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Abstract 

We notice that, for branes wrapped on complex analytic sub- 
varieties, the algebraic-geometric version of K-theory makes the 
identification between brane-antibrane pairs and lower-dimen- 
sional branes automatic. This is because coherent sheaves on 
the ambient variety represent gauge bundles on sub varieties, and 
they can be put in exact sequences (projective resolutions) with 
sheaves corresponding to vector bundles on the pair; this auto- 
matically gives a D(p — 2) as a formal difference of bundles on 
the Dp — Dp pair, both belonging to the Grothendieck group of 
coherent sheaves of the ambient. 
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1    Introduction 

There has been recently a major shift of perspective as to the inter- 
pretation of tachyons in brane-antibrane pairs [1]. It has been long 
since suspected that they signal instabilities, but one could not forecast 
whether this led to inconsistency of the theory or could have instead a 
more constructive role. It is now believed that the latter is the case, 
and that tachyons can be viewed simply as Higgs fields, whose con- 
densation can lead to interesting effects. In particular, it can lead to 
remnants whose stability is in turn simply dictated by the topological 
stability of the condensation. Here we will be interested only in type 
II theories and in stable products of decay. If on the brane and on the 
antibrane there are gauge bundles E and F respectively, what we need 
is something that classifies the topological content of the pair. The key 
is to note that [2], if the two bundles are topologically the same, they 
will annihilate leaving no stable remnant: there is in this case no stable 
pattern of condensation for the tachyon. Moreover, if such a trivial pair 
is added to non trivial ones, it will disappear, giving no contribution. 
We can write this symbolically as (E, F) ~ [E 0 H, F © H). Since this 
is the definition of topological K-theory, we can interpret physics by 
identifying a brane-antibrane system as an element of this group (hints 
in this direction were explicitly given before in [3]). 

We have now to identify physically the result of the decay, which 
in general is not the vacuum (as there exist non-trivial elements of K- 
theory). The locus in which the tachyon vanishes is the place around 
which energy is located, and is a source for lower RR fields. So it is 
natural to identify it with a brane supported on its zero locus; this can 
be viewed as a section of T = E ® F*. This second point makes it 
possible that K-theory also classifies all lower-dimensional D-branes. 

Let us stress that the classification of pairs by K-theory and the 
identification of the remnant are, so far, two different steps. Note, 
indeed, that a K-theory class does not define the bundle T: if we 
change the representative, the latter changes as well. 

Here we will argue that, if we deal with complex analytic subvari- 
eties, the identification of the remnant is a natural consequence of the 
first step, in a way that puts a new light on the incorporation of lower 
charges. This is because in that case we can choose, instead of K-theory, 
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an analytic (algebraic-geometric) version of it, the Grothendieck group 
of coherent sheaves [4, 5], hereafter referred to simply as Grothendieck 
group (as it is commonly meant in algebraic geometry; in general this 
name simply denotes the procedure to get a group from a monoid). 
In this setting, bundles over subvarieties are expressible - through pro- 
ject ive resolutions - as formal differences of bundles over the ambient 
variety. This allows us to see the identification between brane-antibrane 
and K-theory on the same footing as that between brane-antibrane and 
lower-dimensional brane; in a way, this becomes automatic, or natural. 

On the one hand, this seems to confirm the physical analysis already 
done; on the other, it allows us to interpret descent relations, and 
tachyon condensation between stable D-branes, in terms of projective 
resolutions. In turn, the physical identification between Dp — Dp and 
D(p — 2) can be viewed now as a purely topological counterpart of an 
algebraic-geometric procedure. 

One should stress the difference between what we said above and 
the already known mathematical counterpart of tachyon condensation: 
the isomorphism between the K-theory of a submanifold and that of 
the ambient. While that is an isomorphism between different groups, 
what we propose here is that the descent relation can be viewed as 
natural in one single group. Even better, while that isomorphism is 
natural, it does not justify in itself the identification of the D(p — 2) 
with the pair. In our case, on the contrary, we treat complex analytic 
subvarieties and so we can choose to use Grothendieck groups: if we 
do that, the identification of the product of tachyon condensation is 
a logical consequence of the existence of projective resolutions of co- 
herent sheaves. A related issue is the following. One often says that 
K-theory of the ambient space classifies branes: if so, not only should 
there be representatives in the group for all lower-dimensional branes, 
but also different classes for branes of different dimensions. While the 
first feature has been demonstrated to be there, the second would lack 
if we did not choose different boundary conditions (and thus compacti- 
fications of the ambient space, by adding points at infinity; for instance 
usually one takes spheres to classify branes on flat space), for exam- 
ple by considering higher K-theory groups. These groups together then 
form a ring which one considers as classifying branes. Our attitude here 
will be different: we will have everything in the same group, by taking, 
as compactification, complex projective space, which has the virtue of 
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giving us a Z for every codimension. We will return to this later. 

