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Abstract 

We present a detailed analysis of a scalar conformal four- 

point function obtained from AdS/CFT correspondence. We 

study the scalar exchange graphs on AdS^+i and discuss their 

analytic properties. Using methods of conformal partial wave 

analysis, we present a general procedure to study conformal 
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four-point functions in terms of exchanges of scalar and ten- 
sor fields. The logarithmic terms in the four-point function are 
connected to the anomalous dimensions of the exchanged fields. 
Comparison of the results from AdS^-f i graphs with the confor- 
mal partial wave analysis suggests a possible general form for 
the operator product expansion of scalar fields in the boundary 
CFTd. 

1    Introduction 

The duality between string or M-theory compactifications on AdS^+i 

and d-dimensional superconformal gauge theories suggested by 

AdS/CFT correspondence [1] has been the subject of intensive research 

over the past couple of years (for a recent review see [2]). Gradually, 

the emerging picture takes the form of the long-sought string/gauge 

theory relationship [3]. Recently, in a minkowsian version of the cor- 

respondence the d-dimensional conformal field theory (CFT) has been 

discussed in the context of local quantum field theory [4] defined on a 

standard (flat) compactified Minkowski space M^^. This space arises 

as the boundary of the AdSi^ space-time. The isometry group of both 

spaces is SO(d, 2) and the state space of the boundary CFT is related 

to the state space of the bulk theory [5]. 

Such a view of the AdS/CFT correspondence implies that the known 

local structure of conformal field theory, (see for example [6] and ref- 

erences therein), is connected to the local structure of the the field (or 

string) theory living on AdS. In particular, harmonic analysis on the 

isometry group SO(d,2) ("conformal partial wave analysis" CPWA), 

of n-point functions of the boundary CFT should be valid. This is 

equivalent to the existence of an operator product expansion (OPE) 

for the boundary CFT. Such expansions are convergent in a topology 
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defined by the n-point functions on which they are applied (CPWA), 

or into which they are inserted (OPE). Perhaps the most well-known 

application ground for CPWA and OPEs is the (Euclidean) case d = 4, 

when the boundary CFT is the Af = 4 SYM theory with gauge group 

SU(N). In that case, the large-N, large-A expansion (A = QYM^ 
w^h 

QYM being the gauge coupling), corresponds to a perturbative form of 

the AdS theory in terms of the so-called "Witten graphs" [1]. Technical 

exploitations of the AdS/CFT correspondence are mainly based on this 

graphical expansion [8, 9]. 

Our aim in this work is to make a thorough investigation of a four- 

point function of scalar fields in the boundary CFT obtained from a 

graphical expansion in AdS. We choose to work in general dimensions 

d to ensure a broad applicability of our results. In Section 2 we set 

the stage for our study by considering a theory on AdS with a single 

cubic local interaction term. This may be viewed as the minimal AdS 

theory leading to a non-trivial four-point function in the boundary. Lo- 

cality arguments applied to the boundary CFT require the analyticity 

of the AdS calculations. In Section 3 we present the results of the AdS 

calculations in the direct and the crossed channels. The direct channel 

poses no analyticity problems. Complications arise in the crossed chan- 

nels where non-analytic terms might arise. We prove that the possible 

non-analytic terms drop out by virtue of highly non-trivial identities for 

generalized hypergeometric functions, thus demonstrating that the cor- 

responding CFT amplitudes admit an OPE. We present a systematic 

harmonic analysis of CFT four-point functions in Section 4 based on 

conformal exchange graphs for scalar and tensor fields. These graphs 

enable us to obtain the general contribution of scalar and tensor fields 

in a four-point function when the OPE is inserted in the direct channel. 

An important point of our analysis is the interpretation of the logarith- 

mic terms which appear in four-point function calculations in terms of 
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the anomalous dimensions of the exchanged scalar and tensor fields. 

This interpretation is by no means new as it has already been used by 

Symanzik [10] and two of the present authors [11, 13]. In Section 5 

we combine the AdS results with the direct channel OPE. This allows 

the recursive determination of the anomalous dimensions and couplings 

of all scalar and tensor fields in the OPE. Our results seem to draw a 

clear picture for the OPE of two scalar fields of the boundary CFT; 

it contains a) the full contribution from the boundary conformal field 

which corresponds to the AdS-field in the cubic bulk interaction 1 and 

b) infinite towers of conformal scalar and tensor fields whose canonical 

dimensions (e.g., the part of the dimension which does not depend on 

the coupling), and tensor rank are simply related to the dimensions of 

the external fields in the OPE. Finally, we summarize our results and 

comment on possible extensions of our program in Section 6. 

2    General remarks 

It is well-known that CFT determines the form of two- and three-point 

functions of general tensor fields up to constants (for a review see [14]). 

Although these constants capture in general non-trivial dynamical ef- 

fects, four-point functions are the minimal ones whose functional form 

depends in an essential way on the dynamics. From conformal invari- 

ance four-point functions are determined only up to a general analytic 

function of two variables. Namely, consider the four-point function 

(01(x1)03(x3)02(x2)04(x4)), (1) 

where the scalar fields Oi(xi), i = 1,...,4 have dimensions A* re- 

spectively.  Denoting Xij = Xi — Xj the four-point function (1) can be 

LOur results differ in this point from the recent claims in [15]. 
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expanded in powers of a;?., determined solely from A*, and an analytic 

function F(u,v) of the two biharmonic ratios 

_ ^13^24 _ x14x23 /9\ U - r2 r2       '      V - r2 r2    ' VZ; 

There exists then a physical real analyticity domain for F(u,v) with 

[ii] 

\l + u-v\<2u^,    \l + v-u\<2v%, (3) 

and a possible expansion is 

«2L   7/n('i _ 7A"1 

FM= T ,   ,    -^.(Aiid). (4) 
'<:-—'        n!m! 

n,7n=0 

An expansion such as (4) is useful in the direct channel limit 

Xi-tXs,    X2-±X4,    (u ->• 0,v -> 1), (5) 

and it is obtained from the calculation of conformal graphs [11, 12, 

13, 16, 17]. In almost all four-point function calculations one relies 

on a perturbative expansion in some small parameter e.g. a coupling 

constant or 1/iV. Such a perturbative expansion implies the dependence 

of conformal dimensions on the coupling constants (or 1/iV) and gives, 

for a specific graph F, an expansion of the form 

*«..>-£:*&* n\m\ 7i,m=0 L«=0 

K 
5>W(A^)(l™)A 

(6) 

where JC depends on the perturbative order. One important point here 

is the appearance of the logarithmic terms on the r.h.s. of (6). These 

terms are not involved in the discussion of the analytic properties of the 

expansion (6) as they can in principle be summed up and exponenti- 

ated giving just an "anomalous" contribution to the dimensions of the 

exchanged fields [10, 11, 12, 13]. Logarithmic terms frequently occur in 
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conformal n-point functions and are in fact necessary in order to ensure 

the correct conformal properties when the external points come close 

together [14, 18]. 

