. 

We begin by noting an obvious discrete symmetry: for example in the Z3 

case, we can embed a bundle with CS — 1/3 in one E% factor and a bundle 

with CS — 2/3 in the other E%. Flipping the choice of embedding does 

not generate a new theory. There is a single theory associated to the Z3 

orbifold. This counting gives us a single component for Zi,Z2, Z3,Z4 and 

Ze- At first sight, the case of Z5 seems to give two distinct embeddings (^, |) 

and (|, |). However, the two theories are actually equivalent. This can be 

argued directly using discrete gauge symmetries, but is more easily seen in 

the dual description which we shall meet in section 4. Therefore, we find 6 

distinct components in the moduli space. 

2.4.2    Dualities 

It is well known that the heterotic E% x E% string compactified on a circle is 

equivalent to the heterotic S'pm(32)/Z2 string compactified on a circle. This 

may be deduced from the form of their moduli spaces [32], and can be made 

explicit by constructing a map between the two theories at a particular point 

in the moduli space. The rest of the moduli space is covered by continuation 

[39]. This duality can be shown to imply a duality between the CHL string, 

and a compactification of the Spin(32)/Z2 string without vector structure 

[17,36], which are Z2-asymmetric orbifolds of the E% x E% string and the 

S'pin(32)/Z2 string, respectively. 

We now present a list of dualities between heterotic theories with various 

bundles. The previously mentioned duality between the CHL string and the 

S'pin(32)/Z2 compactification without vector structure is included as part 

of a much larger chain. We also find new dualities for theories with rank 

reduction bigger than 8. These dualities should be expected on general 

grounds, such as the structure of the orbifold groups and the moduli spaces 
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of various heterotic asymmetric orbifolds. A more detailed study of T-duality 

for the heterotic string, performed in appendix B, gives us tools that allow 

us to make these statements more precise. 

The Z2-chain 

Our first example starts with the CHL string and will feature toroidal com- 

pactifications down to 5 dimensions. We take the heterotic Es x i*^ string 

compactified on a circle of radius Ri. We will use standard coordinates for 

the Es x ^ lattice, giving 16 numbers Ui i = 1,... , 16 of which the first 8 

denote the first Es factor, and the second group of 8 denotes the other Es 

factor. The construction from [2] involves modding out this theory by a shift 

over TTJRI combined with the following transformation on the group lattice: 

e(uu... , me) = -(uie, • • • ^i)- (30) 

The transformation 6 interchanges the two i^ factors so we end up with 

a theory with gauge group (E$)2 on a circle with radius Ri/2. The extra 

subscript denotes that the gauge group is at level 2. 

We compactify this theory on a second circle with radius R2. We may 

turn on a holonomy provided it is invariant under 0. Therefore, we can 

smoothly deform the theory and introduce a holonomy parametrised by, 

a2 = (l,014,-l). (31) 

The notation 014 denotes 14 subsequent entries of zero. Introducing this 

holonomy breaks the gauge group to 5^m(16)2. 

This theory is interpreted as the CHL string on a torus with radii 

(fliAJfe). 

We can now find an element of the T-duality group that inverts R2 (for 

details, see appendix B) to obtain a compactification of the Spin(32)/Z2 
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theory on a torus with radii (i?i/2,i^ = a'/2R2) with holonomy given by, 

1 *     .„ . (32) 

Of course, the gauge group is still Spin(16)2-   The vector a^ is no longer 

invariant under 6. However, we note that 

*(a£)-a£ =(!"), 

which is allowed since ( ^ j is a lattice vector of the Spin(32)/Z2 lattice. 

That it lies on the spin-weight lattice indicates that we are dealing here with 

a compactification without vector structure. We have rederived the result 

of [36], which was also discussed in [17]. 

We compactify this theory on a third circle with radius iZs, and turn on 

a holonomy parametrised by 

(33) 

This breaks the group to (*S'pm(8)2)2. We have chosen as to be invariant 

under 6, and a^ • a.3 = 0. We can dualize again in the 3 direction to obtain an 

.Eg x Es theory on a 3-torus with radii {Ri^^R^R'^) (with R^ = a'/2Ri), 

and holonomies given by a^, (32), and 

4 = (-l>0
8

>l>0
11). (34) 

Along the first circle, there is still the action of 9 given by (30). However, 

in the present Es x Es theory, the root lattice is organized differently. Here 

one of the Es root lattices is denoted by the 8 coordinates m with i = 

5,... ,12, while the second Es resides in the remaining 8 positions. The 

transformation 9 therefore acts within each Es factor and on both factors 

simultaneously. This is a particular instance of the Z2-triple construction 

described previously. Note that 0(aj) - a^ / 0 for either i = 2 or i = 3, but 

that in both cases the difference is a root vector of Es x Es. 
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We see that the CHL string, 5pm(32)/Z2 compactification without vec- 

tor structure and the Z2-triple are indeed equivalent, as claimed. Our duality- 

chain does not end here, but by proceeding straightforwardly, we would end 

up with non-standard coordinates on group-lattices for the theories that we 

encounter. To avoid possible confusion, let us perform a coordinate trans- 

formation on the group lattice of E% x E% so that the first E% ends up in 

the first 8 positions again, and the second in the second 8. Furthermore, the 

coordinates are chosen such that, 

0{ui)    =   -VH, .i = 5,... ,12,        6{ui)=Ui,    t^5,...,12    (35) 
I4 1 
- 04 - 
2 'U '2 

1 2 i 4 1 2> 

a^   =    (^   04 i,04,i   ), (36) 

(37) 

We stress that we have not changed anything in the theory. It is easy to check 

that the coordinate transformation can be chosen so that it corresponds to 

a lattice symmetry, or equivalently, a gauge transformation. To emphasize 

this, we will continue using the symbols 0 and a^ since we are working with 

the same theory as before. 

Let us continue our study of the Z2-triple in E% x E% on a 3-torus with 

radii (i?i/2, R'2, R'z) and gauge group (S'pm(8)2)2. We compactify the theory 

on a fourth circle with radius R± and turn on a holonomy parametrised by, 

a4 = (l,014,-l). (38) 

This breaks the gauge group to (5pm(4)2)4 = (S,f7(2)2)8. We dualise along 

the 4-direction to a Spin(32)/Z2 theory on a fourth circle with radius Rf
4 = 

ol /2i?4 and holonomy parametrised by, 

^((c-i)2,^!)2,^,-!)2,^!)2).        w 

We have discussed the physical interpretation of this theory briefly in the sec- 

tion on gauge bundles over the 4-torus. The transformation Q does not leave 

any of the aj invariant, but now 0(a;) - a£ are roots for all i. This theory is 
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therefore not a compactification without vector structure. Instead, we should 

interpret this theory as a particular case of a quadruple of Spin(32)/Z2 on 

a 4-torus. 

To arrive at the final theory on this chain, we compactify on a fifth circle 

with radius i?5, and turn on a holonomy parametrised by, 

(40) 

The resulting gauge group is £7(1)8. We dualize along the 5 direction to 

obtain an E$ x E$ theory where the fifth circle has radius R^ = a'/2R^ and 

holonomy, 

a; = (02,-l,0,l,011). (41) 

The first Eg factor is in the positions 2 = 5,... ,12, while the second occu- 

pies the positions 2 = 1,... , 4,13,... ,16. None of the a^ are invariant. The 

transformation 9 inverts all coordinates of one of the l^g's; this compacti- 

fication should therefore be interpreted as a quintuple embedded in one of 

the .Eg gauge factors. 

This chain of 5 theories shows again that the list of toroidal compactifi- 

cations in string theory is much shorter than the list of gauge theory com- 

pactifications. Among the gauge theory compactifications that can be imple- 

mented consistently in string theory, there are many equivalences. Various 

choices of bundles just correspond to different limits in the string moduli 

space. It also shows that the topology of the gauge bundle, although enter- 

ing crucially in our analysis, is a not a sharp notion to a string. For example, 

note that according to our preceeding analysis, certain compactifications of 

Spin(32)/Z2 without vector structure are connected to compactifications 

with vector structure and another mechanism of rank reduction. As we will 

see later, this provides connections between seemingly different dual theo- 

ries. In particular, between choices of bundles in configurations of D-branes 

on orientifolds. 
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In the 5 dual descriptions obtained above, a^ and a^ are always of length 

y/2. This is not the minimum value. As we remarked in the previous section, 

the minimal value for the Z2-theory is 1. To reach this minimal value, we can 

deform the a^ by adding vectors in Eie which are left invariant by 9. By doing 

so, we can flow to a 'canonical' point in the moduli space. At such a point, 

there is non-abelian gauge symmetry. We have listed the gauge symmetries 

appearing at these 'canonical points' in table 6, where we have also included 

the Kaluza-Klein gauge bosons. We have also listed the Mikhailov lattices 

r(io-7i) derived in [38]. The expression for Y^ is not found in [38], but is 

easily derived with our methods. 

Mikhailov 
Theory bundle n Symmetry group lattice 

E% xEg CHL 1 (E8)2 x f/(l) x U(l) ES © rM 

Spm(32)/Z2 NVS 2 (5p(8)/Z2) x U(l)2 x U(l)2 Da ® r2,2 

Eg xEs triple 3 FixFiX U(l)3 x U(l)3 z?4 © Di e Ts.s 

Spin(32)/Z2 quadruple 4 Spin(17)xU(l)4xU(l)4 £>!(2)©r4,4 

Es xEa quintuple 5 Es x [/(I)5 x U{1)5 
£8(2)©r5,5 

Table 6: Asymmetric Z2-orbifolds of heterotic theories on an n-torus. 

On the canonical points in the moduli space, the connection between the 

groups and in particular their lattices, and the lattices of Mikhailov is clear: 

The lattices are related to the short roots of the symmetry groups. This pro- 

vide^ a physical link to aspects of Mikhailov's mathematical constructions. 

Mikhailov argues that his lattices are also useful for understanding aspects 

of dual theories. This point will be revisited later in our paper. 

More quintuples 

Let us now set aside compactifications of the CHL string, and turn to other 

theories that admit dual realizations. The endpoint of our Z2-chain was 

given by the Es x Es theory with a quintuple in one Es. Actually, with an 

Es theory on a 5-torus and holonomies a^, a^, a^ and a^ given by eqs. (36), 
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(37), (39) and (41), it is possible to have quintuples in both E$ factors. For 

this purpose, we construct the asymmetric orbifold obtained by shifting over 

TTRI combined with the complete reflection on the gauge group lattice: 

0(ui) = -Ui. (42) 

Only discrete gauge symmetries survive in this construction. All continuous 

gauge symmetry is broken. 

This i?8 x E% theory on a 5-torus with radii (i?i/2, i?2, -R3, i?4, Rb) with 

quintuples in each E% may be easily dualized in either the 2,3,4 or 5 direc- 

tions, since these are all equivalent. For ease of notation, we will dualize in 

the 5 direction with, 

a' 
R*~*2R ^ -*a5' ^^ 

and where as is given in eq. (40). We have obtained a 5pm(32)/Z2 theory 

on the 5-torus with completely broken gauge group. Checking the action of 

0 on the a^ and as reveals that this is a case of a quintuple in 6'pm(32)/Z2. 

Notice that this duality connects two intrinsically five dimensional theories: 

decompactification of dimensions on either side of the duality would restore 

some gauge symmetry. 

The Z4 chain 

Take the heterotic Eg x E% theory with a Z^triple on a 3-torus. We use 

standard coordinates on E% x E% so that the first E% is in the first 8 positions, 

and the second E% in the remaining 8. We turn on holonomies a2 and as. 

To obtain the Z^-triple, we divide by a shift over nRi/2 combined with a 0 
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of order 4. In a special case, the expressions for 9 and a; can be taken to be, 

0(ui,Ui+i,Ui+2) = {-Ui+2,-Ui+i,Ui),    i = l,9 (44) 

0(iH,Ui+i,Ui+2,Ui+3,Ui+4) = (-Ui+^-Ui+s, -Ui+2, -Ui+i,Ui),    i = 4,13 
(45) 

«a= U.O5,   ~     ,05    , (46) 

1  1 „ 1   /1\3      111/1 
a3=^2'4'0'2'UJ   '0'2'4'0'2'U 

(47) 

To clarify these formulae a little, let us elaborate somewhat on the steps in 

the triple construction. Starting with a torus without holonomies, turning 

on a2 will break E$ x E$ to (Spin(6)2 x Spin(10)2)/Z4. The Z4 is generated 

by the products of the generators of the Z4 centers of Spin(Q) = 5(7(4) 

and Spin(10). Therefore, it acts diagonally on all factors. The reader may 

anticipate that (Spin(6)2 x Spin(10)2)/Z4 is a group that can also be ob- 

tained by compactifying 5pm(32)/Z2 with two holonomies. The remaining 

holonomies embed twisted boundary conditions: 3.3 breaks Spin(6) to U(l)3 

and Spin(10) to 5(7(3) x ?7(1)3. Finally, the <9 quotients eliminate all Z7(l)'s 

and mod 517(3) by its outer automorphism to SU{2) which is the surviving 

gauge group. The holonomies defined above are equivalent to the ones de- 

scribed abstractly in the previous section. The theory is at what we have 

called a canonical point in the moduli space. 

We will not dualize this theory directly, but instead make a slight detour 

to stress some subtle points. We start by compactifying on a fourth circle, 

with radius i?4, without turning on a holonomy on this circle. Instead we 

will perform an 51/(4, Z) transformation on the 4-torus: 

#4 -> £4 — 2x2        xi ^ xi    i ^ 4. (48) 

In this way, we obtain a theory with identical spectrum but with holonomies 

parametrised by 0, a2, as and a holonomy around the fourth circle given by 

a4 = 2a2. Although none of the a^ is invariant under 0, this theory on the 
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4-torus can be decompactified to one on the 3-torus by decompactifying in 

the £4 — 2^2 direction. 

We now turn on a B-field, which has as its only non-zero components 

i?24 = —B42 = 3/2. The purpose of this, as may be verified with the aid 

of the formulae given in appendix B, is so we can use lattice symmetries 

to re-express this as an equivalent theory with Bij = 0 and holonomies 

parametrised by 9, a2, as. The holonomy around the fourth circle is now 

given by, 

a4=(07,l,07,-l). (49) 

We have arrived at the theory we wish to dualize. Doing so gives a theory 

where the fourth radius is R^ = a'I2R^. There is a holonomy parametrised 

by B!^ around the 4 direction, and there is a non-zero U-field. The non-zero 

components are given by, 

,       / o      1   I2      1   14\ „ „ 1 
a^(08,--,-,--,-] £24 = -£42^. (50) 

The remaining moduli are given by a2 and as. 

We may ignore the i?-field, which does play a role in the dualities, but 

not in the gauge field interpretation.8 We have found a S'pm(32)/Z2 the- 

ory. It is not too hard to verify that ^(as) — as is on the spin lattice of 

5pm(32)/Z2, indicating that we are dealing with a compactification with- 

out vector structure. The rank reduction is, however, not equal to 8 but 

to 14. This is a realization of a quadruple without vector structure. All 

the Chern-Simons invariants that can be defined over sub-three-tori of the 

four-torus are integer. 

The existence of a Spin(32)/Z2 description of this theory implies the 

existence of a type I theory on the 4-torus with the same bundle. By T- 

dualities, this translates into orientifolds of type II theories to be described 

in section 3. 
8Besides, we can always deform the B-field away. 
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Z2 x Z2 asymmetric orbifolds 

Consider an E% x E% theory on a 4-torus with holonomies parametrised by 

(51) 

(52) 

We construct a Z2-triple in this theory by dividing this theory by a nRi shift 

over the first circle combined with 

01 :      (ill,... j^S^Qj.-.TXie) -» -(^8,... ,wi,tti6,...^9). 

We have called this Weyl reflection 0i, because there is a second Z2-symmetry 

that we wish to use in an orbifold construction. Consider 

#2 :     (ui,... ,^16) -+ -(^16,. ■■ ,^1)- (53) 

Note that as and a4 are invariant under 62, which is an outer automorphism. 

Hence it is consistent to divide this theory by a Z2-shift over 7ri?2 combined 

with 02- The resulting theory combines the CHL construction with the Z2- 

triple. The rank of the gauge group is reduced by 12. 

We may dualize, for example, in the 3 direction to obtain a S'pm(32)/Z2 

theory with as replaced by: 

i\2    12   /    i\2    T2      \ 

(54) 

Note that ag is invariant under 0i, while 62 (a^) — ag lies on the spin weight 

lattice. On the other hand a4 is invariant under 62, while #1(04) — a4 lies 

on the spin weight lattice. The resulting theory is interpreted as a theory 

without vector structure, which has w* / 0. Notice that we have now 

encountered all three types of bundles for Spin(32)/Z2 on T4 that we met 

in section 2.1.4. They appear for respectively for G = Z2, G = Z4, and 

G = Z2 x Z2. 



1052 TRIPLES, FLUXES, AND STRINGS 

2.4.3    Degeneration limits: connections to other models 

We have constructed moduli spaces for a number of asymmetric orbifold 

theories. These moduli space are non-compact and the infinities correspond 

to decompactification limits. The moduli space of the D = 9 CHL string 

is [38], 

0^1,1 0 Ek) \ 0(9,1) / (0(9) x 0(1)). (55) 

We have omitted a factor IR+ corresponding to the expectation value of the 

dilaton (/>. Moving to the end points of E"1" corresponds to the weak and 

strong-coupling limits of the theory. Our preceeding discussion has been 

limited to weak coupling, where e^ —» 0. There are various strong coupling 

limits which depend on how the string scale is treated as e^ —)- oo. At 

least in certain regions of the moduli space, there are M and F theory dual 

descriptions of the strongly-coupled heterotic string. We shall discuss some 

of these duals in section four. 

The remaining infinities correspond to decompactification limits. In [38], 

it is shown that there exists only one light-like vector in Fi^©^? modulo the 

symmetry group. One of the elements of the symmetry groups inverts this 

vector. Therefore, there are two directions in which one can decompactify— 

roughly by taking R -> oo or R —> 0. These two limits appear to correspond 

to physically distinct theories, because the orbifold projection involves a shift 

over the compactification circle, and therefore explicitly involves R. 

In the standard picture [2] that we have also used so far, the winding 

numbers are fractionalized. The masses of excitations from the twisted sector 

are then offset by a contribution that is linear in R for large R. As R —> 

oo, the states in the twisted sector become infinitely heavy, and therefore 

decouple. In this limit, the shift becomes irrelvant and so we expect to 

recover the conventional ten-dimensional E^ x E% heterotic string. 

On the other hand, in the limit R —>• 0, there are states in the twisted 

sector that become massless. These massless states from the twisted sector 
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transform in the adjoint of Eg, and as R goes to zero, these enhance the 

gauge group to Es x E$ with one E$ coming from the twisted sector and one 

from the untwisted sector. This limit is therefore also smooth. 

A perhaps more apropriate way to describe this is by T-dualizing, tak- 

ing R —> af/R. This also exchanges momenta and winding numbers so 

that now we have a theory with fractionalized momenta and integer winding 

numbers. Fractionalized momenta are common in theories with background 

gauge fields. This may seem unusual for the CHL theory, but is an appropri- 

ate way to think about compactifications without vector structure, triples, 

quadruples and quintuples. Indeed, since the CHL outer automorphism is an 

orbifold action, it is a discrete gauge symmetry. Associated to this discrete 

gauge symmetry is a discrete gauge-field modulus which is fractionalizing 

the momenta. 

At least in one limit, the asymmetric orbifold, which is often deemed non- 

geometric, has a natural interpretation in terms of a gauge bundle, which 

is a geometric concept. It is an interesting observation that asymmetric 

orbifolds can be interpreted in terms of bundles. Combining such bundles 

with symmetric orbifolds may offer geometric interpretations for at least a 

particular class of asymmetric orbifolds. 

Having settled this subtlety, the rest of our discussion is parallel to the 

last section of [38]. Large volume limits can be identified from our discussion 

of dualities. The 8-dimensional CHL string has various decompactification 

limits in which a two-torus becomes large. One of these corresponds to 

the Spin(32)/Z2 compactification without vector structure, and one to the 

CHL string. The 7-dimensional CHL string has various limits which we have 

identified as the CHL string, Spin(32)/Z2 without vector structure and the 

Es x Eg Z2-triple. This is in disagreement with [38] where two Spin(32) 

and one Eg x Eg degenerations were found. That analysis, however, is far 

less concerned with identifying the theories that appear in these limits. The 

6-dimensional CHL string brings us one new limit where a 4-torus becomes 
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large, which is identified as a quadruple, which has vector structure. Another 

new limit is found in 5-dimensions in terms of a quintuple in one E%. Also, 

in the cases of Z4 and Z2 x Z2, we have identified the various limits. 

The duality chains of this section connect a diverse set of theories en- 

countered later in this paper. Note in particular the S'pm(32)/Z2 theories in 

various chains. By S and T-dualities these will translate into type I theories 

and type II orientifolds, which make their appearance in section 3. 

We will make a brief excursion to four dimensions where it is believed that 

the heterotic string theory is S-dual. In [38], this translates into a property 

of the Mikhailov lattice: namely, that it is isomorphic to its dual lattice up 

to a rescaling by a factor of \/2. One way to heuristically understand the 

factor of y/2 is that it is related to the possible appearance of non-simply- 

laced groups in CHL theories. For non-simply-laced groups G, the gauge 

group in the S-dual theory is given by the dual group GQ. The roots of GD 

are the coroots of G up to a suitable rescaling [40], while the weight lattice of 

GD is the coweight lattice of G, also rescaled. The rescaling is precisely the 

factor of \/2 for the 2-laced theories appearing in CHL compactifications. 

By analogy the asymmetric Zm-orbifolds with m = 3,4,5,6 should have 

lattices for their 4-dimensional theories that are isomorphic to their dual 

lattices up to rescaling by a factor of ^/rn. The reader may verify that using 

the lattices A from table 5, the lattices r3)3(m)©A indeed have this property. 

This is again closely related to the fact that the F4, G2 and Ai at level 4 are 

their own dual groups up to rotations [40]. It is amusing to see structure in 

a theory compactified on a 6-torus reflected in a similar theory compactified 

on the 3-torus. 

Also the table 6 suggests that the 7-dimensional theory has special status 

because the groups and lattices listed there for (7+d) are the duals of those in 

(7 — d). This is somehow related to the Z2 nature of the duality operation, 

and to the fact that 3 = 6/2, but a more precise understanding of this 

relation is in order. 
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We also wish to briefly comment on other heterotic theories appearing 

in the literature. In particular we note that Z2, Z3, Z4 Z5, Ze and Z2 x Z2 

asymmetric orbifolds in dimensions less than 7 do appear in [41,42]. The 

models in these papers are similar to the construction of [14], and originate 

in exploiting symmetries of K3. That heterotic duals should exist is obvious 

from the constructions, but an explanation for their existence has been lack- 

ing. The gauge theory based analysis presented here fills that gap. It also 

makes clear that these models can be traced back to constructions in higher 

dimensions. This again presents new challenges for finding dual descriptions 

which we take up in the following sections. 

2.4.4    A strong coupling description of the Z2 triple 

Let us conclude our discussion of heterotic string theory by pointing out an 

intriguing relation between the Z2 triple and a discrete 3-form flux appearing 

in its strong coupling description. 

The type I string on T2 without vector structure can be viewed as an 

orientifold of type IIB with a half-integral NS-NS S-field flux through the 

T2 [43,44]. It is natural to ask whether the strong coupling Hofava-Witten 

description of the #8 x ^8 heterotic string might permit a similar discrete 

flux. Consider M theory on 51 /Z2 x T3. The Z2 action projects out the M 

theory 3-form C-field. After all, there are no membranes in heterotic string 

theory. The component of the C-field with a leg on 51/Z2, however, survives 

projection and couples to the perturbative heterotic string. 

It is natural to ask whether we can turn on a half-integral C-field on 

T3 and then quotient by Z2. It is not clear that such a compactification is 

consistent but the following chain of dualities suggests that it exists and is 

an alternate description of the Z2-triple. Let us perform a 9 — 11 flip and 

reduce from M theory to string theory on a circle of the T3. This gives 

an orientifold of IIA on 51/Z2 x T2 with a half-integral jB-field through 

T2. A further T-duality on S'1/Z2 turns this compactification into type I on 
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S1 x T2 with a half-integral S-field. As we recalled above, this is just type I 

with no vector structure which is in the same moduli space as the Z2-triple. 

This suggests an intimate connection between background 3-form fluxes and 

non-trivial Chern-Simons invariants for the E$ x Es gauge bundle. 

3    Orientifolds 

3.1     Background and definitions 

We begin our discussion of orientifolds with some background and some 

words on our notation. We use Zg-p to denote the sign flip of the last 9 — p 

spatial coordinates of ] 

(so,..- ,xp,Xp+i,..\ ,x9) »-> (ffo,.-. ,Zp,-Zp+i,... ,-x9). (56) 

Type II string theory on E1U is invariant under the action of Xg-p when 

combined with world-sheet orientation reversal fi, where p is even for type 

IIA and odd for type IIB. As is standard, we use (—1)
FL
 to denote the 

symmetry that flips the sign of all R-NS and RR states. It is not hard to 

check that, 

X9-Pn, (57) 

is an involution, i.e., squares to the identity, for p = 0,1,4,5,8,9 while, 

X9-p(-l)FLn, (58) 

is an involution for p = 7,6,3,2. We can then consider an orbifold of Type 

II string theory by the Z2 symmetry group generated by this involution. 

This is called a Type II orientifold on R10 /Zg-p, or just M10 /Z2 when there 

is no room for confusion. The Z2 fixed plane Xp+i = • • • = xg = 0 is 

called an orientifold p-plane, or Op plane for short. We can also extend this 

construction to the case where M10 is replaced by a non-trivial ten-manifold 

M10 with an involution X, as we will do in the case of T9~p x Ep+1 where X 

acts by inversion on the (9 — p) coordinates of T9~p. 
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There are two kinds of orientifold planes, Op~ and Op+, which are dis- 

tinguished by the sign of the closed string MIP2 diagram surrounding the 

plane—Op+ has an extra (—1) factor when compared to Op~. When N 

Dp-branes are placed on top of Op~ (resp. Op+), they support an SO(N) 

(resp. USp(N) = Sp(N/2)) gauge group, where we count the number of D- 

branes on the double cover. An Op plane carries Dp-brane charge, and the 

two kinds of Op planes are also distinguished by the sign of this charge— 

Op± carries Dp-brane charge ±2P_5 when counted on the double cover. The 

superscript + or _ in the name of the plane has its origin here. 

An Op~ plane together with an even number of Dp-branes is quite dif- 

ferent in character from an Op~ plane together with an odd number of 

Dp-branes. We distinguish these two cases by using the notation Op~ for 

an Op~ plane with a single Dp-brane stuck to it. It has been shown that 

Op~ has a non-trivial Z2 flux associated with the RR (6 — p)-form Ge-p, 

while the flux is trivial for Op~. It has also been shown that there are two 

kinds of Op+ planes distinguished by the same flux; we denote the trivial 

one by Op+ and the non-trivial one by Op+'. In total, there are four kinds 

of orientifold planes: 

Op', Op-\ Op+, Op+,. (59) 

These four kinds of orientifold planes—especially the planes Op-' and Op+' 

with non-trivial Z2 flux—have been identified for the cases p = 5,4,3,2,1,0 

[15,45-50]. We refer to these references for a fuller discussion of the Z2 flux 

associated with Ge-p- 

3.1.1     The closed string perturbation expansion 

As mentioned above, Op+ and Op+ have an extra (—1) sign when compared 

to Op~ and Op~ for the fundamental string MP2 diagram. The meaning of 

an 'IP2 surrounding the plane' is clear only if the transverse dimension (9— p) 

is greater or equal to 3. We can actually make this statement more precise so 

that it also applies to the cases (9 — p) = 1,2. We note that the phase of the 
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closed string diagram is given by the 5-field, and therefore it is natural to use 

equivariant cohomology to determine the allowed S-field configurations. Let 

us consider the closed string perturbation expansion for a type II orientifold 

on M/l following [17]. The world-sheet is an orient able Riemann surface E 

with orientation reversing freely-acting involution X^- Note that the quotient 

S/Xs is a smooth unorientable surface if S is connected. However, it is 

smooth and orientable but not oriented when E consists of two identical 

components exchanged by X^. The world-sheet path-integral is over maps 

(j) : E —> M which commute with the involution, 

lo(j) = (j)oli:. (60) 

We would like to assign a phase factor in a way that is consistent with 

all physical consistency conditions, such as factorization etc. This can be 

accomplished in the following way. Let us fix an element of the equivariant 

cohomology group, 

yeHl2(M,Z2). (61) 

This means choosing an element of II2(Mz2,Z2) = II2(SN Xz2 M,Z2) for 

sufficiently large iV, where Z2 acts on SN via the antipodal map and on M by 

I.9 The map 0, obeying the condition (60), induces a map 4>: ^2 ~^ Mz2- 

Therefore the element y G II2(M'z2,Z2) can be pulled back to an element 

</)*y G iI2(E^2,Z2). We denote this element simply by 

^j/eHl2(E,Z2). 

9For a discussion of equivariant cohomology, see appendix D, and section 4.4. Here, we 
provide a brief summary of some basic definitions. The equivariant cohomology HG(X, R), 
with G a group acting on a space X and R a coefficient ring, is defined to be the ordinary 
cohomology H*(MG,R) where MG is the fibre product 

MG = EGXGM := (EG x M)/G. 

Here EG is the universal G-bundle over the classifying space BG. In the context of our 
orientifold discussion, G = Z2 = {!,£} for X = M and R = Z2. 

For G = Z2, we can take EG = SN so that BG = W>N with JV -> 00 strictly speaking. 
However, it is enough to take large but finite N for most of the practical purposes. If G acts 
on X freely (as is the case for X = E and G = {1,XE})} then HG(X,R) = H*(X/G,R) 
since EG is contractible. 
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Since Xs acts on E freely, 0*y can be viewed as an element of iI2(E/Xx;, Z2) 

which can be integrated over E/Zx;: 

(E/JE,^y>:=   I   0*y  E Z2. (62) 

We can then assign the following sign factor to the world-sheet path-integral, 

(_l)<E/ZE,**y>. (63) 

Now, we can make precise the meaning of the sign of the IP2 diagram. 

Suppose X acting on M has a fixed point P. The constant map (J)Q from 

S2 -> P trivially obeys condition (60). The map </>o : £% -* Mz2 then 

collapses to the identity map MP^ -> MP^ and the integral (MP2,^y) is 

simply evaluating y on the 2-cycle S'2 xZ2 {P} ^ IP2 of Mz2 = SN xZ2 M. 

This definition agrees with the standard one when X acts around P by the 

action Xg-p with (9— p) > 3. To see this, first consider the space M0 obtained 

from M by deleting all the Z2 fixed points. By restriction, y 6 H% (M, Z2) 

yields an element y0 E fl"! (M0,^). Since Z2 acts on M0 freely, y0 can 

be viewed as an element of H2(M0/1, Z2). We now note that the map 

^0 : ^l -* Mz2 can be continuously deformed to a map ^e where (f)e is a 

map of S'2 to a small Z2 invariant 2-sphere surrounding P and lying in M0. 