The following discussion can be fitted to any case in which we want 
to express a brane wrapped on a submanifold in terms of a pair wrapped 
on a manifold; just compactify the latter to a complex projective va- 
riety. The main case we have in mind is IIB theory, with space filling 
branes and antibranes; so in this case we take, as we said, projective 
space P5, of real dimension 10, as ambient variety. The examples that 
we will be talking about in the following, however, are chosen to be 
easier. We do not make any claim of mathematical originality; these 
examples are here just to clarify and illustrate the general discussion, 
which also relies on well-known mathematical facts. 

Issues about the role of Grothendieck groups were already consid- 
ered in [6], with a different point of view and aim from the one we take 
here. 

2    Coherent sheaves and their projective 
resolutions 

The key concept we have to introduce, before discussing Grothendieck 
groups, is that of coherent sheaf. Sheaves generalize the concept of fibre 
bundles on a manifold, which can be viewed as a particular class of 
sheaves, the locally free ones. Fibre bundles on a submanifold will then 
be described precisely by coherent sheaves. On a projective smooth 
variety X, the case to which for simplicity we will now restrict, they are 
sheaves of finitely generated Ox -modules, and thus (using, for example, 
regularity and the presence of an ample invertible sheaf) admit a finite 
projective free resolution, that is, they can be put in an exact sequence: 

0 -> Fn-i -^•••^Fl-±To^C->0 (1) 

where C is our coherent sheaf and the ^ are locally free. Fibre bun- 
dles on a closed subvariety are coherent sheaves (closed immersions are 
proper, and so take coherent sheaves in the subvariety - in particular, 
locally free ones - to coherent sheaves), and so admit such resolutions; 
we will see how this works in examples. Note that our conclusions are 
untouched by possible singularities of the subvarieties. 
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There are in general two definitions of Grothendieck groups. Take 
Z[£] (respectively Z[C]) the free abelian group generated by locally free 
(respectively coherent) sheaves. Then 

/C# = Z[£]/I,        /C. = Z[C]/I/, 

where X (T) is the ideal generated in both cases by elements of the form 
T—T'—T" if there is an exact sequence 0 -> JF" -» T —> T1 —> 0. In the 
case of smooth projective varieties, these two definitions are the same 
(the two groups are isomorphic). In particular we can immediately see 
that every coherent sheaf can be expressed as an element of /C#, by their 
defining sequence (1), and so as the difference £ — T of two locally free 
sheaves. This simply means that in this setting we can express a fibre 
bundle on a subvariety as the difference of two fibre bundles on the vari- 
ety. This is just the identification given by tachyon condensation! So we 
see that, if we use Grothendieck group instead of topological K-theory, 
the first step we described above (the fact that we can cancel the same 
bundle if it appears on both sides) implies the second (tachyon conden- 
sation and identification with lower-dimensional branes). Of course we 
have not shown the isomorphism between Grothendieck groups here: 
but this point is also essential, because otherwise the class which we 
found would depend on the projective resolution we chose. Although 
we will not prove that here [5], we will check it explicitly in an example 
at the end of the paper. 

This group /C* = /C# is different from K-theory in various respects. 
First, of course, we are working with holomorphic subvarieties, and 
choosing holomorphic structures for the bundles involved. Second, what 
we identify with zero are extensions instead of direct sums. But all ex- 
tensions are topologically trivial (direct sums), so this is not a problem. 
So this group does not contain in general all of what is contained in 
K-theory (the non-complex bundles); this gives us a means to under- 
stand which brane-antibrane configurations represent lower dimensional 
branes wrapped on holomorphic cycles. At the same time this group 
distinguishes objects which in K-theory are the same. 