In the context of AdS/CFT correspondence [1] one is equipped with 

a standard procedure to generate a perturbative expansion for confor- 

mal four-point functions. Namely, the relation of a (local) field theory 

on AdS to a CFT on the boundary can be schematically written as 

^AdS [{V(t))e-S[<t>] -> Z[</>o] = {e^dx^x)0^x)) = eWcFT[<t>o],     (7) 

where WCFT[0O] is the generating functional for connected n-point func- 

tions of the field 0^(x) in the boundary CFT, when ^{x) plays the 

role of an external source. Passing from Z to Z[(j)o] involves solving 

the classical field equations for the AdS field 2 </)(xo,x) with bound- 

ary conditions such that 0(^o5^)|aAdS = 0o(^)- When the AdS action 

involves non-quadratic terms it can only be evaluated within a pertur- 

bative expansion in the coupling constant. Such an expansion has a 

definite interpretation in terms of "Witten graphs" [1, 8, 9] connecting 

points in the boundary of AdS via interactions taking place in the bulk. 

The result is a perturbative expansion for the n-point functions of the 

boundary CFT. 

Here we consider the simplest local field theory on AdS which gives 

rise to non-trivial four-point functions of the boundary CFT. Namely, 

2We   consider   the  Euclidean  version  of AdSd+i   space   where   dx^dx^   = 
^(dxoda^o + dx'ldxl), with i = l,..,d. and £„ = (xo,Xi).   The boundary of this 

space is isomorphic to Sd since it consists of Rd at XQ = 0 and a single point at 
XQ = oo. 



OPERATOR PRODUCT EXPANSION ... 577 

we consider the following action for the AdS scalar fields <f)(x) and a(x) 

S = fdd+lx^g Ud^md^ix) + |m202(£) 

+±dlicr{x)d*a{x) + |mV(:c) + f<f>2(x)<j(x)\ .        (8) 

The action (8) gives rise to a boundary CFT of the scalar fields O^x) 

and Oa{x) with corresponding two-point functions [8, 9] 

<<V*i)0*(s2)>   =   CA-^,    A = f + Jm2 + f, (9) 
Xl2 V 

<a(£i)aOr2)}   =   C^,    A = | + \/n»2 + T'        (10) 

_   2(A-|d)r(A) 
^"nA-id) 

It also implies the existence of the three-point function [8, 16] 

1 

(^12)     2   (^is^s)2 

1 r2(iA)r(A-|A)r(A + |A-|d) 

(^(a;!)^^)^^)) = 7* <7AAA, 2,A-iA, 2   2^A ' (12) 

5AAA 
— 

47rd r2(A - ^)r(A - \d) 
(13) 

The coupling constant 7* is the parameter which induces the non-trivial 

dynamics of the boundary CFT. In principle, one should have informa- 

tion regarding its magnitude before trying to make sense of the "Wit- 

ten graph" expansion. This is the case when 0(£) and <T{X) correspond 

to Kaluza-Klein modes of the compactified supergravity theory and 

7* is determined by the standard reduction procedure [19, 20] to be 

7* ~ 0(l/N), where SU(N) is the gauge group of the boundary CFT 
3. In this case one is able to order the perturbative expansion of the ac- 

tion (8) according to the number of cubic vertices. For the purposes of 
3Recently, the full AdSd+i action for the Kaluza-Klein modes has been evaluated 

up to quartic couplings [21]. 
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our work it suffices to assume that 7, is also a "small" parameter when 

<j>(x) and a(x) are general scalar fields, as our results do not depend in 

an essential way on its magnitude. 

Xl X2 

A(x1,x3;x2,x4) = 

xz 

B(xi,x3;x2,X4) = 

X4 

Figure 1: The A and B graphs. In the A graph the solid lines 
correspond to the full 0^{x) propagator (9). In the B graph, solid 
lines correspond to the "bulk-to-boundary" propagators (17) and 
the dotted line to the "bulk-to-bulk" one (18). 

Our main interest is in the four-point function of the scalar field 

O^x). Up to tree "Witten graphs" standard AdS/CFT calculations 

give the following expansion 

(0^)0^)0^X2)0^)) 

= A(xu X2\ Xz, Xi) + A(x\,Xz\ X2, £4) + A(Xi,X4] x3, x2) 

+ 7* [B(x1,X2;xs,X4) + B(xi,x3;X2,x4) + £(aji,au;^3,^2)] ,   (14) 

where the A and B terms are depicted in Fig.l. Note that we consider 

the full four-point function and not only its connected part. The explicit 

expressions for the graphs A and B are given by 

A(xi,X2;xs,X4) = C; 

B(x1,X2;X3,X4) 

{X12X34) 
(15) 

(16) 

-/ 

dd+1ydd+1z 
d+i d+i   KA(

X
U y)KK(x2, y)GA(y, z)KA(xSj z)KA(x4, z), 

2/o   zo 

and the standard forms of the "bulk-to-boundary" and "bulk-to-bulk" 
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propagators that we use are [16, 17] 

l A 

KA(x,y) = kA 

XQ 

kA   = 
r(A) 

(17) 

GACX, y) = ^A g-A2Fi (|(A + 1), |A; A - I + 1; g"2^) , (18) 

r(A) 2       a;2 + y2 + (a._y)2 
^A = _ A , .    i J_, . TT T    »     9     =   — 

2A+17r2dr(A-y+l) 2x0y0 

(19) 

-A (20) 

The disconnected A graphs simply give 

Cl <??       r 
 ^^ + ^-^   1 + v C^2  ™2 NA        ^2 r2 \A  [ 

The integrations in the "exchange graphs" B can be done using ei- 

ther Symanzik's method [22] or following [17] (see Appendix A), when 

one obtains the following convenient representation as a Mellin-Barnes 

integral 

B(xi,x3;x2,X4) 

= 1 f i£-r2(-s) 
(xhx2

3X Jc 2^    V     ) 

T'(A + s)T^A + A-ld)T(lA-A-s) 
r(2A + 2s)r(A - |d + i)r(iA + A - ±d - s) 

x 3F2/'lA + A-|d,|A + A-id,|A-A-S; 

A-|d+l,A+|A-|d-s;l 

x us 2F1 (A + s, A + s; 2A + 2s; 1 - v) 

where 

AC = 
r(2A - |d) 

87r3d/2r4(A _ Id) 

(21) 

(22) 
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The remaining two crossing symmetric B graphs are obtained from 

(21) by suitable interchanges of the x's. Our strategy is now to present 

an explicit expression for the four-point function (14) and study its 

analyticity properties. This expression will then be compared with the 

CFT expectation which is simply the CPWA of the four-point function 

(14). The result will suggest the local form for the OPE of the conformal 

scalar field O^x) with itself. 

3    Explicit results for the AdS exchange 
graphs 

In this section we present the results for the AdS "exchange graphs" 

and discuss their analyticity properties. 