Or equivalently, a map from KP2 to a small MP2 surrounding P and lying in 

M0/l. It is then clear that, 

(MP2, « = (MP2, #1,) = J fiy*, (64) 
EP2 

which is the standard meaning of the sign of the MP2 diagram surrounding 

P. 

To summarize, the possible configurations of plus (+ or +') versus mi- 

nus (— or —') orientifolds can be classified from the closed string perspective 

by the group ii/| (M, Z2). As we shall see below, there can be further con- 

straints. 
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3.1.2    Some pathologies 

We note that both —' and +' orientifolds are inconsistent for p = 9,8, 7,6 if 

we insist, as we shall, on backgrounds preserving sixteen supersymmetries. 

There are a number of ways to see this. For example, for p = 6 we can probe 

the 06" with a D2-brane. The theory on the probe is an TV = 4 Sp(l) 

gauge theory with a half-hypermultiplet in the fundamental representation. 

This three-dimensional gauge theory has a Z2 anomaly, and is therefore 

inconsistent. The only way to cancel such an anomaly is by including a 

Chern-Simons term which makes the gauge-field massive. However, Chern- 

Simons terms can only be written down for N < 3 supersymmetry in d = 3 

[51]; N = 4 supersymmetry does not allow a short massive vector multiplet. 

Rather, there are arguments given in [6] which suggest that 06~ planes 

require a non-zero cosmological constant, and so can only be found in massive 

type IIA supergravity. Similarly, if 06+ is distinguished from 06+ by a flux 

associated with Go, it is expected to be in a theory with a cosmological 

constant. 

In our subsequent discussion, we shall classify — and —' configurations 

by using the fact that we can T-dualize these configurations to type I. The 

type I requirement that the 0(32) gauge bundle lift to a Spin(32)/Z2 bun- 

dle with vanishing Chern-Simons invariant constrains the possible — and 

—' configurations. This actually gives an alternative and stronger argument 

for excluding 06~ in a T3/Z2 orientifold. The details of the derivation 

are found in appendix C. This anomaly cancellation argument and the D2- 

brane probe brane argument are not completely independent. Suppose that 

we naively construct the T3/Z2 orientifold with 8 06" planes. Somewhere, 

we should encounter an inconsistency. From the chain of dualities connect- 

ing this type IIA orientifold to the heterotic string on T3, we find a hint of 

where to look. In the heterotic theory, we argued that obstructions to cer- 

tain compactifications arise from states associated to winding strings. After 

S-duality, these correspond to winding D-strings in a type I compactifica- 

tion. The states on these winding strings transform non-trivially under a Z2 
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that should be divided out in the construction of the bundle. As a conse- 

quence, the phases of these states have a Z2 ambiguity, and the theory is 

not well-defined. Nevertheless, proceeding with this inconsistent theory and 

T-dualizing 3 directions leads to the T3/Z2 orientifold with 8 06~ planes. 

In the process, the D-string becomes a D2-brane, and the Z2 ambiguity in 

the phases of winding states becomes the Z2 anomaly in the gauge theory 

on the probe brane. The anomaly therefore has multiple dual realizations. 

3.2    The classification 

Our discussion below focuses on type II orientifolds of T9~p x W)=p+l. We 

note that there are 29~p Z2 fixed points, and the type of orientifold plane 

has to be specified at each fixed point. We use the notation 

for Op~, Op~ , Oj9+ and Op+ , respectively. For example, the notation 

(—, +, +, —') specifies a (possible) configuration in eight dimensions, or equiv- 

alently, a particular orientifold of T2. For low enough dimensions, ordering 

is also required to completely specify the configuration. 

In what follows we provide the complete list of possible orientifolds in 

dimensions D := p + 1 = 10,9,8, 7. We also give the complete list of orien- 

tifolds involving only — and —' in dimensions D = 6, 5. In D = 6, 5 we do not 

attempt to completely classify configurations involving + and +' but we will 

comment on some of the new issues that arise. To see what kind of {+, +'} 

configurations are possible from the closed string point of view, we have in- 

cluded an explicit computation of the equivariant cohomology ff| (T71,Z2) 

for n = 1,2,3 in appendix D. The results are stated in the main text below. 

3.2.1     D = 10 

The equivariant cohomology iJ|2(]R10,Z2) is the cohomology of the classify- 

ing space BZ2 = MIP00 which is iJ^IRP00^) = Z2. The two choices corre- 
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spond to 09~ and 09+. 09" has D9-brane charge —32 and can be cancelled 

by introducing 32 D9-branes. Of course, this is the standard type I string on 

M10 which indeed preserves 16 supersymmetries. However, 09+ has positive 

D9-brane charge which is cancelled by introducing anti-D9-branes. Since 

09+ and the anti-D9-branes preserve different supersymmetries, the system 

is not supersymmetric. 

3.2.2 D = 9 

The equivariant cohomology has rank 2, H^^T1 ,Z2) = Z2 © Z2. The two 

generators are non-zero on MP2 at the two fixed points of 51 in the sense 

described above. The four elements correspond to 

(-,-),(+,-), (-,+), (+,+)• 

The configuration (+, +) is not supersymmetric for the same reason that 

09+ is not supersymmetric. The two configurations (+, —) and (—,+) are 

related by a diffeomorphism. Therefore in 9 dimensions, there are essentially 

2 possible orientifold configurations. The first, (—, —), has 32 D8-branes and 

is simply T-dual to type I compactified on a circle. This component also 

contains the Eg x Es string [39]. 

The second component, (—, +), has no net D-brane charge. Therefore no 

branes can be added while preserving supersymmetry so there is no enhanced 

gauge symmetry. This compactification is T-dual to type IIB on S1/5{1 

where S is a half-shift along the circle and tt is world-sheet parity. For a 

more detailed discussion, see [17,52]. Together with the CHL string, this 

gives a total of 3 distinct components in the moduli space of perturbative 

string compactifications. 

3.2.3 D = 8 

The equivariant cohomology now has rank 4, if|2(T
2, Z2) = (Z2)4. The four 

generators are in one-to-one correspondence with the four Z2 fixed points— 
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each has a non-trivial value on MF2 at the corrsponding fixed point and is 

trivial at the other three points. The possible orientifolds up to diffeomor- 

phisms are 

(----),     (+,-,--),     (+,+,--). 

The last is obtained from the sum of two generators. In addition, there are 

non-supersymmetric configurations. 

The first component (—,—,—,—) has 32 D7-branes and is T-dual to 

the usual type I string on T2. The second component (—, —, —, +) is more 

interesting. The orientifold planes have total of —16 units of D7-brane charge 

and therefore require 16 D7-branes. This orientifold is T-dual to type IIB 

on T2 modded out by the world-sheet parity, fi, in the presence of a half- 

integral background NS-NS B-field [43,44]. Although world-sheet parity 

sends B -» — £?, a half-integral value of B is permitted since B takes values 

in a torus. This orientifold is equivalent to a compactification without vector 

structure [44]. By the T-duality argument of section 2.4.2, we know that this 

component containing type I without vector structure also contains the 8- 

dimensional CHL string. 

The third and final component (—, —, +, +) is T-dual to the compactifi- 

cation of the 9-dimensional (—,+) orientifold to eight dimensions. This has 

no D-branes and therefore no gauge symmetry. 

3.2.4    D = 7 

The equivariant cohomology has rank 7, if|2(T
3,Z2) = (Z2)7. The seven 

generators yi,... ,2/7 having the following property: let us use Pi,... ,Ps 

to denote the eight Z2 fixed points of T3. Then yi has a non-trivial value 

on both the MP2 surrounding Pi and the one surrounding Pg? while it is 

trivial at the other six points. This shows that the allowed orientifolds are 

(—8), (—6,+2) and its permutations, and (—4,+4) and its permutations. 

We exclude those cases with more + than — planes since they require anti- 

D6-branes.  That an odd number of 06+ planes is not allowed can also be 
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understood by an elementary argument. On T3/Z2, we can enclose each 06 

plane with an MP2. The eight of them together correspond to a trivial cycle, 

and therefore the product of the eight MP2 diagrams must have sign +1. 

Therefore, the number of 06+ planes must be even. 

The first case, (—8), has 32 D6-branes. It is T-dual to the standard 

compactification of type I on T3. The second case, (—6, +2), requires 16 D6- 

branes. All permutations are diffeomorphic to each other so there is essen- 

tially one configuration of this type. This is obtained from the (—, —, —, +) 

orientifold on T3/Z2 by compactification along another circle and T-duality 

on that circle. 

The third case (—4, +4) has no D6-branes and therefore no open strings. 

In this case, there is an interesting subtlety. The various permutations 

are not necessarily diffeomorphic to each other. There are essentially 2 

distinct ways to place the orientifold planes at the vertices of the cube. 

The first can be characterized by placing the four — orientifold planes on 

a single face of the cube. The remaining four + planes are found at the 

remaining vertices. This is the configuration that follows from a dimen- 

sional reduction of the (—, —, +, +) case. It is therefore automatically con- 

sistent. However, we could also consider the case where a single adjacent 

pair of + and — planes are interchanged. This gives a distinct configura- 

tion. For a fixed ordering of the Z2 fixed plane, let us denote these 2 cases 

by (-, -, -, -, +, +, +, +) and by (-, -, -, +, +, +, +, -). Both possibili- 

ties are allowed from the closed string point of view. Both are realized as 

elements of if| (T3,Z2). This is easy to see because the equivariant coho- 

mology is a group. Noting that all permutations of (—, —, —, —, —, —, +, +) 

are realized as the elements of the group, we see that the first case is simply 

the sum of (-, —, —, -, +, +, -, -) and (—, —, -, -, —, —, +, +). The second 

possibility is the sum of (—, —, —, +, +, —, —, —) and (—, —, —, —, —, +, +, —). 

Thus, both are consistent configurations in perturbative closed string theory 

and they are distinct. Although the two are distinct configurations pertur- 

batively, it is possible that they are equivalent non-perturbatively (if they 
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are both consistent). We shall mention how this possibility can be checked 

in section 4.6.1 on M theory compactifications with flux. This subtlety in- 

volving the ordering of orientifold planes also appears for lower-dimensional 

orientifold configurations. 

Therefore, we have a total of 4 distinct orientifold compactifications, 

and an additional 4 components in the E$ x Es string moduli space. The 

standard E$ x Eg compactification together with the CHL string/Z2-triple 

are contained in the orientifold moduli spaces. 

3.2.5    £> = 6 

In this dimension, all four kinds of orientifold planes are possible, and in- 

deed each is realized in a particular T4/Z2 orientifold. Let us first restrict 

our attention to 05" and 05~ planes only. With this restriction, there 

are only two possibilities: one is (—16) and the other is (—,16). The latter 

case is quite interesting. If we coalesce the 8 D-brane pairs on one of the 

0~ planes, we get an 50(17) maximal gauge group. The rank reduction 

is therefore 8. As discussed in appendix C, the Chern-Simons invariant for 

any sub-three-torus is integer as required by anomaly cancellation. However, 

this compactification clearly has vector structure. The type I dual of this 

orientifold compactification therefore has a gauge bundle with vector struc- 

ture which is not connected to the trivial bundle. We met this bundle in 

section 2.1.4, it is a non-trivial quadruple. Here we have found its orientifold 

realization. 

In addition to these two cases, we have the dimensional reductions of 

the higher-dimensional cases which are (—12,+4) and (—8,H-8). Recall that 

the first case includes the CHL string, the compactification with no vector 

structure and the Z2 triple in its moduli space. However, the duality chain 

of section 2.4.2 showed that the quadruple found above is in the same moduli 

space as the CHL string on T4. Somewhat surprisingly, this implies that the 

(—12, +4) and (—'   ) orientifolds are in the same moduli space. We can give 
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further motivation for this inference in a simple way. Compactify both con- 

figurations to four dimensions on T2. This gives (—48,+16) and (—,16, —48). 

S-duality maps 0~ «-»> 0+ and 0~ to itself. These configurations are there- 

fore S-dual and their moduli spaces must necessarily agree. 

Unlike the prior cases, we will not attempt a complete analysis of orien- 

tifold configurations in D = 6. There are two other cases worth mentioning, 

however. The first is the case of (—10, +6) which made an appearance in [17]. 

This orientifold corresponds to a gauge bundle with w^ non-zero. The last 

case is (+' , —' ). In this case, we need an additional 2 pairs of D-branes. 

The maximal gauge group is then Sp{2) and the rank reduction is 14. Based 

on the structure of its moduli space, it is natural to conjecture that this 

orientifold is dual to the quadruple with no vector structure heterotic/type I 

compactification described in section 2.1.4. It would certainly be interesting 

to analyze this case further. 

3.2.6    £> = 5 

In this dimension, all four flavors of orientifold plane can again be realized by 

T5/Z2 orientifolds. If we restrict our attention to 04~ and 04~ , there are 

only three possibilities up to diffeomorphisms: (—32), (—' ) and (—16, —' ). 

We need a few additional words to actually describe these orientifolds. On a 

torus of sufficiently high dimension, the number of — and —' planes does not 

in general completely specify the configuration up to diffeomorphisms. The 

actual pattern of the distribution must be specified. There is no room for 

such an ambiguity for (—32) and (—' ) but there are several possibilities for 

(—16, —/16). In this case, the only allowed configuration corresponds to the 

one where the T5 can be factorized into S'1 x T4 so that all the 04~ planes 

sit at the 16 fixed points at the "origin" {6 = 0 in natural coordinates) of 

the 51. All the 04"' planes reside at the 16 fixed points in the "middle" of 

theS1 (0 = 7r). 

We can find M theory duals for each of these cases. Recall that a single 
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04" plane at the origin of M5/^2 is dual to M theory on E5/^2 x S1. Note 

that the Z2 action acts on the 3-form C of M theory by inversion. On the 

other hand, (M-' is dual to M theory on (R5 x S1)/^ where the Z2 acts 

on the last circle by a shift of a half period [46]. The dual of (—32) is then 

M theory on T5/Z2 x S1 as we would naturally expect. The dual of (—' ) 

is M theory on (T5 x S1)/^. The dual of (-16, -/16) is given by M theory 

on (T5 x S1)/Z2- The Z2 now acts on the coordinates xi,X2,X3,X4,X5,xii 

of T5 x 51, where Xi = Xi + 27r, by 

(xi,X2,Xs,X4,X5,Xii)  > {-Xu-X2,-Xs,-X4,-X5,Xn + Xi). (65) 

In the neighborhood of the "origin" xi = 0 of the first circle, the Z2 action 

is of the type E5/Z2 x 5'1 and the 04-planes are all —. In the neighborhood 

of the "midpoint," xi = TT, the Z2 action is of the type (K5 x S1)/Z2 and 

indeed the 04-planes are all —'. We note that we would not be able to 

construct an M theory dual if other distributions of 16 — and 16 —' planes 

were permitted. 

As in the D = 6 case, we shall only discuss select additional examples. 

Prom dimensional reduction, we obtain (—24, +8) and (—16, —' ). However, 

because of the duality explained in D = 6, these should be part of the 

same moduli space. In addition, we have (+16,-16) and (—20,+12). Note 

that (—' ) has no enhanced gauge symmetry so the rank reduction is 16. 

Further, it does admit vector particles. This suggests that it is dual to type 

I with a non-trivial quintuple. This particular bundle made an appearance 

in section 2.1.5. By the chain of dualities in section 2.4.2, we see that this 

orientifold is further equivalent to a compactification of the Es string with 

a quintuple in both £# factors. 

At first sight, it also seems plausible that (—' ) could be identified with 

(+16, —16). By (+16, —16), we mean the configuration obtained by toroidally 

compactifying (+, —) in nine dimensions. As support for this conjecture, 

note that on compactification to four dimensions, we find two configurations 

(—32,—/32) and (—32,-|-32) which are S-dual. Of course, this alone does not 
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demonstrate the equivalence. We can also study the M theory description 

of (+16,-16). Recall that the D — 9 (+, —) orientifold is described, after 

T-duality, by IIB on Sl /SO, where 6 is a half-shift along the circle [17,52]. 

Let us compactify this configuration on a further T4. We want to determine 

the corresponding M theory description. It is convenient to first compactify 

on one additional circle S1. We can then T-dualize five times on the T5 

which leaves us in type IIA sending 

SQ    ->     JOZ2., (66) 

where the Z2 acts by inversion on the T5. The operation Q,Z2 lifts in M 

theory to inversion of the T5 and the 3-form C [52]. This leaves us with M 

theory on (T5 x S1)/Z2 x S'1 where the Z2 acts as S on the S1 factor and 

by inversion on T5. It also inverts the 3-form C. This suggests that the 

M theory description of (+16, —16) is the same as the description of (—' ) 

which is further evidence in favor of their equivalence. 

4    Compactifications of M and F Theory 

4.1     Some preliminary comments 

In prior sections, we have discussed aspects of perturbative string compact- 

ifications: either heterotic/type I or type II orientifolds. These descriptions 

are valid when the string coupling constant is small, regardless of the size of 

the compactification space. It is natural to ask what kind of description is 

valid when the string coupling constant is large. The answer to this question 

depends on how we treat the string scale a' and the volume of the compact- 

ification space as gs —> 00. As an example, let us take the CHL string in 9 

dimensions. If we wish to hold the 11-dimensional Planck scale fixed then 

a'gs' must be held constant. In this limit, the strong coupling description 

will involve M theory compactified on a space which has been argued to be 

the Mobius strip [53]. This is analogous to the Hofava-Witten description 

of the strongly-coupled E$ x E$ heterotic string. 
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On the other hand, another strong coupling description of the E% x E% 

string on T2 is given by F theory on JO. When is this a valid description? 

Like M theory, F theory generically has no perturbative expansion and the 

condition for validity is that the base B of the elliptic fibration (in this case 

KZ) be large in string units. It is convenient to analyze this relation at the 

point in the moduli space where the gauge group is broken to (Spin(8)4 x 

?7(1)4)/Z2. Let the torus be square with volume V, and let QH denote the 

heterotic string coupling. T-duality along one cycle of the torus takes us 

to the Spin(32)/Z2 heterotic string with ten-dimensional coupling (<7#)2 = 

gjja'/V on a torus of volume a'. S-duality then takes us to the type I string 

with, 

9i = 4-n        Vi = -T- (67) 

Two further T-dualities on the resulting torus take us to the type IIB on 

T2/ft(-l)FiZ2, with couplings: 

g% .<!£,        VB = £M. (68) 

This is an orientifold limit of F theory on if 3 [54]. We see that F theory is a 

good description when gn becomes large with the volume V fixed in string 

units. In this regime of the moduli space, we can use F theory to describe 

the physics. 

A more general statement goes as follows. With sixteen supersymmetries, 

each component of the moduli space is highly constrained; for example, the 

moduli space metric does not receive quantum corrections. If the effective 

theory is formulated in d space-time dimensions, then a given component of 

the moduli space can be described in terms of an even lattice L of signature 

($ + 10-d,10-d). 

(We use the convention in which there are more positive than negative eigen- 

values in the lattice.) When d > 4, this space takes the form 

ML := 0(L)\DL x R+ (69) 



1070 TRIPLES, FLUXES, AND STRINGS 

where VL = O{s + 10-d, 10-d)/(O{s + 10-d) x O(10-d)) is the symmetric 

space associated to the lattice, and O(L) is the orthogonal group. 

This must be modified somewhat in low dimension: when d — 4, the 

universal cover of the given component of the moduli space is £>£, x f) where 

f) is the upper half plane, and when d = 3, the universal cover of the given 

component is Pj, where L is the direct sum of L and a lattice of signature 

(i,i)- 

A given moduli space has boundaries that correspond to the various 

ways in which a theory can degenerate. A different physical description is 

typically valid as we approach a boundary of the moduli space. Our goal in 

this section is to study a class of M and F theory compactifications which 

naturally include dual descriptions for the perturbative compactifications 

described in earlier sections. These include purely geometric models and 

also models with background fluxes, as in the case studied by Schwarz and 

Sen [14]. 

We now require a more general discussion of the boundaries of moduli 

spaces than appeared in our initial discussion of section 2.4.3. The possible 

boundary components of ML are determined as follows (setting of > 5 for 

simplicity). One type of boundary is given by approaching one end or the 

other of the E+ factor. These include non-stringy limits: for example, in a 

conventional heterotic or type II compactification one of these limits is the 

zero-coupling limit which yields a conformal field theory rather than a string 

theory. This is the kind of description that we studied in prior sections. As 

discussed above, the strong coupling limit will typically have an M or F 

theory description. Let us here instead focus on the other class of limits, 

given by boundary components of the 0(L)\DL factor. These boundary 

components typically correspond to a limiting stringy theory whose effective 

dimension is greater than d. 

A boundary component of 0(L)\DL is determined by an isotropic sublat- 

tice M.C I/, that is, every x E M satisfies q(x) = 0. The lattice associated to 
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the boundary component is then given by LM := M^/M, and the boundary 

component takes the form 

0(LM)\VLM, 

where we suppress the E"1" factor. To determine all boundary components, all 

isotropic sublattices M must be found, modulo the action of the orthogonal 

group 0(1/). If the sublattice M has rank m, the limiting theory will have 

effective dimension d + m. 

In general, LM only determines part of a component of the moduli space 

of the limiting theory in effective dimension d + m. That is (suppressing 

the R+ factors), the space 0(L)\VL is glued to a space 0(L/)\I)jr// along 

the boundary component 0(LM)\'DLMI where 1/ is a lattice of signature 

(s' + 10 — (d + m), 10 — (d 4- m)) which represents the limiting effective 

theory. The gluing is specified by an inclusion LM C L' with L'/LM a 

positive definite lattice of rank s' — s > 0. The lattice 1/ must be determined 

by analyzing the physics of the limiting process; it agrees with LM for some 

boundary components but is larger than LM for others. 

For example, the CHL string in nine dimensions has lattice [38] L = 

Ti,! © Es- There is a unique boundary component, corresponding to Lx = 

E%. However, as we discussed in section 2.4.3, in the decompactification 

limit we actually obtain the heterotic string in ten dimensions with lattice 

Decompactification limits of components corresponding to non-trivial 

discrete choices of Wilson lines exhibit a similar phenomenon: viewed from 

the perspective of the higher-dimensional theory, the non-trivial types of 

Wilson lines can only be turned on for special values of the moduli. Thus, it 

is along a subspace 0(LM)\DLM 
0^ 0{L')\VII that the moduli space of the 

lower dimensional theory "attaches," and one recovers additional degrees of 

freedom in the decompactification limit. 

A similar phenomenon occurs in F theory [13], where compactification 
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along an additional circle gives theories which are dual to M theory on 

elliptically fibered manifolds. The discrete Wilson line degrees of freedom 

correspond to the possibility of compactifying M theory on an elliptically 

fibered manifold without a section, which typically is only possible for special 

values of the moduli. 

4.2     Six-dimensional M theory compactifications without fluxes 

Our starting point is M theory compactified to 6 dimensions, but we will also 

include remarks about lower-dimensional compactifications.10 Let us begin 

by excluding any background flux so that this is a purely geometric com- 

pactification. We shall also restrict to supersymmetric compactifications 

which take the form of a compact Riemannian manifold times Minkowski 

space. The metric on the compact part must then admit a covariantly con- 

stant spinor, which leads to restrictions on the holonomy. In fact, the list of 

possibilities can be determined by examining the holonomy classification of 

Riemannian metrics, which (when formulated carefully [55]11) implies that 

every compact Riemannian manifold Y admitting a covariantly constant 

spinor takes the form 

Y = (Tk x (Xi x • • • x Xm)/r)/G, (70) 

where Tk is a torus of dimension k > 0, each Xi is a compact simply- 

connected Riemannian manifold whose holonomy is either SU(ni), Sp(ni), 

Cr2, or Spin(7), and F and G are finite groups which act without fixed points. 

The effective dimension of the physical theory is d = 11 — dim Y. 

In order to guarantee at least 16 supercharges in the effective theory, 

there must be at least half as many holonomy-invariant spinors on this man- 

ifold as there are on flat space. Because each Xi in eq. (70) reduces the set 

of holonomy-invariant spinors by at least a factor of two, and the factor is 

greater than two except in the case of holonomy SU(2) = 5p(l), there are 

10Tlie corresponding type IIA string compactifications were studied in detail in [41,42]. 
11 We thank B. Mclnnes for helpful correspondence on this point. 
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two cases: either (1) there is a single Xi with holonomy 517(2) = 5p(l) (i.e., 

a K3 surface), the group T is trivial, and the group G preserves all of the 

spinors on Tk x X, or (2) there is no Xi at all (and hence no F) and the 

group G preserves one-half of the spinors on Tk. In the second case, possibly- 

after replacing the torus by a finite cover or a finite quotient, we can assume 

that [56] Tk — T4 x T^-4 with the group action preserving the 1-forms on 

T^-4 and the holomorphic 2-form on T4, but leaving no invariant 1-forms 

on T4. To get the correct holonomy, the image of G in SO(k) must lie in 

an SU(2) subgroup corresponding to a complex structure on the T4 factor. 

In both cases, then, we can write Y — (T* x Z)/G where Z is either a K3 

surface or a complex 2-torus (that is, a real 4-torus on which a complex 

structure has been specified). 

The lattice L can be directly determined from the cohomology of Y. 

When d > 4, the possible gauge charges for the theory are described by 

i71(^Z)©772(y,Z)0i75(y,Z), (71) 

(with the first factor coming from Kaluza-Klein modes, and the latter two 

coming from the M theory three-form and its dual six-form). This cohomol- 

ogy group comes equipped with a natural quadratic form, to be described 

below. Bearing in mind the sign conventions, we can identify the free part 

of eq. (71) with the lattice L(—l) if d > 5. (There is also the possibility of 

torsion in eq. (71), which we will not explore in any detail.) When d = 5, 

the free part of the gauge lattice in eq. (71) takes the form L(—1) © (x) with 

q(x) = 0; the element x is unique up to ±1, so L(—1) can be recovered by 

modding out the free part of the gauge lattice by the span of x. When d = 4, 

the free part of the gauge lattice is simply 

H1(Y,Z)®H2(Y,Z) (72) 

due to the self-duality of gauge fields in this dimension, and this coincides 

withL(-l). 

The description of the quadratic form on L depends on the dimension d 

of the effective theory. If d = 6, both H1^) and H5(Y) are 1-dimensional 
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Maximum dimension 
k G of effective theory 

0 w 7 

1 Zm, m = 2,3,4,5,6,7,8 6 

2 Z2xZm,m = 2,4,6 or 

ZmxZm, m = 3,4 5 

3 (Z2)3 4 

4 (Z2)4 3 

Table 7: Automorphisms of K3 surfaces and the resulting M theory vacua. 

and this part of the lattice is isomorphic to Fi^. The quadratic form on 

H2(Y,Z)/torsion is inherited from the intersection form on the resolution 

Z/G of Z/G via the isomorphism 

H2(Y, Z)/torsion ^ H2(Z/G, Z)/torsion 

= the orthogonal complement of the (73) 

exceptional divisors in H2(Z/G,Z). 

Thus, although the action of G on 51 x Z has no fixed points and a smooth 

quotient, keeping track of the singular points on Z/G provides a convenient 

bookkeeping device for analyzing the lattice associated to (51 x Z)/G. There 

is one subtlety associated to this, however. If E C H2
(Z/G,1J) denotes the 

lattice spanned by the exceptional divisors, then (E1-)1- will be larger than 

E\ there are Q-linear combinations of exceptional divisors which belong to 

H2(Z/G,rL). In fact, the finite group (EJ-)±/E provides another important 

invariant in this situation. 

Consider first the case in which Y = (T£ x Z)/G where Z is a K3 surface. 

The action of G preserves the two factors T1 and Z. In order to preserve 

the invariant spinors on T^ it must act by translations on that factor, and in 

order to preserve the invariant spinors on Z it must preserve the holomorphic 

2-form on Z. Abelian group actions which preserve the holomorphic 2-form 
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G Lattice L Singularities on K3/G (E^/E 

Zi r^ e ^s e E8 none {e} 

Z2 ri,i(2)er3,3 ®D4®D4 8^1 Z2 

Z3 ri,i(3)©r3,3 0^2 ©^2 QA2 Z3 

Z4 ri.iC^ers.ssAieA! 4A3 + 2Ai Z4 

z5 ri,i(5)©r3,3 4^4 z5 

z6 ri>i(6)©r3,3 2A5 + 2A2 + 2A1 Ze 

z7 
As   7\ 

r2,2 © 

V7  V 
SAe Z7 

z8 
A o\ 

r212 © 

V0 V 
2A7 +^3+71! z8 

Table 8: Choices for G together with their associated lattices for Y = (S1 x 
K3)/G. 

on Z were classified by Nikulin [37]; there are 15 cases, including the trivial 

group. The resulting vacua are displayed in table 7, where k denotes the 

number of generators in the group, and hence the minimal dimension of a 

torus factor in Y. 

The lattices H2(Z/G) in these cases are also known [37]. In table 8 we 

exhibit the lattices L associated to six-dimensional effective theories built 

from M theory on Y = (Sl x K3)/G when G is trivial or cyclic;12 we also 

describe the singularities which are found on Z/G itself, using the ADE 

notation for rational double points, and the finite group (E^^/E where E 

is the sublattice of H2(Z/G,Z) spanned by the exceptional divisors. The 

corresponding facts about non-cyclic groups G (where the effective theory 

has lower dimension) are given in table 9. (The "discriminant group" which 

appears in that table is discussed in appendix A.) 

12The descriptions we give of the lattices can be inferred from the descriptions in [37] 
using techniques from [57]. 
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Compactification G Rank of Discriminant 
dimension H2{K3/G) group 

5 Z2 x Z2 10 (Z2)8 

5 Z2 X Z4 6 (Z2)2 x (Z4)2 

5 Z2XZ6 4 (Z2) x (Z6) 

5 Z3XZ3 6 (Z3)4 

5 Z4 X Z4 4 (Z4)2 

4 Z2 x Z2 x Z2 8 (Z2)8 

3 Z2 X Z2 X Z2 x Z2 7 (Z2)7 

Table 9: Choices for G for lower-dimensional compactifications. 

Turning to the case where Y = (T^ x Z)/G with Z a complex 2-torus, 

we need an abelian group G acting on Z in such a way that the holomorphic 

2-form is preserved by the G-action. Moreover, the group action must not 

leave any holomorphic 1-form invariant, so G cannot act entirely by transla- 

tions. Such group actions were classified in modern language by Fujiki [56] 

(although the classification was essentially done more than ninety years ago 

by Enriques and Severi [58]). The computations of the corresponding lattices 

in the case of abelian group actions were made in [59-61] and were applied in 

the physics literature in [62]. The only possibilities are cyclic groups G = Zm 

with m = 2, 3, 4, or 6, and all of these lead to theories of effective dimension 

six. The associated lattices are described in table 10,13 where we also give 

the singularities on Z/G and the finite group (E-L)±/E. 