We have still to verify that the isomorphism between the Grothen- 
dieck groups is really consistent with the tachyon condensation we al- 
ready know. We will do this in several examples, using as a basic tool 
the sequence 

0 -> T -> T{p) -> T{p)\D -> 0, (2) 
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with T locally free (alternatively, we can derive it from (3) tensoring). 
Start from a brane wrapped on a holomorphic cycle with its bundle 
- that is, a coherent sheaf. We have to express it in terms of locally 
free sheaves (brane-antibrane) and then do tachyon condensation to see 
whether we retrieve the initial configuration. Let us start with the case 
of one brane, with the structure sheaf as bundle on it (we think of the 
[/(l)-bundle as the circle bundle inside it), and suppose that we work 
in X = F1. The resolution depends on whether the subvariety Y is a 
complete intersection or not; in the former case it is easy. In the case 
of (real) codimension 2 it reads 

0 -> Ox(-Y) -> Ox ->OY -► 0; (3) 

the first term is the ideal sheaf, that we can think as the sheaf of holo- 
morphic functions having a zero along Y. From this we get that Oy = 
Ox — Ox{—Y), and so the tachyon is a section of S ® T* = Ox(Y), 
hence it has a simple zero on Y (recall there is a duality between func- 
tions having poles and sections having zeroes). This exactly parallels 
the already known construction of a brane-antibrane pair which repro- 
duces a codimension 2 brane. We already remarked that the bundle of 
which the tachyon is a section is not defined by the class in K-theory; 
instead, it is guessed in some way by thinking about a "minimal" cou- 
ple (E, F). With this procedure, this minimality is just the concept of 
minimal resolution of a coherent sheaf, well-known to algebraic geome- 
ters. 

Higher codimension. 

Let us describe what to do if the codimension is higher, sticking 
with the case of complex projective spaces. Exploiting the fact that 
line bundles, in this case, are classified by Z, we only write degrees. 
Let di,...,di be the degrees of the equations /i,...,// defining the 
subvariety, and suppose it to be a complete intersection, 

0-»CM-di £*,)-»••.   ->   ©OxH^-d*) (4) 

-+   ®Ox{rdi)AOx-*OY->Q. 

The origin of this resolution can be understood as follows:  the V = 
®iO{—di) term is the generalization of the first (from the left) term 
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of (3) due to the fact that we have more than one equation, and may 
be thought as the sheaf of Z-uples of functions (/i^i,..., fihi)] (j) takes 
such an Z-uple to Ylft^ and the next term on the left is its kernel, 
i.e., relations between the fc. We always find the obvious relations 
ft ' fj — fj * fi — 0) which generate the term ®ijO(—di — dj)] in the 
case of non complete intersections, the number of equations necessary 
to define the variety would be higher than the codimension, and we 
would have extra terms. In fact in the complete intersection case one 
may make (4) more transparent in the form 

0 -> A'V -► > A2V -> AV -+ Ox -> OY -* 0, 

also known as the Koszul complex. Note that we do not have to pro- 
ceed step by step: this is an "all at once" procedure, as the one already 
known and involving K-theory Thorn isomorphism and ABS construc- 
tion ([2]; see also [7] for a more extensive description). To see better 
the correspondence, first remember that for any complex 

Eo^tfi^...^1 En 

one may construct a smaller complex (a map) 

i=even i=odd 

where D(e^ e2,...) = (do^o + ^1^2, ^2 + ^4,...); moreover the latter 
complex is exact if the former is. If we apply this to the sequence (4), 
then we have a pair of bundles which just correspond to the Clifford 
bundles («S+, SJ) associated to the conormal of our variety; for example 
Clifford multiplication (which can be viewed as a sum of an exterior 
product and a contraction) arises from the sum in the definition of D. 

Projective resolutions like this are also known, when thought in 
terms of the corresponding algebraic objects (rings and modules) as 
syzygies, [8]. 

Lower charges. 

We will now give more concrete examples for the case of a non trivial 
line bundle on the (p — 2)-brane. Since we will do this again in projec- 
tive spaces, let us return for a moment to the point we anticipated in 
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the introduction. One would imagine, from the descriptions we gave so 
far of the identifications of the Dp — Dp system with lower dimensional 
branes, that, fixed our ambient space, K-theory or its Grothendieck 
group already provides a classification of all branes of all dimensions. 
To check this we have to choose the space; even if we have fixed the 
dimension p, we still have to choose the boundary conditions. This 
amounts to choosing a type of compactification. We can choose, as 
usual, a sphere; but the K-theory of a sphere is at most Z. This means 
that the construcjtion, by itself, would confuse branes of different di- 
mensions: two dimensionally different branes can be realized as the 
same Dp — Dp system. We have, so to say, to avoid this by hand, 
treating each codimension separately and imposing that our bundles 
depend just on the transversal dimensions. If we do not do that, we 
find that in a given brane-antibrane system, a (p — 2) brane is given by 
a certain couple (22, F), which is anyway also topologically the same as 
a couple which gives a (p — 4) brane. 