3.1    The direct channel 

Our starting point is the Mellin-Barnes representation (21) for the B 

terms in (14). It is easy to see that (21) is suitable for studying the 

direct channel limit (5). The result of the integration is a double se- 

ries expansion coming from the summation over the F-function poles 

included in the contour C. It can be written down as (see Appendix A 

for the details) 

B(xUXs]X2,XA) 

1 y^    Un{l-V)T 

m,n=0 
A    il—' n 777, . J (*&h)A ~-   n!m! 
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where 

(1) _      r2(A + n)r2(A + n + m) 1 
(n + l)!r(2A + 2n + m) (JA + A - id) 

x s^QA-A + l^A + A-id+l + n,!; 

n + 2,iA + A-|d + l;l), (24) 

b^l = -K 
r2(A + n)r2(A + n + m) 

r(2A + 2n + m) 

r(A-iA)r(A + |A-|d)(n)! 

+ 

r(2A - ld)(A - |A)n+1(A + IA - id)n+1 

^(^A + A-id + n + l)- 2ip(A + n) - 2^(A + n + m) + 2V'(2A + 2n + m) 

(n + l)!(iA + A-|d) 

x 3F2 (|A - A + 1, ±A + A - ^ + 1 + n, 1; n + 2, iA + A - |d + 1; 1 

(|A + A - idW ^       (r!)2(A-iA + r)       n ;J' 
(25) 

^ _    r4(|A)r2(A - |A)r2(A + |A - id)     (|A)2(|A)2
+m 

nm   "    r(A)r(2A-id)r(A-id + i)    (A)2n+m(A - |d + i)n" 
(26) 

The Pochhammer symbol (a)n is defined as 

r(a + n) (a)"=-r>r' ( ^ 
The hypergeometric functions which appear in (24) and (25) can be 

given in term of terminating series by virtue of the identity given in 

(85). However, due to identities of the form 

a->o l [a — r) 
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the last term in (25) gives a contribution proportional to a 4F3 gener- 

alized hypergeometric function. It is easy to see that (23) is analytic 

in the direct channel limit u —> 0 and v —> 1. 

3.2    The crossed channel 

The calculations in both the crossed channels (#3 «-» £4 or u «-» v and 

xs 4-* X2 or u +± 1/u and v +± v/u), are significantly more complicated 

as they involve the analytic continuation of the result (23). The reason 

is that we want to obtain an expression which can be matched with 

the direct channel OPE, therefore we require that the result be written 

e.g. in the general form of (6). Consider for clarity the crossed channel 

obtained from (21) by the interchange u <-> v. 

This can be achieved in two fashions. We start first from the Mellin- 

Branes integral for B(xi, X4] #2, #3) (say) analogous to (21), and expand 

it into contributions of the poles in s to the right of the integral contour. 

We obtain a decomposition into a contribution from Oa exchange and 

from the exchange of an infinite tower of the tensor fields. Because of 

the missing shadow terms (see Sections 4.1, 4.2) each contribution is 

singular at v = 1. In Appendix B we show that for the specific case 

of the B graph in Fig. 1, the non-analytic terms cancel each other by 

virtue of highly non-trivial identities for the generalized hypergeomet- 

ric function 3F2. The explicit form of the remaining analytic terms can 

also be derived using the generalized hypergeometric differential equa- 

tion and the representations of its solutions by Mellin-Barnes integrals 

(Appendix B). 

The second method makes use of the Mellin-Barnes integral for 

B(xi, £4; #2, xs) itself and we observe that (after the exchange of u «-> v 

in (21)) the power vs can be Taylor expanded at v = 1 under the 
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integral sign (Appendix B). Here we just give a general formula which 

is useful in extracting information for the possible general structure of 

the conformal OPE from AdS/CFT correspondence. Namely, the result 

for both the crossed channel graphs obtained from Fig.l is of the form 

B(xi, £4; X2, £3) + B'{xi, X2\ £3, £4) 

1 ^  un(l-*;)m r   _     , r    1 
= , o   o XA   Z^  n    -anmlnu + 6nm   , (29) 

{x\2xl^nj^0      n\m\      L J 

where the coefficients anm , bnTn depend solely on A, A and d. 

4    General scalar and tensor exchange in 
CFT 

In order to analyze the AdS results of Section 3 in terms of CPT par- 

tial waves, we need a formalism which allows the identification of a 

general conformal tensor and all its derivatives in the four-point func- 

tion (14). To achieve this we construct four-point amplitudes with 

covariant vertices and a general tensor field of rank / and dimension 

A exchanged in the direct channel. The appropriate conformal graph 

is depicted in Fig.2 and gives the conformally invariant local result 

/3A(£l,£2,£3,£4;A,/). 

/?A(x1,X3;x2,X4;A,/) = 
A , I 

Figure 2: The tensor exchange graphs. The dark blobs correspond 
to the full vertex functions obtained by suitable amputation of (41). 



584 L. HOFFMANN, A.C. PETKOU AND W. RUHL 

4.1    Scalar exchange in CFT 

To begin with we consider the exchange of a general scalar field of 

dimension A in CFT. This corresponds to the I = 0 graphs in Fig.2. 

The three-point functions (12) which appear in it are contracted with 

the inverse two-point function. The latter is obtained from the two- 

point function (10) as 

I ddz(0<,(x)0„(z)) [{0^)0AvW1 = Sd(x - y),        (30) 

1 a(A - id) 1 
CA   nda(A)   (z - y)^-A) [(OMOM)]-1   = 

Then, we can use the D'EPP formula [25] 

1 

/** (ari - x)2ai(x2 - x)2a2(x3 - x)2a3 

1/(0,1,02,0,3) 
(32) 

(x2
12)

12d-^(xl3)
12d-^(xl3)

12d-^ ' 

U(ai, 02,03) = ir*da(ai)a(a2)a(a3) (33) 

which is valid only for 01+02+0$ = d, to obtain for the scalar exchange 

graph 

0&(X1,X3,X2,X4]A) 

= (7.g*AA)2   r(A)r2(^-|A) 1 

CA    Tr^rdd - A)r2(iA) (x2
z)

A-12A(x2
4)^

A-^ ^2' 

1_ 

[(ari - ar)2(ar3 - x)2}1^^ - x)2(x4 - a:)2]^^ 
xf^- 7^ -, T^rrrx-   (34) 

The integral in (34) falls into the class of conformal 4-star integrals 

[11, 12, 13] which can be evaluated using Symanzik's technique [22] due 
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to the uniqueness condition satisfied by the massless scalar propagators 

involved in it i.e., the sum of the dimensions of the propagators is d. 