4.3    F theory compactifications without flux 

It is common to describe an F theory vacuum in terms of a Ricci-flat manifold 

Y together with an elliptic fibration TT : Y —> B. However, to specify an F 

13Again, matching the descriptions in table 10 with those in [59-61] requires techniques 
from [57]. 
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G Lattice L Singularities on T4/G (E^/E 

Z2 

Z3' 

Z4 

Ze 

r3,3(2)©rM 16i4i 

4A3 + 6J4I 

A5 + 4^2 + SAi 

(Z2)5 

(Z3)3 

Z4 x (Z2)2 

Ze 

Table 10:   Choices for G together with their associated lattices for Y 
{S1 x T4)/G. 

theory vacuum, we actually only need 

1. the manifold B with a subset A of real codimension 2 (where A spec- 

ifies the location of the singular fibers in the fibration TT), 

2. a monodromy representation Tri(B — A,p) —> SL(2,Z) and a "j-func- 

tion" j : B —> QP1 compatible with the monodromy (which are speci- 

fied by the complex structure on the fibers of TT), and 

3. a metric on B — A whose asymptotics near A are described by the 

Greene-Shapere-Vafa-Yau ansatz [63] (which can be seen as a limit of 

metrics on Y as the area of the elliptic fiber approaches zero [64]). 

The F theory vacuum is then described as type IIB string theory compacti- 

fied on B with the given metric and with branes along A, using the S-duality 

of type IIB theory to compensate for the SX(25 Z) monodromy. 

If we begin from M theory compactified on y, and take the limit as the 

area of the fibers of TT approaches zero, then one dimension of the effective 

theory decompactifies [42,65] and we obtain the F theory vacuum in the limit. 

This is sometimes referred to as "F theory compactified on Yn although the 
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full data of Y is not needed. Conversely, if the elliptic fibration on Y has 

a section, then the standard M theory/F theory duality [66] asserts that F 

theory on Y x Sl (with a trivial Wilson line) is dual to M theory on Y. 

When the elliptic fibration on Y does not have a section, there is always 

an associated manifold J(Y), the Jacobian of the fibration, which has an 

elliptic fibration with a section that gives rise to the same monodromy and 

j-function data as the elliptic fibration on the original manifold. Thus, 

F theory cannot distinguish between the compactification on Y and the 

compactification on J(Y). 

The M theory/F theory duality can be extended to cover this case [13], 

where it becomes the assertion that when Wilson line data is included, F 

theory on J(Y) x 5'1 is dual to the union of the M theory moduli spaces on 

Yk for all manifolds Yk with the same Jacobian fibration J(Yk) = J(Y).U 

Thus, discrete choices for Wilson lines in F theory correspond in M theory 

to different elliptic fibrations with the same Jacobian fibration. Typically, 

such discrete choices are only present for special values of moduli. 

An elliptic fibration on a Ricci-flat manifold Y always determines a class 

x G i?2(y,Z) with q(x) = 0. Thus, in the case of 16 supercharges, the 

boundary lattice associated to taking the F theory limit is Lx = x±/(x). 

If the elliptic fibration admits a section, then this lattice can be used to 

describe the entire component of the F theory moduli space. On the other 

hand, if the elliptic fibration does not admit a section, then the lattice 1/ 

for the component of F theory moduli space associated to J'iY) is typically 

larger than Lx. 

To find these components in detail, we need to examine possible elliptic 

fibrations on the Ricci-flat manifolds Y = (T* x Z)/G (with Z either a K3 

surface or a T4). An elliptic fibration TT : (T1 x Z)/G -> B will lift to an 

elliptic fibration TT : T^ x Z —> B which is G-invariant. If TT has a section then 

its inverse image will be a G-invariant section of TT. The group G acts on the 

4For other comments on F theory compactifications without section, see [67]. 
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base B and B = B/G. We let Go be the subgroup of G which acts trivially 

on the base B. It is easy to see that if Go is non-trivial, there cannot be a 

section for the fibration TT: the group Go acts by translations on the fibers, 

so cannot preserve a section of TT, but TT must have a G-invariant section 

when TT has a section. Thus, when TT has a section the action of G on B must 

be faithful. 

Let us first analyze the cases in which TT does not have a section. As 

indicated above, the lack of a section can be attributed to a non-trivial 

group Go which acts trivially on the base B. Let us begin with the case 

Z = K3 and return to the case Z = T4 in a little while. In fact, it is 

easy to see that the Jacobian of the elliptic fibration on (T^ x Z)/Go is just 

Tl x (Z/GQ). The manifold Z/GQ is a singular K3 surface, and this is in fact 

part of a larger family of manifolds of the form T£ x K3. The possible Go's 

which can occur here can be classified: we need to know which finite abelian 

groups Go could act as a group of translations on the fibers of an elliptic 

fibration on a K3 surface. This classification was carried out by Cox [68], 

who found almost exactly the same list as Nikulin's classification of abelian 

automorphism groups [37], except that (Z/2Z)3 and (Z/2Z)4 cannot occur 

as translations on the fibers. Thus, in all of these cases, there is a limit of the 

M theory moduli space in which the limiting F theory vacua gain additional 

degrees of freedom which allow them to be part of the "standard component" 

of the F theory moduli space on S4 x K3. Since the lattice of the component 

of M theory moduli space takes the form L(-l) = F^i © iI2(Z/Go,Z), we 

must have Lx(—1) = H2(Z/Go,Z) in order to allow the lattice Lx to be 

embedded into the "standard lattice" Ts^s ® Es (B Eg. This is exactly the 

type of lattice limit which is found for the standard component. 

There can be "mixed" cases as well, in which both Go and Gi := G/GQ 

are non-trivial. In such a case, the Jacobian of the elliptic fibration on (T^ x 

Z)/G will be an elliptic fibration on (T* x {Z/GQ))/GI. The limiting theory 

"attaches" to the moduli space (T* x Z')/Gi, and the lattice decomposition 

L = Mi ffi Lx should use the rank two lattice Mi associated with Gi.  (We 
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4J4I 

Figure 3: The singular fibers on Z/G. 

will determine those lattices below.) 

Turning now to the cases in which TT has a section, there will be a com- 

ponent of the F theory moduli space for each case in which TT has a section. 

When Z is a K3 surface, both B and B are isomorphic to QP1 so G must 

have a faithful action on QP1, that is, there must be an injective homomor- 

phism G -> /S'0(3). Since G is abelian, the only possibilities are that G is 

trivial, or G is cyclic, or G = (Z2)2. 

When G is trivial, we can take i = 0 and we get the "standard" F theory 

component in 8 dimensions. This leads to standard components in lower 

dimensions as well, which can be treated as F theory on T^ x K3. 

When G = Zm is cyclic, there will be two fixed points for the action 

of G on B = QP1. All of the fixed points for the action of G on Z must 

lie in one of the two elliptic curves fixed by the G-action, and the quotient 

Z/G will have an elliptic fibration which degenerates to have a irreducible 

fiber of multiplicty m at each of the two fixed points. Note that Z/G has 

singularities along these two fibers as well, and that the resolved surface Z/G 

will have a more conventional elliptic fibration, with section (since there is 

a section up on Z by assumption). Since the only multiplicities which can 

occur within fibers in such a fibration are m < 6, we learn that the only 

possible cyclic group actions in this case are Zm with 2 < m < 6. 
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IV* IIP IP IP 

Figure 4: The singular fibers for F theory on Z/G. 

In fact, it is possible to see the geometry of these group actions quite 

explicitly. We have already enumerated the possible singular points on Z/G 

in table 8. These singular points are grouped together into elliptic fibers as 

indicated in figure 3. In each case, the elliptic curves on Z/G degenerate 

to an irreducible curve passing through 2, 3, or 4 singular points, and the 

irreducible curve has multiplicity m in the elliptic fibration on Z/G. All of 

the values 2 < m < 6 do occur, as shown in figure 3.15 On each fiber in 

the figure, the thick (blue) line represents the irreducible curve (which is 

labeled by its multiplicity m in the fiber), and the thin (red) lines represent 

the curves in the resolutions of the various singularities. We have labeled 

each fiber with the types of singular points that occur on it. 

We remind the reader that the singularities of Z/G do not actually occur 

in our M theory and F theory vacua, which are compactified on (S1 x Z)/G; 

the surface Z/G is just a convenient device for determining the lattice L 

of the M theory compactification. To determine the lattice of the F theory 

compactification, we should use a different birational model of Z/G: either 

the nonsingular surface Z/G, or the Weierstrass model obtained from Z/G 

by blowing down all components of fibers other than the ones meeting a 

15 A related geometric structure appears in [69]. It would be interesting to understand 
how this is related to the frozen singularities that we will later discuss. 
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G Lattice Lx Singular fibers on KZ/G 

Zi r3,3 © Es e #8 none 

Z2 r3,3 e A © A /o* + ^ 

Z3 r3,3 © A2 © ^2 IV* + IV* 

Z4 Ts.a © ^1 © ^1 III* + III* 

Z5 Ta.s IP +11* 

z6 Ts.s II* + IP 

Table 11: F theory lattices and singular fibers for Y = (S1 x K3)/G. 

section.16 Each singular fiber can then be labeled by its Kodaira type] the 

labels for the fibers for different values of m are shown in figure 4. The fibers 

in that figure are in one-to-one correspondence with the fibers in figure 3, and 

for each fiber in figure 4, the thick (blue) line represents the fiber component 

which meets the section, and the thin (red) lines represent the components 

which are blown down to give the Weierstrass model. 

The configurations of singular points on Z/G from table 8 are thus col- 

lected into Kodaira fibers, giving the results in the right hand column of 

table ll.17 From the Kodaira fibers, a lattice can easily be computed, as 

shown in the middle column of table 11, and we claim that this is the lattice 

which describes the moduli space for the corresponding F theory component. 

In fact, this same lattice can be arrived at in two ways: either directly in 

terms of the Kodaira fibers for the elliptic fibration on Z/G, or by using 

the x±/(x) construction, using the fact that L = Fi^ra) © Lx in the case 

that Y = (S1 x Z)/G. (This latter result becomes obvious when compar- 

ing tables 8 and 11.)  This gives six different F theory vacua. These vacua 

16Again, the singularities on the Weierstrass model do not directly show up in our F 
theory vacuum, but they will reappear as "frozen singularities" in an M theory limit with 
3-form flux described in section 4.6.1. 

17Note that the free part of the lattices for the Z5 and ZQ cases appearing table 11 are 
identical. It would be interesting to check whether the full cohomology lattices differ by 
torsion classes. 
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G Lattice for K3/G Singular fibers on K3/G 

(zy2 r2>2©ri,i(2)©I>4 lo+Io+Io 

Table 12: The additional F theory vacuum in dimension 6. 

G Lattice Lx Singular fibers on T4/G 

z2 r2,2(2)erlil /0* + 70*+J0*+J0* 

Z3 
/2   1\ 

1   2   ®ri'1 IV* + IV* + IV* 

Z4 
(0 2;®^ 

III* + ///* +1* 

Ze (0   2j0rM 
II* + IV* + /0* 

Table 13: F theory lattices and singular fibers for Y = (S1 x T4)/G. 

are dual to the six heterotic asymmetric orbifolds in 7 dimensions that we 

constructed in section 2. 

Note that in the two remaining cyclic cases for M theory vacua, namely 

Z7 and Zg, it is not possible to split off a factor of Fi^ra) from the lattice 

L as given in table 8. This gives further confirmation that there are no F 

theory vacua associated with these cases. 

The one remaining F theory vacuum with Z = KS is associated to the 

group G = Z2 x Z2; see table 12. The lattice we list is for K3/G. To 

this lattice, we must add a lattice of signature (2,2) for the 5-dimensional 

M theory compactification and a lattice of signature (1,1) for the F theory 

compactification. The fixed points for the action of G on B = QP1 have 

stabilizer Z2 in each case, so on the quotient Z/G we will find fibers with 

multiplicity 2 which become IQ Kodaira fibers on Z/G. Once again the 

lattices satisfy L = riji(2) © Lx. 

Turning to the case in which Z = T4, we find a similar story. The base 

B of the elliptic fibration on Z/G is still QP1, but the base B of the elliptic 
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fibration on Z is now an elliptic curve. The action of G on B must be faithful, 

and in fact it suffices to consider the case in which G does not contain any 

translations (else we could mod out by the translations first). As an action 

on an elliptic curve with a fixed point, the only possibilities are G = Zm 

with m = 2, 3, 4, or 6. In fact, these are exactly the group actions that we 

have (in table 10)! As in the previous case, the singular points on Z/G can 

be collected into Kodaira fibers for Z/G] the results of this are displayed in 

table 13. The lattices once again satisfy L = Fi^m) © Lx. 

The entries in tables 11, 12, and 13 thus describe the possible F theory 

vacua with 16 supercharges. The first entry in table 11 gives the "standard" 

F theory vacuum in eight dimensions, the remaining five entries in table 11 

together with the four entries in table 13 give the new F theory vacua in 

seven dimensions, and table 12 shows the one new F theory vacuum in six 

dimensions. (Of course the higher dimensional theories can be reduced to 

lower dimensional ones by compactification on additional circles.) 

4.3.1    Prom F theory to type I' 

Decompactification limits of the components of the F theory moduli space 

which have D-dimensional effective theories should lead to (D + ^-dimen- 

sional effective theories (using an isotropic sublattice of rank 1). It would 

be desirable to give a description of these directly in terms of type I' theory. 

However, despite the interesting pictures presented in [70,71], at present we 

do not have enough control over type I' vacua to be able to do this. So our 

analysis will be somewhat indirect. In this section, we describe the overall 

picture leaving a detailed discussion for the following section. 

The most common decompactification limit from these components in- 

volves a decomposition of the lattice in the form 

L*Tl9l®Lx. (74) 

We saw in the previous section that when going from six dimensions up 
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to seven dimensions, a lattice decomposition of this form corresponded to 

a boundary component which gained additional degrees of freedom in the 

limit, and which "attached" to the standard boundary component. 

To see this, we will give a geometric construction of these components 

and their decompactification limits, and note that for the vast majority of 

components in dimension seven, there is only one decompactification limit, 

which must therefore be of this type. We thus argue by analogy that all 

limits of this type must have the lattice decomposition given in eq. (74); this 

leaves only a few additional components in dimension eight for which we 

must account. 

Our geometric construction—to be described in section 4.3.2 for Z = 

K3—is designed for easy comparison with the heterotic duals of these vacua, 

where this phenomenon is known: the seven-dimensional components we 

have found are dual to non-trivial triples of Wilson lines on the heterotic 

side, and their eight-dimensional limits all attach to the standard eight- 

dimensional component. The exceptional case is G = Z2 which contains the 

CHL string. This case does have a non-trivial 8 and 9-dimensional limit. 

A similar discussion applies to the 8-dimensional limits of the F theory 

moduli spaces coming from Y = (Sl x T4)/G. Since the lattices for these 

models also have a F^i summand, 8-dimensional limits exist. However, in 

each case, again with the exception of G = Z2, these boundaries attach 

to a conventional toroidal type IIB compactification. The case of G = Z2 

has non-trivial 8 and 9-dimensional limits as reflected in its lattice given in 

table 11. This is natural since this model has a dual description as the com- 

pactification of the (+, —) orientifold to 7 dimensions. This duality can be 

seen immediately by studying the geometric description of the compactified 

(+, —) orientifold obtained in section 3.2.6. 

The last case we need to discuss is the 6-dimensional F theory vacuum 

associated to G = Z2 x Z2. From the lattice for K3/G given in table 12, 

we that there are two ways of decompactifying to 8 dimensions. Peeling off 
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a IYI factor gives us a 7-dimensional theory that attaches to the standard 

component as in our preceeding discussion. The other limit involves peeling 

off a ri)i(2) factor. This leads to a 7-dimensional theory that attaches to the 

component of the moduli space containing the CHL string. Note that we also 

need to worry about the additional signature (1,1) summand in the lattice 

for F theory on (iif3 x T2)/G. The correct relative normalization for this 

summand is tricky to determine, although preliminary computations suggest 

that it is either r^i or riji(2). This is certainly supported from a study of the 

Z2 x Z2 asymmetric orbifold of the heterotic string. Prom that approach, 

it seems clear that there is no new 7-dimensional theory to which the 6- 

dimensional orbifold could decompactify. From this 6-dimensional theory, 

we therefore arrive at no new 7-dimensional theory. 

4.3.2    Automorphisms of del Pezzo surfaces 

Let us begin by explaining why del Pezzo surfaces play a natural role in our F 

theory discussion. Consider an elliptically fibered KS surface Z whose base 

B is large, and whose complex structure is close to a degenerate one in which 

the iiTS surface degenerates into a pair of del Pezzo surfaces Zi, Z2 meeting 

on an elliptic curve E. This is the limit in which comparison with the E% x E% 

heterotic string becomes possible [72]. (In fact, it corresponds to both large 

volume and weak string coupling on the heterotic side of the duality.) It 

is then natural to expect that automorphisms of del Pezzo surfaces will 

be classified by the same data used to classify E% gauge bundles on T3. 

Further, the anomaly cancellation condition should have a purely geometric 

realization as a constraint on whether we can "glue" two del Pezzo surfaces 

with automorphisms into a if 3. 

So let us begin by considering a rational elliptic surface X in Weierstrass 

form. This implies that X has an elliptic fibration TT : X —> QP1, and a 

section a: QP1 —> X contained in the smooth points of X. Since X is 

rational, a2 = — 1, that is to say a is an exceptional curve.  We fix a fiber 
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E C X of TT, and we wish to study the group of automorphisms of X which 

are the identity on E and which stabilize a (ie map the image of a to itself). 

We call these automorphisms of (X,E,(j) Equivalently, we could consider 

a degree one del Pezzo surface X obtained by collapsing a. The elliptic 

fibration on X becomes the anti-canonical pencil of elliptic curves (or more 

generally Weierstrass curves) on this surface. This surface has at worst 

rational double point singularities. The automorphism group (X, E, a) acts 

naturally on X and is identified with the subgroup of the automorphism 

group of X fixing E pointwise. 

As a first step, let us argue that the automorphism group of (X, E, a) 

is a finite cyclic group that preserves the elliptic fibration structure of X. 

Along the way, we shall also see that the induced action of the group of 

automorphisms on the base QP1 of the elliptic fibration is faithful. The group 

acts on QP1 fixing two points, i.e., the automorphism group of (X,E,a) 

stabilizes E and exactly one other fiber. 

To see this, let / C X be a fiber of the elliptic fibration and let a: X -> 

X be an automorphism of (X, JS, cr). Then a(f) is a divisor in X with 

zero algebraic intersection with E. Hence, its projection to QP1 must be 

a single point. That is to say a(f) is contained in a fiber of the elliptic 

fibration. By homological considerations, we see that it is exactly a fiber 

of the elliptic fibration structure. This shows that a preserves the elliptic 

fibration structure and hence induces an automorphism a of the base QP1. 

If a is trivial, then a stablizes each fiber of the elliptic fibration. Since it 

acts by the identity on E, it acts by the identity on the homology of each 

smooth fiber and hence, it is a translation on each smooth fiber. But, a also 

stablizes the section cr, and hence it must be the identity on each smooth 

fiber. Since the smooth fibers are dense, it follows that a is the identity. 

This proves that the automorphism group of (X, E, a) acts faithfully on the 

baseCP1. 

The elliptic fibration structure on X has at least two singular fibers. This 
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means that the automorphism group of {X, E, a) is faithfully represented as 

a group of automorphisms of QP1 fixing a point of QP1 and permuting a 

finite set of points of cardinality at least two. All such groups are finite 

cyclic and fix two points of QP1. 

We use E' to denote the fiber other than E stabilized by the automor- 

phism group of (X, JB, cr). Suppose that an automorphism a is the identity 

on £". It is also the identity on E. We consider the degree one del Pezzo 

model X where the section has been collapsed. The image of cr is a smooth 

point of this surface, and a descends to an automorphism a of X fixing the 

point of intersection x of E and E' and acting by the identity on E and on 

E'. If follows that the differential of a at x is the identity, and hence that the 

restriction of a to the exceptional curve in X obtained from blowing up x 

is the identity. It follows that a stabilizes each fiber of the elliptic fibration. 

But we have already seen that this implies that a is the identity. The action 

of the automorphism group of (X, E, a) on Ef is therefore faithful. 

Let us examine the automorphism groups of the various types of Weier- 

strass curves fixing a given smooth point of the curve. The automorphism 

group of a generic elliptic curve fixing a point is Z2 acting by —1 and fixing 

4 points. In the case of special elliptic curves the automorphism group is 

either Z4 acting with two fixed points and two points with stabilizers Z2, or 

Zg acting with one fixed point, 3 points with stabilizer Z2 and two points 

with stabilizer Z3. The automorphism group of an ordinary double point 

fiber fixing a smooth point is Z2 fixing the singular point and the other 

point. The automorphism group of a Weierstrass cusp fixing a smooth point 

is C* acting so as to fix only the singular point and the given smooth point. 

Let Y be an elliptic surface and let / C Y be a fiber. Let p G QP1 

be the image of / under projection mapping. Let Y —> Y be the minimal 

resolution of Y and let p: Y -t QP1 be the induced projection mapping. 

Let f C Y be the full preimage of /. Fix a disk A C QP1 centered at p 

sufficiently small so that the preimage of A — {p} contains the preimage of 
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no singular point of Y or of the projection mapping. We define tiie local 

contribution of f to the Euler characteristic of the smooth model ofY to be 

the Euler characteristic of p_1(A). It is easy to see that / is a smooth fiber 

if and only if its local contribution to the Euler characteristic is zero and 

otherwise that the local contribution to the Euler characteristic is positive. 

Also, the local contribution to the Euler characteristic is 1 if and only if / 

misses the singularities of X and contains an ordinary double point. Lastly, 

if the elliptic surface in question is rational, then the sum over all fibers of 

the local contributions to the Euler characteristic is 12. 

The quotient of X by the automorphism group is a surface Y with an 

induced elliptic fibration and with rational double point singularities. In the 

singular model, the fiber which contains the image of Ef has multiplicity 

equal to the order of the automorphism group of X. On the other hand, in 

the minimal resolution, the strict transform of this curve is one of the com- 

ponents of the set of rational curves indexed by the nodes of an extended 

Dynkin diagram of type A, D, or E and which intersect each other as in- 

dicated by the bonds of the extended Dynkin diagram. Furthermore, the 

multiplicities of the various components in the fiber in the smooth model 

are given by the coroot integers on the corresponding nodes of this diagram. 

These numbers are all at most 6, and hence every component has multiplic- 

ity at most 6 in the fiber. It follows in the singular model, that the fiber 

containing the image of E' has multiplicity at most 6, and hence the order of 

the automorphism group is at most 6. (Notice that the cases of smooth and 

nodal fibers E' follow directly from the classification of the automorphism 

groups of these fibers given above.) The automorphism group of (X, E, a) 

is therefore a cyclic group of order at most 6. 

Now we simply list the possibilities: the automorphism group is Z2 and 

the fiber E' stabilized by the action is smooth. The quotient surface has four 

Ai singularities and the image of E' passes through all of these. The local 

contribution of this fiber to the Euler characteristic of the smooth model is 

6.  The local contribution to the Euler characteristic of the smooth model 



1090 TRIPLES, FLUXES, AND STRINGS 

of X from the singular fibers of the elliptic fibration is 12, and since the 

automorphism group acts freely on these fibers, the local contribution of the 

images of these fibers to the Euler characteristic of the smooth model of the 

quotient is 12/2 = 6. In the minimal resolution of the quotient surface, the 

preimage of this fiber is a tree of rational curves intersecting according to the 

extended Dynkin diagram of D4. The strict transform of E' has multiplicity 

2 in the fiber, i.e., it corresponds to the central node in the extended Dynkin 

diagram, the one with coefficient two in the dominant root. 

The automorphism group is Z3 and the fiber E' stabilized by the action is 

smooth. The quotient surface has three A2 singularities and the image of E' 

passes through all of them. In the minimal resolution of the quotient surface, 

the preimage of this fiber is a tree of rational curves intersecting according to 

the extended Dynkin diagram of EQ and this fiber contributes 8 to the Euler 

characteristic of the smooth model. The singular fibers contribute 12 to the 

Euler characteristic of the smooth model of X and hence their images in the 

quotient contribute 12/3 = 4 to the Euler characteristic of its smooth model. 

The strict transform of E' is the curve of multiplicity three in the fiber, i.e., 

it corresponds to the central node in the extended Dynkin diagram, the one 

with coefficient three in the dominant root. The local contribution of this 

fiber to the Euler characteristic of the smooth model is 8. 

The automorphism group is Z4 and the fiber E' stabilized by the action 

is smooth. The quotient surface has two As singularities and an Ai singular- 

ity. The image of Ef passes through all these singularities. In the minimal 

resolution of the quotient surface the preimage of this fiber is a tree of ratio- 

nal curves intersecting according to the extended Dynkin diagram of E? and 

the local contribution of this fiber to the Euler characteristic of the smooth 

model is 9. The singular fibers contribute 12 to the Euler characteristic of 

the smooth model of X, and hence the images in the quotient of the singular 

fibers of X contribute 12/4 = 3 to the Euler characteristic of the smooth 

model of the quotient. The strict transform of E* is the curve of multiplicity 

4 in the fiber, i.e., corresponds to the node with coefficient 4 in the dominant 
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root. 

The automorphism group is Z5 and the fiber E' is a Weierstrass cusp. 

The quotient surface has two A^ singularities and the image of E' passes 

through both of them. The preimage of this fiber in the minimal resolution of 

the quotient is a tree of rational curves intersecting according to the extended 

Dynkin diagram of E% and contributes 10 to the Euler characteristic of the 

smooth model of the quotient. The other singular fibers of X contribute 10 

to the Euler characteristic of the smooth model of X and their images in the 

quotient contribute 10/5 = 2 to the Euler characteristic of its smooth model. 

The strict transform of E' is the curve in this configuration with multiplicity 

5 in the divisor representing the fiber. That is to say it corresponds to the 

node with coefficient 5 in the dominant root. The local contribution of this 

fiber to the Euler characteristic of the smooth model is 10. Notice that since 

E' is a cusp, the sum of the contributions of the all other fibers to the Euler 

characteristic of the smooth model of X is 10. Thus, in the quotient the sum 

of the local contributions of the fibers besides the image of E' to the Euler 

characteristic of the smooth model is 2, giving us a total of 12 as required. 

The automorphism group is Z^ and the fiber E1 is smooth. The quotient 

surface has three singularities—of types ^.5, A2 and Ai, respectively, reflect- 

ing the three singular orbits of the action of this cyclic group on a smooth 

elliptic curve. The image of E' passes through all these singularities and its 

preimage in the minimal resolution is a tree of rational curves intersecting 

according to the extended Dynkin diagram of E%. The strict transform oiE1 

has multiplicity 6 in the fiber and hence corresponds to the trivalent node 

in the extended Dynkin diagram, the one with coefficient 6 in the dominant 

root. The local contribution of this fiber to the Euler characteristic of the 

smooth model is 10. The singular fibers of X contribute 12 to the Euler char- 

acteristic of its smooth model, and the images of these fibers in the quotient 

contribute 12/6 = 2 to the Euler characteristic of its smooth model. 

This completes the list of possibilities. Notice how the extended Dynkin 
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diagram of E$ predicts the automorphism groups and the singularities of the 

quotient surfaces. First of all there will be an automorphism group of order 

k if and only if one of the coefficients on the extended Dynkin diagram of 

i?8 is divisible by k. Given an integer k with this property, the singularity 

in the quotient surface when the automorphism group is cyclic of order k is 

determined as follows: One takes the extended Dynkin diagram of E$ with 

the usual coefficients and removes all nodes whose coefficients are divisible by 

k. There remains a collection of Ani diagrams. These label the singularities 

of the quotient surface. Furthermore, we can connect all of these diagrams 

to a central node and form an extended Dynkin diagram of some subgroup 

of £?8- In that new diagram the coefficient of the central node that we added 

will be exactly k. This is the fiber in the minimal resolution of the quotient. 

The strict transform of the image of Ef is the component corresponding to 

the central node that we added. 

Note that the list of possibilities matches perfectly with the gauge theory 

picture of commuting pairs in Eg and their centralisers. Of course, this is not 

an accident: one can prove by abstract methods that equivalence between the 

group theory and del Pezzo surfaces which goes through the Looijenga space 

of E®A(Es)/W(Es) is categorical and hence that the automorphism groups 

of the three classes of objects—commuting pairs in Eg, E ® A(Es)/W(Es) 

(here, A(Es) is the coroot lattice of E& and W(E$) is its Weyl group) and 

del Pezzo surfaces must be the same.18 

One last point is worth remarking on: given two rational elliptic surfaces 

with smooth fibers and sections (Xi,Ei,ai) and (J^,^?^) and given an 

isomorphism from Ei to E2 matching up the intersections with the sections, 

we can glue Xi and X2 together to form a singular surface X with a normal 

crossing along E = Ei = E2. This surface fibers over QP1 U QP1 with a 

section a. Of course, it has a marked fiber E. It is a singular model of an 

elliptically fibered if 3 surface, and in fact represents a point in a divisor 

8We wish to thank Bob Friedman for pointing this out to us. 
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at infinity in a compactification of period space for these surfaces.19 Given 

automorphisms on of {X^Ei^ai) we can glue them together to determine 

an automorphism of (X, E, cr). To smooth the singular surface X to an 

elliptically fibered if 3 we need a trivialization of the tensor product of the 

normal bundles of E in Xi and X2. To carry along the group action requires 

then trivializing the action of this tensor product. This is possible if and only 

if the actions of ai on the disks in the base QP1 's centered at the image points 

of Ei are inverses of each other. In particular, the orders of ai and 0.2 must 

be the same and these two automorphisms must be in inverse components. 

This corresponds in the gauge theory language to the fact that the Chern- 

Simons invariant of the commuting triples must be inverses of each other. 

As promised, we therefore recover our anomaly matching constraint from 

this gluing condition. 

4,4    Type IIA compactifications with RR one-form flux 

4.4.1    Equivariant flat line bundles on T4 

We now take a different tack and consider compactifications with flux. This is 

a quite different class of models from the purely geometric compactifications 

just discussed. Among compactifications of this kind, we shall find new dual 

descriptions for the perturbative asymmetric orbifolds of section 2 both in 6 

and 7 dimensions. 

Let us first consider flat RR 1-form fields in a type IIA string compacti- 

fication on some (possibly singular) manifold X. Such a 1-form field A can 

be seen as a connection in a principal U(l) bundle P —> X. Of course the 

interpretation in M theory of such a RR 1-form field configuration will be as 

a compactification on the manifold P. In our preceeding discussion, P took 

the form of {X x S'1)/G. As we shall see, it is natural from this purely ge- 

ometric M theory picture to treat A via equivariant cohomology. In section 

4.5, we revisit this treatment from the perspective of K-theory where we find 

9On the heterotic side, this represents the infinite-volume, zero-coupling limit. 
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a group of 1-form fluxes in agreement with the results from equivariant co- 

homology. K-theory, however, will give us new physics for compactifications 

with more general combinations of fluxes. 