We point out that it could be that different choices of boundary 
conditions (that is, of compactification) can give a better result. For 
instance, choosing the complex projective space F1, both K-theory and 
the Grothendieck group are isomorphic to [5, 9] 

R = Z[t}/(t - ir+\ (5) 

which gives a Z for each even codimensional brane (the isomorphism 
from /C# or K-theory to R is given by sending the hyperplane H to t). 
The fact that the topological and algebraic geometrical K-theory are 
equal here is reasonable, since we know that IF1 has no Jacobian. In a 
way the trick is that, choosing F1 as compactification space, we allowed 
all possible boundary conditions, so distinguishing between branes of 
different dimensions. Of course in this way we are not predicting the 
allowed codimensions of the branes: we cannot because we chose the 
complex analytic setting, forcing them to be even. 

Now we return to the examples we wanted to give: non trivial line 
bundles on the (p — 2) brane. This is easier if we can extend the line 
bundle to one on the ambient space, whose divisor let us call D: indeed, 
applying again (2), we obtain 

0 -► Ox(D - Y) -+ Ox(D) -► 0(D)\Y -+ 0; 

the last term is just our original bundle on the subvariety. Note that 
again £ ® !F* = Ox(Y), as it should. To fix ideas, consider the case of 
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a conic in P2, which is birationally equivalent to P1. If the line bundle 
is Opi(2), it can be extended on P2 as 0(1) (henceforth O = O^); the 
sequence so reads 

0 -> O(-l) -> (9(1) -> (9Pi(2) -> 0. 

Life is harder if we consider instead the bundle C7pi(l), which is 
not extendable to P2, since there is no divisor on it which intersects 
the conic once. We can circumvent this difficulty in two ways. First, 
we can start the projective resolution from O © (9, instead of from O. 
Doing this carefully involves looking at the rings of functions over the 
varieties, and maps between them; we will not delve into details, but 
the result turns out to be 

0 -+ 20(-l) -> 20 -> C?pi(l) -> 0 

(we denote now ®iO(k) as nO(k)). As a check, let us do it in another 
way, which only involves sequences that we have already seen. Write 
first the two sequences 

0 -> Opi (-1) -> Opi -> Op -> 0 (6) 

0 -> 0(-2) -> 20(-l) -^ O -> Op -+ 0 

where p is a point in P1 at which a section of our line bundle C?pi(l) 
vanish. Now, tensor both with an hyperplane line bundle in P2: we get 

Opi(l) = 0Pi(2) - Op{l) = (9(1) - O(-l) - {0(1) -20 + O(-l)) 
= 20-20(-l) 

as above. Still another method would have been tensoring the first se- 
quence in (6) by an hyperplane line bundle of P1, and then reexpressing 
(9(1) as 3(9 - 3(9(-l) + (9(-2): this gives an illustration of the relation 
(t — l)n+1 = 0 in (5). The result is in any case reasonable because a 
conic can be deformed to two hyperplanes touching in a point. 

If finally we want to consider stacked branes, C7(l)-bundles become 
(7(r)-bundles. So the generalization is to represent U(r) on C; we get 
in this way a complex vector bundle of rank r on the lower-dimensional 
brane. The coherent sheaf is now again a sheaf of (9-modules, but with 
more generators; and so the resolution starts with rOx instead of with 
Ox- This is right, since to get stacked branes we expect to have to start 
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from stacked brane-antibrane pair. The procedure works the same way, 
but to verify that we get the desired subvariety we have to look at the 
locus where the tachyon is non invertible, rather than zero. 

We thank L. Bonora, A. Sen, A. Zampa for useful discussions and 
advice. 

References 

[1] A. Sen, 50(32) Spinors of Type I and other Solitons on Brane- 
Antibrane Pair, J. High Energy Phys., 9809 (1998), 023, 
hep-th/9808141; Tachyon Condensation on the Brane-Antibrane 
System, J. High Energy Phys., 9808 (1998), 012, hep-th/9805170. 

[2] E. Witten, D-Branes and K-Theory, J. High Energy Phys., 9812 
(1998), 019, hep-th/9810188. 

[3] R. Minasian and G. Moore, K-Theory and Ramond-Ramond 
Charge, J. High Energy Phys., 9711 (1997), 002, hep-th/9710230. 

[4] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 
1977. 

[5] Yu.I. Manin, Lectures on the K-functor in algebraic geometry, 
Russ. Math. Surveys, 24 (1969), 1-89. 

[6] E. Sharpe, D-Branes, Derived Categories and Grothendieck 
Groups, hep-th/9902116. 

[7] K. Olsen and R.J. Szabo, Constructing D-branes from K-theory, 
hep-th/9907140. 

[8] J.Harris, Algebraic Geometry: a first course, Springer-Verlag, New 
York, 1992. 

[9] M.F. Atiyah, K-Theory, Benjamin, 1964. 