The result of the final integration is [11, 13] 

fe(xuX3\X2,X4lA) (35) 

bu~A     v^ 'un(l-^)mr iA      /AN       irf-iA      ,,     AN1 
VX    Z2 it \U2    Cnm  A )+U2d   2ACnrn{d-A     , 

\X12X34)     n m=0 

cnm(A) = a(A)a2(^ - |A)—iM^±^_ , (36) 
^ ^        (A)2„+m(A - 2« + l)n 

The first term on the r.h.s. of (35) is the full contribution of a scalar field 

with dimension A. Its form is fully determined by conformal invariance 

[26, 6, 7, 11, 13] and involves an infinite number of descendants of the 

relevant scalar field. One important observation here is that the second 

term in (35) is obtained from the first by the replacement 

A -> d - A. (38) 

This second infinite series in (35) represents the so-called shadow sym- 

metric singularities of the first series. 4 The appearance of the shadow 

singularities is necessary for the cancellation of the non-analytic terms 

in the crossed channel of standard CFT exchange graphs [24]. The ab- 

sence of shadow singularities in AdS calculations was some kind of a 

puzzle and its solution was proposed in the use of irregular boundary 

conditions [28, 29]. The correct solution, however, is simple and phys- 

ically interesting. The holographic image of AdS supergravity and all 
4The term shadow symmetry was introduced for the first time in [26]. It cor- 

responds to an intertwiner [27] of the conformal group in d > 2 that maps the 
equivalent representations with dimensions rj and d — 77 onto each other. Shadow 
symmetric singularities may correspond to physical shadow fields if the dimensions 
of the latter satisfy the unitarity bound e.g. d - 7] > d/2 — 1. See [11, 12, 13] and 
also [28]. 
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the fields which can be produced from it by operator product expansions 

are gauge invariant composite fields (synonymously: conformal normal 

products) of a set of basic fields, which we guess to be the vector su- 

permultiplet of SYM field theory. These basic fields are not contained 

in the holographic image. On the other hand composite fields appear 

only in operator pruduct expansions which are convergent power se- 

ries with increasing powers of the small distance. Shadow terms would 

therefore lead to a series with decreasing powers and would make the 

whole series twosided. There would not be a maximal small distance 

singularity. For more details see [30]. 

4.2    Tensor exchange in CFT 

The exchange of traceless symmetric tensors of dimension A and rank 

/, corresponding to irreducible representations of dimension A and spin 

/ of SO(d,2), can be also calculated in CFT as the relevant graphs 

reduce to sums of scalar exchanges. For this we need to know the 

general expression for the conformally invariant three-point function 

of a symmetric, traceless tensor with dimension A and rank I with 

two scalar field of dimension A. This is determined from conformal 

invariance up to an overall constant ^ A A z [6> 31]. We use the vectors 

6.(1,2-, 3)   =   Ijgt-ljgt, (39) 
x13 x23 

o 
X 

f(l,2;3)   =   -^, (40) 
'L13X23 
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to express the three-point function as [7, 6] 

(0(x1)0(x3)M^2_tll(x5)) 

<7AAA,^(A;A,0 

2A+iA+|i 

SMlS/i2 * ' ' Si 

(?) 
i—— — trace terms (41) 

7V(A;A,0 
(27r)^ 

r(A + |A + if - |d)r(A - |A + |0r2(|A + |o 
r(d - A -1A + U)vad - A + IA + |or2(|rf - |A + |o 

(42) 

where fM = ^M(l,3;5). Then, the general amplitude depicted in Fig.2 

consists of two covariant vertex functions one of which is amputated 

and can be written as 

{M^2,...M(x-5)0(x2)0(x4))amp\ .        (43) 

The amputation of the second vertex in (43) is done on the tensor 

field M^^^ix). With the following normalization for the two-point 

function [31, 6] 

{M^nixdM^nix*)) (44) 

X 2A 
12 

{ ^m (^12) • • • Inn (^12) }      -traces 
v ) sym 

Af(A,l) 
2Ar(A + l)T(d - A - 1) 

(2TT)2dTad - A)T(d -A+ 1-1)' 
(45) 
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the amputated vertex function appearing in (43) is obtained from (41) 

by the replacements 

A   -*■   d-A, (46) 

£„(1,3;5)   -►   ^(2,4; 5). (47) 

Then from (43) we obtain 

f3&(xi,x3;x2,X4;A,l) 

1 
PA;A,lfiy%2 sA_iA^2 \A-±d+kA 

x   / ddX£ 

PA:A.l — 

r  d    {eMl • • • ew - traces j je^ • • • e^ - tracesJ 

Jdx'5 Ks4)|A^S^)^"A '   ^ 
_ gJAA,/ 22^^+l'r(A - i A + jZ)r(A + IA + |f - id) 

^A''       CA,   (27r)-r(|d - A + 1A + iOr(d - A - iA + iZ) ' 
(49) 

^(1,3; 5) _     U2,4;5) _ _ 

|^(l,3;5)|i       "        |e2(2,4;5)|l 
(50) 

The product of the unit vectors e and e' in (43) can be evaluated in 

terms of Gegenbauer polynomials Cz
2      (x) [23] as 

{^i * *' e^ - tracesjle^ - • • e^ - traces}- -fiC?d~\t),        (51) 
ci 

where [12] 

c^\t) = i:4M)tM, (52) 
M=0 

^(1,3; 5)^(2,4; 5) 
l£(l,3;5)||£(2,4;5)r ^    ; 
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This is derived by observing that the following generating function for 

Gegenbauer polynomials 

(l-2a(e-r?) + a2eV)1"^       ^eR', (54) 

is harmonic with respect to both Laplacians A^ and A^. The latter 

property is equivalent to the tracelessness of the tensors in (51). Note 

that in (52) cjj = 0 if / — M is odd. The argument t of the Gegenbauer 

polynomials in (52) can be expanded in powers of squares xfj as 

,M 
rpA    rpA    rpA    qnA 
X15<//25X35X45 

4:X13X24 

\M 

ni2+n34 [ M 
^12^23^34^41   J II I x2 X2 )n ^ 

^i,i+l 

,   (55) 

with 7141 = ^45 and x5g = x^. Then, the integration of (43) can be 

reduced to a finite sum of four-star functions which can be evaluated 

to 

U 
/3i(x1,X3,x2,x4;A,0=feiA,,^~F E       „!m! 

\     IZ     d4/        71,171=0 

I (M) 

X E^sy E <-i)""~( 
0 z    cl     ni,i+ieNo 

"12+^34  I M \   ^7123 
^12 ^23 ^34 ^41 )   ^ 

X u^A-M)a(S2)a(84)a(A)^)n{>d " 5^5^^d - ^Um 
(A)2n+m(A - y+i)n 

+ shadow term (56) 

where 

« e (1,3)      ^ = 1(A - M) + rii-Li + ni.i+i, (57) 

i € (2,4)      ^ = Id - i(A + M) + Tii-Li + ni,i+1. (58) 
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Performing the final summations we can bring the result into the form 

P^(xi,X3,X2,x4;A,l) 

-8- U~A      V Mn(1 -V)m U^D    (Al) 

+ u^d-A-»Dnm(d-A,l)]. (59) 

The coefficients Dnm are regular functions of A, A and d, however their 

form is quite complicated and we do not present it here [12]. The first 

term on the r.h.s. of (59) is the full contribution of the symmetric 

traceless tensor field with dimension A and rank I. This is the relevant 

term which we need in the direct channel OPE. The second term corre- 

sponds again to the shadow symmetric singularities and it is in general 

absent in the AdS calculations. 