[/(I) principal bundles, or equivalently complex Hermitian line bundles, 

over a smooth manifold X are classified topologically by their first Chern 

class ci, which is an element of the cohomology group H2(X, Z). This Chern 

class equals [F/2'n] in real cohomology, where F = dA is the curvature two- 

form. Flat line bundles, i.e., bundles that satisfies F — 0, are classified by 

the cohomology group IIl(X, U{1)). One can think of this group of homo- 

morphisms of Hi(X,Z) into 17(1) as the holonomies of the flat connection 

around the non-trivial homology 1-cycles of X. Note that because F van- 

ishes, in general such a flat bundle can have only have a torsion first Chern 

class 

ci GTorif2(X,Z). (75) 

If there is no torsion in H2{X) then a flat line bundle is necessarily topo- 

logically trivial. It can still have non-trivial holonomies. In fact the group 

i71(X, 17(1)) of flat line bundles fits in the exact sequence 

1 -> ^(^Rj/jff^^Z) -» Jff1^,^!)) -+ ToiH2{X,Z) -» 1        (76) 

where the Jacobian torus 

Hl(X,R)IHl(X,Z) (77) 

gives the holonomies of flat connections on bundles that are topologically 

trivial. 

As explained in appendix D, for the case of an orbifold X/G, we have 

to consider equivariant line bundles on X. These are bundles over X with 

a compatible G action. Equivariant flat line bundles are classified by the 

equivariant cohomology group 

H1
G{X,U{1)). (78) 
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This will be the group of RR 1-form fluxes. 

We will be considering the case where X is either a T4 or a K3 manifold. 

In these cases, there is a well-known list of orbifold groups G such that X/G 

is again Calabi-Yau, i.e., a K3 manifold. 

For the case X = T4, the groups are listed in [56] 

G = Z2,Z3,Z4,Z6,:D4,^5,T. (79) 

Here V^ denotes the binary dihedral group of order 4iV, a double cover of 

the ordinary dihedral group V^. In the AD^-labeling of finite subgroups 

of 311(2), this group corresponds to the Dynkin diagram DN+2<> just as 

the cyclic group ZJV corresponds to AN-I- The last case T is the binary 

tetrahedral group, which corresponds to E§. For a list of the group actions 

along with the singularities of T4/G, see table 18 of appendix D. 

To be concrete let us first consider this group for the case of the Z2 action 

x -> — x on the torus T4. Here the group ifJ2(T
4, f7(l)) can be computed 

by a spectral sequence technique20 which is given in appendix D. 

This calculation shows that it essentially suffices to compute the equiv- 

ariant cohomology with coefficients in the field Z2 which has a rather simple 

description. Is this case there are no differentials in the ^-term of the 

spectral sequence and no extension problems so that 

tf!2(T
4,Z2)=  0 fP'(]RIP00,fr«(T4,Z2)). (80) 

The cohomology of T4 with Z2 coefficients is given by generators O1 of degree 

1 satisfying (61)2 = 0. The 0l can be thought of as the mod 2 reductions of 

the one-forms dxl. Because we work with Z2 coefficients, they are invariant 

under the orbifold group, since the group acts as O1 -> — 0* — O1. In the 

equivariant cohomology of T4, we have to add an extra generator £ also 

of degree one.   The element £ is the generator of the group cohomology 

#*(BZ2,Z2). 

We thank D. Freed and G. Segal for help with these calculations. 
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There is subtle point in that the relation among the generators 6l is 

modified to 

0*(f - 0*) = 0. (81) 

This relation replaces the relation {61)2 = 0 in the cohomology of T4. It has 

a simple geometric interpretation that becomes already clear if we consider 

the case of Sl. Since we work with Z2 coefficients, let us consider a real line 

bundle over the orbifold Sl/Z2. Upstairs, we have a bundle over S'1 and this 

bundle is either trivial or the Mobius bundle. The Z2 action on 51 has two 

fixed points at x — 0 and x = TT. We consider this bundle locally around 

one of the fixed point, say x = 0. Let y be the coordinate in the fiber. 

The group action will map x —> —x and for the fiber coordinate we have two 

possibilities: either the trivial action y —> y or the non-trivial action y —> —y. 

Since we have two fixed points this gives a total of 22 = 4 possibilities. 

These 4 possibilities have a clear interpretation as equivariant bundles 

on Sl. If the group action is trivial at both fixed points we obtain the 

trivial bundle on 5'1 with the trivial group action. If the group action is only 

non-trivial at one fixed point, we obtain the Mobius bundle with the two 

possible Z2 actions. Finally if the group action is non-trivial at both fixed 

points, the corresponding bundle on Sl is trivial, but it has a non-trivial 

group action that can globally be written as y —» — y. This represents the 

equivariant bundle that we denoted as £. So, if 0o and 61 denote the classes 

that represent the non-trivial bundles around the fixed points x = 0 and 

x — TT, then we clearly have the relation 

0o + 0i=f. (82) 

Now the Z2-equivariant cohomology of 5'1 is very simple. As explained 

in appendix D, it is the cohomology of the homotopy quotient S^2 which 

is a circle bundle over the classifying space MP00. We can think of S4 as 

the union of two line intervals, glued together at x = 0 and x = TT. The 

corresponding bundles of these intervals over MP00 have contractible fibers 



J. DEBOER ET AL. 1097 

and so are homotopic to MP00 itself. The intersection of the two intervals 

gives rise to a Z2 bundle over KIP00 with a total space that, by definition, is 

contractibe to a point. Therefore 8% is homotopically a wedge MP00 VIRF00, 

i.e., two copies of MP00 glued together at a point. The classes 9Q and 9i are 

the generators of the two copies of iiir*(KP00, Z2), and clearly we have 

0o U 0i = 0. (83) 

So the equivariant cohomology of Sl is given by the ring 

iri2(5
1,Z2)SZ2[6>o,0i]/(Mi). (84) 

Both the elements 9Q and 9i map to the invariant element in H1(S1
1 Z2) that 

represents the Mobius bundle. We can pick as generators 9 := 9i and £. But 

we should impose the relation 

9(Z-9) = 0. (85) 

Note that the translation 51 over a half-period that interchanges the fixed 

points is represented by 9 -» 9 + £ which indeed interchanges 9o and 0i. 

Generalizing this construction to the 4-torus gives the relation (81) among 

the 9l and £. In that case a translation x1 -> x1 + TRJ
1
, q1 E Z2 acts on the 

cohomology generators as 

O*-* 9i + q% (86) 

A direct computation shows that all classes in iJ^2(T
4,Z2) correspond 

to classes with 17(1) coefficients, so that we find that 

H^(T\U(l))^Zl (87) 

We can pick a basis given by 01,02,03,04, £ and write a general equivariant 

flat bundle as 

4 

A = ^T ai9i + ao£,        a., ao G Z2. (88) 
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Here the coefficients ai,ao take value in the field of two elements that we 

simply write as Z2, i.e., the set {0,1} with addition and multiplication mod- 

ulo (which is often written as F2). So altogether we have 25 = 32 equivariant 

flat bundles on T4. 

We can understand this result directly in terms of bundles on T4. We first 

pick a flat connection A — Aidx1 on T4. Such a connection has holonomy 

exp (p  A = exp 27riAi (89) 

around the one-cycle 7^ along the xl axis. The holonomy takes value in the 

torus 

^(T4,^!))^4)*. 

The orbifold group acts on the flat gauge field by Ai -> —Ai, where we 

identify Ai = Ai + 1. So the invariant connections are given by 

Ai = 0,1/2 (90) 

which are the points of order two on the Jacobian. This gives a total of 

24 = 16 invariant bundles. Now we have to decide how the group Z2 acts 

on the fiber of the line bundle. Here we can have either the trivial action or 

the non-trivial action. This multiplies the total number of bundles by two 

with a total of 32 bundles. 

In terms of the equivariant cohomology classes that we described above 

we have the following interpretation of these 32 bundles. The element f 

clearly represents the trivial flat bundle on T4 with the non-trivial group 

action.  It corresponds to the non-trivial element in the group cohomology 

Let us consider the corresponding M theory compactifications. First we 

remark that these 32 cases decompose into orbits of *SX(4, Z2). In particular 

the 16 invariant flat connections A = ai6l behave very much as spin struc- 

tures on a two-torus. They form two orbits: a singlet of trivial holonomy 

^4 = 0 (the "odd spin structure") and a remaining orbit of 15 non-trivial 



J. DEBOER ET AL. 1099 

holonomies A = a# with not all a; = 0 (the "even spin structures"). (Here 

15 is the adjoint representation of 5L(4, Z2).)  A similar decomposition of 

16 = 1 + 15 holds for the bundles of type A = aid1 + f. Both aid* and 
ai0l + ^ maP to the flat connection Ai = \ai. 

Note that a half shift along the torus can interchange the two 15 orbits. 

In fact the full symmetry group is 

(Z2)
4
KSL(4,Z2) (91) 

which is the affine group acting on (Z2)4. We can think of the expression 

(aj,ao) as defining the affine linear function aix1 + OQ. If not all ai vanish 

this defines one of the 30 affine planes. This gives the orbit 30. The two 

constant functions are singlets. 

This split 32 = 1 + 1 + 30 also manifests itself geometrically in the M 

theory interpretations. The singlet A = 0, of course, corresponds to the 

trivial compactification T4 x S1 = T5. The other singlet A = £ gives a 

compactification manifold 

(T4 x Sl)/Z2 (92) 

where the Z2 acts as a shift x11 -> x11 + TT. The action is fixed point free. 

This manifold breaks half the supersymmetries. The moduli are simply the 

NS fields (metric and B-field) on T5 plus the string coupling constant (radius 

S'1). There are no continuous RR field moduli. That is, this compactification 

has exactly the same number of moduli as the CFT on T4. 

All of the other bundles can also be obtained as quotients of T5, now 

considered as the trivial circle bundle over a double cover T4 of the original 

IIA 4-torus T4. First, by an SX(4, Z2) transformation we can map A to the 

form A = O1 or A = 01 + f. In the case A = 61 we define the cover T4 by 

making the coordinate xl periodic modulo 47r. We then obtain the bundle 

by the quotient 

(f4 x S1)/^ x Z2. (93) 
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Here the first Z2 (the deck transformation of the cover) acts as 

gi :  xl -> xl + 27r,    x11 -* x11 + TT (94) 

while the second Z2 (the original orbifold group) acts as 

52 :  a* -> -a;*,    2 = 1,... ,4. (95) 

If we first divide out #2? we obtain a description as the quotient 

(K3 x 51)/Z2 (96) 

where K3 is the Kummer surfaces T4/Z2 and the Z2 is the involution that 

exchanges the 16 fixed points x1 = 0, 27r in pairs. 

Similar remarks hold for the case A = 61 + f.  Here we find a Z2 x Z2 

action generated by 

01 :  x1 -► a;1 + 27r,     x11 -^ rz;11 + TT (97) 

and 

52 :  xi -* -x\        x11 -> x11 + TT. (98) 

In this case it makes sense to first quotient by, 

9192 :  s* -> 27r - a*. (99) 

This again produces a singular K?> manifold, now with fixed points at x1 = 

TT, STT. This is no surprise because we already remarked that a half shift 

interchanges these two types of compactification. 

In summary, the M theory geometry of a type IIA orbifold T4/Z2 with 

possible 1-form flux is one of the following three forms: 

T5, (T4 x S,1)/Z2, (T4/Z2 x S1) /%2 (100) 

reflecting the 32 = 1 + 1 + 30 decomposition of (Z2)5. The extension to 

more general quotients is discussed in appendix D.2. 
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4.4.2    Local holonomies 

We now turn to the local description of these bundles on the orbifold T4/Z2 

in terms of type IIA string theory. Note that the quotient is a singular 

if 3 manifold. On a smooth if 3 manifold there can be no non-trivial RR 

1-form fluxes. The fundamental group is trivial so that there can be no 

non-trivial flat U(l) bundles. So the 1-form flux is necessarily located at the 

singularities. This we want to make more precise. 

In the case of T4/Z2, the if 3 manifold has 16 A\ singularities that look 

locally like C2/Z2. If we cut out a small neighbourhood of the singularities, 

we obtain a manifold XQ with a boundary Y that consists of 16 copies of 

Sf3/Z2 = MF3. Since 7ri(IRP3) = Z2 there is a non-contractible curve 7^ 

around each fixed point p. Since we are given a (smooth) line bundle with a 

flat connection A over XQ, we can compute the holonomy of the connection 

around that curve for every fixed point p 

expi <h   A = expi7rcp(A;p),        (p{A;p) G Z2 = {0,1}. (101) 

The two possibilities (p(A]p) = 0,1 correspond to the two possible equivari- 

ant flat line bundles on C2 with either the trivial or the non-trivial group 

action. 

A clear interpretation of a Type IIA string theory compactification on 

the orbifold C2 /Z2 with a discrete flux for the RR 1-form gauge field A is 

given in [15]. This flux can be measured by performing an Aharanov-Bohm 

scattering process by sending a DO-brane around the loop 7. Because of this 

discrete gauge field, the singular orbifold cannot be deformed to a smooth 

ALE hyperkahler manifold, as in the case without discrete RR flux. Such a 

deformation would kill the fundamental group and the corresponding non- 

trivial flat connection A. Therefore the singularity is "frozen." String loop 

corrections make this apparent singular configuration non-singular. In M 

theory, this compactification is represented by the five-dimensional orbifold 

(C2 x S1)/Z2 (102) 
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where the Z2 acts on the circle by x11 -» x11 + TT. This action is fixed 

point free so that we are dealing with a smooth M theory compactification. 

In weak coupling, when the radius of the Sl shrinks to zero, the string 

theory becomes free everywhere outside the core of the singularity, but an 

interacting string theory remains at the singularity, which can be viewed as 

a dual represention of a Neveu-Schwarz five-brane. 

Since there are 16 fixed points, this seems to give a priori 216 possibilities 

for putting discrete flux at the singularity. But in this global situation not all 

of these possibilities are realized. A constraint comes about because the loops 

7p are not all independent in the homology group HI(XQ, Z), where we recall 

that XQ is the orbifold with the singularities cut out. There are relations 

among the 16 generators. This means that not any arbitrary combination 

of the 16 fluxes leads to a flat bundle that can be extended over the interior 

of the K3 manifold. 

In fact, it is a classical result in the theory of Kummer surfaces that the 

first homology group of XQ is given by 

i?1(Xo,Z)^(Z2)5. (103) 

We will explain this result in more detail in the next section where we discuss 

flat line bundles on singular K3 manifolds in general. For the moment, we 

just observe that we recover the group (Z2)5 of the equivariant computation 

(87). 

We now want to connect the local and the global computation. How 

do we determine the holonomy of a given equivariant bundle on T4 around 

a particular fixed point p? This is a straightforward computation, see also 

[73,74]. 

Note that from an abstract point of view, we are doing the following: 

consider a neighbourhood Up of the point p on the cover T4. This we can 

identify as a ball in C2 equiped with the non-trivial Z2 action. The inclusion 
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ip : Up -4 T4 is an equivariant map. It therefore gives rise to a map 

i*p : Hl2{T\ U{1)) -+ Hl2{Up, 17(1)) = Z2. (104) 

This map describes the restriction of the bundle on T4 to the bundle in the 

neighbourhood of the fixed point. Locally, there is only the generator £. So 

under restriction the equivariant class A will become some multiple of £: 

t!(A) = p^pte, 

and this defines the holonomy (p(A\p) around p. 

(105) 

Since the fixed points are the points of order two on T4, we can label 

them by p = (p1,^2,^3,^4) £ (Z^)4, so that the fixed point p has coordinates 

x1 = np1. We now claim that the holonomy of the bundle A = ai8l + ao£ is 

given by the linear affine function 

ip(A\p) = dip1 + ao (106) 

From our abstract description this follows rather directly, because we defined 

the generator 9l such that it restricts to zero at pl — 0 and equals O1 = £ at 

p1 = 1. So we can write the restriction simply as 

il{ei)=p% (107) 

We display this function for the five generators, where we listed the 16 

fixed points p lexicographically. 

el 
1   1 1111 110 0 0 0 0 0 0 0 

o2 
1   1 110 0 0 0 11 110 0 0 0 

9* 1   1 0 0 11 0 0 11 0 0 110 0 

9* 1 0 1010 10 10 10 10 10 

e 1 1 1111 1111 111111 
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Apart from the bundles A = 0 and A = £ that have fluxes at none or all of 

the 16 fixed points, every other bundle has fluxes at 8 of the 16 fixed points. 

This is in line with the description of the bundle as (T4/Z2 x S1)/Z2- 

We can of course also do a straightforward computation of the holonomy 

by integrating the gauge field over the closed path 7p. In terms of the cover 

T4, this loop can be represented as a path that starts at the point #0 = np—e 

and ends at xi = np + e with e a small 4-vector. This is an open path on 

T4, so to find the holonomy along this path, we have to relate the bundle at 

the two end points. 

The original connection on T4 we picked to be the constant one-form 

A = ^aidxK We can gauge this connection away at the cost of introducing 

twisted boundary conditions. One describes these boundary conditions by 

accompanying the identification x1 —> xl + 2'Kn1, with nl G Z, by a gauge 

transformation expinain1. Under the quotient map xl —>• —xl, we can have 

a further gauge transformation expmao. With these boundary conditions, 

we can simply compute the holonomy around the path 7^. Since the lo- 

cal connection is trivial, the holonomy is complete expressed in the gauge 

transformation that accompanies the identification of the two end points. 

Since 

x1 = -xo + 27rp, (108) 

the gauge transformation gives the phase 

expiirfaip1 + ao), (109) 

which gives our formula (106). 

4.4.3    Singular K3 manifolds with one-form flux 

We will now turn to the case of a general K3 surface. As we explained, 

smooth iTS's cannot support 1-form flux, so the K3 surface is necessarily 

singular.   Locally these singularities will be of type C2 /G with G a finite 
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subgroup of SU(2) as given by the AD^-classification. This implies that we 

can consider X to be a local orbifold, i.e., a manifold that can be covered 

by coordinate patches that are orbifolds. In such a case, we still have well- 

defined equivariant cohomology groups. However, in the case of 1-form flux, 

there is no need to use these equivariant classes; instead, we simply excise 

the singularities and work on the smooth remainder. 

This result is formulated as follows using the language of algebraic topol- 

ogy. Let X* be the singuar if 3, J7* a neighbourhood of the singularities, and 

Xo = X*-U*, (110) 

the smooth manifold obtained by cutting out the singularities. The boundary 

dXo = Y will consist of a union of smooth three-manifolds of the type S3/G. 

We clearly want to compute the group 

Z = H1{Xo,Z). (Ill) 

Now let X be the resolved K3 surface, and let U be the neighbourhood 

of the resolved singularities. That is we replace every component of [/* by 

its corresponding smooth ALE-space. We have X — U = XQ and dU = Y. 

It is a standard result that 

H^XotZ) = H3{Xo,Y,Z) 9* H3{X,U,Z). (112) 

Here we use the relative cohomology groups Hk(X, U). These describe pairs 

(a,6) G Ck(X) x Ck~l(U) of a fc-cochain a on X and a (fe — l)-cochain 

b on U that satisfy da = 0, i*a = db, modulo the equivalence (a, &) ~ 

(a + du, b + i*u - dv) with (ti, v) G C*"1^) x Ck-2(U). So the elements of 

Hk(X, U) represent, roughly, cocycles on X that are trivial when restricted 

to U. Lefschetz duality gives 

Hk{X, U) = HA-k(X - U\        Hk(X - 17) = HA-k(X, U). (113) 

Relative cohomology groups fit in a long exact sequence 

-> Hk(X, U) -± Hk{X) -+ Hk{U) -> Hk+1(X, U) -> (114) 
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In our case, using the cohomology of X = K3 and 17, this gives the short 

exact sequence 

0 -> H2(X,U,Z) -+ H2{X,Z) -> H2{U,Z) -> H3{X,U,Z) -+ 0.     (115) 

Here II2(X, Z) = Ts^g is the familiar second cohomology of K3. The group 

iJ2(J7, Z) is the dual of group of vanishing cycles Q = ^{U, Z). The lattice 

Q is a sublattice of H2{X,Z) = T^ig. It consist of the 2-cycles that are 

contracted to a point in the singularity. There is a second sublattice of 

H2{X,Z), the lattice P = H2(XQ,Z) of 2-cycles in the smooth part XQ. 

Duality gives us P ^ II2{X,U,Z) ^ i72(Xo,y,Z). So P represents the 

bundles that become trivial on the boundary Y. Using these results the 

exact sequence gives 

0 -> P -> r3,i9 ^ Q* -> ^ ^ 0. (116) 

This equation has the following interpretation: the singularity gives rise to a 

sublattice Q C Tsti9 of vanishing cycles. This gives a dual map T^ig -* Q*- 

This map is not necessarily onto. The quotient of Q* by the image of T^i9 

gives us the group of 1-form fluxes Z. Equivalently, the lattice Q C Fs^g is 

not necessarily primitively embedded, and this is measured by Z. 

There are some other definitions of Z that are directly equivalent to this 

by duality. Since we also have 

Z = Tor H2{Xo, Z) 2* Tor^(^ U, Z), (117) 

we find for example 

#2(Xo,Z) = H2{X,U,Z) £ P* 0 Z. (118) 

Note that the lattices Q and Q* have an interpretation in terms of line 

bundles over the resolved singularity U. The exact sequence 

0 -> #2(Z7,y,Z) -* H2{U,Z) -> i72(y,Z) -+ 0 (119) 

becomes 

0 -► Q -> Q* -> disc(g) -> 0 (120) 
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where the discriminant of the lattice Q also equals the first homology of 

the three-manifold Y, which is a disjoint sum of quotients S3/G. To be 

precise, disc(An) = Zn+i, disc(jDn) = Z2 x Z2 or Z4 for n even or odd, 

respectively, and disc(2?n) = Z3,Z2, {1} for n = 6,7 and 8, respectively. 

Here Q* = H2{U, Z) are the line bundles onU,Q = H2(U, Y, Z) are the line 

bundles that become trivial when restricted to Y, and disc(Q) = H2(Y, Z) = 

Hi(Y,Z) represent the (necessarily torsion) line bundles on Y. 

4.5    Fluxes and K-theory 

We now turn to the K-theory description of fluxes for the RR 1-form and 

3-form fields in type IIA string theory. 

4.5.1    K-theory description of RR fluxes 

There is now considerable evidence that K-theory should play a role in clas- 

sifying RR charges in type II string theory [75,76], at least for zero string 

coupling. There are also arguments suggesting that the RR fields themselves, 

and in particular their flux quantization, should be formulated in terms of K- 

theory [77,78]. To be more precise, there is a local formulation of K-theory 

called differential K-theory that provides a precise characterization of the 

RR fields in terms of bundles with connections [79]. According to this point 

of view the flat RR fluxes on a compactification X are given by the groups 

K^X, 17(1)) where i = 1 for the IIA theory and i = 0 for the IIB (i only 

matters modulo 2 by Bott periodicity). These groups have been studied in 

detail in [80]. 

The most important property of the groups Kl(X, U(l)) is that they fit 

in the exact sequence 

Kl(X) ->     Hodd(X,R)     -+    Kl{X,U(l)) 

t I (121) 

JC0(X,C7(1))    «-    Heven{X,R)    4r-        K0(X) 
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Here the maps from K-theory to cohomology are the usual Chern character 

maps, that are isomorphisms over the reals. 

For a finite-dimensional smooth manifold X, we therefore find a descrip- 

tion of the RR phases as 

o -> x^xyfov "* ^1(x'm) "*TorK0{X)
 "*0-      (122) 

So the component group is given by the torsion classes in K0(X)^ and the 

trivial component consists of the torus iI0^(X,E)/(ii:1(X)/Tor). 

K-theory is not graded, so one cannot distinguish in a unique way the 

contributions of the RR fields of fixed degree. Instead there is a filtration 

K0(X) ^K%DK%D'.- (123) 

where the group K^(X) is defined in terms of vector bundles that are trivial 

on the (k — l)-skeleton of X. This gives a description of RR fluxes where 

the field strength is a form of degree k or higher. So, within the K-theory 

formalism fluxes always have ambiguities up to higher degree terms. 

In this paper we want to restrict to fluxes of the 1-forms and 3-forms 

in the IIA theory as measured by the world-volumes of DO-branes and D2- 

branes. These are given by the quotient 

KHXM^KKHXMI))*- (124) 

We will not give the general interpretation of the elements of the group 

if1 (X, [7(1)), but restrict our discussion here to the case that Hodd(X,R) 

vanishes, so that only torsion classes appear. In that case the group of fluxes 

is simply 

K^X, U(l)) = TOTK
0
(X). (125) 

The corresponding RR flux can be represented by a pair (Eo,Ei) of flat 

vector bundles with ik(Eo) = rk(£?i), i.e., a virtual flat bundle EQ — Ei of 

rank zero. 
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A torsion RR flux will give an additional phase factor to a D-brane in the 

string theory path-integral. If we represent a brane by a K-homology class, 

that is a map an odd spin-manifold M (possibly equipped with an additional 

Chan-Paton vector bundle JP) into the space-time X, the holonomy of the 

RR-fields over this brane can be represented by the 77-invariant of virtual 

bundle EQ — E\ restricted to M. 

More precisely, consider the Dirac operator D on M coupled to the bun- 

dles EQ and Ei. Such a Dirac operator is self-adjoint and has a 77-invariant, 

which is the regularized sum of the signs of the eigenvalues A^ of D [81] 

r/ = 17(0),        r,{s) = Y, sgn(A,)|Ars. (126) 
Ai^O 

Closely related is the so-called reduced 77-invariant, defined by 

r/ = (7? + dimkerD)/2    (mod Z). (127) 

This invariant does not jump under variations of the parameters. It appears 

in the index theorem on manifold with boundaries. If we can write M as the 

boundary of a manifold 5, and extend the bundle SQ to a bundle E over 

Z, then with the appropriate APS boundary conditions, the twisted Dirac 

operator DE on B has index 

indexDE = / ch{E)A{B) - fjEo (128) 
JB 

The phase (modulo Z) associated to M is now 

<p(M)=7iEo-r}El. (129) 

In view of the APS index theorem, this can be written as 

<p(M) = /      ch(E)A(M) (130) 
JMxI 

where we have picked a bundle E with a (no longer necessarily flat) connec- 

tion on the manifold M xl with / = [0,1] that reduces to EQ and Ei on the 

two boundaries. 
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4.5.2     K-theory on orbifolds 

For the case of an orbifold X/G, it seems reasonable to assume that equivari- 

ant K-theory is the appropriate description. For the case of the RR charges 

the relevance of equivariant K-theory has been demonstrated in great de- 

tail [75,82-84]. It leads to an elegant description of fractional branes pinned 

on the orbifold singularities. The boundary state corresponding to these 

fractional branes has components in the twisted sectors of the closed string. 

Equivariant K-theory KG{X) classifies equivalence classes of equivariant 

bundles on X, that is bundles with an action of G. Just as in equivariant 

cohomology, we can make a model for KG(X) in terms of the ordinary K- 

theory on the homotopy quotient XQ- However, in the equivariant case there 

is a remarkable difference in the prediction of fluxes coming from a K-theory 

or a cohomology formulation. 

As an example we can study the basic orbifold C2 /Z2 again. In this case 

we have 

Kl2(C
2) ^ Kl2[pt) ^ K^W00) =Z®Z. (131) 

This generalizes as follows. For an arbitrary finite group G the ring K^pt) 

is given by the (completion of the) representation ring R{G) of G. One has 

R(G) = Zr with r the number of irreducible representations (or equivalently 

the number of conjugacy classes). So as an example for Z2, the representation 

ring is generated by the trivial and the non-trivial representation. 

The equivariant K-group should be contrasted by the equivariant coho- 

mology that is given by 

Hiv
2
en{c2, z) = if ^(RP

00
 , z) = z e Z2 e Z2 e • • •        (132) 

This difference is a consequence of a familiar effect: if we consider a finite- 

dimensional approximation by lP2iV"fl then the even cohomology and K- 

theory have the same associated graded, but differ in the extensions 

K
0
(W>

2N+1
) - zez2iv,      ije^(iRP2iV+1,z) = ze (z^.     (133) 
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We see how in the large N limit the K-group becomes free because ^N tends 

to Z. This effect has been recently described in terms of fractional branes 

on the orbifold in [84]. 

According to the equivariant version of the sequence (121), the IIA RR 

fluxes for the orbifold C2/G are given by the kernel of the map 

K%{pt) -> Heven{G, E) ^ R (134) 

This is the so-called reduced K-theory K^pt) that is represented by virtual 

bundles of dimension zero. So we have the prediction that the group of fluxes 

is given by 

Kl
G(C

2,U(l)) - K0
G(pt) £* R(G). (135) 

Here R(G) is the reduced representation ring that consists of virtual repre- 

sentations of dimension zero, i.e., pairs of representations 

po,Pi:  G->U(N) (136) 

with dimpo = dimpi. Given such a representation, we can construct the 

corresponding equivariant flat bundles EQ,EI on C2, by taking trivial bun- 

dles C^ and implementing the action of G through the representations po, 

Pi- 

Now this description raises some questions. It seems to predict an infinite 

set of fluxes at a simple orbifold. If G is of ADE-type, then the lattice 

K^pt) can be identified with the weight lattice Q* of the corresponding 

simple Lie group. However, as we remarked before, in a K-theory description 

one cannot distinguish the dimension of the corresponding flux. Since the 

equivariant fluxes are defined in terms of an infinite-dimensional classifying 

space, this would imply that the fluxes are of arbitrary high dimension and 

should be measured by branes of arbitrary high dimension. This is clearly 

not a physical description. In our case one would like to restrict to 1-form 

and 3-form fluxes that can be measured by the world-volumes of zero-branes 

and two-branes.   Therefore one would argue that the physical fluxes are 
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restricted to the quotient 

K%{pt)l(K%{pt))^ (137) 

where we have taken the quotient by the subgroup that describes bundles 

that vanish on the 4-skeleton of BG. 

4.5.3     One-form fluxes in K-theory 

How do we measure such a flux in the orbifold C2/^? As we explained above, 

a RR flux flux will give an extra phase to an Euclidean D-brane instanton. 

Let us also restrict to branes with smooth world-volumes that do not pass 

through the orbifold singularity. So we consider the space (C2 — {0})/G. 

This can be retracted to the smooth 3-dimensional space S3/G. 

Let us first consider the RR 1-form field. Fluxes of this field are described 

by the quotient 

K0
G(pt)/(K0

G(pt))3. (138) 

Given a closed one-manifold 7 in Ss/G the holonomy of the 1-form field is 

described as follows. The K-theory class is given by the pair of represen- 

tations {poiPi) and the corresponding flat equivariant bundles (Eo,Ei). To 

such a virtual vector bundle we can associate a flat equivariant line bundle 

L, the determinant bundle 

L = detEo0(detE1y (139) 

Now the phase of the RR 1-form field is simply the holonomy of the flat 

connection A of the line bundle L 

expz 
'7 
/ A. (140) 

The first Chern class of this line bundle is represented by an equivariant 

cohomology class 

Cl(L) = aipo) - ci(pi) € H2(G,Z) (141) 
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Here we define the Chern classes of a representation p : G —t U through the 

associated map of classifying spaces 

p* :  H*(BU) -+ H*(G,%). (142) 

The cohomology of the classifying space BU is generated by the Chern classes 

ci, C2,... and the images p*Ci we denote by Ci(p). 