5    The structure of the OPE in the bound- 
ary CFT 

We are now in a position to connect the AdS results of Section 3 with 

the CPWA of Section 4. Prom the results of Section 3 we conclude 

that an AdS four-point amplitude G (i.e., an appropriately chosen set 

of AdS graphs), has the general form 

G{X1,X2,X3JX4) (60) 

_    i     -^(1_,r 

Anm = (oSJ, + anm)7,2  ~ 0(7,2), (61) 

Bnm = Ci(5mO + (A)m)50n + (bW+bnm)>£ - 0(1). (62) 

The first term on the r.h.s. of (60) is the full contribution of the scalar 

field a(x) with dimension A.   This is the corresponding field of the 
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scalar a(x) which appears in the AdS cubic vertex on (8). As a check 

we can calculate from (35) and (26) the coupling g^A and we find it in 

agreement with the AdS result (12). We conclude that this is a generic 

feature of the OPE in the boundary CFT obtained form AdS/CFT 

correspondence; the CFT scalar fields corresponding to the AdS scalars 

involved in the triple bulk vertices, appear intact in the operator algebra 

of the boundary CFT. 5 We expect that this feature holds true for 

general tensor fields which are involved in AdS cubic vertices, however 

the general proof is still missing. Such a structure of the boundary 

OPE is robust against the inclusion of quartic couplings, since it is 

trivial to show that general AdS "star-graphs" give contributions of 

the form (29). Our results are consistent with the anticipated non- 

renormalization [19, 32, 18] of all operators in the boundary CFT which 

correspond to the Kaluza-Klein modes of the bulk supergravity theory. 

Next we turn to the remaining two terms on the r.h.s. of (60). Fol- 

lowing earlier works of one of the authors [11, 12], these terms can be 

matched to a conformally invariant OPE in the direct channel which in- 

cludes contributions from infinite towers of symmetric, traceless tensor 

fields with dimensions (we replace hereafter A -> Aj^ and f3^.A l -> /?/|t) 

U,t 2A + l + 2t + 7?M, (63) 

where / is the tensor rank and t is an additional quantum number called 

the "twist". From Bose symmetry / £ 2No and then t G NQ. These 

fields have an "anomalous" dimension 77^ ~ 0(7*). Inserting (63) into 

(59) and expanding up to 0(7^) we get by comparing the coefficients 

5Note that a cubic vertex like the one in (8) can be used to calculate the four- 
point function of the scalar field (T(X) in the boundary CFT. In this case, some 
connected contributions will come from "box-graphs" which are 0(7^). In principle, 
such graphs can be calculated using the techniques of the present work, as was done 
in CFT models in in 2 < d < 4 [11, 12, 13]. 
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oiun(l-v)m a,ndun{l-v)m\nu 

J2r—^Dnm(l,t)j3l,t   =   Bnm, (64) 

n! 
/ J 7——jTlDnmil, t) K^,* fyj     —     —Ann 
l,t    ^       l>- 

(65) 

To proceed we introduce the lexicographic order in the sequences of 

labels (l,t) and (m,n) as follows (say for (m,n)): we define 

(mi,ni) < (m2,n2), (66) 

if either 

mi + 2ni < m2 + 2n2, (67) 

or 

mi + 2ni = m2 + 2n2   with   ni < 77,2 . (68) 

Moreover, we consider only those equations in (64), (65) with 

m + 2ne 2No. (69) 

The remaining equations are then interpreted as constraints which have 

to be satisfied to ensure consistency of our scheme. This has been 

checked to high orders in the case of the O(iV) vector model in 2 < d < 4 

[11, 12], and in principle can also be done in the explicit in the case 

of AdS5/CFT4 correspondence using e.g. the results of [21] 6. Then 

we note that the relevant labels (m, n) and (l,t) appear in an ordered 

sequence as 

(0,0), (2,0), (0,1), (4,0), (2,1), (0,2), (6,0),  (70) 

6 Work in progress 
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This sequence can be mapped into the natural numbers maintaining 

the order. Using then 

n! 
D(m,n),{l,t)     =     T——rj-Aim(M), (7l) 

^(m,n)     ==     ^nm     5     ^(m,n)    :==        ^^-nm 5 V'^J 

we can write (64), (65) in a matrix notation as 

Y^DrsPs     =     Br, (73) 
s 

J^DrsPsTIs     =    A, (74) 
s 

where 5 and r now denote the above pairs of indices. These equations 

can be solved if we notice that 

Drs = 0    if   r < 5 , (75) 

i.e., Drs is a triangular matrix. Moreover we have 

Ar^O, (76) 

and this allows to write the general solution of (71) and (73) as 

ft   =    ^(D-1)^, (77) 
l<r<s 

p.n, =   Yl (D'^srA. (78) 
l<r<5 

The above constitute, in principle, the general solution to the problem 

of evaluating the couplings and anomalous dimensions of all scalar and 

tensor fields which appear in the OPE of the boundary CFT. These 

equations have been shown to work in the case of the conformally in- 

variant O(iV) vector in 2 < d < 4 [12]. Given the values of the di- 

mensions A and A, they can also be applied to any form of AdS/CFT 
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correspondence. However, some technical complications might arise in 

explicit calculations due to our choice of the normalization of the two- 

and three-point functions of tensor fields (44) and (41) (see for example 

[35]). For specific values of the tensor dimensions and rank, it may seem 

that the normalization constants and coupling include divergences or 

zeroes. This is related e.g. to similar problems encountered in calcula- 

tions of scalar extremal correlators [36]. Nevertheless, it can be easily 

shown [12] that in all cases the final formulae (77) and (78) yield regular 

results once an overall normalization is suitably chosen. 

6    Summary and Outlook 

In this work we studied a conformally invariant scalar four-point func- 

tion which is obtained from AdSd+i/CFT^ correspondence. We calcu- 

lated the AdS scalar exchange graphs both in the direct and the crossed 

channels and demonstrated that they give analytic results. This is nec- 

essary in order that the corresponding four-point function in the bound- 

ary CFT admits an OPE. We then presented a general procedure to 

obtain the contribution of scalar and tensor fields in conformally invari- 

ant four-point functions. Interpreting the logarithms coming from the 

AdS calculation as anomalous dimensions of scalar and tensor fields in 

the boundary CFT, we were then able to present a general method for 

their evaluation by matching the AdS results with the conformal OPE. 

As a by-product, we presented some highly non-trivial formulae for the 

analytic continuation of generalized 3F2 hypergeometric functions. 

Our results indicate a possible general form for the OPE of the 

boundary CFT. Namely, it seems that AdS scalar fields which are in- 

volved in cubic vertices in the bulk, manifest themselves intact in the 

operator algebra of the boundary CFT. This essentially means that 
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once their dimensions and couplings have been fixed from the super- 

gravity reduction, they will not change at any order in the "Witten 

graph" expansion. The latter gives, according to the Maldacena con- 

jecture [1], the strong coupling limit of the boundary CFT. Therefore, 

if these fields appear also in a free-field realization of the boundary 

CFT, we conclude that they are non-renormalized. This is in agree- 

ment with the general view [19, 32, 18] that the Kaluza-Klein modes of 

the compactified supergravity, which are actually the ones appearing 

in the cubic AdS vertices, are not renormalized. Fields which appear 

either in the strong or in the free-field realization of the boundary CFT 

may respectively be either string modes or non-chiral primaries, the 

latter in the case of Af = 4 SYM4. In this latter case, the scalar and 

tensor fields whose anomalous dimensions are related to the logarithms 

of the AdS calculation correspond to composite "multi-trace" opera- 

tors of the boundary CFT. Thus is seems that the non-trivial dynamics 

connecting the strongly and the weakly coupled realizations of Af = 4 

SYM4 is essentially related to the gauge group SU(N). 

Our calculations were performed for general d and general dimen- 

sions of the scalar and tensor fields. We expect that significant sim- 

plifications will occur in specific cases such as e.g. the AdS5/CFT4 

correspondence leading to the A/" = 4 SU(N) SYM4. However, a tech- 

nical problem related to a consistent overall normalization of scalars 

and tensor fields may still occur in explicit calculations [35]. 

There a several possibilities to use and extend our results. In the 

case of type IIB compactifications on AdS5xS4, the full bulk action 

has been recently calculated up to quartic interaction terms [21]. From 

that one can possibly calculate the four-point functions of various chiral 

primary operators in J\f = 4 SYM4 and study their OPEs. This would 

shed new light into the strong coupling dynamics of the latter the- 
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ory as one could calculate the anomalous dimensions of non-protected 

multi-trace operators. From such calculations one could also deduce 

interesting results for the energy-momentum tensor or other conserved 

currents of the theory. Another possible application of our result would 

be in the case of AdS^CFTs correspondence [37]. The calculation of 

anomalous dimensions in this case is of particular interest, as it may be 

compared with existing results for the anomalous dimensions of various 

operators in three-dimensional CFTs [11, 12, 13]. 

One additional point which needs further investigation is that the 

expansion (60) may not be the whole story in a perturbatively defined 

theory in the following sense. In general, there exists various tensors 

(Ax,/!), (A2,/2) with 

h   =   l2 (79) 

Ai   =   A2 + perturbative correction terms (80) 

The resolution of such "almost-degeneracy" requires a sufficiently high 

perturbative order and the description of n-point functions with n > 4. 

For conformal sigma models in 1/Af expansion a method of resolution 

has been developed in [12]. By use of combinatorics it is possible to 

determine the "maximal degrees" of "almost degeneracy" using the 

argument that as iV —> 00 we obtain a free-field theory. These maximal 

degrees can be really trusted only for small / [12]. Before the question 

of "almost degeneracy" is resolved, an expansion such as (60) can only 

give averaged anomalous dimensions. 
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A    AdS exchange graphs in the direct 
channel 

The starting point of our calculations is formula (21). This can be 

obtained from (16) either by using Symanzik's technique [22, 11, 13] 

or following [17]. To evaluate the Mellin-Barnes integrals we find it 

convenient to use the non-terminating form of Saalschutz's theorem 

(Eq. 4.3.4.2 of [33]) for the Saalschutzian generalized hypergeometric 

function 3F2 to obtain 

B{XUX3]X2,XA) 

KK 

\X12XM) 
2  \A I ds r(-s)r(|A - A - s)r4(A + s)T(s +1) 

2m   r(2A + 2s)r(iA + A-y+l + s) 

x us 2i?i(A + s, A + s; 2A + 2s; 1 - v) 

\X12X34:) 

K f  ds 
r2(-s) 

r4(A + s) 
r(2A + 2s) (s + 1)(|A + A - |d) 

x 3F2 (iA-A+l,iA+A-id+l+s,l;s+2,iA+A-id+l;l) 

x us 2Fi(A + s, A + s; 2A + 2s; 1 - v) (81) 

where 

K, = 
r2(iA + A - id)r(A - jA) 

(82) 
r(iA-A + i)r(2A-id) 

The contour in the first term on the r.h.s of (81) encloses only single 

poles coming from r(—s) and r(|A — A — s) at the points s = n 

and s = |A — A + n, n = 0,1,2,... respectively. After expanding the 

hypergeometric function 2^1, the result obtained form the first term on 

the r.h.s. of (81) is a double series in the variables u and (1 — v). 
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The second term on the r.h.s. of (81) is of the general form 

f(u) = lc^(-s)g(s)u\ (83) 

where the function g(s) does not have poles in the right half plane. To 

evaluate the integral we can choose a regularization method in order 

to disentangle the two infinite series of coincident poles coming from 

r2(—s). For example, we can choose to shift one of the infinite series 

of poles by an infinitesimal parameter e which will be set to zero after 

the evaluation of the Mellin-Barnes integral. Setting then r2(—s) —>- 

r(-s)r(-s + e) in (81) we obtain 

/W -1 E 
.71=0 

un e g{n — e) 
r2(n+l-e) 

€=0 

00 n un 

71=0   V        ' 
m 2ip{n + l)g(n) - g{n) Inu - ^7b(0k=n (84) 

Using then (84) we can evaluate the second term on the r.h.s. of (81). 

The result of the lengthy calculation is given in (24)-(26) in the text. 

It is amusing that we are able to write the final formulas for the coeffi- 

cients anm, bnrn and cnrn in terms of terminating series, by virtue of the 

following transformation 

3F2 UA-A+1, iA+A-id+1+n, l;n+2, |A+A-|d+l; 1J 

r(n + 2)r(|A + A-^+l) 

" (A - iA)r(iA + A - \d + 1 + n) 

x 3F2(1 - |A - A + Id, A - |A, -n; A - |A + 1,1; 1),     (85) 

which is a consequence of the two-term relation Eq.(2.3.3.7) of [33]. 
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B    AdS exchange graphs in the crossed 
channel 

Here we present the essential steps for the crossed channel calculation 

corresponding to the interchange u 4-¥ v in (81). We first observe that 

the argument of the 2-F1 hypergeometric functions becomes (1 — u) and 

in order to transform it into a series in the variable u we need to use 

a Kummer transformation e.g. Eq. 9.131.2 of [23]. Due to the form 

of the 2-P1 function involved in the transformation, we encounter poles 

in the r.h.s. of Eq. 9.131.2 of [23] i.e. this is a degenerate transfor- 

mation. This is a consequence of the analytic continuation implied by 

the above Kummer transformations. To obtain the result we may use, 

for example, the Mellin-Barnes representation for the 2-F1 function and 

appropriately regularize the coincident poles as in (84) above. It is 

nevertheless simple to write 

2Fl(A + s, A + s; 2A + 2s; 1 - u) 

= 2^1 (A + s, A + s; 2A + 2s + e; 1 - u) 

"r(2A + 2s + e)r(e) 

e-*-0 

+ «' 

r2(A + s + e) 

r(2A + 2s + e)r(-e) 
r2(A + s) 

2i7,
1(A + s,A + s;l-e;u) 

2Fi(A + s + e, A + s + e; 1 + e; u) 
£-40 

r(2A + 2s)^   un „2/X 

-lnu + 2V>(n + l) -2^(A + s + n) 

r(2A + 2s) E u" 
r*(& + s) ^0(n\y   nv^ 

Vn(—)T2(A + s + n + 0 (86) 
e=o 
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where 

Vmi-Qz) = - Inn + 2iP{m + 1) - ^ . (87) 