Since any element of H2(G,Z) represent an equivariant line bundle, we 

see that the equivariant K-theory description coincides with the description 

in terms of equivariant cohomology classes given in section 4.4. The fluxes 

are given by 

H2{G,Z)^H1{G,U{1)). (143) 

4.5.4    Three-form fluxes in K-theory 

According to the formalism explained in the preceeding discussion, a 3-form 

flux will associate a phase to a Euclidean D2-brane world-volume M given 

by the eta-invariant of the virtual bundle .EQ — Ei restricted to M 

<p(M)=rjEo-rjEl. (144) 

In our case there is an obvious choice for M, namely the manifold S3/G 

that surrounds the singularity. (Note that any oriented three-manifold is 

spin, although there could be in principle more than one inequivalent spin 

structure.) We can express this phase directly in terms of the Chern-Simons 

invariant, since 

(p(M) = f      ch(E) = CS(E0) - CSiEi). (145) 
JMxI 

Here we have defined the Chern-Simons invariant for a 17(iV) flat gauge field 

as 

CS(E) = [ ch2(E) (146) 
JB 
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where B is a four-manifold with dB = M over which we have extended the 

bundle E and c/i2 is the second Chern character 

ch2 = \cl-c2 = -^TV F A F. (147) 

For the (7(1) part, this is half the usual Chern-Simons term. As explained 

in [85], this is perfectly fine. Because the relevant cobordism groups vanish, 

for every three-manifold M one can find a four-manifold B and an extension 

of the U(N) bundle such that B is spin. The fact that the intersection form 

on B is now even allows one to define the CS invariant using ^cf. 

Given a representation p of G, we can compute the Chern-Simons in- 

variant in terms of group cohomology as follows. We have the Chern classes 

dOOeff^cz),      c2{p)eH\G,z). (148) 

Now it is not difficult to see that for a group G of ADE-ty^e^ we have 

iJ4(G,Z)^Z|G|. (149) 

In fact a spectral sequence argument [86] gives i?4(G, Z) as the cokernel of 

the composition 

HS(SU{2)/G,Z) -> H3(SU(2),Z) -> H4(BSU(2),Z). (150) 

The first map is clearly of order |G| whereas the second (transgression) is 

an isomorphism. So the generator of HA
(G,1J) is the class 02(^2) where P2 

is the defining 2-dimensional representation of G. 

The CS invariant for the manifold Sz /G is defined by the map 

CS :  i?3(G, U{1)) -> HS(SS/G, C/(l)) ^ U(l) (151) 

where we identify S'3 = SU(2). So for the representation p2> this is simply 

given by 

CS(p2) = j^|    (modZ). (152) 



J. DEBOER ET AL. 1115 

For a general representation p, let ci be its first Chern class consid- 

ered as an element of H2(S3/G,Z) £ H2(G,Z), and let a be the repre- 

sentative in iiZ'1(53/G, U(l)). Similarly, let /? be the representative of C2 in 

H3(S^/G, U(l)). Then the Chern-Simons invariant of p is defined by 

CS(p) = ia U ci - /?. (153) 

The phase associated to a D2-brane wrapped on S3/G in a background 

described by the virtual flat bundle po — pi is given by 

(p(S3/G) = CS(po)-CS(pl). (154) 

Note that the first term in the Chern-Simons term (coming from ^cl) has a 

familiar description. There is an isomorphism 

ff2((?,Z)^Q*/Q, (155) 

where Q is the root lattice of type G. Since Q is an even lattice, there 

is a quadratic form (essentially the discriminant form of the lattice Q—see 

appendix A), 

x E Q*/Q  ^  q(x) = \x-x<EQ/Zc (7(1). (156) 
Zi 

This is the CS invariant of the line bundle x. 

If the 1-form flux is zero, we can define the group of 3-form fluxes as the 

quotient 

(XS)3/(XS)5. (157) 

In this case c\ — 0 so the flux is measured by C2 G H3(G, U(l)). Since 

this group is generated by the 2-dimensional representation, we see that this 

group of pure 3-form fluxes is simply given by 

F4(G,Z) = F3(G, [/(!)=%,. (158) 

Indeed, in this case it is not difficult to compute the groups of fluxes 

directly in K-theory.  For a finite subgroup G C SU(2), the non-vanishing 
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cohomology occurs in even degree, where for k > 1 

H4h-2(G, Z) - Gab = G/[G, G],        H4k(G, Z) = Z|G|. (159) 

This implies immediately that the Atiyah-Hirzebruch spectral sequence de- 

generates. If 

KP = (^G(P*))p (160) 

then we have the successive quotients 

Kp/Kp+1 = HP(G, Z),       p > 0. (161) 

This immediately gives that the group of 1-form fluxes modulo 3-form fluxes 

is 

Ko/K3 = H2(G,Z) (162) 

as we have seen explicitly. The group of 3-form fluxes with vanishing 1-form 

flux is also easily computed to be 

K3/K5*H*(G,Z) (163) 

confirming our computation via the CS invariants. Finally the full group of 

1-form and 3-form fluxes 

M(G) = Ko/K5 (164) 

is given by an extension 

0 -> H4(G, Z) ^ Z\G\ -> M{G) -± H2(G, Z) -± 0. (165) 

The corresponding cocycle of this extension is given by the map 

•6:  H2(G:Z)xH2(G,Z)->H*(G,Z),        b(x,xf) = x U x'. (166) 

This cocycle is definitely exact as an extension by U(l) since 

6(a?, x') = q{x + x') - q(x) - q(x'),        q{x) = -x • x (167) 
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where we use the identification H2(G^ Z) = Q*/Q. So the question is simply 

whether q(x) is of the form n/\G\. Since 2q(x) = x • x is always in HA{G, Z), 

the only question is whether x • x is divisible by two in HA{G, Z). 

This extension question changes the additive structure on the group of 

fluxes. Physically this effect can be described as follows. In the presence 

of a RR 1-form background x G H2(G^Z)^ there is an induced 3-form flux 

given by the CS invariant 

CS(x) = fB
l-cl = q{x). (168) 

Now suppose x has order n. That is to say, x represents a line bundle L and 

nx represents the trivial line bundle L®n. The 1-form flux of nx as measured 

by DO-branes vanishes, but the 3-form flux will be given by nq{x) and this is 

not necessarily 0 mod 1. As we argued above one can have nq(x) = ^ mod 

1. 

In terms of K-theory, such an element x corresponds to a virtual bundle 

L — 1. But this element has infinite order using the group structure in K- 

theory which is addition of bundles. If we take it n times, we get the class 

nL — n which is a virtual vector bundle. Of course the determinant line is 

trivial, but the bundle has higher order secondary invariants, in particular 

the CS invariant measured by a D2-brane. 

The simplest example is G = Z2. In that case we have 

Ko = kl2{pt) = Z (169) 

generated by the class x = p — 1 where p is the non-trivial representation 

of Z2 (or the tautological line bundle over MP00). We can now compute the 

phases for a flux nx, n G Z. As we explained we are only interested in the 

1-form and 3-form fluxes. These are labeled by 

Af (Z2) = K0/K5 =  lim Z2N/Z2iv-2 ^ Z4. (170) 

This should be contrasted with the answer obtained from equivariant coho- 
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mology21 

H2(Z2, Z) © iJ4(Z2, Z) = Z2 © Z2. (171) 

Since ci (rr) is the generator of H2(Z2, Z) = Z2, the 1-form flux is simply n/2 

(mod 1). So the holonomy of the virtual bundle nx is (—l)n. 

For the 3-form flux, we have to measure the phase of a membrane wrapped 

over 53/Z2. This equals the Chern-Simons invariant of the bundle p. Since 

C2 = 0 we obtain 

CS{x) = CS(p) = f^-cl = \. (172) 

For the bundle nx we have 

CS{nx) = -    (mod Z). (173) 

We see that in the presence of a RR 1-form flux (that is, if n is odd), 

there an induced 3-form flux. More precisely, the 3-form flux has a shifted 

quantization, where the phase factor satisfies 

¥>=!    (modi). (174) 

This computation can be repeated for general G. We use the same nota- 

tion for the root lattice Q and the corresponding finite subgroup G of SU{2). 

For An we have an extension 

0 -> Zn+i -> M -> Zn+i -> 0. (175) 

Let # be the generator of H2(An, Z) = Zn+i. One computes q(x) = n/2(n + 

1) so that (n + l)q(x) = n/2. For n odd this is | mod 1, so we find a 

non-trivial extension 

M(A2k) = Z2k+1 x Zafc+i,        M(^2fc-i) - 24* x Zfc. (176) 

21 An explanation about how to compute this equivariant cohomology group appears in 
appendix D. 
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For Dn (n > 3) one finds H2{Dn,Z) = Z2 x Z2 for n even, H2{Dn,Z) = Z4 

for n odd, iJ4(Dn,Z) = Z4(n_2) and q(x) = | mod 1 for the generator(s). 

So, again for n odd we have a non-trivial extension since 4:q(x) = n/2 

M(D2k) = Z2xZ2x Zs(k-i)i        M(JD2*-i) = Zg x Z2(2fc_3).       (177) 

For ^6,7,8 the induced fluxes q(x) are respectively |, | ,0 and there are no 

extensions 

M(£76) = Z3 x Z24,    M{E7) = Z2 x Z48,    Af (Eg) = Z12o. (178) 

Note that Es does not support 1-form flux. 

4.5.5    An alternate method of computation 

In this section, let us make a brief digression and describe a purely algebraic 

construction of the quotients 

K0
G(pt)/(K0

G(j>t))2n+l (179) 

which appeared in our preceeding discussion of fluxes. We shall discuss the 

case G = Zm. Recall that K^X) involves bundles that are trivial on the 

(2n)-skeleton of X. For the equivariant case, we need X = BG, and a con- 

venient set of spaces that approximate X is given by the set BG^ that 

appears in Milnor's construction of BG, see, for example [87]. Motivated by 

the results of [87] and the calculations in appendix D, we propose the follow- 

ing characterization of K^ (pt)/(K% (pt))2n+i- Let 0 be the augmentation 

map 

(/>:     R[G} -> Z (180) 

that sends ^n^ to ^n^. Here di is the dimension of the representation 

Ri. The kernel of </> is the augmentation ideal / of R[G]. Then 

Kzm (p*)/(tfL(P*))2n-l = R[Zm}/In. (181) 



1120 TRIPLES, FLUXES, AND STRINGS 

For example, for G = Z2 the augmentation ideal is generated by p— 1, where 

p is the non-trivial representation of Z2. Since (p — l)n = 2n~1(p — 1), /n is 

generated by 2n~l(p - 1). Prom this, we see that 

K%2(pt)/(K%2(pt))2n-i =Z® Z2„-i (182) 

in agreement with the result that we found before. A few additional calcu- 

lations are needed to show that 

Kzm(pt)MM)h  = z©z- (183) 
^m(pi)/(^m(pi))5   =   Z©ZdleZm2M (184) 

Klm(pt)l(KlM))i   =   Z©ZdieZd2©Zm3Md2 (185) 

where 

.            _/      m(m — 1)\ _ /      m(m — 1)   m(m — l)(m — 2) 
di=gcd   m,—^— M,    d2 = gcd   m,     v 

2       y'      '     0     V 2        ' 6 
These groups agree with the results of our earlier computations using the 

reduced eta-invariant. 

4.6    M theory compactifications with three-form flux 

We now turn to M theory compactifications with 3-form flux. In studying 

these compactifications, we face a difficult issue: namely, we do not yet un- 

derstand how to correctly treat the 3-form of M theory. There are various 

suggestions involving gerbes [88], or suggestive relations with E$ gauge bun- 

dles [4,89]. However, it seems likely that the correct way to treat the 3-form 

involves a framework that is currently unknown. In the following section, 

we describe how the data we have obtained point to the existence of new 

"frozen" singularities which support 3-form flux. We also conjecture the ex- 

istence of a new class of dualities between compactifications with different 

singular geometries and fluxes. 

In section 4.6.2, we consider the possibility that equivariant cohomology 

is the right framework for the 3-form. As an example, we describe the rele- 

vant equivariant cohomology groups for the global orbifold T4/Z2. Section 



J. DEBOER ET AL. 1121 

4.6.3 extends the discussion of l-form holonomies which appeared in section 

4.4.2 to the case of 3-form fluxes. This leads to some quite beautiful results 

which are likely to be useful in other contexts. In section 4.6.4, we com- 

pute the equivariant cohomology of the global orbifold T4/I>4. We point out 

that there is a choice of flux with the properties we expect for the M theory 

compactification dual to the CHL string. 

In section 4.6.5, we resolve some puzzles in comparing M theory with type 

IIA. The resolution suggests a natural generalization of the Freed-Witten 

anomaly. Section 4.6.6 contains some thoughts on the the geometry of the 

M theory 3-form, and a number of related topics. Finally, we wrap up the 

discussion with a brief mention of F theory compactifications with flux. 

4.6.1    Frozen singularities and new dualities 

So far, we have related our asymmetric orbifolds in 6 dimensions to M theory 

compactifications on (Z x Sl)/G where Z = K3. We have also described 

cases with Z = T4 without heterotic duals. As we have seen, the smooth 

geometric M theory compactifications give type IIA compactifications with 

torsion RR l-form flux. 

Some of these theories are obtained by compactifying a 7-dimensional 

theory on a circle. We studied three classes of these 7-dimensional theories: 

namely, type IIA orientifolds, heterotic asymmetric orbifolds and F theory 

compactifications. An example like the CHL string can be realized by all 

three constructions. 

However, it is natural to ask whether there are other strong coupling 

descriptions which involve M theory compactified on a four-manifold. Since 

the only bosonic fields of M theory are the metric and the 3-form field, we 

can only turn on 3-form fluxes on the four-manifold. Compactifying such a 

theory on a circle gives a 6-dimensional IIA compactification on the same 

four-manifold with RR 3-form flux. 
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Let us begin by recalling what is known about 7-dimensional M theory 

compactifications. Apart from the standard compactification of M theory on 

K3 without flux, only the strong coupling limit of the CHL string has been 

discussed. The CHL string can be realized by a 7-dimensional orientifold 

with 2 06+ planes and 6 06~ planes. The strong coupling limit of 06~ 

planes is smooth in M theory [90-92], while that of an 06+ plane appears to 

be a "frozen" D4 singularity in M theory [16,17]. The D4 singularity can be 

seen to arise in various ways. In type IIA near an 06+ plane, the geometry 

of a three-surface around the orientifold is S2/Z2 = MP2. In addition, the 

06+ orientifold has RR charge +4, which is measured by the field strength 

of the RR 1-form gauge field. This means that the circle on which we reduce 

from M theory to type IIA forms a circle bundle with first Chern class +2 

on MP2. The total space of that circle bundle over MP2 is then S3/^. This 

explains why we expect a D4 singularity to appear. Alternatively, before 

modding out by Z2, we have an object with charge +4 which is therefore 

described by an A3 singularity in M theory. Modding out by Z2 yields a 

D4 = AS/1J2 singularity. 

The same D4 singularity can also be found in the geometry seen by a 

D2-brane probe. On the probe, there is an iV = 4 d = 3 Yang-Mills theory 

with gauge group 0(2) and a hypermultiplet transforming in the symmetric 

representation. The Coulomb branch geometry contains a D4 singularity. 

The existence of this D4 singularity is also required to reproduce the Seiberg- 

Witten curves of SO and Sp gauge theories from 5-brane geometry [16]. 

Since an 06+ plane has no moduli, the D4 singularity should also have 

no moduli. In particular, the standard set of moduli associated with re- 

solving the singularity should be lifted. If the D4 singularity were purely 

geometrical, we could certainly resolve it. So the only possible means by 

which it could be frozen must involve the 3-form. In 7 dimensions, the two 

types of orientifold plane 06" and 06+ are distinguished by the sign of the 

contribution of the MP2 world-sheets to the string path integral. This sign 

is related to a discrete choice of NS-NS B-field. This discrete i?-field should 
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have its origin in a discrete 3-form field in M theory that gives different signs 

to various contributions to the membrane path integral. Unfortunately, this 

path integral is not understood, and we do not have a precise geometrical 

definition of the discrete allowed values of the 3-form field for a given singu- 

larity. We shall return to a discussion of the geometry of the M theory 3-form 

later. For now, the primary message is that M theory appears to have frozen 

singularities with discrete 3-form flux. In particular, the 7-dimensional CHL 

string is described by M theory on K3 with two frozen D4 singularities with 

some discrete 3-form flux [17]. 

As this point, let us return to an issue that appeared in our analysis of 

7-dimensional orientifolds of section 3.2.4. We found 2 orientifold compacti- 

fications with equal numbers of 06+ and 06" planes. These configurations 

are clearly distinct as pertubative string theories. Are they also distinct 

non-perturbatively? With the strong coupling description of 06+ in hand, 

it seems worth mentioning that one check on the number of non-perturbative 

configurations is to count the number of non-isomorphic embeddings of the 

weight lattice for (I?4)4 into the K3 lattice, Fs^g. If the orientifold configu- 

rations are distinct non-perturbatively then it is possible that the difference 

will be visible in the number of inequivalent ways of embedding (-D4)4. There 

are analogues of this embedding question for lower-dimensional orientifold 

compactifications. It might be possible to do this counting using the tech- 

niques developed in [57,93].22 

Now, in order to find M theory compactifications dual to our new 7- 

dimensional theories, for which no orientifold descriptions exist, the lattices 

discussed in section 2.4 turn out to be very helpful. Recall that the lattice 

for the CHL string in d = 7 took the form, 

AcHL = r3,3e£>4e£>4. (186) 

The orthogonal complement of ACHL in the usual 7 — d heterotic lattice Fs^g 

22A preliminary computation indeed suggests that there are 2 non-isomorphic embed- 
dings. 
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Singularity Discrete Fluxes Enhanced Gauge Symmetry 

Di+n Z2 cn 

E, Z2,Z3 C2, {e} 

E7 Z2,Z3,Z4 B3, Au {e} 

E8 Z2,Z3,Z4,Z5,Z6 F4, G2, Au {e}, {e} 

Table 14:   Singularities, their allowed 3-form fluxes, and enhanced gauge 
symmetries. 

is 

A£HL=I>4eI>4. (187) 

As was already observed in [38], AQHL seems to be directly related to the 

singularities appearing in the dual M theory description. Indeed, on the het- 

erotic side there are no moduli for AQHL, and in M theory, the corresponding 

singularities are frozen. By looking at table 5, we see that the generalizations 

of AQHL are Ee © EQ for Z3, E7 © E7 for Z4, E$ © Es for the finite groups 

Z5 and ZQ. This leads us to conjecture that these lattices describe frozen 

singularities in M theory with the corresponding discrete fluxes. By tuning 

moduli, we can enhance the unbroken gauge symmetry in the asymmetric 

orbifold compactification. In the geometric picture, this means that we can 

enhance certain singularities with flux. This shows that we can also turn on 

a Z3 flux in an E$ singularity. With such a Z3 flux we can resolve the E$ 

into an EQ, but no further resolution is possible. 

A summary of the ADi£-singularities with their allowed discrete 3-form 

fluxes is given in table 14. Notice that for the EQ singularity, we can turn 

on either a Z2 or a Z3 discrete flux, but not both. In particular, the set of 

allowed fluxes do not form a group. This is a first sign that these fluxes are 

classified by a rather intricate geometrical object. In our heterotic string 

analysis, we always found that the singularities came in pairs. This is pre- 

sumably related to the fact that on a compact manifold like K3, the total 
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Frozen Singularities Dual Description 

D4©Z)4 Z2 triple 

#6 0 #6 Z3 triple 

£7 0^7 Z4 triple 

#8 0 #8 Z5 triple 

£8©.E8 Ze triple 

(A)4 Z2F 

(^e)3 Z3F 

D4 © E7 © E7 Z4F 

D4®E6@ Es Z6F 

Table 15: A list of frozen singularities for 7-d M theory compactifications on 
K3 with flux. In labeling the dual theories, G triple refers to the G heterotic 
asymmetric orbifold, while G F refers to F theory on (T4 x Sl)IG. 

flux must vanish. We therefore always need two singularities with equal 

fluxes of opposite sign. This appears to be similar to the cancellation of 

the two Chern-Simons invariants in the i?8 x ^8 heterotic string, and to 

the gluing conditions for the two del Pezzo surfaces appearing in F theory 

descriptions. 

It is also natural to ask whether similar dual descriptions exist for the 

7-dimensional F theory compactifications on (T4 x Sl)IG. Indeed, in es- 

sentially the same way as described above, we are led to a conjectured dual 

description in terms of M theory on a K?> surface with a particular set of 

frozen singularities. The list of frozen singularities for the M theory mod- 

els dual to asymmetric orbifolds and to these F theory compactifications 

appears in table 15. 

If we further compactify M theory on a singular JCS with discrete 3-form 

flux on a circle, we obtain type IIA on the same KZ with RR 3-form flux. 

However, we also had a different description of the same theory in terms 



1126 TRIPLES, FLUXES, AND STRINGS 

of another orbifold K% with RR l-form flux. This has to be a KZ with 

different geometry because the KS surfaces that appear with 3-form flux are 

in general not orbifold KZ surfaces: they are not quotients of another KZ 

surface by some discrete group. This picture can therefore only be consistent 

if there is a duality between IIA on ICS with discrete RR l-form flux and 

IIA on a different K% surface with discrete 3-form flux. 

To argue that such a duality indeed exists, let us examine the charge 

lattices of both theories obtained by wrapping DO, D2 and D4-branes on the 

if 3. For an orbifold KZ with discrete RR l-form flux, the charge lattice is 

constructed as follows: the vanishing cycles in the orbifold KZ generate a 

lattice A^.^. , These lattices have been constructed by Nikulin [37] for 

the if 3 case, and appear in table 8. For the case of X = T4, the lattice of 

vanishing cycles appears in table 10 [62]. We should not wrap D-branes over 

any of these vanishing cycles. This becomes particularly clear by looking at 

M2-branes wrapping 2-cycles in the M theory description on (X x Sl)IG (we 

will elaborate on the connection between the IIA and M theory description in 

section 4.6.5) . However, we can wrap D2-branes over any cycle orthogonal 
to ^vanishing' which yields the lattice A;^nishing, the orthogonal complement 

of Avanishing in Fs^g. In addition, we can also consider DO and D4-branes on 

the orbifold if 3, leading to a total charge lattice 

AD-branes = rM © finishing- (188) 

For if 3 surfaces with discrete RR 3-form flux, the charge lattice is con- 

structed in a similar way. However, a new subtlety arises. Namely, not all 

brane wrappings are allowed. This conclusion follows by applying dualities 

to the Freed-Witten anomaly [18], which states that the class of the pullback 

of ii", the field strength of the NS-NS 2-form B, to the D-brane world-volume 

must vanish. In particular, if the class [H] is torsion of order fc, only branes 

that come in stacks of k are allowed since k[H] — 0 [94]. If we apply this con- 

straint to a D3-brane and further S and T-dualize, we see that the pullback 

of the 3-form field strength to the D4-brane world-volume has to vanish. In 

the cases at hand, the field strength of the RR 3-form will be torsion, say of 
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order &, which is directly related to the order of the finite group appearing 

in the 1-form discussion above. Therefore, we can only wrap ZM branes nk 

times, with n an integer. The contribution to the charge lattice from DO 

and D4-branes will therefore not be F^i, but lY^fc). In the 3-form case, we 

therefore conclude that the lattice is given by: 

AD-branes = ri,i(AO ® A!£LU* (189) 

If the theories with the 1-form and the theories with the 3-form flux are 

to be dual to each other, the lattices (188) and (189) should be equivalent to 

each other. Therefore, A^nishi has to be an index k sublattice of A^nishi . 

This explains how the geometries of the two K3 surfaces can be so different 

from one another: the lattices of vanishing cycles differ by an element of 

order k. For example, in the case of the CHL string, the lattice A^nishi 

is generated by eight vanishing cycles, and in addition, half of the sum of 

these cycles is also an element of integral homology. On the other hand, the 

lattice A^a
;
nishi is the lattice of two D± singularities. It is also generated by 

eight vanishing cycles, but this time half the sum of the first four cycles and 

half the sum of the second set of four cycles each are in integral homology. 

This lattice is twice as large as A^nishi , as we expect from the preceeding 

discussion. 

The duality between K3 surfaces with 1-form and 3-form fluxes differs 

considerably from the usual T-dualities. Typically, T-duality preserves the 

nature of singularities (since it preserves enhanced gauge symmetries), while 

in our case, it changes the geometry of the K3 in a much more dramatic way. 

We note, however, that the K3 surfaces are still birationally equivalent. That 

this is true can be seen from the F theory discussion of the previous section. 

In the construction involving two del Pezzo surfaces, we found singular fibers 

of type JQ , IF*, ///* and II*. The corresponding extended Dynkin diagrams 

are those of D±,E§,Ej and E%. Birationally equivalent geometrical models 

of these elliptically fibered K3 surfaces have singularities described by the 

extended Dynkin diagram minus one node. The singularities of the K3 with 
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1-form flux are obtained by removing nodes with Dynkin label k from the 

singularities. The singularities of the LC5 with 3-form flux are obtained by 

removing the extended nodes of the Dynkin diagrams, leading to singularities 

of type D±,E§, E7 and E%. One can show that the lattices of vanishing cycles 

obtained this way indeed differ by an element of order &, and by construction 

the K3 surfaces are birationally equivalent. 

The novel duality described here raises all kinds of questions. One puzzle 

that arises is the following: we already described in section 4.4 that type IIA 

on KZj^ with a particular choice of 1-form flux is dual to the CHL string. 

Naively, this string theory appears to be quotient of IIA on T4 with a smooth 

Z2 invariant 1-form i.e., a Z2 invariant element of JH'
1
(T

4
, [/"(l)). It is well- 

established that T-duality maps T4 with a constant 1-form to the dual torus 

with a constant 3-form. In addition, if the 1-form is Z2 invariant then so 

is the 3-form which is now an element of jff3(r4, (7(1)). If we mod out the 

theory with the 3-form by the action of the T-dual Z2, we would expect to 

arrive at IIA on T4/Z2 with a 3-form flux. This, however, is not consistent 

with the picture given above. 

The reason for this apparent discrepancy is that the Z2 quotient makes 

sense as a perturbative orbifold only when the vanishing 2-cycles have a half- 

integral 5-field flux [95]. In cases without this flux like geometric orbifolds, 

we do not have perturbative control over the theory. Therefore, modding 

out by Z2 yields a duality between IIA on T4/Z2 with 1 and 2-form flux 

and IIA on T4/Z2 with 2 and 3-form flux. Neither of these theories has 

a smooth 7-dimensional limit. On the other hand, we are interested in a 

duality between IIA on T4/Z2 with only 1-form flux and IIA on another if 3 

with only 3-form flux. These theories are not perturbative Z2 orbifolds of 

string theory, and so we cannot naively use T-duality to relate them. As 

we argued above, the duality between these theories is considerably more 

involved. 

However, this still leaves us with the following question: by starting with 
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a T4 with Z2 invariant 3-form, we can construct the singular manifold T4/Z2 

with a non-trivial discrete 3-form flux. Does string theory compactified on 

this space make any sense23? We have not encountered this string theory 

anywhere in our prior discussion, and we suspect it is inconsistent. It would 

be nice to give a direct argument for this, perhaps using supersymmetry or 

anomaly cancellation. A related situation that is worth mentioning arises 

for type IIA strings: consider an orientifold 6-plane with RR charge q. If 

there is no S-field, this plane is supersymmetric for q > —2. However, with 

a half-integral discrete S-field, the orientifold plane is an 06+ plane and is 

only supersymmetric if q > +2. This can be seen from a tadpole calculation 

in string theory, but it is not clear whether there is a direct low-energy 

argument giving this conclusion. 

To summarize our discussion so far: we found 7-dimensional M theory 

compactifications on K3 with frozen singularities and discrete 3-form fluxes. 

These theories are dual descriptions of either 7-dimensional asymmetric het- 

erotic orbifolds or F theory compactifications. These 7-dimensional theories 

give 6-dimensional IIA theories by compactifying on a circle, and the 6 and 7- 

dimensional lattices differ by a factor of Fi^A;). These models serve as data 

from which we obtain a list of new frozen, or partially frozen, singularities 

in M theory. 

4.6.2    Three-form flux as equivariant cohomology 

The most natural geometric object with which to identify the M theory 

3-form is a generalized connection on a "2-gerbe"; see, for example, [98]. 

Although 2-form S-fields and "1-gerbes" have a relatively straightforward 

interpretation in terms of bundles of algebras of operators on infinite-dimen- 

sional Hilbert spaces, this description is less clear for the next case of 3-form 

fields. For a smooth manifold X we expect that flat 3-forms are given by 

the cohomology group H3(X, U(l)).   There are some indications that for 

23 An example involving discrete zero and four form fluxes is discussed in [96,97]. 
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an orbifold X/G one should again consider the corresponding equivariant 

group HQ(X,U(1)) [88]. It is therefore natural to extend our discussion of 

equivariant cohomology to this case. 

The equivariant cohomology groups II^(X, £7(1)) are computable. As 

explained in appendix D, in the case of a T4/Z2 orbifold we find 

ffi2(T
4,t/(l))^(Z2)15. (190) 

In terms of the previously introduced generators 02 and £, a general element 

can be written as 

c = J2 cijke
ie^k + Y, cij&vz + Y,ci&e + co£3,      (191) 

i<j<k i<j i 

with 

Cijk,Cij,Ci,CQ e Z2> (192) 

Note that we now have contributions of various type. First of all there are 

obvious 3-forms that come from invariant fields on T4. The flat 3-form field 

on T4 are described by iJ3(T4,17(1)) and this group is (up to a determinant) 

canonically isomorphic with T4 itself. The Z2 group acts as C —>• — C on the 

3-form field, so the invariant configurations are 

C=   ^2  ^iCijkdxidaPdxk,        Cij* = 0,l. (193) 
i<j<k 

As we explained, there is a well-defined map of the equivariant forms into 

the invariant forms, and clearly a class of the form (191) gets mapped to the 

invariant 3-form C^ = c^. So the 16 classes CijkOl9^9k modulo forms of 

lower degree in the 8l can be given this geometric interpretation. 

The class ^3 is the image of the group cohomology class in i73(Z2, U(l)). 

It describes a trivial 2-gerbe with a non-trivial group action. This is for 

example the class that describes a non-zero C-field in the neighbourhood of 

the singularity C2 /Z2. It would be an analogue of discrete torsion for the NS 

S-field. The other classes of type Cijdl9^ and Cf0*f2 describe mixed cases 

that are partially geometric and partly group theoretic. 