Using then (86) we obtain from (81) 

B{X1,X4\X2,X$) 

KK 

\X12XMJ 

d 

£^(#)(^w-o 
/2(«,0-/3(«,0) 

€=o 

/i(«,0 

= r2(|A + m + o ,, A 
r(A-|d + i) 

r2(A + m + ^) 

(88) 

(89) 

2Fi(|A + m + ^iA + m + ^A-|d+l;u) , 

(90) 

r(iA + A-id + l)r(A-iA + l) 

X3F2 (A + m + C,A + m + C,l;|A + A-id+l,A-iA + l;t;) , 

/3(»,0 (91) 

 r(2A - \d)  r ds r2(-s)r2(A + m + g + o 
r2(A - iA)r2(A - IA - \d) Jc 2m    (a + i)(A + JA - jd) 

x 3F2 (|A-A+1, iA+A-id+l+S, l;s + 2, lA+A-|d+l; 1 ) , 

with 

« = 
r2(|A + A - id)r2(A - IA) 

r(2A - id) 
(92) 
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First we show that fz(v, £) does not contain non-analytic terms as v 

1. Using (84) we can write 

A(.,0 = | 
vn eg(n-e,t) 

^ ^(n + l-e) E (93) 
e=0 

The possible non-analytic terms as v -» 1 in (93) are determined by 

the large-n asymptotics of the ratio g(n — e, ^)/r2(n + 1 — e). This in 

turn can be found using the Stirling formula below [23] 

r(a + r + l) 
r(r + l) 

exp aln(r + l)+>   7 -rf (94) 

^l(a) = ta_E(?)_A:i(a-1)-.,06o 
Z=0 

fe 
(95) 

1=0 

where S/ are the Bernoulli numbers (Sees. 9.61, 9.71 of [23]). This 

enables us to obtain an asymptotic expansion for 3F2 in (91) by virtue 

of Eq. 4.3.4.2 of [33] setting (in Slater's notation) c = |A+A-|d+l+s, 

e = s + 2. In this way we obtain 

g{n-z,£) 
r2(n + l-e) EE^r+^r''. w 

=1    A 
r(n + 1 - 6) 

for some parameters Aj, which depend among others on m and £. The 

coefficients cr^ can in principle be explicitly determined in terms of the 

Bernoulli numbers [24], but in this case we only require their existence. 
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Then, by virtue of (96) we obtain the non-analytic terms 

vn-6g(n - e, £) E 
n=0 

2      oo 

r2(n + 1 - e) 

E E ^ v-^rnl^^^Mi + 1 - e - A, 1; 1 - e; v) 
W-e) 

2       oo 

« E E ^ r(^ + ! - A)(1 -.tO"*-1-" , (97) 

where to get the second line of (97) we used a Kummer transformation 

and have omitted the analytic terms. The crucial point is now that the 

non-analytic terms are independent of the parameter e and therefore 

drop out when we substitute (97) into (93). 

We next consider the function 

v1>A-Afi(v,0-f2(v,0- (98) 

The assertion that (98) is holomorphic at v = 1 is a mathematical 

theorem that will be proved first. Our presentation of the proof follows 

the review article of Norlund [34]. 

Using a Kummer transformation we can see that the first term in 

(98) involves the non-analytic part 

(1 - vy-^-^-^T^d - 1 + 2m + 20 

^ (1 - v)^ (A - IA)r(iA - id + 1 - m - QS 

■r£i      r!n! (2-id-2m-20„ '   l    ) 

where we have used the binomial expansion for v:2A~A. We will show 

that the second term in (98) involves a non-analytic term which just 

cancels the above contribution. 
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The second term of (98) can be brought into the form (Eq. 1.13 of 

[34]) 

$a(v) — v1* 
[nLi Tiflr + 7,)] 

nrA r(7r - 7, + 1)_ 

Is - 7i + 1, Is - 72 + 1,73 - 73 + 1; v)],        (100) 

where s = 1,2,3 and the t indicates that the argument 7S—7S +1 = 1 is 

left out. In this representation (100) satisfies the differential equation 

ei^)-"K(^) uv) = 0' 
where Q(x) and TZ(x) are the polynomials 

(101) 

Q{x) = ]l{x - ji)  ,   n{x) = f[{x-ai) (102) 
i=l 1=1 

The linear differential equation (101) has a regular singularity at v = 1. 

As shown in [34] it possesses there one singular solution Xs(v) and 

two regular solutions p^ (v) and pb (v) which form a basis ("basis 

theorem"). It follows therefore that 

f2(v) = Csx3(v) + ^2c^pl\v) , 0<v<l (103) 
1=1 

The coefficients Cs, Cr and Cr will be determined later. (103) con- 

stitutes a Kummer transformation for the generalized hypergeometric 

function 3F2. 

The identification of the parameters in (100) is not unique. A con- 

venient choice for our purposes is to set 

5 = 3,      ai = a2 = A + m + £,      a^ = 1, 

ld_lA_A,      72 = iA-A,      73 = 0. (104) 
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With this choice we obtain from Eq. 1.15 of [34] 

& = &   =   l-2m-2£-±d, 

(105) 

(106) 

and from Eq. 1.33 and 2.11 ibid. 

/»(3) 
Un,3 

»<«>  -  ErJi^irf1-) 
\/93+n 

^ 093 + 1)„ n=0 

^(3) 

{fiz + l)n r=0 
r!(n - r)!(2 - 2m - 2£ - \d) l^lr 

(107) 

£ (l + |A-^-m-a2(A-^A)n_,.    (io8) 

Therefore, from (103) we see that the singular part of f2(v,£) cancels 

the singular part (99) of fi(v, £) if 

C. = T(2m + 2Z + U-1) (109) 

To show this we can use the method of "large order expansion" of the 

coefficients of f<2(v,£) in powers off. Namely, writing 

f(    .^V^ r2(A + m + £ + n)r(n + l) 
{V'  }     h ^ r(^A + A - U + 1 + n)r(A - iA + 1 + n) '  i     j 

we can use Stirling's formula (94) to obtain 

r2(A + m + £ + n) 

r(|A + A - \d + 1 + n)r(A - iA + 1 + n) 

A=0 

rpg-A + n + i) 
r(n + i) 

(111) 

where /5 is defined in (116). From (111) the non-analytic part of /2(v, £>) 
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can be found as 
1X3       n 

n.l rfl 
r2(A + m + ^ + n)r(n + l) 

oo 

n\ r(|A + A - id + 1 + n)r(A - |A + 1 + n) 

OO 

E E^ 
A 

oo 

r^-A + n + l)^ 

71=0 
r(n +1) 

J2 vx r(i<2 - 1 + 2m + 2£ - A)(l - V)H<*-2»»-2M-A (112) 
A=0 

Since from (108) and (111) 

cro = 

/»(3) 
'-'0,3 

(A + l)o 
= 1, (113) 

then (109) follows. 