J. DEBOER ET AL. 1131 

4.6.3    Three-form holonomies 

The local computation of the consistent 3-form fluxes is much easier in this 

case. If we consider the manifold with boundary XQ obtained by cutting the 

16 singularities out of the KS manifold T4/Z2, we have again 216 possibilities, 

because at each singularity we have the non-trivial class £3 coming from 

iJ3(Z2, C/(l)). Now the global topology gives only one condition. Because 

the boundary Y = OXQ bounds a four-manifold, the sum of all classes should 

add up to zero. This reduces the (Z2)16 to (Z2)15. 

In the same way that flat connections have well-defined holonomies along 

closed curves of a given homology class, flat 2-gerbes have [/(l)-valued 

holonomies along 3-cycles. The holonomy of the 3-form C around a fixed 

point p is determined as follows. The boundary of a neighbourhood of p is 

given by a 3-cycle S^ = MP3 and the holonomy is defined locally as 

expi /    C = eiqpi7np(C]p). (194) 

We propose the following formula for the holonomy of a class C as repre- 

sented as in (191) around the fixed point p G (Z2)4, 

(p(C\p) =  J^ CijkPVp* + Y,cijpV + Y,<*? + co> (195) 
i<j<k i<j i 

This formula follows again trivially from the definition of the holonomy as 

the restriction to the fixed point 

«;(C) = <p(C;p)e (196) 

combined with the localisation formula (107) that ipiO1) = p2£. 

Note that these formulas have a nice algebraic interpretation. Because 

our generators 6l satisfy (91)2 = 0*f we have for the variables p1 the relation 

(pi^p1- (197) 

This means that we can consider the holonomy as a function of the variables 

pi over the field Z2 (with pi = 0,1). 
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So quite generally we have the following algebraic interpretation of the 

holonomy of an equivariant £;-cocycle G of the torus Tn. Consider the affine 

space An = (^Y with coordinates p\ and let F{An) = ^[p1,... ,pn] be 

the space of functions 

ip:  An^Z2. (198) 

Then there is a filtration, where Fk(An) denotes the functions of at most 

degree k. According to the above localisation formula, we can think of the 

holonomy ^p{C]p) as an element of Fk{An). We can identify the quotients 

Fk(A
n)/Fk-i(An) with the exterior products A*^)71. Clearly the affine 

group (Z2)n tx SL(n,lj2) acts on F(An) and the orbits form the different 

types of equivariant classes. 

There is an interesting check of the holonomy formula. We can pick a 

3-cycle that is represented by a 3-plane in T4. This will give a 3-cycle on the 

orbifold T4/Z2 that will divide the 16 fixed points in 2 groups of 8. Clearly 

the holonomy of C around that plane should be equal to the sum of the 

holonomies around the fixed points "to the right" or "to the left" of the 

cycle. It is not difficult to check that this property is indeed reflected in the 

above formula. For example, if we pick the plane say spanned by xl,x2,x^ 

the holonomy will be C123 and this equals the sum 

ci23=   Y,   <P(C'P)=   E   viCip). (199) 
p, p4=0 p, p4=l 

In order to compute the holonomy directly in terms of the C-field, we 

should make use of the formalism of gerbes. Let us consider in all generality 

an n-gerbe defined on a manifold M. A connection on this n-gerbe is an 

(n + l)-form C^, defined over the patches Ui of the manifold. The forms over 

patches Ui and Uj are related on the non-empty intersection Uij = Ui fl Uj 

by d = Cj + dCij. The Cij can be regarded as connections on (n — 1) gerbes 

defined at the overlap patches Uij. The Cij are only defined up to closed 

forms (with integer periods). On triple intersections Ui fl Uj fl Uk there is the 

consistency condition d(Cij + Cjk + Cki) = 0 which is compatible with the 
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ambiguity of adding closed forms. On the triple overlap, Cij + Cjk + Cki and 

Cij + Cjk + Cki + dCijk define the same cocycle. The Cijk can be thought 

of as connections on an (n — 2)-gerbe, defined over the Uijk = Ui fl Uj fl Uk- 

This extends all the way until we arrive at zero-forms (functions), which can 

be thought of as transition functions for a 0-gerbe (that is, a line bundle). 

For a concrete holonomy formula, we do not consider open patches with 

finite overlap, but reduce the overlaps to infinitesimal size; that is, we cut 

up M in pieces Mi by a partition of unity. If the pieces Mi and Mj have 

a common boundary we denote this M^; a common boundary between Mf, 

Mj and Mk is written as M^ etc. Define (n - l)-forms Ci over the pieces 

M^, we think about the Mij as the places where we "jump" from one patch 

to another. The change in connection is given by Ci — Cj + dCij. Cij itself is 

defined over the M^, and has an intrinsic ambiguity by a closed form. One 

regards Cij as a connection on an (n — l)-gerbe over Mij with a U(l) gauge 

invariance etc. 

The concrete holonomy formula is now (note the alternating sign): 

JM •    JMi ..   JMij m JMijk 

(200) 

This is invariant (for M without boundary) under 

d    ->    Ci + dLi 

Cij    —>•    Cij + Li + Lj + dLij 

Cijk    ->    C^k + Lij + Ljk + Lki + dLijki (201) 

Two extreme cases of this formula are for a globally well-defined form C, 

in which case the sum on the r.h.s. reduces to a single term, and the case 

when only the last sum of integrals in the expression contributes. These 

are analogues of the bundle case where physicists are used to either using 

well-defined connections over large patches, or to "putting the holonomy in 

the transition functions." For the case of connections on gerbes, there is a 

much larger freedom to "put" the holonomy somewhere. 
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As an example, let us return to the 4-torus T4 mod the Z2 reflecting all 

coordinates, where for convenience we now choose coordinates x in (E/2Z)4. 

We label the 16 fixed points of the Z2 by x1 = p\ p G (Z2)4. 

Pick a fixed point p and define a "hyperbox" around this point by the 

coordinate ranges 

p1 < x1 < p1 + e,    p* - e < xi < p1 + e 

for % = 2, 3,4.   The hypersurface of this hyperbox is a 3-surface; we will 

compute a 3-form holonomy over it. 

Assume the existence of a constant 3-form field ]Ci<j<A; Cijkdxtdx^dxk/8 

in the bulk. From now on we will always assume that the summed over 

indices are ordered. The first integral in the holonomy formula is over the 

2-faces of the cube; there are 7 of these, of which 6 pair up as opposite 

faces. The opposite faces do not contribute to the integral, because their 

contributions cancel. The only contribution comes from the face at x1 = 

p1 + e. This gives 

y; f a-^e3. (202) 
ijMi 

We next consider the transition functions: these are defined at the edges 

of x1 = p1, p2 < x2 < p2 - e, pi - e < x1 < p1 + e for i = 3,4. The 

constant 3-form jumps upon traversing the plane at x1 = p1 by an amount 

Cijkdxldx^dxk/4, and we should write this as d of something. This is inher- 

ently ambiguous, so we choose some conventions and write 

cijkdx'dx^x1^ = d [   Yl cijkXldxjdxk + Cijdxldxj    . (203) 
\i<j<k j 

Here the second term is a closed 2-form that does not contribute to the 

transition function, but will contribute to the holonomy. 

We have to integrate this 2-form over the edge of x1 — p1, p2 < x2 < 

p2 + e, p1 — e < x1 < p1 + e for % = 3,4. Again only one face contributes (the 
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one with xl = pi, x2 = p2 + e), resulting in 

(ci34Pie + 0234(^2 + e) + C34) e2. (204) 

The next transition functions are defined at the edges of the surface x1 = pl, 

x2 = p2, p1 < x3 < p3 + e, pA - e < xA < p4 + e. They are 

J2 Cijkx
ixidxk + Y, cijx

idxj + adxi j /2. (205) 
2<i</c i<i / 

(206) 

The integrals result in 

(cmpV + ci34P1(p3 + c) + C234P2(P3 + c) 

+C14P1 + C24P2 + C34(P3 + C) + C4) 6. 

The last contribution comes from the point x1 = p1, x2 = p2, x3 = p3, 

x4 = _p4 + e. The transition function is 

Y cijkx
ix^xk + Y. Q^V + Q^ + co j /2. (207) 

Ki<j<k i<3 J 

Inserting values for the coordinates gives 

CUSPVP
3
 + cn^pViP4 + e) + ci34Py (P4 + c) + C234pV(p4 + c) 

+C12PV + CiapV + CHPH/ + C) + C23P2P3 + C24P2(p4 + c)      (208) 

+C34P3(P4 + e) + cip1 + C2P2 + C3P3 + C4(p4 + e) + CQ. 

Adding the contributions (202), (204), (206) and (208) gives formula (195). 

4.6.4    An M theory dual of the CHL string? 

In this section, let us continue to work under the premise that the 3-form 

can be treated as a connection on a 2-gerbe. We still expect that there will 

be further conditions, from equations of motion or anomalies, constraining 

us to a subset of the choices predicted by equivariant cohomology. If this is 

the right approach—and this is far from clear to us—then it is interesting 
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to study 3-forms on the global orbifold T4/P4. By T4/P4, we mean the 

particular global orbifold specified in appendix D.2 with singularities, 

Dl®Al®A\. 

If there is a 3-form on T4/i?4 with local holonomies at the D± singular- 

ities only, it would provide a possible candidate M theory dual to the 7- 

dimensional CHL string. 

There is a simple expression for i?^»(T4, U(l)) that suggests that this 

is indeed possible. Suppose that T4/G has singularities ©G^, i.e., ADE- 

singularities of type Gi. Then 

Ho^\U{l))^^g^^. (209) 

Here we have used II3(Gi:U(l)) = ^dy Therefore, there is a natural 

inclusion 

-^(Gi,^!))-*^3^,^!)). (210) 

Equation (209) has a simple interpretation in terms of holonomies of 2- 

gerbes around Sz/Gi. It simply states that the set of equivariant 3-forms 

is the same as the set of all inequivalent local holonomies, subject only to 

one overall flux cancellation condition. Thus, all possible holonomies can 

appear, as long as their sum, viewed as an element of II3(G, {7(1)), vanishes. 

In particular, there is a case of T4/^ with equal and opposite holonomies 

at the Z?4 singularities, and no holonomies at any of the other singularities. 

This is precisely what we want for an M theory dual of the CHL string. 

In an attempt to make this more precise, we give a tentative expression 

for the holonomies associated to 3-forms. Points on T4 that are invariant 

under a non-trivial group element lie either on ¥% or on IF3, where F2 and 

F3 represent the fields of two and three elements. The group G still acts 

on F2 and/or IF3. We propose that the holonomy around points on IF^ is 

given by G-invariant cubic polynomials in the four variables pi E {0,1}, 

i = 1,2,3,4, with coefficients in Z\G\' In the monomials, the highest power 
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of pi that can appear is one. To compute the holonomy, we still have to sum 

over all preimages of a given point in T4/G. This can be compared to our 

discussion of gerbe holonomies for G — Z2 in section 4.6.3. Similarly, the 

holonomy around points on IF3 is given by G-invariant cubic polynomials in 

the two variables pi G {0,1, 2}, i = 1, 2, with coefficients in Z|G!|. The highest 

power or pi appearing in monomials is two. Again a sum over preimages is 

required. The final answer is to be viewed as an element of 1J\G\ in which all 

local holonomies can embedded. 

For example, for I^, the holonomy is given by by a polynomial, 

H     =     Ci23p1p2p3 + C124P W + C134P W + C234P Vp4 

+bi2P1p2 + 6l3PV + &14P V + &23PV + &24P V + &34P3p4 

+aip1 + a2p2 + asp3 + a^pA + ao, (211) 

with all coefficients in Zg, and with the entire expression viewed as an ele- 

ment of Zg. In other words, the holonomy will be ex.p(27riH/8). The group 

D4 acts on the pl. The generator ft sends p1 <-> p2 and p3 <B> p4, whereas 

the generator a sends p1 ^H- p3 and p2 <-> p4. Imposing I^-invariance on i? 

restricts it to the form 

ff - C^PV+P^V+P^V+PVP
4
) 

+&I(P
1
P

2
 +P3P4) + 62 (PV +P

2
P

4
) + 63 (PV +P

2
P

3
) 

+a(p1 +p2 +p3 +p4) + ao. (212) 

Our prescription for the holonomy states that we should sum over preimages. 

In other words, if TT denotes the projection TT : T4 —>> T4/^, the holonomy 

around a singularity x E T^/V^ is given by 

#(*)=   J]   fr(p). (213) 
pG7r-1(cc) 

One can verify that when c is divisble by two, it will only contribute a 

multiple of 8 to the holonomy, and therefore c is naturally restricted to c G 

Z2. Similarly we find that bi G Z4, a G Z2, and ao G Zs- These values are in 
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Singularity Holonomy € Zg 

DP ao 

M2) 
4c + 2(6i + 62 + 63) + 4a + ao 

A(l) 2b2 + 4a + 2ao 

v4(2) 
^3 263 + 4a + 2ao 

4" 2bi + 4a + 2ao 

4> 4c + 4(6i + 62 + 63) + 4a + 4ao 

4 4a + 4ao 

Table 16: Three-form holonomies of T^/V^ 

precise one-to-one correspondence with the groups Hp(V4:1H
3~p(T4i

:U(l))) 

we compute in (260). We can now evaluate the holonomy around each of 

the singularities in the quotient T4/!^. The result is given in table 16. If 

we take ao = 4 and all other coefficients equal to zero, we find holonomy —1 

around the two D4 singularities, and vanishing holonomy around all other 

singularities. We shall explain in section 4.6.6 why we believe that this 

particular holonomy is realized, while other possibilities, like choices with 

holonomy around A-type singularities, are unlikely to be consistent. This 

then appears to be a concrete proposal for the singular K3 with 2 frozen D4 

singularities that appears in the 7-dimensional M theory description of the 

CHL string. 

4.6.5     Some comments on type IIA versus M theory 

One of the puzzles in the duality between type IIA and M theory is that RR 

fields in type IIA appear to be classified by K-theory, while the M theory 3- 

form requires a quite different framework—perhaps cohomology. A detailed 

analysis showed that for partition functions computed on large smooth com- 

pact spaces, this is not a contradiction [4]. However, a sum over fluxes in 

M theory is needed to reproduce the partition function of type IIA string 
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theory. One may wonder whether our analysis sheds any light on the rela- 

tion between M theory and type IIA. Specifically, let us consider type IIA 

on C2/G5 with RR 1 and 3-form flux. We expect a relation between, 

K{C2/G)^H*((C2 xS^/G), 

or more precisely, a relation between 

K0G(pt)/(K0
G(pt))b *+ ff3((C2 x S^/GMV)' (214) 

The action of G on the right is determined by the 1-form flux on the left, 

i.e., by an element of K^{pt)/(K^{pt))3 = Hl(G,U(l)). At first sight, 

the relation (214) appears very problematic. When the 1-form flux is such 

that G acts faithfully on the S'1 factor in (C2 x S^/G, the latter quotient 

is smooth and does not have any non-trivial 3-cohomology. Therefore, we 

cannot detect any phases using a non-trivial Euclidean M2-brane. On the 

other hand, in type IIA we can consider Euclidean D2-branes, and according 

to our previous calculations, these pick up phases ^ mod Z. 

This discrepancy can be traced back to the fact that not all D2-branes 

in IIA can be lifted to M2-branes in M theory, at least not when there 

is non-trivial RR 1-form flux in IIA. For example, consider again the case 

where G = Z2 with non-trivial 1-form flux. The M theory description is on 

(C2 x S1)/Z2. It is easy to see that there is no M2-brane in this space that 

reduces to a single D2-brane wrapping S'3/Z2 in type IIA. At most we can 

get two D2-branes wrapping 53/Z2, and these only see twice the 3-form flux 

in type IIA. 

This mismatch between M theory and type IIA is removed once we 

take the Freed-Witten anomaly for D-branes into account. The only non- 

anomalous brane configurations are those for which the NS-NS 2-form field 

strength H is cohomologically trivial when restricted to the brane world- 

volume. Applying S- and T-dualities in a cavalier manner implies that 

D2-branes are only consistent if the RR 1-form field strength is cohomo- 

logically trivial on the D2-brane world-volume. It would be nice to derive 

this anomaly from a world-volume approach. 
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In particular, the D2-brane that wraps S3/Z2 has a non-trivial RR 1- 

form field strength living on its world-volume, and is therefore inconsistent. 

The 1-form field strength is the non-trivial element of H2
(S

3
/Z2,1J) = Z2 

so we can wrap two D2-branes. Therefore, anomaly cancellation removes 

those D2-branes from the spectrum that do not appear in M theory. It is 

pleasing to see that anomaly cancellation for D2-branes has such a simple 

interpretation in M theory. 

The same argument applies more generally: take any D2-brane wrapping 

some non-trivial three-manifold B, and assume it has RR 1-form flux [FRR]. 

Then there is a circle bundle E over B which is the M theory lift of B. 

This circle bundle has second Chern class [FRR]. However, taking any M2- 

brane in M theory and projecting it down to E only gives D2-branes if the 

pullback of the cohomology class of [FRR] is zero. This follows from the 

fact that [TT*^^] is cohomologically trivial on E, where TT : E —>• B is the 

projection. This in turn can be seen from the Gysin exact sequence for 

sphere fibrations; see, for example, [99]. M theory therefore implements the 

condition for anomaly cancellation quite generally. 

Ultimately, we would like to generalize all this to K-theory, which is the 

proper setting both for RR fields and for D-branes at small string coupling. 

We will very briefly discuss a possible generalization of the Freed-Witten 

anomaly to K-theory. In the spirit of speculative exploration, we shall use 

S- and T-dualities without worrying about the deep unresolved incompatibil- 

ities between K-theory and string dualities. Our hope is to find a conjecture 

about which configurations are consistent which is natural in the framework 

of K-theory. 

The Freed-Witten anomaly arises in the string path-integral from open 

Riemann surfaces that end on the D-brane. In the bosonic case, there is a 

contribution to the path-integral of the form 

exp(z (p   A)expi / B. 

In [18], this is interpretated in the following way: the first term provides a 
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trivialization for the second term, viewed as a section of a line bundle over 

the space of Riemann surfaces that end on the D-brane. Such a trivialization 

only exists if H = dB is cohomologically trivial when restricted to the D- 

brane. 

Using S- and T-dualities, we find a corresponding statement for D(p —2)- 

branes ending on Dp-branes. Let M denote the space on which the D(p — 2)- 

brane is wrapped which ends on a manifold Q on which the Dp-brane is 

wrapped. In the path-integral for the D{p — 2)-branes, there is a phase 

factor 

exp(z <£    i)exp(i [  CRReF+B^/A) 
JdM JM 

where A is the dual (p — 2)-form of the gauge field on the Dp-brane, and 

the second term is the Wess-Zumino term of the D(p — 2)-brane action. By 

analogy with the argument in [18], we interpret the first term as providing 

a trivialization of the second term, viewed as a section of a line bundle over 

the space of D(p — 2) branes ending on Q. Such a trivialization only exists 

if the cohomology class of 

d(CRReF+B^A) 

restricted to Q vanishes. Taking B = VA = 0 for simplicity, the class 

d(CRReF) = GRReF restricted to Q should be trivial. In principle we have to 

sum over all possible topological sectors described by F. These will include, 

for example, bound states of D(p — 2) and D(p — 4)-branes ending on Q. 

For each of these separately, the restriction of GRReF has to vanish, when 

restricted to Q. This will typically imply that GRR itself, restricted to Q 

has to vanish. Rewriting all this in K-theory language gives a generalization 

of the Preed-Witten anomaly cancellation condition which we now describe. 

Suppose that (in type IIB) the RR field strength G is represented by 

an element of if1(y), where Y denotes space-time, and consider a brane 

represented by an element Q G K0(Y). Recall that K-theory is a graded ring, 

and in particular we can form the product Q.G G K1^). We propose the 
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following generalization of the Freed-Witten anomaly cancellation condition, 

Q.G = 0inii:1(y). (215) 

A similar result applies to type IIA. The product Q.G represents, roughly 

speaking, the restriction of G to Q, which is how it arose in the preceeding 

discussion. 

For Euclidean branes, we have to be quite careful when applying this. 

First, Euclidean and Minkowski D-branes are apparently classified by dif- 

ferent K-theories. If one is classified by K0 then the other is classified by 

K1. Secondly, we have to throw out the form of highest degree in GRR, 

since the argument does not apply to that form. This can be accomplished 

by projecting the appropriate K-theory classes on those that vanish on the 

(p + 1)-skeleton for Euclidean Dp-branes. 

For IIA on C2/Z2, this implies the following. The product in (215) 

becomes the product of two elements of Z4, and the projection to forms 

that vanish on the 3-skeleton is multiplication by two on Z4. If the RR 

flux is 1/4, as discussed in section 4.5, we pick up a phase of 1/4 around 

53/Z2. Once we project this phase down to Z2, it remains non-zero, and 

the corresponding Euclidean brane is inconsistent. We can however take 

twice S,3/Z2, which has phase 1/2 in Z4, and this vanishes after projection. 

What is the interpretation of this object in M theory? It has exactly the 

same phase as seen by a Euclidean DO-brane wrapping the non-trivial cycle 

in S'3/Z2, and in M theory it is therefore described by a "half-momentum" 

graviton. The worldline of this graviton is the obvious lift of the non-trivial 

one-cycle in S3/Z2 to (S3 x S1)^. For RR flux 1/2, there is no RR 1- 

form flux, and indeed there is never an anomaly. We can therefore directly 

match the M theory membranes on C2/Z2 x.S1 with D2-branes on C2/Z2. 

Our proposal (215), albeit preliminary, is therefore consistent with M/IIA 

duality. It would be interesting to develop it in detail. 



J. DEBOER ET AL. 1143 

4.6.6    The geometry of the three-form 

The nature of the geometry of the M theory 3-form is a deep question which 

is unlikely to have a simple classical answer. It is therefore worth stopping 

at this point and pondering what we can learn about the 3-form from our 

results. Our 'experimental' data follows from the classification of allowed 

discrete fluxes in ADE singularities given in table 14. 

There are two natural questions to ask: first, there is a purely local ques- 

tion. Given an .AD-E-singularity of the form C2/G, what are the possible 

discrete choices of 3-form flux localized at the singularity? The second ques- 

tion is a global one. Given a compact manifold with assorted singularities, 

are there any relations between the fluxes at different singularities? In all 

the examples we have considered, the answer to the latter question is that 

the total flux has to vanish. This is exactly as we would naively expect for 

a compact manifold. 

The answer to the first question is much more difficult. One natural 

candidate is the equivariant 3-cohomology of C2/G with values in {/(I), 

which classifies the flat orbifold 2-gerbes. This cohomology group is equal 

to HS(G, U(l)) = Z\G\ with |G| the number of elements of G. This certainly 

contains all the fluxes appearing in table 14, but it is much too large. Nev- 

ertheless, it is still possible the physical fluxes are a subset of the choices 

given by HS(G, U(l)). For this to be the case, there must exist additional 

anomaly constraints or non-linear equations of motion. Non-linear equations 

might provide an explanation for the lack of any group structure in table 14. 

The simplest example of a consistency condition that we know is the shifted 

quantization of the 3-form field strength on curved spaces [31]. 

Let us consider a related possibility, again in the spirit of speculative 

exploration. We shall find a picture that seems to reproduce our "data." 

Although many questions and puzzles remain, it seems worth describing. 

The key appears to be the study of wrapped branes. Let us consider a 7- 

dimensional M theory dual of one our heterotic orbifolds. This is M theory 
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on a singular if 3 with flux localized at some combination of the singularities. 

The heterotic string is constructed in M theory by wrapping an M5-brane 

on the if 3. However, we cannot wrap a single M5-brane because of a gen- 

eralization of the Freed-Witten anomaly—computed for a single M5-brane 

in [100]. Let us assume for the moment that equivariant cohomology classifies 

the possible fluxes, as in the preceeding discussion. If the flux is N torsion, 

we should wrap N M5-branes.24 Is there a bound state of N wrapped M5- 

branes? If not, then this configuration of singularities and fluxes cannot give 

rise to a heterotic string, and so cannot have a perturbative heterotic dual. 

The appearance of bound states of five-branes in terms of irreducible (or 

connected) covers also appears in the computation of the partition function 

on if 3 x T2 [101]. Here the bound state of iV M5-branes that produces the 

U{N) J\f = 4 Yang-Mills theory on if 3, is obtained by wrapping the five- 

branes by an irreducible cover of T2. These five-brane configurations are in 

complete analogy with the long string discussion of [102]. So we expect a 

bound state if the if 3 is locally a G-orbifold and G has an iV-dimensional 

irreducible representation. 

Turning to the local singularity C2/G, we note that the An series have 

only 1-dimensional irreducible representations (irreps), while the Dn+i series 

has n + 5 inequivalent irreps: 4 of dimension 1 and (n + 1) of dimension 2. 

For #65 there are 3 irreps of dimension 1, 3 irreps of dimension 2, and 1 

of dimension 3. For £7, there are 2 irreps of dimension 1, 3 of dimension 

2, 2 of dimension 3, and 1 of dimension 4. Finally for E^, there is 1 irrep 

of dimension 1, 2 irreps of dimension 2, 2 irreps of dimension 3, 2 irreps of 

dimension 4, 1 irrep of dimension 5, and 1 irrep of dimension 6. The easiest 

way to determine the list of irreps is from the Dynkin labels of the extended 

Dynkin diagram for G. It is also worth noting (and hardly coincidental!) that 

these labels are also the starting point for the analysis of triples appearing 

in [22,24]. 

4This claim involves an extrapolation of known results, but seems quite reasonable. 
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Let us now consider the possibilities: take a singularity with a flux of 

order k (perhaps glued in a K3). The above arguments suggest that a 

wrapped M5-brane is anomalous unless G has an irrep of dimension k. Since 

all irreps for An are 1-dimensional, we cannot wrap an M5-brane at all on 

a singularity with non-zero flux. For Dn+4, there are 2 possibilities. Of all 

the possible fluxes in the group of equivariant 3-form fluxes Z^+g, only flux 

of order 1 or order 2 permit the wrapping of an M5-brane. The group of 

fluxes for EQ is Z24. However, there are irreps of dimension 1,2 and 3 only. 

Therefore, only fluxes of order 1,2 and 3 are allowed. Note that as we desire, 

this set does not form a group! For £7, we have a priori Z48 as the group of 

choices. Again, only fluxes of order 1,2,3 and 4 are allowed. Finally, for Es, 

we have the group Zi2o- However, only fluxes of order 1,2,3,4,5 and 6 are 

possible. Note also that we can deform an EQ singularity, for example, with 

order 2 flux to a D4 singularity with order 2 flux, because this subgroup also 

has an irrep of dimension 2. In this way, we completely reproduce the data 

of table 14.25 

Let us check which combinations of singularities with flux satisfy our 

global constraint that the total flux vanish, and which can be embedded 

in F^ig. The sum of the ranks of the singularities must then be less than 

20. To find the minimal list, we discard any deformable singularities. We 

therefore need not consider An singularities. With only .D4, it is clear that 

we need an even number for flux conservation. The only possibilities are 

2 or 4 and both cases are realized in M theory. Analogously, with only EQ 

singularities, we have 2 possibilities: 2 EQ singularities with opposite Z3 flux, 

or 3 with Z3 flux. With only E7 singularities, there is a single possibility: 2 

£7 singularities with opposite Z4 flux. With only E$ singularities, there are 

2 possibilities: 2 Eg singularities with opposite Z5 or Ze flux. 

25What we seem to be requiring for an anomaly-free theory can be interpreted via the 
McKay correspondence. It appears to be the existence of a globally defined reflexive sheaf 
of rank k for flux of order k. For C2 /G, the existence of such a sheaf requires that G have 
an irrep of dimension k. Away from the singularity, the sheaf is constructed by taking the 
trivial C^ bundle over C2 and quotienting by G using the irreducible representation. 
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We can now consider the mixed cases: for D4 with Z2 flux and EQ with 

Z3 flux, we note that a brane must wrap 6 times. To cancel the flux implies 

one possibility; namely, adding a single E^ with Ze flux. For D^ and E7, a 

similar argument requires an additional E7. it is not too hard to check that 

there are no other consistent combinations. This list reproduces table 15. 

This argument is natural in the global context where we can see that 

the resulting M theory fails to have a perturbative heterotic dual. What 

seems critical to show is why models which do not permit the wrapping of 

M5-branes—both local and global models—are inconsistent. 

4.6.7    F theory compactifications with flux 

On the topic of F theory compactifications with flux, we find no new models. 

However for completeness, we recall the known results. Starting with M the- 

ory on K3 with 2 frozen D4 singularities, we can see from the lattice or from 

its various dual realizations that there is a non-trivial 8-dimensional limit. 

This is an F theory model in which the 2 D4 singularities are replaced by a 

frozen Dg singularity. This gives an 8-dimensional dual of the CHL string. 

The second case starts with M theory on a K3 with 4 frozen D4 singularities. 

This is the model dual to the compactification of the 9-dimensional (+, —) 

orientifold. Taking its F theory limit results in a compactification with 2 

frozen D$ singularities. Both cases were first considered in [17]. These mod- 

els have been further studied in [103,104]. 

Can there be any new F theory models with flux? The 7-dimensional 

M theory duals of our heterotic asymmetric orbifolds only lift non-trivially 

to 8 dimensions for the Z2-triple. This is the first case recalled above. The 

7-dimensional M theory duals of our 7-dimensional F theory models again 

only lift non-trivially in 8 dimensions for the case of Z2. However, the M 

theory dual of the Z2 F theory compactification is the second case recalled 

above with 4 frozen D4 singularities. The only other place we might expect 

to find a new model is from our 6-dimensional Z2 x Z2 F theory vacuum. This 
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model may well have a 6-dimensional M theory dual with frozen singularities 

(a precise determination of its lattice is needed to find a candidate model.). 

However, since the F theory model without fluxes has no new 7-dimensional 

limit, we cannot obtain a new F theory model with flux this way. 
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A    Lattice Conventions and Some Useful Defini- 
tions 

In this appendix, we summarize some useful information about lattices and 

our conventions. A lattice is a free Z-module L equipped with a Z-valued 

bilinear form b : L x L -> Z. The lattice is even if b(x:x) E 2Z for all 

x G L. In the even case, there is an associated integer-valued quadratic form 

q : L —> Z defined by 

We use lattice conventions which agree with those of Lie algebraists 

rather than those of algebraic geometers. In particular, An, Dn, and En 

are positive definite even lattices, the root lattices of the corresponding com- 

plex semisimple Lie algebras. We use Y^k to denote the even lattice of rank 

2k whose bilinear form has matrix 

0    h 
h    0 

We occasionally describe a lattice by directly writing the matrix of the bi- 

linear form in some basis. 

If L is a lattice, then L(n) denotes the same lattice with the bilinear 

form multiplied by n (this is sometimes denoted by y/nL). Thus, An{—1), 

Dn(—l) and En(—1) are the negative-definite lattices which appear in al- 

gebraic geometry, and Ffc^n) is the even lattice of rank 2k whose bilinear 

form has matrix 

/ n \ 

n 
n 

V       * / 
If #1,..., Xk G i, then (pi,..., #&) denotes the sublattice of L spanned by 

#1,  . . .  , Xfc. 
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Finally, let us review the definition of the discriminant group and dis- 

criminant form given by Nikulin [57]. Given any vector I of an integer lattice 

L, we can construct an element of Hom(L,Z) — L* which acts in the fol- 

lowing way: given an x G L, we obtain an integer by evaluating 6(x, I). This 

gives us an injective map from L —► L*. With this canonical embedding of 

L into L*, we can consider the quotient L*/L which is a finite abelian group 

known as the discriminant group. We can equip this group with a bilinear 

form bi known as the discriminant form which takes values in 

bL(x1 + L,X2 + L) = b(xi,X2) + Z, (216) 

where xi^X2 E L*. Under suitable restrictions, this form can determine the 

isomorphism type of the lattice. 