In our previous work [24], being unaware of [34] we went on to show 

that the coefficients <TA in (111) equal the r.h.s of (108) for all A. The 

explicit formula for the ax is obtained recursively from 

E cr\ 

- (n + 1)- 
exp 

A=0 

n—»oo 
exp E 

,fc=i 

2Vk+i(ti)-Vk+i(t2)-Vk+i(t3) 
(n + l)k 

t1 = A + m + ^-l, t2 = A-±A, t3 = ±A + A-±d, 

f3 = 2t1-t2-tz = ±d-2 + 2m + 2t, 

(114) 

(115) 

(116) 

by matching the powers of l/(n +1) on both sides of (114). Then, from 

(108) and (112) we have to prove that 

A=0 '(2-id-2m-20A 

E 
AJ,/=0 

(1 - v)k+l (A - 1 A)K|A -ld+l-m-01 
kill (2-\d-2m- 20k 

(117) 



606 L. HOFFMANN, A.C. PETKOU AND W. RUHL 

To prove this we will show that 

cr\ E (-i)< 
- k\(X - k) 

(*2)A-fc(*3-*l)fcG0-A + l)A_fc. (118) 

The proof is based on the observation that (111) and (114) have dual 

forms. For (111) we obtain 

r2(ti + z + l) 
T(t2 + z + l)r(*3 + z + l) 

sin7r(i2 + z) sin7r(t3 + z) sm7r((3 + z) 

x 
A=0 

sin2^^! + ^sinTrz 

T(z+l)        ' (119) 

while for (114) we have 

^ (-I)VA E 
sin27r(ii + z)sin7rz 

►-oo sin 7r(i2 + z) sin 7r(i3 + z) sin 7r(^ + 2?) 

x exp E 2Pfc+i(ti)-n+i(^)-Pfc+ife) 
{z + l)k (120) 

with the same <j\. We also need the following property 

Vk+l{l-t) = {-l)k+lVk+l{t) (121) 

Now we will show that (119) follows from (118). Multiplying the r.h.s. 

of(118) by 

r(0 - A + z + 1) 
r(* + i) 

(122) 
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and summing over A we obtain a convergent double sum for Rez ->■ — oo 

k,l=0 

smTr(p + z)^T(k-l3-z)      k\ 

sin 7r(/3 + z) T{-/3 -z-h) 

 sin2 ir(ti + z) sin TTZ r2(ti + ^ + l) 
= sm7r(t2 + z) smn(t3 + z) sin7r(/? + z) r(i2 + z + l)r(t3 + « + !)' 

(123) 

Since all the above steps are invertible, (117) and (118) are proven 

q.e.d. 

Next we turn to the analytic part of hiy^) in (103). We can then 

write from Sec. 5.7 of [34] 

P^iv) = yiM,    P?
)
(V)=VIM> (124) 

where e.g. 

, ,      fds   M r(7i - g)r(72 - s) [UU Tjoi + s)] 
y^v) = Je2riv r(5 + i-73) •     (  5) 

The contour C separates the increasing from the decreasing sequence of 

poles. The integral in (125) converges for 

27r> argv > -27r, (126) 

which includes the circle 

|l-t;|<l. (127) 

Then, an expansion of y^(v) in powers of (1 - v) is given by Eq. 5.35 
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of [34] as 

M.) -wt i::t(::::t v-*™^,^. 
n=0 n!(Q;i+Q;2+7l+72)n 

Ci = 

1 - a3 - 73; 71 - 73 + 1, ai + Q;2 + 7i + 72 + n; 1),      (128) 

r(ai + 72)r(a2 + 72) [flti rC^ + 71)] 
r(ai + 0:2 + 7i + 72)1X71 -73 + 1) 

(129) 

The corresponding results for pjj' are obtained from above by the in- 

terchange of indices 2 -H- 3. 

Now we return to (103).  Shifting the contour in (125) to +00 we 

obtain 

ViM   = 

TT 

sin7r(72-7i) 
TT 

sin TT (73-71) 

[*l(t>)-*2(t>)], 

[*!(«) - $3(u)]  • 

(130) 

(131) 

The corresponding Mellin-Barnes representation for X3(v) reads (Eq. 

2.44 of [34]) 

M.)-TV, + 1)fc«r-Jlfg!±fo,       m 

with the same p as in (106). Shifting the integration contour above to 

—oo we obtain 

rpg, +1) ^ 
xsCv) = —i— 2^ 

TT 
i=l 

nLisin7r(7i+^). 
ns^sin7r(7i-7s) 

■^(v). (133) 

The linear system (130), (131) and (133) can be inverted.   For the 
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evaluation of its determinant we need the identity 

3 3 

^ sin7r(7i - 7j) JJ sin7r(7fc + as) 
(i,j,k)in cyclic order 3=1 

= - sin7r(7i - 72) sin7r(72 - 73) sin ^(73 - 71) siiiTr ( ^(a* + 7^) 
\t=i > 

(134) 

Then, for the coefficients in (103) we obtain 

CM   =   llnkf^LtM (135) 
TT smTrps sin7r(73 — 72) 

TT smTrps sin7r(72 — 73) 

and also (109) again. The latter is a non-trivial check for our calcula- 

tions. 

Next we want to derive a Mellin-Barnes integral for the coefficients 

-anmlnu + bnm, (137) 

in (29). Here we restrict the derivation only to the contribution of 

-B(xi,X4; #2, £3)- Expanding (87) in powers of u we have to treat (see 

(21) with u ^> v) 

M" r ds r2(-5)r(|A - A - s) s     (I       ~    1 

- A + A - -d, - A - A - s; A - -d + 1, A + - A - -d - s; 1 

x Vn (^) r2(A + 5 + n + 0|{=o. (138) 

By the Stirling formula [23] we know that for s = ±i<7, a —V oo 

0(e-27r<T). (139) 
r2(-5)r(|A - A - s)r

2(A + s + n + o _     _27r^ 
r(|A + A-Id-5) 
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Moreover the s^-function in (138) behaves in the same limit as a power 

of a 

COnst.   X   ^maxMA-id-l^ (^Q) 

An appropriate three-term relation for 3^2(1) ([33], eqn.(4.3.4.2) with 

a = b = i A + A - id, 

c = IA - A - 5, d = A - id + 1, e = A + | A - |d - 5) and the 

Stirling formula [23] gives a complete asymptotic series expansion for 

this siVfunction with leading term (140).   Inserting then the Taylor 

expansion 

m=0 
^E11^-*)™. (i«) 

into (138) we obtain as contribution to (137) the exponentially conver- 

gent Mellin-Barnes integral 

^ r ±r\-s)rC,A - A -,)(-)      A i 
n!  yc27rz       r(|A + A-|d-5)       3  2V2 2  ' 

1   A X !    ,     iA A A Ij ,       A iA ij ^ -A + A - -d, -A - A - s; A - -d + 1, A + -A - -d - s; 11 

x 1?B (^) r2(A + a + n + 0|€=o, (142) 

with 

_ r'(iA + A-|d) 
"  r(A-id+i) ' (143) 

The holomorphy of the functions 3/1,2(v), 2/1,3(v) at i;'= 1 can equally be 

derived from the exponential convergence of the Mellin-Barnes integrals 

(125). 
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