B    Heterotic-Heterotic Duality 

B.l    Duality on S1 

We will review the argument of [19] and correct a little inaccuracy in that 

derivation. Consider either of the heterotic string theories compactified on a 

circle. We write the standard deformation of the heterotic string under the 

inclusion of a Wilson line a as follows: 

/       q       \ 

W(a) 
q!_(ri i   wr\ 
j2_V r "*"  a' ) 

Ig!_(n   wr\ 
\   V  2 V r        a' )   ) 

( q + wa \ 
a' /n-q-a-wa2/2   ,   Wr\ 
_2_V r "+"  a' ) 

jot! /n-q-a-it;a2/2 _ wrx    , 
\   V  2 ^ r a' '   / 

(217) 

The matrix W(a) represents an 50(17,1) rotation acting on the lattice Fi^i. 

To connect the lattice Fiy^ to a heterotic string theory, we have to single 

out a IYI sublattice that will be interpreted as the lattice of the spatial 

momenta n and winding numbers w. The complement of F^i in F^i is 

then the lattice of vectors q of the gauge group, which can be D^—the 

composition of the root and spin lattice of Spin(32)—for a Spin(32)/Z2 

theory or Es © i?8 for the Es x Es string.  Which of these occurs depends 



1150 TRIPLES, FLUXES, AND STRINGS 

only on how we choose the F^i lattice. Put another way, it depends only on 

how we choose coordinates for F^i. 

The states of the two heterotic theories are thus connected by a simple 

coordinate transformation. Consider the vectors W(a)^ with ip G F^i, 

corresponding to the states of the heterotic theory with gauge group G on a 

circle of radius R with holonomy exp 2ma.. Also consider the vectors W(a/)/0/ 

with ip' E Fir^ corresponding to the states of the heterotic theory with gauge 

group G' 7^ G on a circle of radius i?7 with holonomy exp27ria/. We have 

argued that W^a)^ = UW(dL)ipf with U a coordinate transformation. The 

mass spectrum of the theories should be preserved by 17, which therefore 

should be an element of 0(17) x 0(1). The transformations W(a) and ^(a7) 

allow us to vary all possible continuous parameters of the theories: namely, 

the holonomies a, a7, and the radii i?, Rf. Since the two heterotic theories 

cannot possibly be continuously connected, the matrix U must correspond to 

a discrete symmetry. An inversion of all coordinates n, w and q^ corresponds 

to a parity transformation on the spatial circle, combined with an element 

of the Weyl group acting on the group lattice. Therefore U is not connected 

to either the product of the identities of 0(17) x 0(1), or to the product of 

minus the identities. Fixing U — diag(li6,1, —1), fixes most of the possible 

choices for a and a7. 

A single ansatz fixes most of the remaining freedom. We want to move 

from a theory with one gauge group to one with another gauge group. This 

is possible if one of the Kaluza-Klein bosons exchanges roles with one of 

the 10-dimensional gauge bosons. Explicitly, let a state ip of the theory 

with gauge group G with q = 0 and non-zero n, w in one theory correspond 

to a state ipf with non-zero q7 and n7 = wf = 0 in the other theory with 

gauge group G7. From the transformation found previously, we can then 

immediately deduce that a2 = 2 and that q7 = a: therefore a is a root of G7. 

Furthermore, we find that a • a7 = -RR'/a'. Exchanging the roles of G and 

G7 in the ansatz leads to the conclusion that a7 is a root of G. 
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Studying the image of the state q = 0, n = l,w = Q tells us that a'/RRf 

is an integer, say k. Studying the image of the states with n = w = 0 reveals 

the consistency condition that kq • a be an integer for every q. This implies 

that fca is a (co)weight of G. In a similar way, we find that ka! is a (co)weight 

ofG'. 

There is no simple way to fix k as there are in fact more solutions. It 

is clear that k = 0 will lead to nonsense. Setting k = ±1 is a possibility, 

but does not solve our requirements. Both for Spin(32) and E$ x E$, the 

requirement that a is a coweight with length y/2 implies that a is a root, and 

therefore inevitably implies that G = G', which is not what we desire. It 

does lead to a duality transformation teaching us that the heterotic theory 

with group G on a circle of radius R with a trivial holonomy is dual to the 

same theory on a circle of radius R' = ot!/R with a trivial holonomy, as was 

already noted in [39]. 

The next possibility is k = ±2. This leads to the cases, 

• a is a root of G', and 2a is a coweight of G; 

• a' is a root of G, and 2a, is a coweight of G'; 

• a • a7 = -i, and RB! = a,/2. 

Solutions to these equations can be found. Given a and a', the duality 

transformation is completely fixed and does provide a map from the com- 

pactification of one heterotic theory to a compactification of the oth^er. We 

have not attempted to evaluate the equations for higher k. 

B.2    Duality on Tn 

Below 9 dimensions, explicit duality transformations are in general harder 

to give. In the situations that we will consider, we always choose gy = Sij. 

We will not yet restrict the NS-NS two-form Bij. 
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The inclusion of a non-zero 5-field modifies the momenta (6) and (7) in 

the following way: 

(q + ^ttfiaO^—, 

^'^   =     % ±-^- 

We will use the following shorthand notation, 

rr (   r-   q "l 
= vAwr(W;^)   VT(^ + 

2
^)   •      (218) 

\   V  2 ^ a'   J   / 

The explicit expression for W({a.i};Bij) can be easily deduced or found 

in [39]. In light of the discussion of the previous subsection, we would like 

to factorise ^({a^}; Bij) into a number of factors representing contributions 

that can be traced back to the various directions labelled by i. In a gauge 

theory, this would be possible because of commutativity of the holonomies. 

In string theory, this seems difficult because the mixing of contributions from 

various directions by the term quadratic in the a^ and the jB-field. 

However, a little calculation shows that 

W({ai}i BiiJWd&ih Bij) = Wiiaa + aO; By + Sy - Ay), (219) 

with Ay given by, 

Ay = - (a; • SLj - Bij • SLi) . (220) 

Note that the Ay can be appropriately thought of as components of a two- 

form. These equations are the key to our problem. 

Suppose we have a theory with a set of a;, where for one of these, say 

ai, there exists an a^ such that the pair ai, a^ has the properties mentioned 

in the previous subsection. We now want to dualize in the direction labelled 

by 1. In the theories under consideration, the 5-field is a modulus and we 

can set it to an appropriate value. Set 

Bij = -Bji = - (ai • a^),        By = 0,    i,j ^ 1. 
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Then the momenta of the theory are given by W({a^}; Bij) acting on the 

vectors of the theory with a^ = Bij = 0. Now with this specific value of the 

S-field, we can write 

Wd^Bij) = W({0^i^}]0)W({diU0}]0). (221) 

Duality now amounts to replacing W({ai,0};0) by UiW({ar
l,0}] 0). The 

matrix Ui acts as the identity on all coordinates except for &!#, which 

is replaced by —km. However, Ui commutes with ^({Oja^iljO). The 

holonomies and B-field in the dual theory are then summarized as follows, 

LW^Wx}; B&     with     B'y = -13^ = \ (ai • a,), 

4=0,    i,i/l. 

The most convenient situation arises when it is possible to choose holonomies 

so that, 

(ai-a;) = (ai-aj) =0. 

Although this is not always the case, we will do this whenever possible. 

C    Classifying Orientifold Configurations 

In this appendix, we classify all possible Tn/Z2 orientifolds involving only 

— and —' orientifold planes, for the case n < 5. 

Let #1,... ,xn be periodic coordinates for Tn with period 27r on which 

the Z2 orientifold group acts by inversion {x^} \-^ {—x^}. The 2n Z2-fixed 

points are located at {x^} = {a^Tr} where a^ are mod 2 integers. We denote 

this fixed point set by AT™ (or An or just A if there is no chance of confusion). 

We represent the distribution of O" planes by a function on A with values 

in the integers mod 2, 

D: A ^{0,1}. 

The function simply counts the (mod 2) number of D-branes at the fixed 

points. Namely, -D(a) = 0 if a is 0~ and D(a) = 1 if a is an O-  plane. The 
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consistency conditions on the distribution are stated easily in a T-dual pic- 

ture, where the locations of 32 D-branes are represented by the 0(32) Wilson 

lines on the dual torus Tn. Let us denote the coordinates of the dual torus by 

a?1,... , x11. A single D(9 — n)-brane at the fixed point {x^} — {a^Tr} is rep- 

resented by the flat real line bundle £(a) on Tn which has holonomy (—1)^ 

in the x^-direction. Therefore, a distribution D of D-branes is represented 

by the flat bundle 

£P) = ©£(G)eI5(a)- (223) 

Since there are exactly 32 D(9 — n)-branes, the number of fixed points with 

D = 1 must be even and also must be less than or equal to 32. This latter 

condition is vacuous as long as n < 5. There is a further condition on the 

distribution D that 

wiMD)) = W2(Z{D)) = CSMD)) = 0. (224) 

The vanishing of wi and W2 is required since the 0(32) bundle must lift to a 

Spin(32) bundle. The condition CS(€(D)) = 0 means the vanishing of the 

Chern-Simons invariant of the flat Spin(32) bundle. This is required from 

heterotic world-sheet anomaly cancellation as discussed in section 2.2. 

To determine the allowed distributions, it is useful to introduce the notion 

of reduction of a distribution D along circles. Let T1 C Tn be a circle 

subgroup where Tn is regarded as an abelian group defined by addition in 

{x^}. Then T1 is invariant under Z2 and contains exactly two Z2 fixed 

points; the origin 0 and the midpoint aTi. The Z2 action on Tn descends to 

a Z2 action on T^/T1 ^ T7*"1. The fixed point set ATn/Ti is the quotient of 

AT" by shifts by ari. Now let us define a function DTi : ATn/rri —> {0,1} 

by the average 

DTi([a\) =D{a)+D(a + aTi). (225) 

We call this the reduction of D along T1. We note that Tn /Tl is dual to 

the subtorus Tn~l C Tn orthogonal to T1. It is easy to see that the bundle 
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corresponding to DTi is equal to the restriction of ((D) on this subtorus, 

e(5ri) = eP)lf»-i- (226) 

Namely, reduction of D along T1 corresponds to a restriction of £(JD) on the 

subtorus Tn~~1 orthogonal to T1. For a sufficiently large n, a distribution 

D satisfies the conditions (224) if and only if its reduction on an arbitrary 

subgroup T1 C Tn satisfies (224). To be precise, this is true when wi = 0 for 

n > 2, when W2 = 0 for n > 3, and when CS = 0 for n > 4. In what follows, 

we make use of this fact and inductively determine the allowed distributions 

starting from small n. 

C.l     Configurations on T2 

We first determine the allowed distributions on T2 where there are four Z2 

fixed points (01,02) = (0,0), (0,1), (1,0), and (1,1). The condition CS = 0 

is vacuous in this case and we only need require the topological conditions 

wi = W2 = 0. It is useful to note that the total Stiefel-Whitney class 

of £(a) is w(£(a)) = 1 + ai#i + 02#2 where #1 and 62 are generators of 

Hl{T2,Z2) = ^2 0 Z2. Using the product formula of the total Stiefel- 

Whitney class [105] we find w(€(D)) = YlaeA2(
1 + aiei + a2<92)D(a). From 

this, it is easy to see that only D = 0 is allowed. For example, if D = 1 (all 

four are O-), we have w - 1 • (1 + 0i)(l + 02)(1 + 9i + O2) = 1 + O^ and 

we find W2 ^0. If D is not constant D ^ 0,1 (mixture of 0~ and O- ), we 

do not even have wi = 0. Thus, D = 0 (all 4 are 0~) is the only allowed 

distribution. 

C.2    Configurations on T3 

We move on to T3 where there are 8 fixed points. The reduction along a 

circle must be an allowed distribution in T2, which is identically zero as we 

have seen above. Thus, DTi = 0 for any T1 C T3. By taking T1 as the 

circle in the first entry, we obtain Z?(ai, 02,03) + D(ai + 1, 02, 03) = 0 mod 
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2. Likewise we obtain similar conditions along the shift in the second and 

the third entries. We therefore have 

D{a\ + 1, a2, as) = D(ai,a2 + 1, as) = 

D(ai,a2,as + 1) = -D(ai,02,03) mod 2. 

Namely, D is a constant function on A3. There are two possibilities: D = 0 

and so all 8 are O-, or D = 1 and all 8 are O- . Since n = 3 < 4, we must 

still impose the condition CS = 0. It is obvious that CS — 0 for D = 0 but, 

as noted before, for D = 1 we have CS' 7^ 0. So only D = 0 (all 8 are 0~) 

is an allowed distribution. 

C.3    Configurations on T4 

We next consider T4 where there are 16 fixed points. Since the allowed 

distribution in the T3 case is identically zero (all 8 are O-) as we have just 

seen, the reduction of D along any circle subgroup must be identically zero. 

As in T3 case, this means that D must be a constant function on A4. Since 

n = 4, this is sufficient for wi = W2 = CS = 0 to be obeyed. Thus, D = 0 

(all 16 are —) and D = 1 (all 16 are —') are the allowed distributions. 

C.4    Configurations on T5 

We finally consider T5 where there are 32 fixed points. £> = 0 (all 32 are 

0~) and D = 1 (all 32 are 0~ ) are allowed dsitributions since, for these 

cases, the reduction along any circle is identically zerp which is an allowed 

distribution in T4. In addition 

< Vam6A4,       and       {   ^   '   w'     n     Vam E A4 
\ Z)(l,a(4)) = l (4) \ 2?(l1a(4)) = 0 (4} 

(227) 

are also allowed distributions. To see this, let T1 be a circle subgroup of T5 

and let aTi be the Z2 invariant midpoint of T1. Then, it is easy to see that 

DTi = 0 if aTi = (0,...) and DTi = 1 if aTi = (1,...). Thus, the reduc- 

tion along an arbitrary cricle is an allowed distribution in T3 and therefore 
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(227) is indeed allowed. We show below that an allowed distribution, if not 

identically 0 or 1, must be of this type up to a coordinate transformation. 

Suppose D is an allowed distribution which is not identically 0 or 1. This 

means that the reduction along some x^ is identically 1. We may assume 

that this is true in the #5 direction. By a change of coordinate, if necessary, 

we may also assume that the reduction along £4 is identically 0. The fixed 

point set of T3 then has a disjoint partition into two components A3 and 

A3, where A3 = A3 U A3 and A3 fl A3 = 0. Then the O-' planes, which 

are located where D = 1, are found at (5(3),0,0), (5(3), 1,0), (5(3), 0,1), and 

(5(3), l,7r). We let 5(3) and 5(3) run over the disjoint partition A3 and A3, 

respectively. 

Now let us redefine coordinates so that #12.3 — #1,2,3+#4 and #45 = #4,5. 

In these new coordinates, the 0~ planes are at (5^,0,0), (5(3) + I3,1,0), 

(5(3),0,1), and (5(3) + I3,1,1), where I3 = (1.1,1). Let T1 be the circle in 

the £4 direction. The reduction DTi must be identically 0 or 1. It is easy to 

see that A3 + I3 = A3 and A3 + I3 = A3 if I}Ti = 0, whereas A3 -j- I3 = A3 

if DTx = 1. We discuss these cases separately 

• For DTi = 0, both A3 and A3 are invariant under shift by I3. There 

are five possibilities. #^3 = 0,2,4,6, or 8. If #^3 - 0, all 16 O" 

have a;5 = 1 and D is of type (227). Similarly for the case -frAo -- 

S, If #A3 -- 2 or 6, the reduction of D along xl is not a constant 

function and therefore D is not allowed. FinaUy let us consider the 

case #A3 --- 4. The set A3 must be of the type A3 = {(0, a, 6), (1, a + 

1,6+1), (0,c,rf),(l,c+'l,d+'l)} with (c,d) ^ (a, 6). If(c,d) - (a+1,6), 

x1 + re3 + .x5 = b at all 16 O-. If (c, d) = (a, b + 1), x1 + x2 + x5 = a 

"at all 16 O-'. If (c, d) = (a + 1, b + 1), then x2 -\-<x3 + a;5 = a + b at all 

16 0~ .  Therefore for every case, the distribution D is of type (227) 

for a suitable choice of coordinates. 

• For DTi = 1, A3 and A3 +13 determine a partition of A3 and therefore 

A3 consists of four points. In the coordinate system x" 2 3 = #1,2,3 + ^5, 
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Dimension Allowed Configurations 

T2 4 07- 

rpZ 8 06- 

T4 16 05- 

16 05"' 

rpb 32 04- 

32 04-' 

16 04- + 16 04-' {as in (227)} 

Table 17: Allowed configurations of Op   and Op ' planes. 

^4,5 = ^4,5, the 0 ' planes are at (5(3),0,0), (5(3), 1,0), (5(3),0,1), 

and (5(3), 1,1). If the reduction in the x" direction is identically zero, 

yls consists of four points (0,a, 6), (l,a, &), (0,c, d) and (l,c, d) where 

(c, d) — (a, b + 1) or (a + 1,6). In the former case, x^ — a for ^ 

four points (and therefore at all 16 0~ in T5) while x1^ — b at all 16 

O- in the latter case. Thus, in both cases D is of type (227). If the 

reduction in the x" direction is identically 1, ^.3 consists of (a, 0,0), 

(a, 1,1), (6,0,1) and (6,1,0) where a = 6ora = 6 + l. In the case 

a = 6, x" = a at all 16 O- while x" + X2 + £3 = a at all 16 O- in the 

case a = 6 + 1. Therefore in both cases D is of type (227). 

In summary, we have shown that an allowed distribution D with D =^ 0,1 

must be of type (227). The results obtained in this appendix are compiled 

in table 17 which lists the allowed distributions for Tn with 2 < n < 5. 
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D    Equivariant Bundles and Equivariant Cohomol- 
ogy 

D.l    Equivariant cohomology via spectral sequences 

Vector bundles over an orbifold X/G are best described in terms of equiv- 

ariant bundles over the cover X. Equivariant bundles are bundles E —t X 

where the action of the group G on the base is given a lift to the fibers. 

Geometrically an equivariant bundle can be seen as a bundle over the 'ho- 

motopy quotient' XQ- This is a smooth space that is homotopy equivalent 

to X/G. It is a fiber bundle over the classifying space BG with fiber X. By 

definition, there is a principal G-bundle EG over the classifying space whose 

total space is contractible, and the homotopy quotient XQ is defined as the 

associated bundle 

XG = {EG x X)/G. (228) 

Both BG and XQ are in general infinite-dimensional spaces. The equivariant 

cohomology HQ(X) is by definition the cohomology of the space XQ 

H*G(X)=H*(XG). (229) 

Note that as a special case when X is a point (or when X is contractible) 

we obtain the group cohomology of G, which (in the discrete topology) is 

defined as the cohomology of the classifying space 

H*{G) = H*(BG) = H^(pt). (230) 

Since we have a bundle XQ —t BG with fiber X, the cohomology of XQ 

can be computed by spectral sequence techniques from the cohomology of X 

and BG. The fibration also gives us some useful maps. In particular, there 

is a map 

H*(BG)^H^(X) (231) 

that maps the group cohomology into the equivariant cohomology. This 

makes the equivariant cohomology a module for H*(BG). There is also an 
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inclusion of the fiber X in the space XQ and this gives a map H*(XG) -> 

H*(X). Since the image is obviously G-invariant, we have in general a map 

of the equivariant cohomology of X onto the invariant cohomology of X 

H%(X) ^H\X)G. (232) 

So, there is a canonical way to associate an invariant form to an equivariant 

form, but in general there is no opposite map. That is, if we are given an 

invariant form there is no unique equivariant representative. 

We will give two examples of group cohomologies that will be relevant 

for this paper. First, for G = Z2 the classifying space BZ2 can be chosen 

to be the infinite real projective space IRP00. This has the non-vanishing 

cohomology groups 

H2k ^00 ? z) ^ Z2, k > 0. (233) 

We can write this succinctly as 

iTORP00,^ ^ Z[y]/(2y) (234) 

where y is a generator of degree two that satisfies 2y = 0. We will also 

need below the cohomology with twisted coefficients Z, where we twist the 

module Z with the non-trivial representation of Z2. Then we find 

H2k-1 (MIP00, Z) ^ Z2,        A; > 0. (235) 

or, with £ a generator of degree 1, 

iniRP^Z) ^ £Z[y]/(2y,20 (236) 

With Z2 coefficients we get a particular simple result 

JH
r*(IRP00,Z2) = Z2[£] (237) 

where now £ is a generator of degree one. This results generalizes to cyclic 

groups. 
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Another important generalization of relevance to this paper is the case 

where G is a finite subgroup of 577(2). These groups are of ADi?-type. In 

that case we find 

H2+ik (BG,Z)^Zp,        k>0: (238) 

where Zp = G/[G: G] is the abelianization of G, i.e., for the binary dihedral 

group of order 4n denoted i)n, there are two cases: Z2 x Z2 for even n and Z4 

for odd n. The remaining cases are Z3 for the binary tetrahedral subgroup 

T which gives an EQ singularity, Z2 for the binary octahedral subgroup O 

which gives an E7 singularity, and trivial for the icosahedral subgroup I 

which gives an .Eg singularity. The other non-vanishing cohomology groups 

are 

HAk{BG,Z) = ZlGb        k>0. (239) 

As an example we will compute the equivariant cohomology of T4 with 

the Z2 action x —>• — x (thanks to D. Freed). The cohomology of T4 is 

generated by the classes rf of degree 1 that satisfy (y1)2 = 0. We can think 

of them as the images of the 1-forms dxl in integer cohomology. So we find 

if*(T4,Z)-Z[??
1,7?

2,??
3,r?

4]/((77
i)2). (240) 

Now the E2 tern in the spectral sequence is 

E™ = ^(MP00,^^4^)) (241) 

Now we have to decompose the Z2 module Hq(T4i) in irreducible representa- 

tions. This is quite simple because we get the trivial representation Z for q 

even, and the non-trivial representation Z for q odd. This gives the following 
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generators for E^'11 (all free indices are ordered i < j < k etc) 

4 r^r/V??4 0 

3 0 ^w 0 

2 rfrf 0 rfrfy 0 

1 0 w 0 ffly 0 

0 z 0 y 0 y2 0 

q/p 0 1 2 3 4 5 

Since there is no cohomology in odd degree the differential is trivial and E2 

equals the JEOQ term. There is a further extension problem that has to be 

solved to find the actual cohomology groups, but turns out to be trivial too. 

The result is that the non-trivial groups are 

iJi2(T
4,z)^z6e(z2;r 

and 

(242) 

(243) #!2(T
4,Z)^Z©(Z2)15. 

Since the odd cohomology vanishes we find that 

tfz20r4,t/(l)) = (Z2)5,    and    ifl2(T
4,C/(l))-(Z2)15. (244) 

D.2    The case of T4/G for more general G 

We now briefly describe the generalization of our results for T4/Z2 to certain 

other quotients of four-tori. The possible groups which can act on T4 giving 

a Calabi-Yau are G = Z^Z^Z^V^V^.T [56]. For P4 and T (the binary 

tetrahedral group), there are actually multiple possible actions which result 

in different singularities for T4/G. We list these possibilities in table 18. 

We shall restrict to the specific cases of G = Z3, Z4, Zg,^,^. The 

particular X>4 quotient to be described below results in a T4/G with singu- 

larities, 
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Space Singularities 

T4/Z2 Ai6 

T4/Z3 ^ 

T4/Z4 44 ffi 46 

T4/Z6 -ri5 ^17 -rl2 ^ -^l 

T4/^4 Dl®Al® A\ 

TAIVA D\®A\ 

T4/P4 Al@Ai 

T4/P5 D5 © Al © ^ 0 Ai 

T4/T ^6 © ^4 © ^2 © ^1 

T4/T 715 a3 ^3 u3 -^12 

Table 18: Singularities of torus quotients. 

If we use two complex coordinates (21,22) to describe the four-torus, the 

group Zm is generated by 

P'.(zi,Z2)^(Cz1,C
1Z2) (245) 

with £ = e27rz/m an m^ root of unity. The binary dihedral groups Vm have 

an Z2(m_2) subgroup which acts just as Zm described above, and in addition 

they have a generator a that we choose to act by 

a :{zi,Z2) -> (22,-21). 

The generators a and /3 of 1)™ satisfy the relations 

(246) 

a2=/7 ra-2 
a

4-/3: 2m-4: 
= 1, /3aP = a. (247) 

Notice that we use the rank of the singularity to label the binary dihedral 

group 2)m; it is a group of dimension 4(m — 2), and in the mathematics 

literature sometimes denoted by D*,_2^. 

We first calculate the equivariant cohomology groups iJ^T4, U(l)) that 

will give us the flat equivariant n-forms.   We can use the same spectral 
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sequence described in section D.l, which is the Leray spectral sequence as- 

sociated to the fibration X -» XQ -> BG. In the present case, the E™ 

terms of this spectral sequence are given by 

E™ = IP{G, Hq{T\ C/(l))). (248) 

The right hand side is defined as follows. The action of G on T4 makes 

iJ^T4, (/(i)) into a module for the finite group G. Then Ev
2>
q is defined as 

the cohomology of the finite group G with values in this module. 

Let us briefly review the standard definition of the cohomology of a finite 

group with values in a module. Given any G-module M, n-cochains with 

values in M are maps 

c :     Gn -4 M, 

i.e., M-valued functions c(#i,... , gn) of n group elements. On these cochains, 

we define a coboundary operator 

<fc(0i,... ,ffn+l) =c{g2i.-. ,gn) - (-l)n#ic(#2,..-  jffn+l) 

A (249) 
+ 2^(-l)'c(5i?--- ,91-1,9191+1,91+2, -" ,9n+i)- 

i=i 

The finite group cohomology H*(G,M) is given by Ker(5)/Im(5). 

Although this definition is quite simple, it is not very convenient for prac- 

tical calculations. A more efficient way to compute finite group cohomology 

is to use a suitable resolution of the finite group G. More precisely, we need 

a right projective resolution of Z by ZG-modules (see e.g. [106,107]). Such 

a resolution is an exact sequence 

Hfe-l ■ Po —► Z —> 0 (250) 

where all P^ are projective modules over the group algebra ZG, the maps are 

homomorphisms of ZG-modules, and Z is viewed as the trivial ZG-module. 

Projective modules are modules which are the direct summand of a free 

module. An exact sequence like (250) induces a sequence 

MG —> HomG(Po,M) —> HomG(Pi,M) —► HomG(P2,M) • • •      (251) 
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for any G-module M. Here, MG denotes the G-invariant elements of M, 

and Homc^jP, M) denotes the homomorphisms of P to M that commute 

with the action of G. It is a standard fact that (250) is no longer exact, but 

is still a complex. The cohomology of that complex is precisely the finite 

group cohomology H*(G,M). 

A convenient resolution of finite groups is the Gruenberg resolution (see 

section 11.3 in [106]), which is associated to a presentation of the finite 

group (i.e., a set generators and relations). For Zm, we can use as generator 

/3 subject to /3m = 1, and for Vj^ we can use the presentation with generators 

a, ft and relations (247). The respective resolutions are given on page 6 and 

35 of [107]. Using (251) they yield a simple algorithm to compute the finite 

group cohomologies H*(G,M). Here we merely summarize the algorithm 

for Zm and our particular V^ actions. 

For G = Zm, the cohomology groups iiP(Zm,M) are given by the coho- 

mology of the complex 

MAMAMAMA-.. (252) 

where 

dQ(m) = {13- l)m, di(ra) = ^ gm. (253) 

Recall that /3 was defined as the generator of Zm. In particular, we see that 

the cohomology in degrees above zero will be periodic with period 2. As 

an example, take M — U(l) with the trivial action of Zm. Then do — 0, 

di = m, and we get that tf0(Zm, 17(1)) - [7(1), if2i+1(Zm, 17(1)) = Zm, and 

H2i(ZmiU(l)) =0fori>0. 

For G = Dfc, the cohomology groups are given by the cohomology of the 

complex 

M^M®M^hM®M^hM-^M^M®M^h...       (254) 
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where 

do(ra) = ((a - l)m, (/? - l)m), 

di(mi,7722) = ((/?- l)mi + (/3a + l)m2, 

(-1 - a)mi + (1 +/? + ... + ^"3)m2), 

d2{mi,m2) — (1 - /3a)mi + ((3 - l)m2, 
(255) 

Thus, this cohomology will be periodic with period four. 

We are now ready to compute the E™ terms defined in (248). First, 

we determine the G-module structure of il^T4,17(1)). We then insert this 

module in either (252) or (254), and work out the cohomology of the corre- 

sponding complex. In practice, the maps di can always be written as matrices 

with integer coefficients with respect to an integral basis of iJ9(T4, C/(l)). 

Using suitable changes of basis by acting with SL(p, Z), these matrices can be 

brought to a form with only diagonal elements. If the kth differential dk has 

diagonal non-zero entries rfi,... , dr then IIk will be equal to Z^1 ©... © Z^. 

The results of the calculation of E™ are given below. 

G = Z2 

4 U(l) Z2 0 Z2 0  Z2 

3 z\ 0 z| 0 z|    0 

2 C7(l)6 z| 0 1% 0   z| 

1 z| 0 z\ 0 z|    0 

0 U{1) z2 0 Z2 0   z2 

q/p 0 1 2 3 4  5 

(256) 
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G = Z3: 

4 17(1) Z3 0 Z3 0     Z3 

3 z? 0 z| 0 zf    0 
2 C/(l)4 zi 0 zi 0  zi 
1 zi 0 z| 0 zi 0 
0 C/(l) Z3 0 Z3 0     Z3 

q/p 0 1 2 3 4      5 

(257) 

G = Z4: 

4 U(l) Z4 0 Z4 0 Z4 

3 z| 0 zl 0 z| 0 

2 t/(i)4 Z|©Z2 0 zl®z2
2 0 Z2©Z2 

1 Z^ 0 z| 0 Z^ 0 

0 U(l) Z4 0 Z4 0 Z4 

g/p 0 1 2 3 4 5 

(258) 

G = Z6 : 

4 U(l) Ze 0 z6 0 z6 

3 0 0 0 0 0 0 

2 C7(l)4 z|©z2 0 Z|©Z2 0 z^ezs 
1 0 0 0 0 0 0 

0 ?7(1) z6 0 z6 0 z6 

q/p 0 1 2 3 4 5 

(259) 

G = VA: 

4 U(l) Z2 0 z8 0 Z2 

3 Z2 0 Z2 0 z2 0 

2 i7(l)3 zl 0 21 0 zi 
1 z2 0 Z2 0 Z2 0 

0 U-(l) Zl 0 z8 0 zl 

q/p 0 1 2 3 4 5 

(260) 
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G = V5: 

4 U{1) Z4 0 Z12 0 Z4 

3 0 0 0 0 0 0 

2 C7(l)3 Z|ffiZ6 0 Z4©Z6©Zi2 0 zl©z6 

1 0 0 0 0 0 0 

0 17(1) Z4 0 Z12 0 Z4 

q/p 0 1 2 3 4 5 

(261) 

For G = Zm, the rows in these tables are periodic with period two, 

whereas for G = Vk they are periodic with period four. In all cases, the 

spectral sequence collapses at the E™ term. In addition, by redoing the 

calculation with coeffients in Zr rather than £/(!), we find that the extension 

problem is trivial. Thus, the equivariant cohomologies iJ^T4, U(l)) are 

isomorphic to ®iEl
2'
n~\ 

As a simple test, we notice that all cohomology above degree four has 

to be supported purely by the singularities of T4/G. This can be seen, 

for example, from a Mayer-Vietoris argument. Using Table 18 (see also 

Table 10), one readily verifies that this is indeed the case. Notice that 

Hii+l{V2k) = Z2 © Z2, Hii+1(V2k+l) = Z4, and H*i+3(Vk) = Z4ik_2). 

One-forms 

The equivariant 1-forms receive contributions from two different sources. 

One is from H®{G,Hl{T^, [7(1))), which are the G-invariant 1-forms on T4. 

They are in one-to-one correspondence with the G-fixed points on T4. The 

second contribution is from 

Hl{G,H\T\um = Hl{G,U{l)), 

whose elements correspond to the one-dimensional representations of G. 

Both have a clear interpretation in terms of line bundles over T4: the G- 

invariant 1-forms represent a flat connection on T4 whereas Hl(G, U(l)) 

represents possible actions of G on the fiber of the line bundle. Also note 

that i^(T4, U(l)) matches with the group (E^/E given in table 10. 
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What is the M theory description of these theories? Let A • dx G 

^(Gjff^T4,^!))) denote an invariant 1-form, and p G ff^G^Cl)) a 

1-dimensional representation of G. The pair (A, p) labels a general element 

of H^(T4, U(l)). The 1-form A defines a five-torus T5, which is not of the 

product form T4 x S'1. Instead, the extra circle is fibered non-trivially over 

T4. The five-torus has a metric of the form 

ds2 = ds2
TA +Rl(d(f) + A- dx)2 (262) 

where (j) denotes the coordinate along the extra circle, whose radius we de- 

noted by R5. The group G acts on this five-torus by 

(x, 0) -► (g(x), $ + p(g) + A • (x - g(a;))). (263) 

The M theory description of these theories is a compactification on T5/G, 

with the five-torus and group action given in (262) and (263). 

To relate this to compactifications on (M x S1)/G, we need to find a 

description where the five-torus is a direct product of a four-torus and a 

circle. As in section 4.4, this can be accomplished by taking a suitable cover 

of T5. Suppose that the four-torus is described by IR4/A. Then A e R4/A* 

which is the dual four-torus. Let p be the smallest positive integer such that 

pA = 0 in M4/A*. We define a p-fold cover f4 of T4 as M4/AA, where A A is 

the lattice 

AA = {x G A\A-xeZ}. 

The group action on T4 lifts to an action on T4. To prove this, we need to 

show that P(AA) C A^. Thus for x G A^, then we need to show that g(x)-A G 

Z. The statement that A is G invariant implies that g(x) • A — x - A = x • B, 

with B G A*. Applying this to x G A^, we immediately get that g(x)'A G Z. 

Therefore, G lifts to an action on T4. 

Clearly, T4 = T4/Gp, where Gp is finite group of translations in T4. It 

is not difficult to see that Gp = Zp, because we can always use SX(4, Z) to 

make only one of the components of A non-zero. In particular, A/AA = Zp, 
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and we can choose an element XQ E A that generates A/A A- NOW on T4 x 51, 

we have both an action of Zp and of G. They act as 

G : (x, (f>) -> (g(x), <f> + P{g)), Zp : (x, 0) -> (a; + XQ, (p + A • XQ),    (264) 

and one can easily verify that these two group actions commute. The M 

theory description of IIA string theory on T4/G with 1-form flux (A,p) is 

given by M theory on 

(T5)/G = (f4 x 5,1)/(C? x Zp). (265) 

We argue in section 4 that the only possible M theory compactifications 

that preserve the right amount of supersymmetry are of the form (M x 

Sl)/Zr, with M = T4 or M = if 3. Indeed, the space (265) is always of this 

form. To find M, we need to study the action of G x Zp on the S'1 factor. 

The image of p in U(l) defines a subgroup Z^ of U(l). We also have a 

1-dimensional representation of G x Zp, acting on the S'1 factor in T4 x S1. 

This representation has as image in U(l) the group %\cm(p,\p\): where 1cm 

denotes the least common multiple. Thus there is an exact sequence 

G->GxZp-»Zlcm(P)H)) (266) 

where G is a normal subgroup of G. Therefore, M theory compactified on 

(265) is the same as M theory compactified on 

((f*/G)xS1)/Zlcm{pM). (267) 

This is always of the form (Af x S^/Z^ with M = T4 of M = if3, as 

expected. We obtain M = T4 only if G is cyclic, p is a faithful representation 

and A = 0. In all other cases, M = if 3. 

As an example, let us take our favorite non-abelian action G — V^. 

We showed that E^0 = Z2 and that E^1 = Z2. There is one case (the 

trivial 1-form) where \p\ = 1 and p = 1. This corresponds to M theory on 

(T4/X>4) x 51, as expected.  There are three cases with \p\ = 2 and p = 1. 
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These correspond to M theory on ((T4/^) x S1)/^. Furthermore, there 

is one case with \p\ = 1 and p = 2. This corresponds to M theory on 

((T4/^) x S1)/Z2- Finally, there are three cases with \p\ = 2 and p = 1. 

These correspond to M theory on ((T4/Z4) x S1)^. 

What about the holonomies of these 1-forms? Consider a point p E M4 

that is fixed under a part Gp of the group G when viewed as an element 

of M4/A. Given a group element g that fixes p, we need to determine the 

holonomy of the 1-form around the loop associated to g in S3/Gp. Here, we 

view g as an element of 7ri(S3/Gp) = Gp. Generalizing the discussion at the 

end of section 4.4, we find for the holonomy 

exp [27ri ((p - g(p)) - A + p(g))]. (268) 

D.3     Explicit generators for Hl^T71,^) 

To conclude our discussion of equivariant cohomology, we shall explicitly 

construct generators for i/'|2(T
n,Z2) where n — 1,2,3. This makes the 

localization of the B-field concrete in the orientifold constructions discussed 

in section 3. We use the cell decomposition of the space T^ — SN x^2 T
n 

which is obtained from a Z2-equivariant cell-decomposition of SN x Tn. We 

are interested in the second cohomology so it is sufficient to take N = 3 here. 

Throughout our discussion, we will use the standard cell decomposition of 

SN, 

SN = e£ U e^ U ef U ejf U e% U e^ U • • • , (269) 

where the Z2 exchanges e^ and e~, 

4 -» <&. (270) 
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e~o 

Figure 5: Cell decomposition of S'2. 

This decomposition is illustrated in figure 5. The boundary operator is given 

by 

de± = 0, 

def = 4 + eo, 

de± = 4 + er> 

We note that we do not care about the sign since we are considering the Z2 

coefficient, e^ = — e^. 

n = l 

We consider the cell decomposition of T1 as depicted in figure 6. The Z2 

inversion fixes the 0-chains but exchanges the two 1-chains, 

4 -> Co1,     ef -± ef. (271) 

± - *+ The boundary operator is just de0 = 0 and 9e1 = e^ + e0 
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.+ 

eb 

Figure 6: Cell decomposition of T1. 

The cell decomposition of the space T^2 = (SN x T1)/Z2 is given as 

follows: 

^+ e00 •"" e0 Cn    X  6n    — Cn    X 6 

"£0 e£0 :— e£   X eo 
.i - e,  x e 

0   ' 

0 ' 

-(£-i)i :— ^/—i x 6-^  — ^£—i     ^1 ' 
£=1,2,3,... 

It is then easy to see that the boundary operator is given by, 

def0 = 0,   £ = 0,1,2,... 

de01 = e00 + e00, 

(272) 

(273) deti = eJ-i) i + e(£-i) i + eto + e£0'   ^ = 1,2,3,... 

By dualization we find the following coboundary operator, where the nota- 

tion for the cochain should be self-evident: 

Sc ■la 
„+ + c; (£ = 0,1,2,...;   a = 0,1). (274) 

Prom this expression, we see that 52 (the space of coboundaries of dimension 

2) is spanned by (c^ -hc^) while Z2 (the space of 2-cocycles) is spanned by 
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(c20 + cii)> (c20 + cii)> and (cn + cii)- The cohomology group H2 = Z2/^2 

is therefore given by 

^2[4o + 4]ez2[c2-0 + c+1]. (275) 

The first generator has value 1 on e^0 i.e., MP2 at the Z2 fixed point ej}", 

while it vanishes on e^0, i.e., MP2 at the other Z2 fixed point e^. The second 

generator vanishes on e^o (I^P2 at eg") while it has value 1 on e. 

So")- 

-20 at 

n = 2 

eh c,^ i \ 

eo4' •       ft1 >ef el      . 

el' 

^ 

e,2' 

^       , 
el e ,2 

'0 

Figure 7: Cell decomposition of T2. 

We consider the Z2-equivariant cell decomposition of T2 depicted in fig- 

ure 7. There are four 0-chains el where i = 1,2,3,4. In addition, there are 

six 1-chains e^ with /J, = 1,1,2,2,3, 3 and two 2-chains e^ with 7=1,1. The 

Z2 acts on them in the following way: 

pi      pV _v pM      J 
"0^ (276) 
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In this expression, 2 = 2 etc. The cell decomposition of T|   is given by 

-oo 

-10 

-oi 

^o 

x eo — e0   X e05 

— el 

- p+ 

X  6Q   nr  C-i     X   6, 

X  o-i    zz:  op»    X  6 

0? 

1' 

x e^ x e, 0' 

e(£-l)l :~ e^ 
x e* M — x e i' 

-2)2 ' ^_2 x e2 — el-2 X e2 

£ = 2,3,, (277) 

Here, we do not show all the details of the computation but just present the 

result. The 2nd coboundary group B2 is spanned by c^ + CJ^ and c^ + c^ 

with /i = 1,2,3. The cohomology is of rank 4, #i2(T
2, Z2) = (Z2)4, and the 

four generators are represented by 

c20 + cll + cll + c025  c20 + cll + cll + c025 

c20 + cll + c025  c20 + cll + c02- 

(278) 

Note that the ith generator has a non-trivial value on the MP2 at the fixed 

point el (i.e., on the cycle elo)? an(i ls vanishing at the other fixed points CQ, 

n = 3 

We consider the Z2-equivariant cell decomposition of T3 depicted in fig- 

ure 8. There are eight 0-chains el
Q (i = A, 5,C,... ,H); fourteen 1-chains 

e^ (fi = a, a, 6,6,... ,^,^); eight 2-chains e^ (I = a, a,... ,5,^); and two 

3-chains 63 (A = 1,1). The Z2 acts on them as follows, 

P*1   —i P1       P^ eo ^^ e05   ei el5    e2 ei -+ eo (279) 
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Figure 8: Cell decomposition of T3. 

The cell decomposition of T|   is given by 

eoo :— eo x eo CQ X 6, 0? 

no I— 6-1 X Sn ^^ 61 X 6, 05 

e01 :— eo x ei — e0 X el' 

s2 0 :— e2 X e0 — e2 x e; ■o» 
6-j-j .— 0-1 X 6-1 — 6-1 X 61 5 

e02 :~ e0 X e2 — e0 X e2 

^  " &o    X 6n = 6/? X 6Q5 ^0 • 

-(€-1)1 
0/ 
"11-2)2 

^(£-3)3 

-0 
— e£-l x er = e; -1 x e 1» 

= e^_3 x e3 — e£-3 X e3' 

>   £ = 3,4,... (280) 

As in the previous case, we only present the result.   The 2nd coboundary 

group B2 is spanned by q^ + c^ for all I and c^ + c^ for all /i.   The 
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cohomology is of rank 7, i?|2(T
3,Z2) = (Z2)7, and the seven generators are 

represented by 

c20 + c20 + cll + cll + cll + cll + c02 + C02 5 

c20 + c20 + cll + cll + cll + c02 + C025 

c20 + c20 + cll + cll + c02> 

c20 + c20 + cll + cll + cll + cll + c02 + C02 + C02? 

c20 + c20 + cll + cll + cll + cll + c02 + c02' 

c20 + c20 + cll + cll + cll + cll + cll + c02 + c02 + C025 

c20 + c20 + cll + cll + cll + cll + c02 + c02 + C02 + C02- 

Note that the z^ generator has a non-trivial value on the MP2 at the fixed 

point eg (i.e., on the cycle e^o) and also at the point eff (i.e., on the cycle 

e^o), and is vanishing at the other fixed points CQ, j ^ i,H. 

References 

[1] S. Chaudhuri, G. Hockney and J. D. Lykken, "Maximally supersym- 

metric string theories in D < 10," Phys. Rev. Lett. 75, 2264 (1995) 

[hep-th/9505054]. 

[2] S. Chaudhuri and J. Polchinski, "Moduli space of CHL strings," Phys. 

Rev. D52 (1995) 7168 [hep-th/9506048]. 

[3] M. Fabinger and P. Horava, "Casimir effect between world-branes in 

heterotic M-theory," Nucl. Phys. B 580, 243 (2000) [hep-th/0002073]. 

[4] D. Diaconescu, G. Moore and E. Witten, "E(8) gauge theory, and a 

derivation of K-theory from M-theory," hep-th/0005090. 

[5] O. Bergman, E. Gimon and S. Sugimoto, "Orientifolds, RR torsion, and 

K-theory," hep-th/0103183. 



1178 TRIPLES, FLUXES, AND STRINGS 

[6] Y. Hyakutake, Y. Imamura and S. Sugimoto, "Orientifold planes, type 

I Wilson lines and non-BPS D-branes," JHEP 0008, 043 (2000) [hep- 

th/0007012]. 

[7] O. Bergman and A. Fayyazuddin, "String junctions and BPS states 

in Seiberg-Witten theory," Nucl. Phys. B 531, 108 (1998) [hep- 

th/9802033]. 

[8] A. Mikhailov, N. Nekrasov and S. Sethi, "Geometric realizations of 

BPS states in N = 2 theories," Nucl. Phys. B 531, 345 (1998) [hep- 

th/9803142]. 

[9] O. DeWolfe, T. Hauer, A. Iqbal and B. Zwiebach, "Constraints on the 

BPS spectrum of N = 2, D = 4 theories with A-D-E flavor symmetry," 

Nucl. Phys. B 534, 261 (1998) [hep-th/9805220]. 

[10] Y. Imamura, "String junctions and their duals in heterotic string the- 

ory," Prog. Theor. Phys. 101, 1155 (1999) [hep-th/9901001]. 

[11] M. Fukae, Y. Yamada and S. Yang, "Mordell-Weil lattice via string 

junctions," Nucl. Phys. B 572, 71 (2000) [hep-th/9909122]. 

[12] J. Hashiba, K. Hosomichi and S. Terashima, "String junctions in B field 

background," JHEP0009, 008 (2000) [hep-th/0005164]. 

[13] D. R. Morrison, "Wilson Lines in F-Theory," Lecture at Harvard Uni- 

versity, 8 January 1999 (unpublished). 

[14] J. H. Schwarz and A. Sen, "Type IIA dual of the six-dimensional CHL 

compactification," Phys. Lett. B357, 323 (1995) [hep-th/9507027]. 

[15] E. Witten, "New 'gauge' theories in six dimensions," JHEP 9801 (1998) 

001 [hep-th/9710065]. 

[16] K. Landsteiner and E. Lopez, "New curves from branes," Nucl. Phys. 

B516, 273 (1998) [hep-th/9708118]. 



J. DEBOER ET AL. 1179 

[17] E. Witten, "Toroidal compactification without vector structure," JHEP 

9802, 006 (1998) [hep-th/9712028]. 

[18] D. S. Freed and E. Witten, "Anomalies in string theory with D-branes," 

hep-th/9907189. 

[19] J. A. Keurentjes, Ph.D. thesis, "New vacua for Yang-Mills theory on a 

3-torus," hep-th/0007196. 

[20] A. Keurentjes, A. Rosly and A. V. Smilga, "Isolated vacua in super- 

symmetric Yang-Mills theories," Phys. Rev. D58, 081701 (1998) [hep- 

th/9805183]. 

[21] A. Keurentjes, "Non-trivial flat connections on the 3-torus. I: G(2) and 

the orthogonal groups," JHEP 9905, 001 (1999) [hep-th/9901154]. 

[22] V. G. Kac and A. V. Smilga, "Vacuum structure in supersymmetric 

Yang-Mills theories with any gauge group," hep-th/9902029. 

[23] A. Keurentjes, "Non-trivial flat connections on the 3-torus. II: The 

exceptional groups F(4) and E(6,7,8)," JHEP 9905, 014 (1999) [hep- 

th/9902186]. 

[24] A. Borel, R. Friedman and J. W. Morgan, "Almost commuting elements 

in compact Lie groups," math.GR/9907007. 

[25] E. Witten, "Supersymmetric index in four-dimensional gauge theories," 

hep-th/0006010. 

[26] G. 't Hooft, "A Property Of Electric And Magnetic Flux In Nonabelian 

Gauge Theories," Nucl. Phys. B153 (1979) 141. 

[27] C. Schweigert, "On moduli spaces of flat connections with non-simply 

connected structure group," Nucl. Phys. B492, 743 (1997) [hep- 

th/9611092]. 

[28] M. Berkooz, R. G. Leigh, J. Polchinski, J. H. Schwarz, N. Seiberg and 

E. Witten, "Anomalies, Dualities, and Topology of D=6 N=l Super- 

string Vacua," Nucl. Phys. B475, 115 (1996) [hep-th/9605184]. 



1180 TRIPLES, FLUXES, AND STRINGS 

[29] A. Keurentjes, "Orientifolds and twisted boundary conditions," Nucl. 

Phys. B 589 (2000) 440 [hep-th/0004073]. 

[30] P. Hofava and E. Witten, "Heterotic and type I string dynamics from 

eleven dimensions," Nucl. Phys. B460, 506 (1996) [hep-tli/9510209]. 

[31] E. Witten, "On flux quantization in M-theory and the effective action," 

J. Geom. Phys. 22, 1 (1997) [hep-th/9609122]. 

[32] K. S. Narain, "New Heterotic String Theories In Uncompactified Di- 

mensions < 10," Phys. Lett. B169 (1986) 41. 

[33] K. S. Narain, M. H. Sarmadi and E. Witten, "A Note On Toroidal 

Compactification Of Heterotic String Theory," Nucl. Phys. B279 (1987) 

369. 

[34] K. S. Narain, M. H. Sarmadi and C. Vafa, "Asymmetric Orbifolds," 

Nucl. Phys. B288 (1987) 551. 

[35] K. S. Narain, M. H. Sarmadi and C. Vafa, "Asymmetric orbifolds: Path 

integral and operator formulations," Nucl. Phys. B356 (1991) 163. 

[36] W. Lerche, C. Schweigert, R. Minasian and S. Theisen, "A note on 

the geometry of CHL heterotic strings," Phys. Lett. B424 (1998) 53 

[hep-th/9711104]. 

[37] V. V Nikulin, "Finite automorphism groups of Kahler K3 surfaces," 

Trans. Moscow. Math. Soc. 38 (1979) 71. 

[38] A. Mikhailov, "Momentum lattice for CHL string," Nucl. Phys. B534 

(1998) 612 [hep-th/9806030]. 

[39] P. Ginsparg, "Comment On Toroidal Compactification Of Heterotic Su- 

perstrings," Phys. Rev. D35, 648 (1987). 

[40] P. Goddard, J. Nuyts and D. Olive, "Gauge Theories And Magnetic 

Charge," Nucl. Phys. B125 (1977) 1. 



J. DEBOER ET AL. 1181 

[41] S. Chaudhuri and D. A. Lowe, "Type IIA heterotic duals with maximal 

supersymmetry," Nucl. Phys. B459, 113 (1996) [hep-th/9508144]. 

[42] P. S. Aspinwall, "Some relationships between dualities in string theory," 

Nucl. Phys. Proc. Suppl. 46, 30 (1996) [hep-th/9508154]. 

[43] M. Bianchi, G. Pradisi and A. Sagnotti, "Toroidal compactification and 

symmetry breaking in open string theories," Nucl. Phys. B376, 365 

(1992). 

[44] A. Sen and S. Sethi, "The mirror transform of type I vacua in six di- 

mensions," Nucl. Phys. B499, 45 (1997) [hep-th/9703157]. 

[45] E. Witten, "Baryons and branes in anti de Sitter space," JHEP 9807 

(1998) 006 [hep-th/9805112]. 

[46] K. Hori, "Consistency condition for fivebrane in M-theory on i?5/Z2 

orbifold," Nucl. Phys. B539 (1999) 35 [hep-th/9805141]. 

[47] E. G. Gimon, "On the M-theory interpretation of orientifold planes," 

[hep-th/9806226]. 

[48] S. Sethi, "A relation between N = 8 gauge theories in three dimensions," 

JHEP 9811 (1998) 003 [hep-th/9809162]. 

[49] M. Berkooz and A. Kapustin, "New IR dualities in supersymmet- 

ric gauge theory in three dimensions," JHEP9902, 009 (1999) [hep- 

th/9810257]. 

[50] A. Hanany, B. Kol and A. Rajaraman, "Orientifold points in M theory," 

JHEP 9910 (1999) 027 [hep-th/9909028]. 

[51] H. Kao and K. Lee, "Selfdual Chern-Simons systems with an 

N=3 extended supersymmetry," Phys. Rev. D46, 4691 (1992) [hep- 

th/9205115]. 

[52] A. Dabholkar and J. Park, "Strings on Orientifolds," Nucl. Phys. B477, 

701 (1996) [hep-th/9604178]. 



1182 TRIPLES, FLUXES, AND STRINGS 

[53] J. Park, "Orientifold and F-theory duals of CHL strings," Phys. Lett. 

B418, 91 (1998) [hep-th/9611119]. 

[54] A. Sen, "F-theory and Orientifolds," Nucl. Phys. B475, 562 (1996) 

[hep-th/9605150]. 

[55] A. L. Besse, Einstein manifolds, Springer-Verlag, Berlin, 1987. 

[56] A. Fujiki, "Finite automorphism groups of complex tori of dimension 

two," Publ. Res. Inst. Math. Sci. 24 (1988), no. 1, 1. 

[57] V. V Nikulin, "Integer symmetric bilinear forms and some of their ge- 

ometric applications," Math. USSR Izvestija 14 (1980) 103. 

[58] F. Enriques and F. Severi, "Memoire sur les surfaces hyperelliptiques," 

Acta Math. 32 (1909), 283-392; 33 (1910), 321-403. 

[59] V. V. Nikulin, "Kummer surfaces," Izv. Akad. Nauk SSSR Ser. Mat. 

39 (1975), no. 2, 278-293, 471. 

[60] D. R. Morrison, "On K% surfaces with large Picard number," Invent. 

Math. 75 (1984), 105. 

[61] J. Bertin, "Reseaux de Kummer et surfaces .RT3," Invent. Math. 93 

(1988), 267. 

[62] K. Wendland, "Consistency of orbifold conformal field theories on K3," 

hep-th/0010281. 

[63] B. R. Greene, A. Shapere, C. Vafa and S. Yau, "Stringy Cosmic Strings 

And Noncompact Calabi-Yau Manifolds," Nucl. Phys. B 337, 1 (1990). 

[64] M. Gross and P. M. H. Wilson, "Large Complex Structure Limits of K3 

Surfaces," math.DG/0008018. 

[65] J. H. Schwarz, "An SL(2,Z) multiplet of type IIB superstrings," Phys. 

Lett. B 360, 13 (1995) [hep-th/9508143]. 



J. DEBOER ET AL. 1183 

[66] C. Vafa, "Evidence for F-Theory," Nucl. Phys. B469, 403 (1996) [hep- 

th/9602022]. 

[67] P. Berglund, J. Ellis, A. E. Faraggi, D. V. Nanopoulos and Z. Qiu, "Ele- 

vating the free-fermion Z(2) x Z(2) orbifold model to a compactification 

of F-theory," Int. J. Mod. Phys. A 15, 1345 (2000) [hep-th/9812141]. 

[68] D. A. Cox, "Mordell-Weil groups of elliptic curves over C(t) with^ = 0 

or 1," Duke Math. J. 49 (1982) 677. 

[69] S. Katz and D. R. Morrison, "Gorenstein threefold singularities with 

small resolutions via invariant theory for Weyl groups," J. Algebraic 

Geom. 1 (1992), 449 [alg-geom/9202002]. 

[70] D. R. Morrison and N. Seiberg, "Extremal transitions and five- 

dimensional supersymmetric field theories," Nucl. Phys. B 483, 229 

(1997) [hep-th/9609070]. 

[71] F. A. Cachazo and C. Vafa, "Type I' and real algebraic geometry," 

hep-th/0001029. 

[72] R. Friedman, J. Morgan and E. Witten, "Vector bundles and F theory," 

Commun. Math. Phys. 187 (1997) 679 [hep-th/9701162]. 

[73] P. B. Kronheimer, "Instanton invariants and flat connections on the 

Kummer surface," Duke Math. J. 64 (1991), no. 2, 229-241. 

[74] T. Bridgeland, A. King and M. Reid, "Mukai implies McKay: the 

McKay correspondence as an equivalence of derived categories," 

math.AG/9908027. 

[75] E. Witten, "D-branes and K-theory," JHEP9812, 019 (1998) [hep- 

th/9810188]. 

[76] R. Minasian and G. Moore, "K-theory and Ramond-Ramond charge," 

JHEP9711, 002 (1997) [hep-th/9710230]. 



1184 TRIPLES, FLUXES, AND STRINGS 

[77] G. Moore and E. Witten, "Self-duality, Ramond-Ramond fields, and 

K-theory," JHEP0005, 032 (2000) [hep-th/9912279]. 

[78] D. S. Freed and M. J. Hopkins, "On Ramond-Ramond fields and K- 

theory," JHEP0005 (2000) 044 [hep-th/0002027]. 

[79] D. S. Freed, "Dirac charge quantization and generalized differential co- 

homology," hep-th/0011220. 

[80] J. Lott, "M/Z-Index Theory," Comm. in Anal, and Geom. 2 (1994) 279. 

[81] M. F. Atiyah, V. Patodi, and I. M. Singer, "Spectral Asymmetry and 

Riemannian Geometry," Math. Proc. Camb. Phil. Soc. 77 (1975) 43. 

[82] H. Garcia-Compean, "D-branes in orbifold singularities and equivariant 

K-theory," Nucl. Phys. B 557, 480 (1999) [hep-th/9812226]. 

[83] D. Diaconescu and J. Gomis, "Fractional branes and boundary states 

in orbifold theories," JHEP0010, 001 (2000) [hep-th/9906242]. 

[84] O. Bergman, E. Gimon, and B. Kol, "Strings on Orbifold Lines," hep- 

th/0102095. 

[85] R. Dijkgraaf and E. Witten, "Topological Gauge Theories And Group 

Cohomology," Commun. Math. Phys. 129, 393 (1990). 

[86] M. de Wild Propitius, Topological interactions in broken gauge theories, 

Ph.D. thesis, University of Amsterdam, 1995, hep-th/9511195. 

[87] M. F. Atiyah and G. B. Segal, "Equivariant K-Theory and Completion," 

J. Diff. Geom. 3 (1968). 

[88] E. R. Sharpe, "Analogues of discrete torsion for the M-theory three- 

form," 

hep-th/0008170. 

[89] G. Moore,  "Some comments on branes, G-flux, and K-theory," hep- 

th/0012007. 



J. DEBOER ET AL. 1185 

[90] N. Seiberg, "IR dynamics on branes and space-time geometry," Phys. 

Lett. B384, 81 (1996) [hep-th/9606017]. 

[91] N. Seiberg and E. Witten, "Gauge dynamics and compactification to 

three dimensions," hep-th/9607163. 

[92] A. Sen, "A note on enhanced gauge symmetries in M- and string theory," 

JHEP9709, 001 (1997) [hep-th/9707123]. 

[93] R. Miranda and D. R. Morrison, "The number of embeddings of integral 

quadratic forms. I, II," Proc. Japan Academy, Ser. A, 61, (1985) 317; 

62, (1986) 29. 

[94] A. Kapustin, "D-branes in a topologically nontrivial B-field," Adv. 

Theor. Math. Phys. 4, 127 (2001) [hep-th/9909089]. 

[95] P. S. Aspinwall, "Enhanced gauge symmetries and K3 surfaces," Phys. 

Lett. B357, 329 (1995) [hep-th/9507012]. 

[96] E. Gava, A. B. Hammou, J. F. Morales and K. S. Narain, "D1/D5 

systems in N = 4 string theories," hep-th/0012118. 

[97] E. Gava, A. B. Hammou, J. F. Morales and K. S. Narain, "AdS/CFT 

correspondence and D1/D5 systems in theories with 16 supercharges," 

hep-th/0102043. 

[98] N. Hitchin, "Lectures on special Lagrangian submanifolds," 

math.DG/9907034. 

[99] R. Bott and L. W. Tu, Differential forms in algebraic topology, Springer- 

Verlag, New York, 1982. 

[100] E. Witten, "Duality relations among topological effects in string the- 

ory," JHEP0005, 031 (2000) [hep-th/9912086]. 

[101] J. A. Minahan, D. Nemeschansky, C. Vafa and N. P. Warner, "E- 

strings and N = 4 topological Yang-Mills theories," Nucl. Phys. B 527, 

581 (1998) [hep-th/9802168]. 



1186 TRIPLES, FLUXES, AND STRINGS 

[102] R. Dijkgraaf, E. Verlinde and H. Verlinde, "Matrix string theory," 

Nucl. Phys. B 500, 43 (1997) [hep-th/9703030]. 

[103] M. Bershadsky, T. Pantev and V. Sadov, "F-theory with quantized 

fluxes," Adv. Theor. Math. Phys. 3, 727 (1999) [hep-th/9805056]. 

[104] P. Berglund, A. Klemm, P. Mayr and S. Theisen, "On type IIB vacua 

with varying coupling constant," Nucl. Phys. B558, 178 (1999) [hep- 

th/9805189]. 

[105] J. W. Milnor and J. D. Stasheff, Characteristic Classes (Princeton 

University Press, 1974). 

[106] D. J. S. Robinson, A Course in the Theory of Groups, Graduate Texts 

in Mathematics 80, Springer, New York, 1982. 

[107] C. B. Thomas, Characteristic Classes and the Cohomology of Finite 

Groups, Cambridge Studies in Advanced Mathematics 9, Cambridge 

University Press, Cambridge, 1986. 


